当前位置:文档之家› 第八章 超导电性

第八章 超导电性

第八章 超导电性
第八章 超导电性

第八章 超导电性

1. 有哪些实验可以确定超导临界温度c T ?

解:这些实验可以确定超导临界温度c T :

(1)测量物质的电阻达到零时的温度;(2)测量物质的迈斯纳效应时的温度;(3)测量物质比热容发生跃变时的温度;(4)同位素效应实验。

2. 有些高温超导体的超导-正常态转变温度区间很宽,为什么常常要用迈斯纳效应来确定超导态的形成而不是靠电阻测量?

解:这是由于超导态具有特有的磁性,其完全抗磁性并不能简单地由零电阻导出。当样品处于超导态时,样品中的磁通量将变为零的效应,即迈斯纳效应是确定样品是否处于超导态起着关键的作用。尤其当高温超导体的超导-正常态转变温度区间很宽时,测量其电阻是否为零很难确定高温超导体是否处于超导态,而通过测量高温超导体的迈斯纳效应则相对容易准确地判断高温超导体是否处于超导态。

3. 对于第二类超导体,热力学临界磁场)(T H c 的含义是什么?当)(T H H c =时超导状态发生变化吗?

解:第二类超导体存在2个临界磁场,下临界磁场1c H 和上临界磁场2c H 。当外磁场小于1c H 时,样品处于超导态,此时样品既具有零电阻,也处于完全的抗磁性状态,体内无磁通量;当外磁场介于1c H 和2c H 之间时,第二类超导体处于混合态,这时样品仍具有零电阻,但处于不完全的抗磁性状态,体内有磁感应线穿过。当外磁场高于2c H 时,样品返回正常态,这时样品的零电阻和完全抗磁性都消失了。

4. 有人说:“超导态是完全逆磁性的,因而有磁场处不会是超导态,也就不会有零电阻,不会有超导电流。”这话对吗?怎么理解超导体的完全逆磁性?

解:这句话是不对的。超导态的完全逆磁性并不意味着外磁场H 和磁化强度M 为零,而是

0)(0=+=M H B μ

即超导体内的磁化强度M 恰好为外磁场H 的负值,二者刚好抵消。此时超导体无磁感应线穿过,磁通量为零,这就是超导体完全逆磁性的含义。 5. 由同位素效应怎么会想到超导机制可能与声子有关?

解:同位素效应指的是超导元素的不同同位素的超导转变温度c T 与同位素原子质量M

之间存在关系:const T M c =α

(对于大多数超导体,2/1=α)。由于同位素核外的电子

排布是一样的,不同的只是它们的相对原子量不同,而使各自的晶格振动模式不同而已,即它们各自的声子不同而使它们的超导转变温度c T 不同,所以同位素效应使人们想到电子-声子相互作用与超导机制有关。

6. 能隙的含义是什么?为什么讨论能隙问题对于超导体很重要?如何根据隧道效应确定超导体的能隙?

解:能隙是指金属在超导态时的基态与最低激发态之间的能量差。

因为金属处于正常态时,基态与最低激发态之间是没有能隙。一旦金属发生了超导转变,能隙就出现。所以能隙的存在对确定金属是否处于超导态是很有用的,故讨论能隙问题对于超导体很重要。

利用S -I -M 结或S -I -S 结的隧道效应的I -V 特性曲线可以方便准确地测量超导体的能隙?。这是由于对于S -I -M 结,发生电流突变的偏压是e /?;而对于S -I -S 结,发生电流突变的偏压是e /2?。 7. 简述二流体模型的要点。

解:二流体模型的要点是:假设在c T T <时,存在超导电子和正常电子2种载流子,其密度分别为)(T n s 和)(T n n s -,其中n 为超导体内电子的总密度。当c T T <<时,)(T n s 趋近于n ;当c T T ≥时,0)(=T n s 。超导电子不受散射形成无阻电流,整块超导体因超导电子的旁路作用而没有电阻,即超导电子可以携带由任何瞬间电场所引起的全部电流。 8. 发生隧道效应的条件是什么?超导体与正常金属之间的隧道效应,和正常金属之间的隧道效应相比,有什么主要区别?

解:发生隧道效应的条件是:隔开2块正常金属或超导体的绝缘层的宽度足够小,并且电子穿入的态为空态时,隧道效应才有可能发生。

I -I -V (1)当两端电压为零时,可以存在一股很小的超导电流,这是超导电子对的隧道电流。

电流有一临界电流密度c J 。临界电流密度值依赖于磁场。这种现象称为直流约瑟夫森效应。

(2)当结两端的直流电压0≠V 时,仍然存在有超导电子对的隧道电流,但这是一个交变的超导电流,其频率ω与V 成正比,满足关系式 /2eV =ω。外加一个频率为1ω的交变电磁场会对结内的交变电流起频率调制作用,从而产生直流分量。在直流I -V 特性曲线上会出现一系列台阶,该电流台阶所对应的电压值满足1/2ωn eV = 。这种现象称为交流约瑟夫森效应。

单电子隧道效应是指在M -I -M 结,S -I -M 结和S -I -S 结内,电子从一侧的正常金属或超导体以一定几率穿过极薄绝缘层而进入另一侧的正常金属或超导体的空态的隧道效应。

约瑟夫森效应与单电子隧道效应的本质区别是约瑟夫森效应是由于大量电子形成的超导电流的量子干涉宏观现象,而单电子隧道效应是单个电子穿透极薄绝缘层的单粒子近似的微观现象。

10. 可以通过一个直径为2mm 的铅线(在5K 时)的最大直流是多少?

解:由于通过该铅线的临界超导电流密度为

s

s e k n j 40=

其中上式中,k 为两侧超导体的耦合系数,s n 为5K 时铅中超导电子密度。 由此可知通过该直径为2mm 的铅线的最大直流为

s

s e k n d j d I 2

02

m a x 4

ππ=

=

11. 在一个约瑟夫森结的二端加上650μV 电压,发射的电磁波的频率是多少?

解:发射的电磁波的频率是

/2eV =ω 12

34

6

19

10

972.110

055.110

65010

6.12?=?????=

---Hz

12. 对于一个Pb -氧化物-Al 结,在I -V 特性曲线上的最大与最小电流分别在V 1(即e /)(21?-?)和V 2(即e /)(21?+?)处得到的,此时,4

110

8.11V -?=V ,

4

210

2.15V -?=V 。试据这些数据导出Pb 和Al 的能隙的值。

解:由题意知有

????=?+??=?-?--4

214

2110

2.15)(108.11)(e e 由上述的方程组可以导出Pb 和Al 的能隙的值分别为 00135.01=?eV 00017.02=?eV

※超导简介与超导材料的历史

神奇的超导:超导简介与超导材料的历史 神奇的超导 罗会仟周兴江 一、什么是超导? 电阻起源于载流子(电子或空穴)在材料中运动过程中受到的各种各样的阻尼。按照材料的常温电阻率从大到小可以分为绝缘体、半导体和导体。绝大部分金属都是良导体,他们在室温下的电阻率非常小但不为零,在10-12 mΩ?cm量级附近。自然界是否存在电阻为零的材料呢?答案是肯定的,这就是超导体。当把超导材料降到某个特定温度以下的时候,将进入超导态,这时电阻将突降为零(图1),同时所有外磁场磁力线将被排出超导体外,导致体内磁感应强度为零,即同时出现零电阻态和完全抗磁性。超导态开始出现的温度一般称为超导临界温度,一般定义为Tc。微观上来说,当超导材料处于超导临界温度之下时,材料中费米面附近的电子将通过相互作用媒介而两两配对,这些电子对将同时处于稳定的低能组态,叫“凝聚体”。在外加电场驱动下,所有电子对整体能够步调一致地运动,因此超导又属于宏观量子凝聚现象。对于零电阻态,实验上已经证实超导材料的电阻率小于10-23 mΩ?cm,在实验精度允许范围内已经可以认为是零。如果将超导体做成环状并感应产生电流,电流将在环中流动不止且几乎不衰减。超导体的完全抗磁性并不依赖于超导体降温和加场的次序,也称为迈斯纳(Meissner)效应。一个材料是否为超导体,零电阻态和完全抗磁性是必须同时具有的两个独立特征。

超导态下配对的电子对又称库珀(Cooper)对。配对后的电子将处于凝聚体中,打破电子对需要付出一定的能量,称为超导能隙,它反映了电子间的配对强度。一般来说,超导态在低外磁场及低温下是稳定的有序量子态。超导体的一系列神奇特性意味着我们可以在低温下稳定地利用超导体,比如实现无损耗输电、稳恒强磁场和高速磁悬浮车等。正因如此,自从超导发现以来,人们对超导材料的探索脚步一直不断向前,对超导微观机理和超导应用的研究热情也从未衰减。随着对超导研究的深入,一系列新的超导家族不断被发现,它们展现的新奇物理现象也在不断挑战人们对现有凝聚态物理的理解,同时实验技术手段也因此得以加速进步,理论概念更是取得了诸多飞跃。已逾百年的超导研究,在诸多科学家的推动下,依旧不断展示新的魅力! 金属Hg在4.2K以下的零电阻态

超导材料

一、超导材料 有些材料当温度下降至某一临界温度时,其电阻完全消失,这种现象称为超导电性,具有这种现象的材料称为超导材料。超导体的另外一个特征是:当电阻消失时,磁感应线将不能通过超导体,这种现象称为抗磁性。一般金属(例如:铜)的电阻率随温度的下降而逐渐减小,当温度接近于0K时,其电阻达到某一值。而1919年荷兰科学家昂内斯用液氦冷却水银,当温度下降到4.2K(即-269℃)时,发现水银的电阻完全消失,超导电性和抗磁性是超导体的两个重要特性。使超导体电阻为零的温度称为临界温度(TC)。超导材料研究的难题是突破“温度障碍”,即寻找高温超导材料。以NbTi、Nb3Sn为代表的实用超导材料已实现了商品化,在核磁共振人体成像(NMRI)、超导磁体及大型加速器磁体等多个领域获得了应用;SQUID作为超导体弱电应用的典范已在微弱电磁信号测量方面起到了重要作用,其灵敏度是其它任何非超导的装置无法达到的。但是,由于常规低温超导体的临界温度太低,必须在昂贵复杂的液氦(4.2K)系统中使用,因而严重地限制了低温超导应用的发展。高温氧化物超导体的出现,突破了温度壁垒,把超导应用温度从液氦(4.2K)提高到液氮(77K)温区。同液氦相比,液氮是一种非常经济的冷媒,并且具有较高的热容量,给工程应用带来了极大的方便。另外,高温超导体都具有相当高的磁性能,能够用来产生20T以上的强磁场。超导材料最诱人的应用是发电、输电和储能。利用超导材料制作超导发电机的线圈磁体制成的超导发电机,可以将发电机的磁场强度提高到5~6万高斯,而且几乎没有能量损失,与常规发电机相比,超导发电机的单机容量提高5~10倍,发电效率提高50%;超导输电线和超导变压器可以把电力几乎无损耗地输送给用户,据统计,目前的铜或铝导线输电,约有15%的电能损耗在输电线上,在中国每年的电力损失达1000多亿度,若改为超导输电,节省的电能相当于新建数十个大型发电厂;超导磁悬浮列车的工作原理是利用超导材料的抗磁性,将超导材料置于永久磁体(或磁场)的上方,由于超导的抗磁性,磁体的磁力线不能穿过超导体,磁体(或磁场)和超导体之间会产生排斥力,使超导体悬浮在上方。利用这种磁悬浮效应可以制作高速超导磁悬浮列车,如已运行的日本新干线列车,上海浦东国际机场的高速列车等;用于超导计算机,高速计算机要求在集成电路芯片上的元件和连接线密集排列,但密集排列的电路在工作时会产生大量的热量,若利用电阻接近于零的超导材料制作连接线或超微发热的超导器件,则不存在散热问题,可使计算机的速度大大提高。 二、能源材料 能源材料主要有太阳能电池材料、储氢材料、固体氧化物电池材料等。太阳能电池材料是新能源材料,IBM公司研制的多层复合太阳能电池,转换率高达40%。氢是无污染、高效的理想能源,氢的利用关键是氢的储存与运输,美国能源部在全部氢能研究经费中,大约有50%用于储氢技术。氢对一般材料会产生腐蚀,造成氢脆及其渗漏,在运输中也易爆炸,储氢材料的储氢方式是能与氢结合形成氢化物,当需要时加热放氢,放完后又可以继续充氢的材料。目前的储氢材料多为金属化合物。如LaNi5H、Ti1.2Mn1.6H3等。固体氧化物燃料电池的研究十分活跃,关键是电池材料,如固体电解质薄膜和电池阴极材料,还有质子交换膜型燃料电池用的有机质子交换膜等。 三、智能材料 智能材料是继天然材料、合成高分子材料、人工设计材料之后的第四代材料,是现代高技术新材料发展的重要方向之一。国外在智能材料的研发方面取得很多技术突破,如英国宇航公司的导线传感器,用于测试飞机蒙皮上的应变与温度情况;英国开发出一种快速反应形状记忆合金,寿命期具有百万次循环,且输出功率高,以它作制动器时、反应时间仅为10分钟;形状记忆合金还已成功在应用于卫星天线等、医学等领域。另外,还有压电材料、磁致伸缩材料、导电高分子材料、电流变液和磁流变液等智能材料驱动组件材料等功能材料。 四、磁性材料 磁性材料可分为软磁材料和硬磁材料二类。1.软磁材料是指那些易于磁化并可反复磁化的材料,但当磁场去除后,磁性即随之消失。这类材料的特性标志是:磁导率(μ=B/H)高,即在磁场中很容易被磁化,并很快达到高的磁化强度;但当磁场消失时,其剩磁很小。这种材料在电子技术中广泛应用于高频技术。如磁芯、磁头、存储器磁芯;在强电技术中可用于制作变压器、开关继电器等。目前常用的软磁体有铁硅合金、铁镍合金、非晶金属。Fe-(3%~4%)Si的铁硅合金是最常用的软磁材料,常用作低频变压器、电动机及发电机的铁芯;铁镍合金的性能比铁硅合金好,典型代表材料为坡莫合金(Permalloy),其成分为79%Ni-21%Fe,坡莫合金具有高的磁导率(磁导率μ为铁硅合金的10~20倍)、低的损耗;并且在弱磁场中具有高的磁导率和低的矫顽力,广泛用于电讯工业、电子计算机和控制系统方面,是重要的电子材料;非晶金属(金属玻璃)与一般金属的不同点是其结构为非晶体。它们是由Fe、Co、Ni及半金属元素B、Si所组成,其生产工艺要点是采用极快的速度使金属液冷却,使固态金属获得原子无规则排列的非晶体结构。非晶金属具有非常优良的磁性能,它们已用于低能耗的变压器、磁性传感器、记录磁头等。另外,有的非晶金属具有优良的耐蚀性,有的非晶金属具有强度高、韧性好的特点。2.永磁材料(硬磁

传统超导体简介

2014年5月24日 传统超导体简介 LH·ZW 摘要:如今超导体在社会生产中扮演着越来越重要的作用,不管是急速发展着的电子工业 还是磁悬浮列车的发展都与超导体的发展息息相关。并且一直以来有着神秘色彩超导体在我们心目中都是高端得遥不可及的,而当今社会的发展却因之而大放异彩,所以对于超导体的机制及其应用我们还是应该学习的。 关键词:电磁学超导体零电阻现象迈斯纳效应超导发电磁悬浮列车 引言 超导体与电磁相关原理不无关系。超导体没有电阻是一材料宏观表现出来的性质,并且在我们现有的认知当中,当温度到达(升高或降低)该材料的某一临界值时,其温度会变为让人们一直以来都不为理解且震惊的零值,即是不可思议的没有电阻现象。且超导的最具特点与价值的是其完全导电性和完全抗磁性,由此使得其在社会生活生产中扮演着重要的角色。 一.超导体分类 现在对于超导体的分类并没有统一的标准,通常的分类方法有以下几种: ?通过材料对于磁场的相应可以把它们分为第一类超导体和第二类超导体:对于第一类超导体只存在一个单一的临界磁场,超过临界磁场的时候,超导性消失;对于第二类超导体,他们有两个临界磁场值,在两个临界值之间,材料允许部分磁场穿透材料。 ?通过解释的理论不同可以把它们分为:传统超导体(如果它们可以用BCS理论或其推论解释)和非传统超导体(如果它们不能用上述理论解释)。 ?通过材料达到超导的临界温度可以把它们分为高温超导体和低温超导体:高温超导体通常指它们的转变温度达到液氮温度(大于77K);低温超导体通常指它们需要其他特殊的技术才可以达到它们的转变温度。 ?通过材料可以将它们分为化学材料超导体比如:铅和水银;合金超导体比如:铌钛合金;氧化物超导体,比如钇钡铜氧化物;有机超导体,比如:碳纳米管。 二.一般超导体(即第一类超导体)的微观机制 1.电阻成因:很多宏观现象可以从微观领域中得到解释。电流是导体中电子的定向移动。电子在原子间移动时,由于电子与原子核间的电磁力的作用,会引起原子振动。众所周知,在正常导体中,一些电子没有被束缚到个别原子上,而是可以通过正离子的晶格自由运动。而电流通过晶格运动时),特别是金属中电子与晶格缺陷碰撞散射,以及在运动过程中其会与晶格振动相互作用而带来宏观上的电阻现象(1)(2)。这就是电阻的成因。 2.超导形成:由电阻成因知我们欲形成超导则要使得那电磁力的作用得到消除进而使得原子消除振动,从而使得电阻为零形成超导。并且由科学研究知在低温下核外电子运转速率

超导材料的主要应用

超导材料的主要应用 超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。下面是有关于超导材料的主要应用的内容,欢迎阅读。 油田超导热洗技术的应用及效果分析【摘要】油井热洗清蜡是保证油井正常生产,是改善井下杆管泵工作环境的重要手段之一。常规热洗清蜡技术存在几方面的问题:1、是常规热洗含水恢复期长,对产量影响较大。2、是常规热洗容易污染地层。3、常规热洗动用车辆多,笨重,成本高。超导热洗工艺弥补了常规热洗的不足,取得了良好的效果。【关键词】油井清蜡超导热洗效果对比 1超导热洗简介 超导热洗工艺技术原理 超导加热器(俗称清蜡机)是油田抽油井洗井清蜡的专用设备。它采用超导传热技术,用油井套管气(天然气)或柴油为热源,将油井产出液(或其它井补充液或水)加热成高温蒸气(或高温液)注入套管环型空间。使油管内的产出液温度逐渐升高,管壁结蜡自上而下逐渐融化,随产出液进入输油管(或油罐)。内阻减小,以达到稳定、降耗、节约成本、不污染油层的目的。 本加热器可清洗日产液量的抽油机井。超导热洗可采用油井产出液自洗、补充水或其它井产出液方法洗井清蜡。两

种方式均采用低压力,低液量,慢升温的热洗工艺。不改变油层的油、水、气流动规律,不污染油层。 油井套压≥,自产气够用时,可用油井自产气为热源,油井有天然气管网,可用天然气做热源,无天然气可用柴油为热源。 超导热洗装置介绍 (1)产品为移动式设备。加热器安装在专用车上。 (2)本加热器按热源分为燃气型、燃油型、燃气燃油两用型三种。 ①燃气型:洗井现场有天燃气管网(压力),可配备全自动燃气燃烧器和温度自控系统。洗井现场无天然气管网、但附近油井套压≥,自产气够用时,可配备半自动燃气燃烧器和温度自控系统。 ②燃油型:无天然气或天然气不够用的油井,可用柴油为热源、配备全自动柴油燃烧器和温度自控系统。 ③燃气燃油两用型:在同一洗井区域内,有的井有天然气、有的井无天然气,可选择燃气燃油两用型。配备燃气系统、燃油系统各一套。配备温度自控系统一套,自产气够用就用自产气、自产气不够用则用柴油。 3自动控制系统和安全措施 (1)用加热器出口温控表控制燃烧器。温控装置会按照设定好的温度自动工作。温度高时自动关机停火,温度低时

高温超导材料的特性与表征

四川理工学院 材料物理性能 高温超导材料论文 【摘要】 在本实验中我们的主要目的是通过通过氧化物高温超导材料特性的测量和演示,加深理解超导体的两个基本特性,即零电阻完全导电性和完全抗磁性。我们还通过此实验对不同的温度计(铂电阻温度计和硅二极管温度计)进行比较。我们采用的是四引线测量法,利用低温恒温器和杜瓦容器测量了超导电性,绘制了超导样品的电阻温度曲线,验证了超导在高温冷却电阻突然降为零的电特性。我们也绘制了磁悬浮力与超导体-磁体间距的关系曲线,对其进行了分析。在进行磁悬浮的实验中我们验证了超导体的混合态效应和完全抗磁性。 关键词: 超导体零电阻温度完全磁效应磁场 一、引言: 1911年H.K.Onnes首次发现在4.2K水银的电阻突然消失的超导现象,此温度也被称为临界温度。根据临界温度的不同,超导材料可以被分为:高温超导材料和低温超导材料。

但这里所说的高温,其实仍然是远低于冰点0℃的,对一般人来说算是极低的温度。1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,这种现象称为抗磁性。经过科学家们的努力,超导材料的磁电障碍已被跨越,下一个难关是突破温度障碍,即寻求高温超导材料1973年,发现超导合金――铌锗合金,其临界超导温度为23.2K,这一记录保持了近13年。此后,科学家们几乎每隔几天,就有新的研究成果出现。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。 高温超导体具有更高的超导转变温度(通常高于氮气液化的温度),有利于超导现象在工业界的广泛利用。高温超导体的发现迄今已有16年,而对其不同于常规超导体的许多特点及其微观机制的研究,却仍处于相当“初级”的阶段。这一点不仅反映在没有一个单一的理论能够完全描述和解释高温超导体的特性,更反映在缺乏统一的、在各个不同体系上普遍存在的“本征”实验现象。 本实验中,我们通过对氧化物超导材料特性的测量和演示,加深理解超导体的两个基本特性;了解金属和半导体的电阻随温度的变化及温差电动势;了解超导磁悬浮的原理;掌握液氮低温技术。 二、原理: 物理原理: 1.超导现象及临界参数 (1)零电阻现象 1911年,卡麦林·翁纳斯用液氮冷却水银线并通以几毫安电流,在测量其电压时发现,当温度稍低于液氮沸点时,水银电阻突然降为零,这就是零电阻现象或超导现象。具有此现象的物体称为超导体。只有在直流条件下才会存在超导现象,在交流下电阻不为零。 临界温度是指当电流,磁场及其他外部条件保持为零或不影响测量时,超导体呈现超导态的最高温度。我们用电阻法测定超导临界温度。 (2)MERSSNER效应 1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,而且,不管加磁场的顺序如何,超导体内磁场总为零。这种现象称为抗磁性即MERSSNER效应。 3)超导体分类 超导体分为两类第1类超导体是随温度变化只分为超导态和正常态,第2类是在超导态和正常态中间部分还存在混合态。 纯金属材料的电阻特性 纯金属材料的电阻产生于晶体的电子被晶格本身和晶格中的缺陷的热振动所散射。ρ=ρL(T)+ρ R,其中ρL(T)表示晶格热振动对电子散射引起的电阻率,与温度有关。ρ r表示杂质和缺陷对电子的散射所引起的电阻率,不依赖与温度,与杂质和缺陷的密度成正比,称为剩余电阻率。 半导体材料电阻温度特性 ρi=1/nie(μe+μp) 本征半导体的电阻率ρi与载流子浓度ni及迁移率μ=μe+μp有关, 因ni随温度升高而成指数上升,迁移率μ随温度增高而下降较慢,故本证半导体电阻率随温度上升而电调下降。 实验仪器及其原理:

超导材料的现状及发展趋势分析

超导材料的现状及发展方向自1911年荷兰莱顿实验室的卡末林·昂纳斯首次在4.2K时发现水银零电阻现 象即超导现象以来。人们相继在超导 材料方面取得很多突破,后来在梅斯 勒发现超导体的抗磁性之后, 1934 —1985年后超导物理学理论逐步发 展,超导材料逐步应用于实际科学技 术领域。但由于种种原因,至今超导 物理学理论也不够完善。在这一阶段 人们研究的超导材料临界转变温度 较低。 后来进入高温超导研究阶段,高温超导材料指的是:钇系(92 K)、铋系(110 K)、铊系(125 K)和汞系(135 K)以及2001年1月发现的新型超导体二硼化镁(39 K)。高温超导体属于非理想的第II类超导体。临界磁场和临界电流且比低温超导体更高。同时已对高温超导材料进研究开发,氧化物复合超导材料具有耐用和稳定性好的特点。通过研究浸泡实验表明,超导电性的退化主要来自于杂相及时效过程中的析出相。为了改善薄膜对环境的敏感性,美国西北大学的Mirkin建议把分子单层表面化学改性引入到高温超导铜氧化合物中。 以铋锶钙铜氧系为第一代高温超导带材,它的可加工性优良,在超导强电应用领域占据重要位置。但铋系材料的实用临界电流密度较低,并且在77 K的应用磁场也很低。然而钇钡铜氧化物材料在77 K的超导电性比铋锶钙铜氧材料好的多;但它的可加工性极差,故要做出超导性好的带材通过传统的压力加工和热处理工艺就很难。 随着材料科学工艺技术的发展,近年来一种在轧制金属基带上制造钇钡铜氧超导带材的工艺被称作“第二代”带材。欧洲国家努力开展高温超导材料工艺及应用研究。丹麦已批量制造铋系超导带材。2003年11月我国第一个10m、 10.5kV/1.5kA 三相交流高温超导电缆系统日前在中国科学院电工研究所研制成功,并于成功地进行了试验运行。2011年5月信赢和公司团队研发的世界最大功率的超导限流器刚成功。2011年9月25日,特拉维夫大学的研究小组开发出了一种超导体材料——蓝宝石单晶体纤维,可用于高压电缆输电,输电量是相同直径铜线输电量的40倍。研究人员称这种超导材料将有可能彻底改变电力输送占空间、高损耗的状况。 高温超导材料主要有:膜材(薄膜、厚膜)、块材、线材和带材等类型。薄膜最常用、最有效的两种镀膜技术是:磁控溅射和脉冲激光沉积。还有金属有机

超导材料的性能与应用综述

超导材料的性能及应用综述 班级:10粉体(2)班学号:1003012003 姓名:徐明明 摘要:回顾了超导现象的发现及发展,综述了超导电性的微观机理,超导物理学研究的历史和主要成果,介绍了超导电性的几种突出的应用,并指出目前对于超导电性的认识在理论、实验、研究上都是初步的 ,还需要进行更多的和更深入全面的研究。 关键词:超导电性;超导应用;BCS理论;应用 一、超导现象的发现及发展 1908 年, 荷兰莱登实验室在卡茂林- 昂尼斯的指导下, 用液氢预冷的节流效应首次实现了氦气的液化,从而使实验温度可低到4~1K 的极低温区, 并开始在这样的低温区测量各种纯金属的电阻率。1911 年,卡茂林- 昂尼斯[1] 发现Hg 的电阻在4. 2K 时突降到当时的仪器精度已无法测出的程度, 即Hg 在一确定的临界温度T c= 4. 15K 以下将丧失其电阻,这是人们第一次看到的超导电性。昂尼斯也凭这一发现获得了1913 年的诺贝尔物理学奖。后来的实验证明,电阻突变温度与汞的纯度无关,只是汞越纯,突变越尖锐。随后,人们在Pb及其它材料中也发现这种特性:在满足临界条件(临界温度 Tc、临界电流 Ic、临界磁场 Hc)时物质的电阻突然消失,这种现象称为超导电性的零电阻现象。应该指出,只是在直流电情况下才有零电阻现象。从此,诞生了一门新兴的学科——超导。 一直到20世纪50年代,超导只是作为探索自然界存在的现象和规律在研究,1957年Bardeen、Cooper和Schrieffer[2]提出了著名的BCS理论,揭示了漫长时期不清楚的超导起因。1961年Kunzler将Nb3Sn制成高场磁体,开辟了超导在强电中的应用,特别是 1962 年Josephson效应的出现,将超导应用推广到一个崭新的领域。到20世纪70年代超导在电力工业和微弱信号检测应用方面的进展显示了它无比的优越性,但由于临界温度低,必须使用液氦,这就极大地限制了它的优越性。从20世纪70年代起人们就将注意力转向寻找高温超导体上,在周期表

超导材料基础知识介绍

超导材料基础知识介绍 超导材料具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。 特性超导材料和常规导电材料的性能有很大的不同。主要有以下性能。 ①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。 ②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。 ③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。 基本临界参量有以下 3个基本临界参量。 ①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为0.012K。到1987年,临界温度最高值已提高到100K左右。 ②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。 ③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic 称为临界电流密度,以Jc表示。 超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=4.2K)起,直到1986年以前,人们发现的最高的 Tc才达到23.2K(Nb3Ge,1973)。1986年瑞士物理学家K.A.米勒和联邦德国物理学家J.G.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。 分类超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶

第十章 超导体的基本现象和基本规律

第十章 超导体的基本现象和基本规律 1超导体的正常态和超导态的吉布斯自由能的差为μ0Hc 2(T),这里Hc 是超导体的临界磁场,说明在无磁场时的超导相变是二级相变,而有磁场时的相变为一级相变。 2二级相变 在发生相变时,体积不变化的情况下,也不伴随热量的吸收和释放,只是热容量、热膨胀系数和等温压缩系数等的物理量发生变化,这一类变化称为二级相变。二级相变的特点是,两相的化学势和化学势的一级偏微商相等,但化学势的二级偏微商不相等。因此在相变时没有体积变化和潜热(即相变热)。在相变点,两相的体积、焓和熵的变化是连续的。故这种相变也称为连续相变(continuous phase transition)。 在发生相变时,有体积的变化同时有热量的吸收或释放,这类相变即称为“一级相变”。 一级相变的特点是两相的化学势相等,但有体积改变并产生相变热。也就是说,在相变点,两相的化学势的一级偏微商不相等。 3简述超导体的两个主要特征。 4试根据超导B=0,推导出超导临界温度和外加磁场的定性关系。 5超导体都有哪些主要的物理特征? 6什么是超导的迈斯纳(Meissner)效应? 7超导体两个最显著的物性特征是什么? 8什么是第I类超导体、什么是第II类超导体?二者的本质区别是什么? 9第一类超导体与第二类超导体对于外磁场的响应有什么区别? 10简述约瑟夫森(Josephson )效应。 11在超导体内存在以费米能级为中心, 宽度为?2的能隙,给出超导- 绝缘体-金属结和超导体-绝缘体-超导体结(假设两侧超导体的能隙分别为12?和22?) 的隧穿电流随电压变化的关系

超导现象简介

超导现象简介 超导现象:某些物质在温度降低到一定值时电阻会完全消失,这种现象称为超导电性。超导技术的开发和应用对国民经济、军事技术、科学实验与医疗卫生等具有重大价值。 具有超导电性的物质称为超导材料或超导体。超导材料包括金属低温超导材料、陶瓷高温超导材料和有机超导材料等。 发展概况:超导电性是荷兰科学家H.K.昂尼斯1911年发现的,他在做低温实验时,意外发现汞线冷却到4ZK时电阻突然消失了。随后科学家们发现许多金属、合金和金属间化合物也具有这种特性。1933 年,德国人W.迈斯纳发现超导体具有高抗磁性,使磁力线不能透人,人们称之为迈斯纳效应。1957年美国人J.巴丁、LN.库泊、J.R.施里弗共同提出超导微观理论(BCS理论)。1962年,英国人BD.约瑟夫森从理论上预言超导电流能够穿过一层极薄的绝缘体进入另一超导体,形成隧道超导电流。这种约瑟夫森效应随后为实验所证实。1986 年初,美国国际商用机器公司苏黎世研究所的K.A.马勒和J.G.贝诺斯发现,钡钢铜氧化合物在30K时呈现超导电性。这种陶瓷超导材料的发现,为超导技术的发展开辟了新的途径。1986年以前发现的超导材料是良导体金属、合金和金属间化合物,其临界温度最高不过232K,而马勒和贝诺斯发现的超导材料却是氧化物,临界温度比低温超导体高得多,对超导研究具有划时代的意义,世界各国对此都十分重视。1987年中国成立了超导技术专家委员会和国家超导技术联合研究开发中心,统一领导全国的超导研究工作;同年7月美国总统提出《总统超导倡议》,要求政府采取必要措施支持高温超导研究;日本政府和民间企业、大学制订了共同开发超导材料的计划。各国超导科学家以陶瓷材料为对象寻找高临界温度的超导材料,形成了一股世界性的超导研究热,忆钡铜氧化合物、秘锯钙铜氧化合物、铂钡钙铜氧化合物等高温超导材料不断涌现。自1986年以来,中国在高温超导技术攻关中取得了一系列重大成就,在某些领域达到了国际领先水平。超导材料特性超导材料最重要的特性是完全电导性和完全抗磁性。完全电导性是指在一定的温度条件下超导体的电阻为零,在这种状态下,超导体不仅可以无损耗地输送电流,而且在储存电能时也不会有损失。完全抗磁性是指材料一旦进人超导状态,磁力线就不能穿过超导体,其内部磁通量等于零。这两个特性是衡量

超导材料的特性及应用

浅谈超导材料的超导特性及应用 摘要:作为一种新型材料,超导材料越来越广泛地应用到各个领域,人类对超导电性及其应用将越来越重视。超导材料的应用有着巨大的潜力和发展前景,这是不容置疑的。超导的实用前景似乎既近既远,近者,在人类的生活中已得到了超导电技术带来的好处,如医用的核磁共振成像的超导磁体;同时,在电子器件上的应用,近几年将会在市场上出现。远者,人们会看到例如在微波通讯、计算机器件、储能及平衡电网方面的应用。在总结超导电性的同时,本文将就超导材料的应用作简要的介绍。 关键字:超导、特性、应用、前景 1、超导材料的超导特性 导体在温度下降到某一值时,电阻会突然消失,即零电阻,这一现象称为“超导现象”,将具有超导性的物质,称为超导体,超导体如钛、锌、铊、铅、汞等,在超导状态,当温度降至温度(超导转变温度)时,皆显现出某些共同特征。1.1电阻为零。一个超导体环移去电源之后,还能保持原有的电流。有人做过实 验,发现超导环中的电流持续了二年半而无显著衰减。 1.2完全抗磁性。这一现象是1933年德国物理学家迈斯纳等人在实验中发现的, 只要超导材料的温度低于临界温度而进入超导态以后,该超导材料便把磁力线排斥体外,因此其体内的磁感应强度总是零。这种现象称为“迈斯纳效应”。 2、超导材料的应用 2.1 超导应用的巨大潜力 超导态是物质的一种独特的状态,它的新奇特性,立刻使人想到要将它们应用到技术上。超导体的零电阻效应显示其具有无损耗输运电流的性质。工业、国防、科研上用的大功率发电机、电动机如能实现超导化,将大大降低能耗并使其小型化。利用超导隧道效应,人们可以制造出世界上最灵敏的电磁信号的探测元件和用于高速运行的计算机元件。用这种探测器制造的超导量子干涉磁强计可以测量地球磁场几十亿分之一的变化,也能测量人的脑磁图和心磁图。超导体用于微波器件可以大大改善卫星通讯的质量。 因此,超导体显示了巨大的应用潜力。 2.2 超导材料在强电方面的应用

超导材料应用与制备概况

摘要:新型超导材料一直是人类追求的目标。本文主要从超导材料的性质,制 备,应用等方面探索超导材料科学的发展概况。随着高温超导材料制备方法的不断成熟,超导材料将越来越多的应用于尖端技术中去,超导材料的应用将给电工技术带来质的飞跃,因此,超导材料技术有着重大的应用发展潜力,可解决未来能源,交通,医疗和国防事业中的重要问题。 关键词:超导材料强电应用弱电应用超导制备 1. 引言 1911年荷兰科学家onnes发现纯水银在附近电阻突然消失,接着发现其他一些金属也有这样的现象,随着人们在Pb和其它材料中也发现这种性质:在满足临界条件(临界温度Tc,临界电流Ic,临界磁场Hc)时物质的电阻突然消失,这种现象称为超导电性的零电阻现象。只是直流电情况下才有零电阻现象,这一现象的发现开拓了一个崭新的物理领域。 超导材料具有1)零电阻性2)完全抗磁效应3)Josephson效应。这些性质的研究与应用使得超导材料的性能不断优化,实现超导临界温度也越来越高。一旦室温超导达到实用化、工业化,将对现代科学技术产生深远的影响。 2. 超导材料主要制备技术 控制和操纵有序结晶需要充分了解原子尺度的超导相性能。有序、高质量晶体的超导转变温度较高 ,晶体质量往往强烈依赖于合成技术和条件。目前,常用作制备超导材料的技术主要有: 2.1.1单晶生长技术 新超导化合物单晶样品有多种生长方法。溶液生长和气相传输生长法是制备从金属间氧化物到有机物各类超导体的强有力工具。溶液生长的优点就是其多功能性和生长速度 ,可制备出高纯净度和镶嵌式样品。但是 ,它并不能生产出固定中子散射实验所需的立方厘米大小的样品。浮动熔区法常用来制备大尺寸的样品 ,但局限于已知的材料。这种技术是近几年出现的一些超导氧化物单晶生长的 主要技术。这种技术使La 2 - x Sr x CuO 4 晶体生长得到改善 ,允许对从未掺杂到高度 掺杂各种情况下的细微结构和磁性性能进行细致研究。在T 1Ba 2 Ca 2 Cu 3 O 9+d 和 Bi 2Sr 2 CaCu 2 O 8 中 ,有可能削弱无序的影响从而提高临界转变温度。最近汞基化合 物在晶体生长尺寸上取得的进展 ,使晶体尺寸较先前的纪录高出了几个数量级。但应该指出的是即使是高 Tc的化合物 ,利用溶液生长技术也可制备出高纯度的YBCO等单晶。 2.1.2高质量薄膜技术 目前 ,薄膜超导体技术包括活性分子束外延(MBE ) 、溅射、化学气相沉积和脉冲激光沉积等。MBE能制造出足以与单个晶体性能相媲美的外延超导薄膜。在晶格匹配的单晶衬底上生长的外延高温超导薄膜 ,已经被广泛应用于这些材料物理性质的基础研究中。在许多实验中薄膜的几何性质拥有它的优势 ,如可用光刻技术在薄膜上刻画细微的特征;具备合成定制的多层结构或超晶格的潜能。 在过去的 20年里 ,多种高温超导薄膜生长技术快速发展。有些技术已经适用于其它超导体的制备。目前所使用主要方法有溅射和激光烧蚀(脉冲激光沉积)。类似分子束外延这种先进薄膜生长技术也已经发展得很好。臭氧或氧原

超导体的物理特性

超导体的物理特性及其军事应用 作者:刘玉超, 李鹏 ,张强收录时间:2011-11-07 阅读次数: 221 关键词: 超导体,军事应用 摘要:介绍了超导体的物理特性及超导器件在国内外军事领域上的研究和应用进展。 随着电子技术的不断向高、新、尖发展,超导电子技术便应运而生。超导体具有两个突出的特点:一是超导电性。它可以传导大电流,在较大的空间产生很强的磁场,不消耗或只消耗极少的能量(强电效应);二是超导体器件对磁场或电磁辐射具有极高的灵敏度(弱电效应)。利用超导的强电效应特点,可以制成高效电动机和发电机、定向能武器、电磁炮、弹射器等。利用超导体对弱磁、弱电辐射的极高灵敏度特性,可以制成体积小、重量轻、超高速、特宽频带、低功耗、低噪声、抗干扰能力强的各种电子器件和系统。 1 超导体的物理特性 所谓超导体,是指电阻为零的物质。1911年德国物理学家海克·坎默林·奥尼斯首先发现世界上有超导物质存在,并认为所有金属都可能具有超导性,但是只有当它们冷却到几K,略高于绝对零度(-273℃)时,才具有超导性。经过科学家们不懈努力,目前,高温超导体发展迅速,已经走出了实验室,进入实际应用阶段。 1.1 零电阻效应 某物质在临界温度时,电阻消失的现象,就是零电阻效应。但是临界温度与物质种类有关,不同的超导体临界温度是不同的。同一物质有无外磁场的影响也是不同的,当物质在外磁场作用时,某临界温度要比没有磁场作用时要低。因此,随磁场的增强,临界温度将降低。只有外磁场小于某一量值时,物质才保持超导体的零电阻效应,这一磁场值称为临界磁场值。 1.2 迈斯纳效应 1933年迈斯纳(Meissenr)在实验中发现了下述事实:把在临界温度以上的锡和铅样品放人磁场中,这时样品内有磁场存在。当维持磁场不变而降低样品的温度转变为超导体后,结果其内部也就没有磁场了。这说明,在转变过程中,在超导体表面产生了电流,这电流在其内部产生的磁场完全抵消了原来的磁场,也就是说磁力线不能穿过超导体物质内部,也就是所谓的迈斯纳效应。这一效应表明,超导体具有绝对的抗磁性。 1.3 约瑟夫逊效应 1962年,约瑟夫逊(B.D.Josephson)发现,在两块超导体中间夹一薄的绝缘层就形成了一个约瑟夫逊结。按经典理论,两种超导材料之间的绝缘层是禁止电子通过的,这是因为绝缘层内的电势比超导体中的电势低得多,对电子的运动形成了一个高的“势垒”,绝缘体的电子能

高温超导材料的特性与表征

实验名称:高温超导材料的特性与表征学生姓名:武晓忠学号:201211141046 指导老师:王海波日期:2014/11/20

摘要:本实验通过液氮降温法测量了超导样品的电阻转变曲线,确定起始转变和零电阻温度分别96.437K和86.791K。并以铂电阻温度计为标准,得到了硅二极管的正向电压值与温度的变化曲线;演示高温超导体磁悬浮现象;定量测量了在零场冷和场冷条件下的磁悬浮力和超导体—磁体间距的关系曲线。 关键词:高温超导体零电阻现象MEISSNER效应磁悬浮一、引言 从1991年荷兰物理学家H.K.Onnes发现低温超导体,超导科技发展大体经历了三个阶段:1911年到1957年BCS超导微观理论问世,核心是提出库珀电子对;1958年到1985年是超导技术应用的准备阶段,成功研制强磁场超导材料,发现约瑟夫森效应;第三阶段是1986年发现高于30K的超导材料,进入超导技术开发时代。超导研究领域的系列最新进展,为超导技术在更方面的应用开辟了十分广阔的前景。本实验目的是通过对氧化物高温超导材料的测量与演示,加深理解超导体两个基本特性;了解超导磁悬浮原理;了解金属和半导体的电阻随温度变化以及温差电效应;掌握低温物理实验的基本方法:低温的获得、控制和测量。 二、实验原理 1.超导现象、临界参数及实用超导体 1)零电阻现象 将物体冷却到某一临界温度Tc以下时 电阻突然降为零的现象,成为超导体的零图 1 超导体的电阻转变曲线

电阻现象。 不同的超导体的临界温度各不相同。用电阻法测量临界温度,把降温过程中电阻温度曲线开始从直线偏离处的温度称为起始转变温度,c onset T ,临界温度c T 定义为待测样品电阻从起始转变处下降到一半对应的温度,也称作超导转变的中点温度cm T 。电阻变化10%到90%所对应的温度间隔定义为转变宽度c T ,电阻完全降到零时的温度为零电阻温度0c T 。 2)MEISSNER 效应 当把超导体置于外加磁场中时,磁通不能穿透超导体,超导体内的磁感应强度始终保持为0,超导体的这个特性称为MEISSNER 效应.。(注意:完全抗磁性不是说磁化强度M 和外磁场B 等于零) 超导体的零电阻现象与完全抗磁性的两个特性既相互独立又有紧密的联系。完全抗磁性不能由零电阻特性派生出来,但是零电阻特性却是迈斯纳效应的必要条件。超导体的完全抗磁性是由其表面屏蔽电流产生的磁通密度在导体内部完全抵消了由外磁场引起的磁通密度,使其净磁通密度为零,它的状态是唯一确定的,从超导态到正常态的转变是可逆的。 图2 超导体磁性

超导材料的特征、发展及其应用

超导材料的特性、发展及其应用 1.超导材料简介 1.1 超导材料的三个基本参量 超导材料是指在一定的低温条件下会呈现出电阻等于零以及排斥磁力线的性质的材料,其材料具有三个基本临界参量,分别是: 1> 临界温度T c:破坏超导所需的最低温度。T c是物质常数,同一种材料在相同条件下有确定的值。T c值因材料而异,已测得超导材料T c值最低的是钨,为0.012K。当温度在T c 以上时,超导材料具有有限的电阻值,我们称其处于正常态;当温度在T c以下时,超导体进入零电阻状态,即超导态。 2> 临界电流I c和临界电流密度J c:临界电流即破坏超导所需的最小电流,I c一般随温度和外磁场的增加而减少。单位截面积上所承载的I c称为临界电流密度,用J c来表示。 3> 临界磁场H c:即破坏超导状态所需的最小磁场。 图1-1 位于球内的部分为超导状态 超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以T c为例,从1911年荷兰物理学家昂纳斯发现超导电性(Hg,T c=4.2K)起,直到1986年以前,人们发现的最高的T c才达到23.2K(Nb3Ge,1973)。1986年瑞士物理学家K.A.米勒和联邦德国物理学家J.G.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将T c提高到35K;之后仅一年时间,新材料的T c已提高到了100K左右。如今,超导材料的T c最高已超过了150K[1]。 1.2 超导体的分类 第Ⅰ类超导体:第I类超导体主要包括一些在常温下具有良好导电性的纯金属,如铝、锌、镓、镉、锡、铟等,该类超导体的溶点较低、质地较软,亦被称作“软超导体”。其特征是由正常态过渡到超导态时没有中间态,并且具有完全抗磁性。第I类超导体由于其临界电流密度和临界磁场较低,因而没有很好的实用价值[2]。 第Ⅱ类超导体:除金属元素钒、锝和铌外,第II类超导体主要包括金属化合物及其合金。第II类超导体和第I类超导体的区别主要在于: (1) 第II类超导体由正常态转变为超导态时有一个中间态(混合态); (2) 第II类超导体的混合态中有磁通线存在,而第I类超导体没有;

超导材料的种类及应用

超导材料的种类及应用 篇一:超导材料特性与应用功能材料概论——论超导材料特性与应用摘要:材料是一切技术发展的物质基础。在功能材料中,超导材料具有优越的物理、化学性质,目前已被广泛接受和认同,具有良好的发展前景。关键词:超导材料特性前景能源、信息和材料是现代文明的三大支柱,而材料又是一切技术发展的物质基础。其中功能材料是新材料领域的核心,是国民经济、社会发展及国防建设的基础和先导。功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。功能材料不仅对高新技术的发展起着重要的推动和支撑作用,还对我国相关传统产业的改造和升级,实现跨越式发展起着重要的促进作用。功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。世界各国均十分重视功能材料的研发与应用,它已成为世界各国新材料研究发展的热点和重点,也是世界各国高技术发展中战略竞争的热点。一、超导材料的发现1911年,荷兰物理学家翁奈在研究水银低温电阻时,首先发现了超导现象。后来又陆续发现了一些金

属、合金和化合物在低温时电阻也变为零,即具有超导现象。物质在超低温下,失去电阻的性质称为超导电性,相应的具有这种性质的物质就称为超导体。超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。目前,超导材料已被广泛接受和认同,具有良好的发展前景。 二、超导材料的分类1、超导元素在常压下有28种元素具超导电性,其中铌(Nb)的Tc最高,为9.26K。电工中实际应用的主要是铌和铅(Pb),已用于制造超导交流电力电缆、高Q值谐振腔等。2、合金材料超导元素加入某些其他元素作合金成分,可以使超导材料的全部性能提高。如最先应用的铌锆合金(Nb-75Zr),其Tc为10.8K,Hc为8.7特。继后发展了铌钛合金,虽然Tc稍低了些,但Hc高得多,在给定磁场能承载更大电流。目前铌钛合金是用于7~8特磁场下的主要超导磁体材料。铌钛合金再加入钽的三元合金,性能将进一步提高。3、超导化合物超导元素与其他元素化合常有很好的超导性能。如已大量使用的Nb3Sn,其Tc=18.1K,Hc=24.5特。其他重要的超导化合物还有V3Ga,Tc=16.8K,Hc=24特;Nb3Al,Tc=18.8K,Hc=30特。4、超导陶瓷20世纪80年代初,米勒和贝德诺尔茨开始注意到某些氧化物陶瓷材料可能有超导电性,他们的小组对一些材料进行了试验,于1986年在镧-钡-铜-氧化物中发现了Tc=35K的超导电性。1987年,中国、美国、日本等国科学家在钡-钇-

超导材料及其应用

新材料技术 之 超导材料发展及其应用

一:超导材料的研究历史: (1)超导材料历史: 1911年,荷兰物理学家昂尼斯(1853~1926)发现,水银的电阻率并不象预料的那样随温度降低逐渐减小,而是当温度降到4.15K附近时,水银的电阻突然降到零。某些金属、合金和化合物,在温度降到绝对零度附近某一特定温度时,它们的电阻率突然减小到无法测量的现象叫做超导现象,能够发生超导现象的物质叫做超导体。超导体由正常态转变为超导态的温度称为这种物质的转变温度(或临界温度)TC。现已发现大多数金属元素以及数以千计的合金、化合物都在不同条件下显示出超导性。如钨的转变温度为0.012K,锌为0.75K,铝为1.196K,铅为7.193K。 超导体得天独厚的特性,使它可能在各种领域得到广泛的应用。但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用。人们一直在探索高温超导体,从1911年到1986年,75年间从水银的4.2K提高到铌三锗的23.22K,才提高了19K。1986年,高温超导体的研究取得了重大的突破。掀起了以研究金属氧化物陶瓷材料为对象,以寻找高临界温度超导体为目标的“超导热”。全世界有260多个实验小组参加了这场竞赛。1986年1月,美国国际商用机器公司设在瑞士苏黎世实验室科学家柏诺兹和缪勒首先发现钡镧铜氧化物是高温超导体,将超导温度提高到30K;紧接着,日本东京大学工学部又将超导温度提高12月30日,美国休斯敦大学宣布,美籍华裔科学家朱经武又将超导温度提高到40.2K。 1987年1月初,日本川崎国立分子研究所将超导温度提高到43K;不久日本综合电子

相关主题
文本预览
相关文档 最新文档