当前位置:文档之家› 中国古代数学发展及其影响

中国古代数学发展及其影响

中国古代数学发展及其影响
中国古代数学发展及其影响

中国古代数学发展及其影响

摘要:中国古代数学具有悠久的传统。本文论述了中国古代数学的算法化、机械化特征及其对世界数学发展主流的历史贡献,并指出了解中国古代数学发展特征对于现实创新活动的借鉴意义。

1 中国古代数学的发展

在古代世界四大文明中,中国数学持续繁荣时期最为长久。从公元前后至公元14世纪,中国古典数学先后经历了三次发展高潮,即两汉时期、魏晋南北朝时期和宋元时期,并在宋元时期达到顶峰。

与以证明定理为中心的希腊古典数学不同,中国古代数学是以创造算法特别是各种解方程的算法为主线。从线性方程组到高次多项式方程,乃至不定方程,中国古代数学家创造了一系列先进的算法(中国数学家称之为术),他们用这些算法去求解相应类型的代数方程,从而解决导致这些方程的各种各样的科学和实际问题。特别是,几何问题也归结为代数方程,然后用程式化的算法来求解。因此,中国古代数学具有明显的算法化、机械化的特征。以下择要举例说明中国古代数学发展的这种特征。

1.1 线性方程组与方程术

中国古代最重要的数学经典《九章算术》(约公元前2世纪)卷8的方程术,是解线性方程组的算法。以该卷第1题为例,用现代符号表述,该问题相当于解一个三元一次方程组:

3x+2y+z=39

2x+3y+z=34

x+2y+3z=26

《九章》没有表示未知数的符号,而是用算筹将xyz的系数和常数项排列成一个(长)方阵:

1 2 3

2 3 2

3 1 1

26 34 39

方程术的关键算法叫遍乘直除,在本例中演算程序如下:用右行(x)的系数(3)遍乘中行和左行各数,然后从所得结果按行分别直除右行,即连续减去右行对应各数,就将中行与左行的系数化为0。反复执行这种遍乘直除算法,就可以解出方程。很清楚,《九章算术》方程术的遍乘直除算法,实质上就是我们今天所使用的解线性方程组的消元法,以往西方文献中称之为高斯消去法,但近年开始改变称谓,如法国科学院院士、原苏黎世大学数学系主任P.Gabriel教授在他撰写的教科书[4]中就称解线性方程组的消元法为张苍法,张苍相传是《九章算术》的作者之一。

1.2 高次多项式方程与正负开方术

《九章算术》卷4中有开方术和开立方术。《九章算术》中的这些算法后来逐步推广到开更高次方的情形,并且在宋元时代发展为一般高次多项式方程的数值求解。秦九韶是这方面的集大成者,他在《数书九章》(1247年)一书中给出了高次多项式方程数值解的完整算法,即他所称的正负开方术。

用现代符号表达,秦九韶正负开方术的思路如下:对任意给定的方程

f(x)=a[0]x^n+a[1]x^(n-1)++a[n-2]x^2+a[n-1]x+a[n]=0 (1)

其中a[0]0,a[n]0,要求(1)式的一个正根。秦九韶先估计根的最高位数字,连同其位数一起称为首商,记作c,则根x=c+h,代入(1)得

f(c+h)=a[0](c+h)^n+a[1](c+h)^(n-1)++a[n-1](c+h)+a[n]=0

按h的幂次合并同类项即得到关于h的方程:

f(h)=a[0]h^n+a[1]h^(n-1)++a[n-1]h+a[n]=0 (2)

(注:这里(2)和(1)式子里的a[i],一般是不一样的。)

于是又可估计满足新方程(2)的根的最高位数字。如此进行下去,若得到某个新方程的常数项为0,则求得的根是有理数;否则上述过程可继续下去,按所需精度求得根的近似值。

如果从原方程(1)的系数a[0],a[1],,a[n]及估值c求出新方程(2)的系数a[0],a[1],,a[n]的算法是需要反复迭代使用的,秦九韶给出了一个规格化的程序,我们可称之为秦九韶程序,他在《数书九章》中用这一

算法去解决各种可以归结为代数方程的实际问题,其中涉及的方程最高次数达到10次,秦九韶解这些问题的算法整齐划一,步骤分明,堪称是中国古代数学算法化、机械化的典范。

1.3 多元高次方程组与四元术

绝不是所有的问题都可以归结为线性方程组或一个未知量的多项式方程来求解。实际上,可以说更大量的实际问题如果能化为代数方程求解的话,出现的将是含有多个未知量的高次方程组。

多元高次方程组的求解即使在今天也绝非易事。历史上最早对多元高次方程组作出系统处理的是中国元代数学家朱世杰。朱世杰的《四元玉鉴》(1303年)一书中涉及的高次方程达到了4个未知数。朱世杰用四元术来解这些方程。四元术首先是以天、地、人、物来表示不同的未知数,同时建立起方程式,然后用顺序消元的一般方法解出方程。朱世杰在《四元玉鉴》中创造了多种消元程序。

通过《四元玉鉴》中的具体例子可以清晰地了解朱世杰四元术的特征。值得注意的是,这些例子中相当一部分是由几何问题导出的。这种将几何问题转化为代数方程并用某种统一的算法求解的例子,在宋元数学著作中比比皆是,充分反映了中国古代几何代数化和机械化的倾向。

1.4 一次同余方程组与中国剩余定理

中国古代数学家出于历法计算的需要,很早就开始研究形如:

XRi (mod ai) i=1,2,...,n (1)

(其中ai 是两两互素的整数)的一次同余方程组求解问题。公元4世纪的《孙子算经》中已有相当于求解下列一次同余组的著名的孙子问题:

X2(mod3) 3(mod5) 2(mod7)

《孙子算经》作者给出的解法,引导了宋代秦九韶求解一次同余组的一般算法大衍求一术。现代文献中通常把这种一般算法称为中国剩余定理。

1.5 插值法与招差术

插值算法在微积分的酝酿过程中扮演了重要角色。在中国,早从东汉时期起,学者们就惯用插值法来推算日月五星的运动。起初是简单的一次内插法,隋唐时期出现二次插值法(如一行《大衍历》,727年)。

由于天体运动的加速度也不均匀,二次插值仍不够精密。随着历法的进步,到了宋元时代,便产生了三次内插法(郭守敬《授时历》,1280年)。在此基础上,数学家朱世杰更创造出一般高次内插公式,即他所说的招差术。朱世杰的公式相当于

f(n)=n△ + n(n-1)/2!△2 + n(n-1)(n-2)/3!△3 + n(n-1)(n-2)(n-3)/4!△4 +

这是一项很突出的成就。

这里不可能一一列举中国古代数学家的所有算法,但仅从以上介绍不难看到,古代与中世纪中国数学家创造的算法,有许多即使按现代标准衡量也达到了很高的水平。这些算法所表达的数学真理,有的在欧洲直到18世纪以后依赖近代数学工具才重新获得(如前面提到的高次代数方程数值求解的秦九韶程序,与1819年英国数学家W. 霍纳重新导出的霍纳算法基本一致;多元高次方程组的系统研究在欧洲也要到18世纪末才开始在E. 别朱等人的著作中出现;解一次同余组的剩余定理则由欧拉与高斯分别独立重新获得;至于朱世杰的高次内插公式,实质上已与现在通用的牛顿-格列高里公式相一致)。这些算法的结构,其复杂程度也是惊人的。如对秦九韶大衍求一术和正负开方术的分析表明,这些算法的计算程序,包含了现代计算机语言中构造非平易算法的基本要素与基本结构。这类复杂的算法,很难再仅仅被看

作是简单的经验法则了,而是高度的概括思维能力的产物,这种能力与欧几里得几何的演绎思维风格截然不同,但却在数学的发展中起着完全可与之相媲美的作用。事实上,古代中国算法的繁荣,同时也孕育了一系列极其重要的概念,显示了算法化思维在数学进化中的创造意义和动力功能。以下亦举几例。

1.6 负数的引进

《九章算术》方程术的消元程序,在方程系数相减时会出现较小数减较大数的情况,正是在这里,《九章算术》的作者们引进了负数,并给出了正、负数的加减运算法则,即正负术。

对负数的认识是人类数系扩充的重大步骤。公元7世纪印度数学家也开始使用负数,但负数的认识在欧洲却进展缓慢,甚至到16世纪,韦达的著作还回避负数。

1.7 无理数的发现

中国古代数学家在开方运算中接触到了无理数。《九章算术》开方术中指出了存在有开不尽的情形:若开方不尽者,为不可开,《九章算术》的作者们给这种不尽根数起了一个专门名词面。面,就是无理数。

与古希腊毕达哥拉斯学派发现正方形的对角线不是有理数时惊慌失措的表现相比,中国古代数学家却是相对自然地接受了那些开不尽的无理数,这也许应归功于他们早就习惯使用的十进位制,这种十进位制使他们能够有效地计算不尽根数的近似值。为《九章算术》作注的三国时代数学家刘徽就在开方术注中明确提出了用十进制小数任意逼近不尽根数的方法,他称之为求微数法,并指出在开方过程中,其一退以十为步,其再退以百为步,退之弥下,其分弥细,则虽有所弃之数,不足言之也。

十进位值记数制是对人类文明不可磨灭的贡献。法国大数学家拉普拉斯曾盛赞十进位值制的发明,认为它使得我们的算术系统在所有有用的创造中成为第一流的。中国古代数学家正是在严格遵循十进位制的筹算系统基础上,建立起了富有算法化特色的东方数学大厦。

1.8 贾宪三角或杨辉三角

从前面关于高次方程数值求解算法(秦九韶程序)的介绍我们可以看到,中国古代开方术是以(c+h)^n的二项展开为基础的,这就引导了二项系数表的发现。南宋数学家杨辉著《详解九章算法》(1261年)中,载有一张所谓开方作法本源图,实际就是一张二项系数表。这张图摘自公元1050年左右北宋数学家贾宪的一部著作。开方作法本源图现在

就叫贾宪三角或杨辉三角。二项系数表在西方则叫帕斯卡三角(1654年)。

1.9 走向符号代数

解方程的数学活动,必然引起人们对方程表达形式的思考。在这方面,以解方程擅长的中国古代数学家们很自然也是走在了前列。在宋元时期的数学著作中,已出现了用特定的汉字作为未知数符号并进而建立方程的系统努力。这就是以李冶为代表的天元术和以朱世杰为代表的四元术。所谓天元术,首先是立天元一为某某,这相当于设为某某,天元一就表示未知数,然后在筹算盘上布列天元式,即一元方程式。该方法被推广到多个未知数情形,就是前面提到的朱世杰的四元术。因此,用天元术和四元术列方程的方法,与现代代数中的列方程法已相类似。

符号化是近世代数的标志之一。中国宋元数学家在这方面迈出了重要一步,天元术和四元术,是以创造算法特别是解方程的算法为主线的中国古代数学的一个高峰。

2 中国古代数学对世界数学发展的贡献

数学的发展包括了两大主要活动:证明定理和创造算法。定理证明是希腊人首倡,后构成数学发展中演绎倾向的脊梁;算法创造昌盛于古代和中世纪的中国、印度,形成了数学发展中强烈的算法倾向。统观数学的历史将会发现,数学的发展并非总是演绎倾向独占鳌头。在数学史上,算法倾向与演绎倾向总是交替地取得主导地位。古代巴比伦和埃及式的原始算法时期,被希腊式的演绎几何所接替,而在中世纪,希腊数学衰落下去,算法倾向在中国、印度等东方国度繁荣起来;东方数学在文艺复兴前夕通过阿拉伯传播到欧洲,对近代数学兴起产生了深刻影响。事实上,作为近代数学诞生标志的解析几何与微积分,从思想方法的渊源看都不能说是演绎倾向而是算法倾向的产物。

从微积分的历史可以知道,微积分的产生是寻找解决一系列实际问题的普遍算法的结果。这些问题包括:决定物体的瞬时速度、求极大值与极小值、求曲线的切线、求物体的重心及引力、面积与体积计算等。从16世纪中开始的100多年间,许多大数学家都致力于获得解决这些问题的特殊算法。牛顿与莱布尼兹的功绩是在于将这些特殊的算法统一成两类基本运算微分与积分,并进一步指出了它们的互逆关系。无论是牛顿的先驱者还是牛顿本人,他们所使用的算法都是不严格的,都没有完整的演绎推导。牛顿的流数术在逻辑上的瑕疵更是众所周知。对当时的学者来说,首要的是找到行之有效的算法,而不是算法的证明。这种倾向一直延续到18世纪。18世纪的数学家也往往不管微积

分基础的困难而大胆前进。如泰勒公式,欧拉、伯努利甚至19世纪初傅里叶所发现的三角展开等,都是在很长时期内缺乏严格的证明。正如冯诺伊曼指出的那样:没有一个数学家会把这一时期的发展看作是异端邪道;这个时期产生的数学成果被公认为第一流的。并且反过来,如果当时的数学家一定要在有了严密的演绎证明之后才承认新算法的合理性,那就不会有今天的微积分和整个分析大厦了。

现在再来看一看更早的解析几何的诞生。通常认为,笛卡儿发明解析几何的基本思想,是用代数方法来解几何问题。这同欧氏演绎方法已经大相径庭了。而事实上如果我们去阅读笛卡儿的原著,就会发现贯穿于其中的彻底的算法精神。《几何学》开宗明义就宣称:我将毫不犹豫地在几何学中引进算术的术语,以便使自己变得更加聪明。众所周知,笛卡儿的《几何学》是他的哲学著作《方法论》的附录。笛卡儿在他另一部生前未正式发表的哲学著作《指导思维的法则》(简称《法则》)中曾强烈批判了传统的主要是希腊的研究方法,认为古希腊人的演绎推理只能用来证明已经知道的事物,却不能帮助我们发现未知的事情。因此他提出需要一种发现真理的方法,并称之为通用数学(mathesis universakis)。笛卡儿在《法则》中描述了这种通用数学的蓝图,他提出的大胆计划,概而言之就是要将一切科学问题转化为求解代数方程的数学问题:

任何问题数学问题代数问题方程求解而笛卡儿的《几何学》,正是他上述方案的一个具体实施和示范,解析几何在整个方案中扮演着重要的工具作用,它将一切几何问题化为代数问题,这些代数问题则可以用一种简单的、几乎自动的或者毋宁说是机械的方法去解决。这与上面介绍的古代中国数学家解决问题的路线可以说是一脉相承。

因此我们完全有理由说,在从文艺复兴到17世纪近代数学兴起的大潮中,回响着东方数学特别是中国数学的韵律。整个1718世纪应该看成是寻求无穷小算法的英雄年代,尽管这一时期的无穷小算法与中世纪算法相比有质的飞跃。而从19世纪特别是70年代直到20世纪中,演绎倾向又重新在比希腊几何高得多的水准上占据了优势。因此,数学的发展呈现出算法创造与演绎证明两大主流交替繁荣、螺旋式上升过程:

演绎传统定理证明活动

算法传统算法创造活动

中国古代数学家对算法传统的形成与发展做出了毋容置疑的巨大贡献。

我们强调中国古代数学的算法传统,并不意味中国古代数学中没有演绎倾向。事实上,在魏晋南北朝时期一些数学家的工作中,已出现具有相当深度的论证思想。如赵爽勾股定理证明、刘徽阳马一种长方锥体体积证明、祖冲之父子对球体积公式的推导等等,均可与古希腊数学家相应的工作媲美。赵爽勾股定理证明示意图弦图原型,已被采用作2002年国际数学家大会会标。令人迷惑的是,这种论证倾向随着南北朝的结束,可以说是戛然而止。囿于篇幅和本文重点,对这方面的内容这里不能详述。

3 古为今用,创新发展

到了20世纪,至少从中叶开始,电子计算机的出现对数学的发展带来了深远影响,并孕育出孤立子理论、混沌动力学、四色定理证明等一系列令人瞩目的成就。借助计算机及有效的算法猜测发现新事实、归纳证明新定理乃至进行更一般的自动推理,这一切可以说已揭开了数学史上一个新的算法繁荣时代的伟大序幕。科学界敏锐的有识之士纷纷预见到数学发展的这一趋势。在我国,早在上世纪50年代,华罗庚教授就亲自领导建立了计算机研制组,为我国计算机科学和数学的发展奠定了基础。吴文俊教授更是从70年代中开始,毅然由原先从事的拓扑学领域转向定理机器证明的研究,并开创了现代数学的崭新领域数学机械化。被国际上誉为吴方法的数学机械化方法已使中国

在数学机械化领域处于国际领先地位,而正如吴文俊教授本人所说:几何定理证明的机械化问题,从思维到方法,至少在宋元时代就有蛛丝马迹可寻,他的工作主要是受中国古代数学的启发。吴方法,是中国古代数学算法化、机械化精髓的发扬光大。

计算机影响下算法倾向的增长,自然也引起一些外国学者对中国古代数学中算法传统的兴趣。早在上世纪70年代初,著名的计算机科学家D.E.Knuth就呼吁人们关注古代中国和印度的算法5。多年来这方面的研究取得了一定进展,但总的来说还亟待加强。众所周知,中国古代文化包括数学是通过著名的丝绸之路向西方传播的,而阿拉伯地区是这种文化传播的重要中转站。现存有些阿拉伯数学与天文著作中包含有一定的中国数学与天文学知识,如著名的阿尔卡西《算术之钥》一书中有相当数量的数学问题显示出直接或间接的中国来源,而根据阿尔卡西本人记述,他所工作的天文台中就有不少来自中国的学者。

然而长期以来由于西方中心论特别是希腊中心论的影响以及语言文字方面的障碍,有关资料还远远没有得到发掘。正是为了充分揭示东方数学与欧洲数学复兴的关系,吴文俊教授特意从他荣获的国家最高科学奖中拨出专款成立了吴文俊数学与天文丝路基金,鼓励支持年轻学者深入开展这方面的研究,这是具有深远意义之举。

研究科学的历史,其重要意义之一就是从历史的发展中获得借鉴和汲取教益,促进现实的科学研究,通俗地说就是古为今用。吴文俊对此有精辟的论述,他说:假如你对数学的历史发展,对一个领域的发生和发展,对一个理论的兴旺和衰落,对一个概念的来龙去脉,对一种重要思想的产生和影响等这许多历史因素都弄清了,我想,对数学就会了解得更多,对数学的现状就会知道得更清楚、更深刻,还可以对数学的未来起一种指导作用,也就是说,可以知道数学究竟应该按怎样的方向发展可以收到最大的效益。数学机械化理论的创立,正是这种古为今用原则的硕果。我国科学技术的伟大复兴,呼唤着更多这样既有浓郁的中国特色、又有鲜明时代气息的创新。

南京师范大学历史学考研科目

权威师资优质教学博仁考研https://www.doczj.com/doc/c68471211.html, 南京师范大学历史学考研科目 南京师范大学历史学隶属于社会发展学院,招收中国史和世界史两个研究方向,两个研究方向的参考书不同。因为2017年南京师范大学招生信息要到2016年9月左右才会发布,所以备考2017年南京师范大学历史学研究生的同学可以先以2016年招生信息为准进行备考复习,并实时关注院校信息更新,也可以咨询博仁教育老师。 一、中国史 南京师范大学中国史考试科目:①101思想政治理论、②201英语一或202俄语或203日语、③635中国通史。研究方向:01 历史文献学、02 专门史、03 中国古代史、04 中国近现代史。 初试参考书目: 635 中国通史: 《中国古代史教程》(2011年修订本),李天石、王建成主编,南京师范大学出版社2011年出版。 《中国近代史》本书编写组,中华书局,94年; 《中国现代史》王桧林,高教出版社。 复试参考书目: F087 中国史综合: 《中国古代史教程》(2011年修订本),李天石、王建成主编,南京师范大学出版社2011年出版。 《中国近代史》本书编写组,中华书局,94年; 《中国现代史》王桧林,高教出版社。 庞卓恒:《史学概论》,高等教育出版社,2006年版。 二、世界史 南京师范大学世界史考试科目:①101思想政治理论、②201英语一或202俄语或203日语、③636世界通史。研究方向:01 专门史、02 世界古代中世纪史、03 世界近现代史。 初试参考书目: 636 世界通史: 《世界史》(6卷本)吴于瑾,齐世荣主编,高等教育出版社。 复试参考书目: F088 世界史通论: 《西方文化史》,姜守明等著,科学出版社,2004年版。

数学的发展历史

七年级九班 李蕙茹 一、探究背景: 研究数学发展历史的学科,是数学的一个分支,也是自然科学史研究下属的一个重要分支。和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。数学史研究所使用的方法主要是历史科学的方法,在这一点上,它与通常的数学研究方法不同。它研究的对象是数学发展的历史,因此它与通常历史科学研究的对象又不相同,所以,我们既可以在数学中学到历史,又可以在历史中学到数学。数学是研究现实世界的图形和数量关系的科学,包括代数、几何、三角、微积分等。它来源于生产,服务于生活,并不是空中楼阁,而是人类智慧的结晶。 二、目的意义: 对数学产生兴趣,轻松学好数学。通过查找名人趣事、数学常识等资料,对数学的功用问题有一个正确的认识,从而让我们对数学产生兴趣,提高数学成绩,开发我们的脑力,使自己不断提高能力,从而达到事倍功半的效果。 三、探究方法: 1、历史研究法,又叫历史考证法。数学自东汉以来的《九章算术》到现代的《微积分》,上上下下经历了几千年的时间,与现代数学联系起来,对数学历史的考证有巨大的作用。 2,自主探究法。所谓自主探究,就是通过各种途径找到对自己有用

的资料,进行整理,这是一种比较常见的方法。 四、探究结果: (一)数学的起源与早期发展 据《易?系辞》记载:「上古结绳而治,后世圣人易之以书契」。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。 算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。 用算筹记数,有纵、横两种方式: 表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间〔法则是:一纵十横,百立千僵,千、十相望,万、百相当〕,并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。 筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。 在几何学方面《史记?夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现「勾三股四弦五」这个勾股定理〔西方称勾股定理〕的特例。战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。

中国古代数学的成就

中国古代数学的成就 中国是世界文明古国之一。数学是中国古代科学中一门重要学科,其发展源远流长,成就辉煌,其中包括圆周率、割圆术、十进位制计数法、算经十书、勾股定理、杨辉三角和剁积术、珠算等。我想就着这几项谈谈我国古代数学的成就。 一:圆周率。古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。十九世纪前,圆周率的计算进展相当缓慢。中国古算书《周髀算经》中有“径一而周三”的记载,认为圆周率是常数。? 我国数学家刘徽在注释《九章算术》时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形,得出π≈根号10。? 汉朝时,张衡得出π的平方除以16等于5/8,即π等于10的开方。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。?王蕃发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的? 南北朝时代着名数学家祖冲之进一步得出精确到小数点后7位的π值,给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。他的辉煌成就比欧洲至少早了1000年。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的着作中,欧洲不知道是祖冲之先知道密率的,将密率错误的称之为安托尼斯率。 二、割圆术。3世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周长的方法。?中国古代从先秦时期开始,一直是取“周三径一”(即圆周周长与直径的比率为三比一)的数值来进行有关圆的计算。但用这个数值进行计算的结果,往往误差很大。正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长,其数值要比实际的圆周长小得多。东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手得到圆周率。这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证,从而为圆周率的计算指出了一条科学的道路。 三、十进位制计数法。十进位制记数法在我国原始社会就已经形成,完成于奴隶社会初期的商代,到商代已发展为完整的十进制系统,并且有了“十”、“百”、“千”、“万”等专用的大数名称。1899年从河南安阳发掘出来的象形文字,是大约3000多年前的殷代甲骨文。其中载有许多数字记录,最大的数目字是3万。如有一片甲骨上刻着“八日辛亥允戈伐二千六百五十六人。”(八日辛亥那天的战争中,消灭了敌方2656人)。这段文字说明我国在公元前1600年,已经采用了十进位值制记数法。这种记数法中,没有形成零的概念和零号,但由于引入了几个表示数位的特殊的数字如十、百、千、万等.能确切地表示出任何自然数,因而也是相当成功的十进位值制记数法,历代稍有变革,但基本框架则一直延用至今。 四、《算经十书》。《算经十书》是指汉、唐一千多年间的十部着名的数学着作,他们曾经是隋唐时代国子监算学科的教科书。十部书的名称是:《周髀算经》、《九章算术》、《海岛算经》、《张丘建算经》、《夏侯阳算经》、《五经算术》、《辑古算经》、《缀术》。其中阐明“盖天说”的《周髀算经》,被人们认为是流传下来的中国最古老的既谈天体又谈数学的天文历着作。其中提到大禹治水时所应用的数学知识,成为现存文献中提到最早使用勾股定理的例

中国数学发展史

中国数学发展史——宋元数学 中国数学发展史概述 中国是世界文明古国之一,地处亚洲东部,濒太平洋西岸。黄河流域和长江流域是中华民族文化的摇篮,大约在公元前2000年,在黄河中下游产生了第一个奴隶制国家——夏朝(前2033-前1562),共经历十三世、十六王。其后又有奴隶制国家商(前562年—1066年,共历十七世三十一王)和西周[前1027年—前771年,共历约二百五十七年,传十一世、十二王]。随后出现了中国历史上的第一次全国性大分裂形成的时期——春秋(前770年-前476年)战国(前403年-前221年),春秋后期,中国文明进入封建时代,到公元前221年秦王赢政统一全国,出现了中国历史上第一个封建帝制国家——秦朝(前221年—前206年),在以后的时间里,中国封建文明在秦帝国的封建体制的基础不断完善地持续发展,经历了统一强盛的西汉(公元前206年—公元8年)帝国、东汉王朝(公元25年—公元220年)、战乱频仍与分裂的三国时期(公元208年-公元280年)、西晋(公元265年—公元316年)与东晋王朝(公元317年—公元420年)、汉民族以外的少数民族统治的南朝(公元420年—公元589年)与北朝(公元386年—公元518年)。到了公元581年,由隋再次统一了全国,建立了大一统的隋朝(公元581—618年),接着经历了强大富庶文化繁荣的大唐王朝(公元618年—907年)、北方少数民族政权辽(公元916年-公元1125年)、经济和文化发达的北宋(公元960年~公元1127年)与南宋(公元1127年-公元1279年)、蒙古族建立的控制范围扩张至整个西亚地区的疆域最大的元朝(公元1271年-1368年)、元朝灭亡后,汉族人在华夏大地上重新建立起来的封建王朝——明朝(公元1368年-公元1644年),明王朝于17世纪中为少数民族女真族(满族)建立的清朝(公元1616年-公元1911年)所代替。清朝是中国最后一个封建帝制国家。自此之后,中国脱离了帝制而转入了现代民主国家。 中国文明与古代埃及、美索不达米亚、印度文明一样,都是古老的农耕文明,但与其他文明截然不同,它其持续发展两千余年之久,在世界文明史上是绝无仅有的。这种文明十分注重社会事务的管理,强调实际与经验,关心人和自然的和谐与人伦社会的秩序,儒家思想作为调解社会矛盾、维系这一文明持续发展的重要思想基础。 一、中国数学的起源与早期发展 据《易?系辞》记载:「上古结绳而治,后世圣人易之以书契」。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。 算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。

2020年湖南师范大学中国古代史

湖南师范大学硕士研究生入学考试自命题考试大纲考试科目代码:[]考试科目名称:中国古代史 一、考试形式与试卷结构 1)试卷成绩及考试时间 本试卷考试时间为180分钟。 2)答题方式 答题方式为闭卷、笔试。 3)试卷内容结构 各部分内容所占分值为: 先秦部分约20% 秦汉至隋唐约40% 宋元明清约40% 4)题型结构 简答题:3小题,各计20%,共计60% 分析论述题:1小题,各计40%,共计40% 二、考试内容与考试要求 考试目标: 1.掌握中国古代史的主要过程、基本线索和阶段特征,并能以科学的理论和方法分析解读。 考试内容: 第一章夏商西周

(一)夏商西周的政治、经济 (二)夏商西周的文化 (三)夏商西周和各部族的关系 第二章春秋战国 (一)春秋战国时期的政治 (二)春秋战国时期的经济 (三)春秋战国的思想与文化:诸子百家 第三章秦汉 (一)秦帝国的建立及其历史影响 (二)西汉统一多民族封建国家的发展 (三)东汉的政治 (四)两汉文化:经学、史学等 第四章魏晋南北朝 (一)三国鼎立与西晋的短暂统一 (二)东晋南朝的政治与经济 (二)十六国北朝的政治形势与民族关系 (三)北朝经济的缓慢发展与民族大融合:北魏孝文帝改革 (四)魏晋南北朝的思想、文化与科技:思想文化的多元化发展第五章隋唐五代 (一)隋朝的统一与覆灭 (二)唐朝前期政治

(三)安史之乱与中晚唐政局: (四)隋唐的民族关系与中外经济文化交流 (五)隋唐的思想、文化和科技:隋唐时期佛教的发展,唐代的崇道(六)五代十国的政治与经济:周世宗改革 第六章宋、辽、西夏、金、元 (一)宋朝建立与专制集权的加强 (二)北宋中期的统治危机与王安石变法 (三)辽、西夏、金的建立及其制度 (四)宋、辽、西夏、金的关系 (五)元朝的统一及其影响 (六)宋元的社会经济 (七)宋元的社会矛盾与农民起义 (八)宋元的思想、文化与科技:程朱理学等 (九)宋元对外经济文化交流 第七章明、清(鸦片战争前) (一)明初专制集权统治的加强 (二)明中后期的政治和社会危机 (三)清代统一多民族封建国家的进一步发展 (四)明清国家制度 (五)明清社会经济的发展 (六)明清对外关系与贸易

中国数学发展史概述

中国数学发展史概述 中国是世界文明古国之一,地处亚洲东部,濒太平洋西岸。黄河流域和长江流域是中华民族文化的摇篮,大约在公元前2000年,在黄河中下游产生了第一个奴隶制国家──夏朝(前2033-前1562),共经历十三世、十六王。其后又有奴隶制国家商(前562年1066年,共历十七世三十一王)和西周﹝前1027年前771年,共历约二百五十七年,传十一世、十二王﹞。随后出现了中国历史上的第一次全国性大分裂形成的时期──春秋(前770年-前476年)战国(前403年-前221年),春秋后期,中国文明进入封建时代,到公元前221年秦王赢政统一全国,出现了中国历史上第一个封建帝制国家──秦朝(前221年前206年),在以后的时间里,中国封建文明在秦帝国的封建体制的基础不断完善地持续发展,经历了统一强盛的西汉(公元前206年公元8年)帝国、东汉王朝(公元25年公元220年)、战乱频仍与分裂的三国时期(公元208年-公元280年)、西晋(公元265年公元316年)与东晋王朝(公元317年公元420年)、汉民族以外的少数民族统治的南朝(公元420年公元589年)与北朝(公元386年公元518年)。到了公元581年,由隋再次统一了全国,建立了大一统的隋朝(公元581618年),接着经历了强大富庶文化繁荣的大唐王朝(公元618年907年)、北方少数民族政权辽(公元916年-公元1125年)、经济和文化发达的北宋(公元960年~公元1127年)与南宋(公元1127年-公元1279

年)、蒙古族建立的控制范围扩张至整个西亚地区的疆域最大的元朝(公元1271年-1368年)、元朝灭亡后,汉族人在华夏大地上重新建立起来的封建王朝──明朝(公元1368年-公元1644年),明王朝于17世纪中为少数民族女真族(满族)建立的清朝(公元1616年-公元1911年)所代替。清朝是中国最后一个封建帝制国家。自此之后,中国脱离了帝制而转入了现代民主国家。 中国文明与古代埃及、美索不达米亚、印度文明一样,都是古老的农耕文明,但与其他文明截然不同,它其持续发展两千余年之久,在世界文明史上是绝无仅有的。这种文明十分注重社会事务的管理,强调实际与经验,关心人和自然的和谐与人伦社会的秩序,儒家思想作为调解社会矛盾、维系这一文明持续发展的重要思想基础。 一、中国数学的起源与早期发展 据《易系辞》记载:「上古结绳而治,后世圣人易之以书契」。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。 算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。 用算筹记数,有纵、横两种方式: 表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间﹝法则是:一纵十横,百立千僵,千、十相望,万、百相当﹞,

中国古代数学

第三章 中国古代数学 教学重点:1理解并掌握《九章算术》的主要贡献。2能叙述《算经十书》的名称;掌握祖冲之的贡献,知道密率及约率值。3 掌握宋元数学家的贡献。 3.1《九章算术》 1 介绍 中国古典数学最重要的著作,成书1cen B.C 《九章算术》:问题集,共九章,分别为:方田,粟米,衰分,少广,商功;均输 ,盈不足,方程,勾股。 面积、体积:方田,商功; 比例:粟米,衰分,均输 ; 开方:少广 贡献一:正负数加减法则 正负数的加减运算法则 李文林在《数学史教程》中指出:“对负数的认识是人类数系扩充的重大步骤。如果说古希腊无理量是演绎思维的发现,那么中算负数则是算法思维的产物。中算家们心安理得地接受并使用了这一概念,并没有引起震撼和迷惑。” 国外首先承认负数的是7世纪印度数学家婆罗门及多,欧洲16世纪时韦达等数学家的著作还回避使用负数。 贡献二:方程术 线性方程组求解:消元法 例:今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗;问上、中、下禾实一秉各几何? 贡献三:开方术 今有积五万五千二百二十五步,问为方几何?答曰:二百三十五步。 “开方术”演变为”增乘开方法“,开高次方,求高次方程数值解; “开方术”:包含求 方法; 02=++c bx ax

接受开方不尽的数——无理数; 贡献四:盈不足 例:今有共买物,人出八盈三,人出七不足四,问人数、物价各几何? “盈不足”:线性插值法; “盈不足”可以解决非盈亏类问题; “盈不足”通过丝绸之路传入阿拉伯国家,被称为“契丹算法”。 贡献五:几何 “方田”:各种图形的面积计算; “商功”:各种土木工程中的体积计算。长方体、台体、圆柱体、锥体等体积的计算公式正确;只是圆周率取3,误差较大。 “勾股”:今有池方一丈,葭生其中央,出水一尺。引葭赴岸,适与岸齐,问水深、葭长各几何?答曰:水深一丈二尺;葭长一丈三尺。 评价 小苍金之助(日):《九章算术》是中国的《几何原本》。 吴文俊:《九章算术》和刘徽的《九章算术注》,在数学的发展历史中具有崇高的地位,足可与《几何原本》东西辉映,各具特色。 1968年德国沃格尔(V ogel)把《九章算术》译成德文出版时的评论:“在古代算术中,包含如此丰富的246个算题,现存的埃及和巴比伦算题与之相比,真望尘莫及。” 《九章算术》数学理论门类繁多,依题列术,术文不附原理说明。刘徽注《九章》,一面阐明每个具体算法的理论依据,一面揭示各种算法之间的内在联系,使之成为一个严谨、完整的理论体系。 刘徽(魏晋, 公元3世纪),幼习《九章》,长再详览。知识渊博,精通四书五经、诸子,谙熟前人数学,《周髀算经》、张衡数学。 刘徽集前辈之大成,又不迷信古人。注方田章圆田时,由于前人用径一周三,古率失之于粗,刘徽注说:“世传此法,莫肯精核,学者踵古,习其谬失”。 在中国古代数学中的地位、影响:阐述了中国传统数学的理论体系与数学原理;《九章算术注》中有的注文千字以上,是一篇高水平的数学论文;公元263

简述中国数学发展史

中国数学发展史 【摘要】数学发展史就是数学这门学科的发展历程。人们的思想在不断的发生变化,数学中的很多思想也是人类不断发展的体现。该论文就围绕中国数学的发展历程和思想进行了简单的概括和论述。介绍了从古至今中国数学的发展历程,讲述了中国数学思想的特点及中国数学对世界的影响以及中外数学文化的交流影响,总结了从数学发展史中得到的启示。 【关键词】中国数学;数学发展史;数学思想 一、中国数学的发展历程 1.1中国数学的起源与早期发展 据《易·系辞》记载:“伏羲作结绳”,“上古结绳而治”,后世圣人易之以书契。其中有十进制制的记数法,出现最大的数字为三万。这是位值制的最早使用。算筹是中国古代的计算工具,这种方法称为筹算。筹算在春秋时代已很普遍。 在几何学方面《史记·夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现“勾三股四弦五”这个勾股定理﹝西方称勾股定理﹞的特例。在公元前2500年,我国已有圆、方、平、直的概念。对几何工具也有深刻认识。 算术四则运算在春秋时期已经确立,乘法运算已广为流行。“九九表”一直流行了约1600年。

战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。著名的有《墨经》中关于某些几何名词的定义和命题。《庄子》中则强调抽象的数学思想。其中几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想。此外,讲述阴阳八卦,预言吉凶的《易经》已有了组合数学的萌芽,并反映出二进制的思想。 1.2 中国数学体系的形成与奠基 这一时期包括从秦汉、魏晋、南北朝,共400年间的数学发展历史。秦汉是中国古代数学体系的形成时期。在这一时期,数学知识系统化、理论化,数学方面的专书陆续出现。 现传中国历史最早的数学专著是1984年在湖北江陵张家山出土的成书于西汉初的汉简《算数书》。 西汉末年﹝公元前一世纪﹞编纂的《周髀算经》,尽管是谈论盖天说宇宙论的天文学著作,但包含许多数学内容,在数学方面主要有两项成就:(1)分数、等差数列、勾股定理于测量术;(2)测太阳高、远的陈子测日法,为后来重差术(勾股测量法)的先驱。此外,还有比例知识。 《九章算术》是一部经几代人整理、删减补充和修订而成的古代数学经典著作,约成书于东汉初年。全书编排方法是:先举出例子,然后给出答案,通过对一类问题解法的考察和研究,最后给出“术”。它的成书标志着我国传统数学理论体系——初等数学理论体系的形成。比欧洲早了1400多年。

数学的发展历史

数学的发展历史 数学是一门伟大的科学,数学作为一门科学具有悠久的历史,与自然科学相比,数学更是积累性科学,它是经过上千年的演化发展才逐渐兴盛起来。同时数学也反映着每个时代的特征,美国数学史家克莱因曾经说过:"一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。这种关系在我们这个时代尤为明显"。"数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说"。数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。而数学的历史更从另一个侧面反映了数学的发展。但有一点值得注意的是,人是这一方面的创造者,因此人本身的作用起着举足轻重的作用,首先表现为是否爱数学,是否愿为数学贡献毕生的精力。正是这主导着数学。 数学史是研究数学发展历史的学科,是数学的一个分支,和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。 数学出现于包含著数量、结构、空间及变化等困难问题内。一开始,出现于贸易、土地测量及之后的天文学;今日,所有的科学都存在着值得数学家研究的问题,且数学本身亦存在了许多的问题。而这一切都源于数学的历史。 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。从历史时代的一开始,数学内的主要原理是为了做测量等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构方面的研究。数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。 数学发展具有阶段性,因此根据一定的原则把数学史分成若干时期。目前通常将数学发展划分为以下五个时期: 1.数学萌芽期(公元前600年以前); 2.初等数学时期(公元前600年至17世纪中叶); 3.变量数学时期(17世纪中叶至19世纪20年代); 4.近代数学时期(19世纪20年代至第二次世界大战); 5.现代数学时期(20世纪40年代以来)

中国古代数学

中国古代数学 先秦时期——中国古代数学的萌芽 摘要:我国数学发展史源远流长,到了先秦时期已经有了数学萌芽,但是其发展形势与西方数学相比有着迥然不同的发展过程.我国最早的记数形势是结绳记数,因当时没有文字的形成、统一,所以人们便用最直观的表现形式来传达各种意思.还有十进位制的应用也是非常有意义的.在别的国家民族还未形成这种意识的时候,我国先辈们便形成了这种记数法.当时这种先进的记数法是别的民族所不能比拟的.而且在当时的数学家们也知道了如何通过精湛的几何作图来解决现实生活问题,很多名流大家在这方面对数学的发展有着很大贡献. 中国是世界著名的文明古国,和古巴比伦、埃及和印度一样,她也是人类文化的发源地之一.数学作为中国文化的重要组成部分,她的起源可以追溯到遥远的古代.根据古籍记载、考古发现以及其他文字资料推测,至少在公元前3000年左右,在中华古老的土地上就有了数学的萌芽.数学是中国古代最为发达的学科之一,通常成为“算术”即“算术之术”.所研究的内容大体上是今天数学教科书中的内容,如算术、代数、几何、三角等方面的内容.后来,算术又成为算学、算法.宋元时期开始使用“数学”一词.此后算学、数学两次并用.与世界上其他民族的数学相比,中国数学源远流长,成就卓著. 下面我们了解一下先秦时期的中国古代数学的发展史: 第一部分:结绳记事

中国古代记数方法的起源是很早的.据《易?系辞传》称::“上古结绳而治,后世易之为书契”.《九家易》也说:“古者无文字,其为约誓之事,事大大其绳,事小小其绳.结之多少随物众寡,各执以相考,亦足以相治也.”中国古代最早的记数方法是结绳.所谓结绳记数,就是在一根绳子上打结来表示事物的多少.比如今天猎到五头羊,就以在绳子上打五个结来表示;约定三天后再见面,就在绳子上打三个结,过一天解一个结;等等,结可以打得大一些,也可以打得小一点,大的结表示大事,小的结表示小事.这种记数方法在没有掌握文字的民族中曾经被广泛地采用,有些少数民族在很晚的时候仍然是这样.比如鞑靼族在宋代时仍没有掌握文字,每当战争要调动军马时,就在草上打结,然后派人火速传达,有多少结就表示要调多少军马.比结绳记数稍晚一些,古代的人民又发明了契刻记数的方法,即在骨片、木片或竹片上用刀刻上口子,以此来表示数目的多少. 在中国历史上,结绳记数和契刻记数的方法大约使用了几千年时间,到新石器时代的晚期,才逐渐地被数字符号和文字记数所代替.最晚到商朝时,我国古代已经有了比较完备的文字系统,同时也有了比较完备的文字记数系统.那时甲骨文已发展成熟,据对河南安阳发掘的殷墟甲骨文的考古证明,中国当时已采用了“十进位值制记数法”.在商代的甲骨文中,已经有了一、二、三、四、五、六、七、八、九、十、百、千、万这13个记数单字,而有了这13个记数单字,就可以记录十万以内的任何自然数了. 有这么一句话“如果没有这种十进位制,就几乎不可能出现我们现在这个世界了.” 而这一点又正是同时代的古埃及和古巴比伦数学所不及得.这也正说明了中国古代数学很多部分是先于其他国家的发展形成的.除了整数以外,中国古代对分数概念的认识也比较早,分数的概念及其应用,在《管子》、《墨子》、《商君书》、《考工记》等春秋战国时代的书籍中都有明确的记载.到春秋战国时代,算术四则运算已经成熟.据汉时燕人韩婴所撰的《韩诗外传》介绍,标志着乘除法运算法则的“九九歌”在春秋时代已相当普及.《吕氏春秋》还载有这样的一则故事:在春秋时代的齐国,齐桓公执政的时候,有一个熟背“九九歌”的人,向齐桓公毛遂自荐,齐桓公问他:“难道仅仅因为你精通九九之术,我便要重用你吗?”

中国数学史-

中国数学史 数学是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。 中国古代数学的萌芽 原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。 西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。 商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。 公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。 春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。 战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,

中国古代数学问题

一板凳鏊子问题 板凳鏊子三十三, 一百条腿都朝天, 问几个板凳几个鏊子? 板凳和鏊子(烙饼用的,有三条腿;板凳,四条腿)一共三十三个。问几个板凳几个鏊子?二隔墙分银 隔墙听得客分银, 不知人数不知银。 七两分之多四两, 九两分之少半两。 问多少银子多少人?(古时16两1斤) 三一百馒头一百僧 我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题: 一百馒头一百僧, 大僧三个更无争, 小僧三人分一个, 大小和尚各几丁? 译成白话文,其意思是:有100个和尚分100只馒头,正好分完。如果大和尚一人分3只,小和尚3人分一只,试问大小和尚各有几人? 方法一,用方程 设大和尚有x人,则小和尚有(100-x)人,根据题意列得方程: 3x+1/3(100-x)=100 解方程得:x=25 小和尚:100-25=75人 方法二,鸡兔同笼法: (1)假设100人全是大和尚,应吃馒头多少个? 3×100=300(个). (2)这样多吃了几个呢? 300-100=200(个). (3)为什么多吃了200个呢?这是因为把小和尚当成大和尚。那么把小和尚当成大和尚时,每个小和尚多算了几个馒头? 3-1/3=8/3 (4)每个小和尚多算了8/3个馒头,一共多算了200个,所以小和尚有: 200÷8/3=75(人) 大和尚:100-75=25(人) 方法三,分组法:

由于大和尚一人分3只馒头,小和尚3人分一只馒头。我们可以把3个小和尚与1个大和尚编为一组,这样每组4个和尚刚好分4个馒头,那么100个和尚总共分为100÷(3+1) =25组,因为每组有1个大和尚,所以有25个大和尚;又因为每组有3个小和尚,所以有25×3=75个小和尚这是《直指算法统宗》里的解法,原话是:”置僧一百为实,以三一并得四为法除之,得大僧二十五个。”所谓“实”便是”“被除数”,“法”便是“除数”。列式就是: 100÷(3+1)=25,100-25=75。我国古代劳动人民的智慧由此可见一斑。 四鸡兔同笼问题 鸡兔同笼不知数, 三十六头笼中露。 数清脚共五十双, 各有多少鸡和兔? 一队强盗一队狗, 二队拼作一队走, 数头一共三百六, 数腿一共八百九, 问有多少强盗多少狗? 1. 鸡兔同笼,共17个头,42条腿。问:鸡有几只,兔有几只? 2. 小明的储蓄罐里有1角和5角的硬币共27枚,价值1。5元。问:一角的硬币有几枚,5角的硬币有几枚? 3. 用大小卡车往城市运送29吨蔬菜,大卡车每辆每次运5吨,,小卡车每辆每次运3吨,问:大小卡车各用几辆一次能运完?(注意有多解) 4. 每校有100名学生参加数学竞赛,平均分是63分,其中男生平均分是60分,女生平均分是70分。问:男生比女生多几人? 5. 学校买回4个篮球和5个排球,一共用了185元,一个篮球比一个排球贵8元。问:篮球的单价是多少? 6. 解放军进行野营拉练。晴天每天走35千米,雨天每天走28千米,11天一共走350千米。求这期间晴天共有多少天? 7. 小强集邮,他用一元钱买了4分和8分的邮票共20张。问:小强买了4分邮票几张? 8. 一堆2分和5分的硬币共299分,其中2分硬币的个数是5分硬币个数的4倍。问:5分硬币有几枚?

(完整word版)秦朝与隋朝的异同

秦朝与隋朝的异同 相似之处: (1)两朝都是在长期分裂割据之后统一中国的封建王朝; 秦朝结束了自春秋战国(公元前770年~公元前221年)共549年的分裂局面,在战国七雄的斗争中打破六国的合纵政策,取得了统一。隋朝结束了自晋朝(公元316年灭亡)短暂统一后270多年以来的南北对峙的分裂局面。(2)两朝确立并加强了中央集权,都建立了一些开创性的政治制度,对后世产生了深远影响; 秦朝制定确立的中央集权官制:皇帝制——皇权至上,皇位世袭;,三公九卿制——中央设宰相,太尉,御史大夫,“三公”之下又有“九卿”;地方实行郡县制——废分封,划分天下为36个郡。奠定了中国两千多年封建政治制度的基本格局,为历代封建王朝所沿用。隋朝确立三省六部制,中央设立“三师”,“三公”和“五省”,其中掌握实权的是五省。这种制度使封建官僚机构形成完整严密的体系,将宰相的权利一分为三从而消弱了相权,加强了皇权。实行科举考试制度,扩大了官吏来源,提高了官员的文化素质,考试成绩取代了门第出身,这些制度大体上一直被沿用至封建社会末期。 (3)两朝都建设有举世瞩目的伟大工程; 在水利设施方面,秦朝修建都江堰,使关中变为沃野千里,修灵渠,沟通了湘水和漓江,使长江水系和珠江水系连接起来,对南方地区的水上交通意义重大。隋朝修建大运河,沟通了南北的交通,也加强了经济的往来。 (4)军事上,长城在抵御匈奴方面发挥了主要作用; 秦朝将原来的秦,赵,燕三国长城连接起来形成东西万余里的屏障,有效

减轻了匈奴南下攻击秦朝的威胁。隋朝在建国后也曾修缮过长城,采取“远交近攻”,“离强合弱”的军事方针,有效的分化和瓦解突厥的势力。因为当时两个国家在多个政权的争夺中才取得胜利,各方的势力还没有完全消灭,在内外压力都大的情况下,采取防御政策是最好的应对方法。由此可知:“长城的修建与否,关键取决于两个或若干个对峙的政权中处于防守的一方是否受到攻击一方的强大压力,当压力大,防守一方不足与之争衡,长城的兴建就成为必要,反之就没有必要了。” (5)两朝统治者都重视边疆地区,加强同少数民族的关系; 秦朝加强对南方越族地区的管辖和开发,隋朝则派人去琉球和西域,同时采取“和亲”政策离间突厥,瓦解其势力。 (6)两朝都因大兴土木,实行暴政,导致大规模农民起义,二世而亡; 秦朝兴建阿房宫,骊山陵墓等,劳民伤财且赋税过重,轻罪重罚,严刑峻法,导致人民内部矛盾尖锐,最终爆发农民起义,被刘邦所灭。隋朝营建东都,修建大运河,三征高丽;使隋朝出现“举国就役”的局面,加重了百姓的负担,并且隋炀帝好大喜功,排场奢华,用帛缠树,曾有西域人问道“中国亦有贫者,衣不盖形,何如以此物与之,缠树何为?”更加激发了民众的起义之心,在“百姓困穷,财力俱竭”时爆发了起义,被李渊所灭。 (7)两朝都为后世的繁荣垫定了基础,也提供了经验和教训; 汉朝初建时大多“汉随秦制”,且采用休养生息的政策,奉行“无为而治”;唐朝吸取隋的教训,在政治,经济,文化,军事,民族关系等方面采取一系列开明政策,特别重视农业的发展,特别是太宗,懂得农业的重要性:“国以人为本,人以衣食为本,凡营衣食,以不失失为本,夫不失时者,在人君简静乃可致耳。”于是,他“不夺农时”,减少徭役征发,对回归流民减免赋役,终出

中国古代数学的成就

中国古代数学的成就 摘要:中国古代数学具有悠久的传统。在古代四大文明中,中国数学持续繁荣时期最为长久。从公元前后至公元14世纪,中国古典数学先后经历了三次发展高潮,即两汉时期、魏晋南北朝时期和宋元时期,并在宋元时期达到顶峰。 关键词:中国古代;数学成就 中国古代数学的成就包括圆周率、割圆术、十进位制计数法、算经十书、勾股定理、(测高、远、深的方法)测量太阳高度、祖冲之~祖暅父子、等间距二次内插公式、秦九韶的高次方程数值解法、杨辉三角和剁积术以及珠算 圆周率 古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。十九世纪前,圆周率的计算进展相当缓慢。中国古算书《周髀算经》(约公元前2世纪)中有“径一而周三”的记载,认为圆周率是常数。 我国数学家刘徽在注释《九章算术》(263)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形,得出π≈根号10(约为3.16)。 汉朝时,张衡得出π的平方除以16等于5/8,即π等于10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的 南北朝时代著名数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。他的辉煌成就比欧洲至少早了1000年。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲不知道是祖冲之先知道密率的,将密率错误的称之为安托尼斯率。 割圆术 3世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周长的方法。 中国古代从先秦时期开始,一直是取“周三径一”(即圆周周长与直径的比率为三比一)的数值来进行有关圆的计算。但用这个数值进行计算的结果,往往误差很大。正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长,其数值要比实际的圆周长小得多。东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手得到圆周率。这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证,从而为圆周率的计算指出了一条科学的道路。 十进位制计数法 十进位制记数法在我国原始社会就已经形成,完成于奴隶社会初期的商代,到商代已发展为完整的十进制系统,并且有了“十”、“百”、“千”、“万”等专用的大数名称。1899年从河南安阳发掘出来的象形文字,是大约3000多年前的殷代甲骨文。其中载有许多数字记录,最大的数目字是3万。如有一片甲骨上刻着“八日辛亥允戈伐二千六百五十六人。”(八日辛亥那天的战争中,消灭了敌方2656人)。这段文字说

“数学”简介、含义、起源、历史与发展

数学 数学是研究现实世界中数量关系和空间形式的,简单地说,是研究数和形的科学。 由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。在中国,至迟在商代,即已出现用十进制数字表示大数的方法;又至迟至秦汉之际,即已出现完满的十进位值制。在成书不迟于1世纪的《九章算术》中,已载有只有位值制才有可能的开平、立方的计算法则,并载有分数的各种运算以及解线性联立方程组的方法,还引入了负数概念。刘徽在他注解的《九章算术》(3世纪)中,还提出过用十进小数表示无理数平方根的奇零部分,但直至唐宋时期(欧洲则在16世纪S.斯蒂文以后)十进小数才获通用。在这本著作中,刘徽又用圆内接正多边形的周长逼近圆周长,成为后世求圆周率更精确值的一般方法。虽然中国从来没有过无理数或实数的一般概念,但在实质上,那时中国已完成了实数系统的一切运算法则与方法,这不仅在应用上不可缺,也为数学初期教育所不可少。至于继承了巴比伦、埃及、希腊文化的欧洲地区,则偏重于数的性质及这些性质间的逻辑关系的研究。早在欧几里得的《几何原本》中,即有素数的概念和素数个数无穷及整数惟一分解等论断。古希腊发现了有非分数的数,即现称的无理数。16世纪以来,由于解高次方程又出现了复数。在近代,数的概念更进一步抽象化并依据数的不同运算规律而对一般的数系统进行独立的理论探讨,形成数学中的若干不同分支。 开平方和开立方是解最简单的高次方程。在《九章算术》中,已出现解某种特殊形式的二次方程。发展至宋元时代,引进了“天元”(即未知数)的明确观念,出现了求高次方程数值解与求多至四个未知数的高次代数联立方程组的解的方法,通称为天元术与四元术。与之相伴出现的多项式的表达、运算法则以及消去方法,已接近于近世的代数学。在中国以外,9世纪阿拉伯的花拉子米的著作阐述了二次方程的解法,通常被视为代数学的鼻祖,其解法实质上与中国古代依赖于切割术的几何方法具有同一风格。中国古代数学致力于方程的具体求解,而导源于古希腊、埃及传统的欧洲数学则不同,一般致力于探究方程解的性质。16世纪时,F.韦达以文字代替方程系数,引入了代数的符号演算。对代数方程解的性质的探讨,则从线性方程组导致行列式、矩阵、线性空间、线性变换等概念与理论的出现;从代数方程导致复数、对称函数等概念的引入以至伽罗瓦理论与群论的创立。而近代极为活跃的代数几何,则无非是高次联立代数方程组解所构成的集体的理论研究。 形的研究属于几何学的范畴。古代民族都具有形的简单概念而往往以图画来表示,形之成为数学对象是由工具的制作与测量的要求所促成。规矩以作圆方,中国古代夏禹治水时即已有规、矩、准、绳等测量工具。《墨经》中对一系列的几何概念,有抽象概括,作出了科学的定义。《周髀算经》与刘徽《海岛算经》给出了用矩观天测地的一般方法与具体公式。在《九章算术》及刘徽注解的《九章算术》中,除勾股理论外,还提出了若干一般原理以解多种问题。例如出入相补原理以求任意多边形面积;阳马鳖臑的二比一原理(刘徽原理)以求多面体的体积;5世纪祖暅提出“幂势既同则积不容异”的原理以求曲形体积特别是球的体积;还有以内接正多边形逼近圆周长的极限方法(割圆术)。但自五代(约10世纪)以后,中国在几何学方面的建树不多。中国几何学以测量与面积体积的量度为中心,古希腊的传统则重视形的性质与各种性质间的相互关系。欧几里得的《几何原本》,建立了用定义、公理、定理、证明构成的演绎体系,成为近代数学公理化的楷模,影响及于整个数学的发展。特别是平行公理的研究,导致了19世纪非欧几里得几何学的产生。欧洲自文艺复兴时期起出现了射影几何学。18世纪,G.蒙日应用分析方法于形的研究,开微分几何学的先河。C.F.高斯的曲面论与(G.F.)B.黎曼的流形理论开创了脱离周围空间以形作为独立对象的研究方法;

世界数学发展史

第一节数学发展的主要阶段 2009-10-12 10:05:28 来源:中外数学网浏览:7次 乔治·萨顿曾说过:“科学史是人类认识自然的经验的历史回顾。”数学史是数学发展历史的回顾,它研究数学产生发展的历史过程,探求其发展的规律。研究数学史,可以通过历史留下的丰富材料,了解数学何时兴旺发达,何时停滞衰退,从中总结经验教训,以利于数学更进一步的发展。关于数学发展史的分期,一般来说,可以按照数学本身由低级到高级分阶段进行,也就是分成四个本质不同的发展时期,每一新时期的开始都以卓越的科学成就作标志,这些成就确定了数学向本质上崭新的状态过渡.这里我们主要介绍世界数学史的发展。 一、数学的萌芽时期 这一时期大体上从远古到公元前六世纪.根据目前考古学的成果,可以追溯到几十万年以前.这一时期可以分为两段,一是史前时期,从几十万年前到公元前大约五千年;二是从公元前五千年到公元前六世纪. 数学萌芽时期的特点,是人类在长期的生产实践中,逐步形成了数的概念,并初步掌握了数的运算方法,积累了一些数学知识.由于土地丈量和天文观测的需要,几何知识初步兴起,但是这些知识是片断和零碎的,缺乏逻辑因素,基本上看不到命题的证明.这个时期的数学还未形成演绎的科学. 这一时期对数学的发展作出贡献的主要是中国、埃及、巴比伦和印度.从很久以前的年代起,我们中华民族勤劳的祖先就已经懂得数和形的概念了. 在漫长的萌芽时期中,数学迈出了十分重要的一步,形成了最初的数学概念,如自然数、分数;最简单的几何图形,如正方形、矩形、三角形、圆形等.一些简单的数学计算知识也开始产生了,如数的符号、记数方法、计算方法等等.中小学数学中关于算术和几何的最简单的概念,就是在这个时期的日常生活实践基础上形成的. 总之,这一时期是最初的数学知识积累时期,是数学发展过程中的渐变阶段. 二、初等数学时期 从公元前六世纪到公元十七世纪初,是数学发展的第二个时期,通常称为常量数学或初等数学时期.这一时期也可以分成两段,一是初等数学的开创时代,二是初等数学的交流和发展时代. 1.初等数学的开创时代. 这一时代主要是希腊数学.从泰勒斯(Thales,公元前636—前546)到公元641年亚历山大图书馆被焚,前后延续千余年之久,一般把它划分为以下几个阶段: (1)爱奥尼亚阶段(公元前600—前480年); (2)雅典阶段(公元前480—前330年); (3)希腊化阶段(公元前330—前200年); (4)罗马阶段(公元前200—公元600年). 爱奥尼亚阶段的主要代表有米利都学派、毕达哥拉斯(Pythagoras,公元前572—前497)学派和巧辩学派.在这个阶段上数学取得了极为重要的成就,其中有:开始了命题的逻辑证明,发现了不可通约量,提出了几何作图的三大难题——三等分任意角、倍立方和化圆为方,并且试图用“穷竭法”去解决化圆为方的问题.所有这些成就,对数学后来的发展产生了深远的影响. 雅典阶段的主要代表有柏拉图(Plato,公元前427—前347)学派、亚里斯多德(Aristotle,公元前384—前322)的吕园学派、埃利亚学派和原子学派.他们在数学上取得的成果,十分令人赞叹,如柏拉图强调几何对培养逻辑思维能力的重要作用;亚里斯多德建立了形式逻辑,并且把它作为证明的工具.所有这些成就把数学向前推进了一大步. 上述两个阶段称为古典时期.这一时期的数学发展,在希腊化阶段上开花结果,取得了

相关主题
文本预览
相关文档 最新文档