当前位置:文档之家› 人工神经网络复习资料题

人工神经网络复习资料题

人工神经网络复习资料题
人工神经网络复习资料题

《神经网络原理》

一、填空题

1、从系统的观点讲,人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应、非线性、动力学系统。

2、神经网络的基本特性有拓扑性、学习性和稳定收敛性。

3、神经网络按结构可分为前馈网络和反馈网络,按性能可分为离散型和连续型,按学习方式可分为有导师和无导师。

4、神经网络研究的发展大致经过了四个阶段。

5、网络稳定性指从t=0时刻初态开始,到t时刻后v(t+△t)=v(t),(t>0),称网络稳定。

6、联想的形式有两种,它们分是自联想和异联想。

7、存储容量指网络稳定点的个数,提高存储容量的途径一是改进网络的拓扑结构,二是改进学习方法。

8、非稳定吸引子有两种状态,一是有限环状态,二是混沌状态。

9、神经元分兴奋性神经元和抑制性神经元。

10、汉明距离指两个向量中对应元素不同的个数。

二、简答题

1、人工神经元网络的特点?

答:(1)、信息分布存储和容错性。

(2)、大规模并行协同处理。

(3)、自学习、自组织和自适应。

(4)、人工神经元网络是大量的神经元的集体行为,表现为复杂

的非线性动力学特性。

(5)人式神经元网络具有不适合高精度计算、学习算法和网络设计没有统一标准等局限性。

2、单个神经元的动作特征有哪些?

答:单个神经元的动作特征有:(1)、空间相加性;(2)、时间相加性;(3)、阈值作用;(4)、不应期;(5)、可塑性;(6)疲劳。

3、怎样描述动力学系统?

答:对于离散时间系统,用一组一阶差分方程来描述:

X(t+1)=F[X(t)];

对于连续时间系统,用一阶微分方程来描述:

dU(t)/dt=F[U(t)]。

4、F(x)与x 的关系如下图,试述它们分别有几个平衡状态,是否为稳定的平衡状态?

答:在图(1)中,有两个平衡状态a 、b ,其中,在a 点曲线斜率|F ’(X)|>1,为非稳定平稳状态;在b 点曲线斜率|F ’(X)|<1,为稳定平稳状态。

在图(2)中,有一个平稳状态a ,且在该点曲线斜率|F

X X

(X)|>1,为非稳定平稳状态。

5、对于单个神经元的离散模型,Hebb 学习假设是什么,基本学习方程是什么?

答:对于单个神经元的离散模型,Hebb 学习假设是:只有当神经元兴奋时,与其连接的突触结合权才被强化而增大;当两个神经元同时处于兴奋状态时,它们之间的连接权应该加强。 基本学习方程是:j i ij ij ij x y n w n w w η=-+=?)()1(

6、联想形式中的自联想和异联想有何区别?

答:自联想指的是由某种代表事物(或该事物的主要特征或可能是部分主在特征)联想到其所表示的实际事物。其数学模型为:当输入X =X0+V 时,输出Y=X0。异联想指的是由某一事物(或该事物的主要特征或可能是部分主在特征)联想到与其相关的另一事物。其数学模型为:在映射X0→Y0下,当输入X =X0+V 时,输出Y=Y0。

7、网络的稳定吸引子和吸引子的吸引域分别指什么?

答:当t=0时,对网络输入模式x ,网络处于状态v(0),到时刻t 网络达到状态v(t),若v(t)稳定,则称v(t)为网络的稳定吸引子。 吸引子的吸引域是指所有经过一定时间能够稳定在吸引子v(t)上的所有初始状态的集合。

三、论述题

1、 前馈式神经元网络与反馈式神经元网络有何不同?

答:(1)、前馈型神经元网络取连续或离散变量,一般不考虑输

出与输入在时间上的滞后效应,只表达输出与输入的映射关系。反馈式神经元网络可以用离散变量也可以用连续取值,考虑输出与输入之间在时间上和延迟,需要用动态方程来描述系统的模型。

(2)、前馈型网络的学习主要采用误差修正法(如BP 算法),计算过程一般比较慢,收敛速度也比较慢。而反馈型网络主要采用Hebb 学习规则,一般情况下计算的收敛速度很快。

反馈网络也有类似于前馈网络的应用,例如用作联想记忆或分类,而在优化计算方面的应用更能显出反馈网络的特点。

2、 试述离散型Hopfield 神经元网络的结构及工作原理。

(1) Hopfield 神经元网络的结构如下:

① 这种网络是一种单层网络,由n 个单元组成。

②每个神精元既是输入单元,又是输出单元;各节点一般选用相

同的转移函数,且为符号函数,即: ③ 为网络的输入; 为网络的输出; 为网络在时刻t 的状态,其中t ∈{0,1,2,·} 为离散时间变量。

④Wij 为从Ni 到Nj 的连接权值,Hopfield 网络为对称的即有Wij = Wji 。

)sgn()()()(21

x x f x f x f n ====Λ{}n

n

y y y y y 1,1),,,,(21+-∈=Λ{}n

n

t v t v t v t v t v 1,1)()),(,),(),(()(21+-∈=Λ{}n

n x x x x x 1,1),,,,(21+-∈=Λ

(2)、工作原理:

①、网络经过训练后,可以认为网络处于等待工作状态,对网络给定初始输入x 时,网络就处于特定的初始状态,由此初始状态开始运行,可以得到网络的下一个输出状态。

②、这个输出状态通过反馈回送到网络的输入端,作为网络下一个阶段的输入信号,这个输入信号可能与初始输入信号不同,由这个新的输入又可得到下一步的输出,如此重复。

③、如果网络是稳定的,经过若干次反馈运行后网络将会达到稳态。

④、Hopfield 网络的工作过程可用下式表示:

x 1 x 2 x n-1 x n

y n

))(()1()0(1j

n i i ij j j j j t v w f t v x v θ-∑=+==

研究生神经网络试题A 卷参考答案

一、名词解释(共5题,每题5分,共计25分)

1、泛化能力

答:泛化能力又称推广能力,是机器学习中衡量学习机性能好坏的一个重要指标。泛化能力主要是指经过训练得到的学习机对未来新加入的样本(即测试样本)数据进行正确预测的能力。

2、有监督学习

答:有监督学习又被称为有导师学习,这种学习方式需要外界存在一个“教师”,她可以对一组给定输入提供应有的输出结果,学习系统可根据已知输出与实际输出之间的差值来调节系统参数。

3、过学习

答:过学习(over-fitting ),也叫过拟和。在机器学习中,由于学习机器过于复杂,尽管保证了分类精度很高(经验风险很小),但由于VC 维太大,所以期望风险仍然很高。也就是说在某些情况下,训练误差最小反而可能导致对测试样本的学习性能不佳,发生了这种情况我们称学习机(比如神经网络)发生了过学习问题。典型的过学习是多层前向网络的BP 算法

4、Hebb 学习规则

答:如果两个神经元同时兴奋(即同时被激活),则它们之间的突触连接加强。如

果用i v 、j v 表示神经元i 和j 的激活值(输出),

ij 表示两个神经元之间的连接权,

则Hebb 学习规则可以表示为: ij i j w v v α?= ,这里α表示学习速率。Hebb 学习规则是人工神经网络学习的基本规则,几乎所有神经网络的学习规则都可以看作Hebb 学习规则的变形。

5、自学习、自组织与自适应性

答:神经网络结构上的特征是处理单元的高度并行性与分布性,这种特征使神经网络在信息处理方面具有信息的分布存储与并行计算而且存储与处理一体化的特点。而这些特点必然给神经网络带来较快的处理速度和较强的容错能力。能力方面的特征是神经网络的自学习、自组织与自性适应性。自适应性是指一个系统能改变自身的性能以适应环境变化的能力,它包含自学习与自组织两层含义。自学习是指当外界环境发生变化时,经过一段时间的训练或感知,神经网络能通过自动调整网络结构参数,使得对于给定输入能产生期望的输出。自组织是指神经系统能在外部刺激下按一定规则调整神经元之间的突触连接,逐渐构建起神经网络。也就是说自组织神经元的学习过程,完全是一种自我学习的过程,不存在外部教师的示教。

二、问答题(共7题,每题8分,共计56分)

3、人工神经网络是模拟生物神经网络的产物,除相同点外,它们还存在哪些主要区别?

答; 1.单元上的差别 对于生物神经元而言,影响突触传递信息强度的因素很多、很复杂。如突触前微细胞的大小与多少、神经传递化学物质含量的多少、神

经传递化学物质释放的速度、突触间隙的变化、树突的位置与大小等诸多因素都会对突触电位产生影响,从而影响神经元的输出脉冲响应。而人工神经元则忽略了这些影响,输入、输出关系十分简单。

2.信息上的差别生物神经元传递的信息是脉冲,而人工神经元传递的信息是模拟电压。

3.规模与智能上的差别目前,人工神经网络的规模还远小于生物神经网络,网络中神经元的数量一般在104个以下,显然,其智能也无法与生物神经网络相比。

4、感知器神经网络存在的主要缺陷是什么?

答: 1)由于感知器的激活函数采用的是阀值函数,输出矢量只能取0或1,所以只能用它来解决简单的分类问题;

2)感知器仅能够线性地将输入矢量进行分类。理论上已经证明,只要输人矢量是线性可分的,感知器在有限的时间内总能达到目标矢量;

3)感知器还有另外一个问题,当输入矢量中有一个数比其他数都大或小得很多时,可能导致较慢的收敛速度。

5、请比较前馈型神经网络与反馈型神经网络的异同点。(8分)

答:前馈型神经网络只表达输入输出之间的映射关系,实现非线性映射;反馈型神经网络考虑输入输出之间在时间上的延迟,需要用动态方程来描述,反馈型神经网络是一个非线性动力学系统。

(1)前馈型神经网络的学习训练主要采用BP算法,计算过程和收敛速度比较慢;反馈型神经网络的学习主要采用Hebb规则,一般情况下计算的收敛速

度很快,并且它与电子电路有明显的对应关系,使得网络易于用硬件实现。

(2)前馈型神经网络学习训练的目的是快速收敛,一般用误差函数来判定其收敛程度;反馈型神经网络的学习目的是快速寻找到稳定点,一般用能量函数来判别是否趋于稳定点。

(3)两者都有局部极小问题。

6、BP算法的基本思想是什么,它存在哪些不足之处?(9分)

答:BP算法(即反向传播法)的基本思想是:学习过程由信号的正向传播与误差的反向传播两个过程组成。

1)正向传播:输入样本->输入层->各隐层(处理)->输出层

注1:若输出层实际输出与期望输出(教师信号)不符,则转入2)(误差反向传播过程)

2)误差反向传播:输出误差(某种形式)->隐层(逐层)->输入层

其主要目的是通过将输出误差反传,将误差分摊给各层所有单元,从而获得各层单元的误差信号,进而修正各单元的权值(其过程,是一个权值调整的过程)。注2:权值调整的过程,也就是网络的学习训练过程(学习也就是这么的由来,权值调整)。

虽然BP算法得到广泛的应用,但它也存在自身的限制与不足,其主要表现在于它的训练过程的不确定上。具体说明如下:

1)易形成局部极小(属贪婪算法,局部最优)而得不到全局最优;

BP算法可以使网络权值收敛到一个解,但它并不能保证所求为误差超平面的全局最小解,很可能是一个局部极小解。

2)训练次数多使得学习效率低下,收敛速度慢(需做大量运算);

对于一些复杂的问题,BP算法可能要进行几小时甚至更长的时间的训练。

这主要是由于学习速率太小所造成的。可采用变化的学习速率或自适应的学习速率来加以改进。

3)隐节点的选取缺乏理论支持;

4)训练时学习新样本有遗忘旧样本趋势

1、人工神经网络:在对人脑神经网络基本认识的基础上,用数理方法从信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,就称为人工神经网络。

2、自适应:自适应性是指一个系统能改变自身的性能以适应环境变化的能力。

3、自学习:当外界环境发生变化时,经过一段时间的训练或感知,神经网络能通过调整网络结构参数,使得对给定输入能产生期望的输出。

4、自组织:神经系统能在外部刺激下按一定规则调整神经元之间的突触连接,逐渐构建起神经网络,这一构建过程称为网络的自组织。

5、泛化能力:BP网络训练后将所提取的样本对中的非线性映射关系存储在权值矩阵中,在其后的工作阶段,当向网络输入训练时未曾见过的非样本数据时,网络也能完成由输入空间向输出空间的正确映射。

6、模式:模式是对某些感兴趣的客体的定量描述或结构描述,模式类是具有某些共同特征的模式的集合

7、分类:分类是在类别知识等导师信号的指导下,将待识别的输入模式分配到各自的模式类中去。

8、聚类:无导师指导的分类称为聚类,聚类的目的是将相似的模式样本划归一类,而将不相似的分离开,其结果实现了模式样本的类内相似性和类间分离性。

9、死节点:在训练过程中,某个节点从未获胜过且远离其他获胜节点,因此它们的权向量从未得到过调整。

10、网络吸引子:若网络的状态)(f T WX X -=,则成称X 为网络的吸引子。

11、人工神经网络发展阶段及标志:可分为四个时期:启蒙时期开始于1890年W.James 关于人脑结构与功能的研究,结束于1969年Minsky 和Papert 出版的《感知器》一书;低潮时期开始于1969年,结束于1982年Hopfield 发表的著名的文章《神经网络和物理系统》;复兴时期开始于J.J.Hopfield 的突破性研究论文,结束与1986年D.E.Rumelhart 和J.L.McClelland 领导的研究小组编写出版的《并行分布式处理》一书。高潮时期以1987年首届国际神经网络学术会议为开端,迅速在全世界范围内掀起人工神经网络的研究应用热潮。

12、神经网络的基本特征:结构上的特征是处理单元的高度并行性与分布性,这种特征使神经网络在信息处理方面具有信息的分布存储与并行计算、存储与处理一体化的特点。而这些特点必然给神经网络带来较快的处理速度和较强的容错能力。能力方面的特征是神经网络的自学习、自组织和自适应性。自适应性是指一个系统能改变自身的性能以适应环境变化的能力,它包含自学习和自组织两层含义。自学习是指当外界环境发生变化时,经过一段时间的训练或感知,神经网络能通过调整网络结构参数,使得对给定输入能产生期望的输出。自组织是指神经系统能在外部刺激下按一定规则调整神经元之间的突触连接,逐渐构建起神经网络。

13、人脑神经元的基本结构与功能:神经元在结构上由细胞体、树突、轴突和突触四部分组成 功能:细胞体:处理信息的功能 树突:输入信息 轴突:输出信息 突触:传递信息的节点

14、人脑信息传递过程:

突触前突触间隙突触后

15、BP网络的主要能力是什么?

答:1、非线性映射能力2、泛化能力3、容错能力

16、BP算法的缺陷及改进方案

BP算法的缺陷

①易形成局部极小而得不到全局最优;

②训练次数多,使得学习效率低,收敛速度慢;

③隐节点的选取缺乏理论指导;

④训练时学习新样本有遗忘旧样本的趋势。

改进方案:

1 增加动量项

2 自适应调节学习率

3 引入陡度因子

17、对输入、输出数据进行尺度变换的主要原因是什么?

①网络的各个输入数据常常具有不同的物理意义和不同的量纲,如某输入分量在5

10

1

~

0?

范围内变化,而另一输入分量则在5-

10

1

~

0?范围内变化。尺度变换使所有分量都在1

~

0或1

~

1-之间变化,从而使网络训练一开始就给各输入分量以同等重要的地位;②BP网的神

经元均采用Sigmoid 转移函数,变换后可防止因净输入的绝对值过大而使神经元输出饱和,继而使权值调整进入误差曲面的平坦区; Sigmoid 转移函数的输出在1~0或1~1-之间,作为教师信号的期望输出数据如不进行变换处理,势必使数值大的分量绝对误差大,数值小的分量的绝对误差小,网络训练时只针对输出的总误差调整权值,其结果是在总误差中占份额小的输出分量相对误差较大,对输出分量进行尺度变换后这个问题可迎刃而解。

18、BP 网络初始值的设计的原则和方法?

答:原则:使每个神经元一开始都工作在其转移函数变化最大的位置。

方法:①使初始权值足够小;②使初始值为+1和-1的权值数相等。应用中对隐层权值可采用第一种方法,而对输出层可采用第二种办法。

19、胜者为王学习规则的三个步骤。①向量归一化 首先将自组织网络中的当前输入模式

向量X 和竞争层中各神经元对应的内星向量),,2,1j m j W ???=(全部进行归一化处理,

得到^X 和),,2,1(^j m j W Λ=。②寻找获胜神经元 当网络得到一个输入模式向量^X 时,竞争层的所有神经元对应的内星权向量),,2,1(^j m j W Λ=均与^X 进行相似性比较,将与^X 最相似的内星权向量判为竞争获胜神经元,其权向量记为^*j W 。测量相似性的方法是对j ^W 和^X 计算欧式距离(或夹角余弦):}{min X ^

^},,2,1{^^*j m j j W X W -=-∈Λ(可补充)③网络输出与权值调整 胜者为王竞争学习算法规定,获胜神经元输出为1,其余输出为零。

20、SOM 网权值初始化的原则和一般方法有哪些?

答:SOM 网的权值一般初始化为较小的随机数,这样做的目的是使权向量充分分散在样本空间。但在某些应用中,样本整体上相对集中于高维空间的某个局部区域,权向量的初始位置却随机的分散于样本空间的广阔区域,训练时必然是离整个样本群最近的权向量被不断调整,并逐渐进入全体样本的中心位置,而其他权向量因初始位置远离样本群而永远得不到调整。如此训练的结果可能使全部样本聚为一类。解决这类问题的思路是尽量使权值的初始位

置与输入样本的大致分布区域充分重合。根据上述思路,一中简单易行的方法是从训练集中随机抽取m 个输入样本作为初始权值,即:k

ram j X 0=)(W ),,2,1(m j Λ=

式中,ram k 是输入样本的顺序随机数,}2,1{k ram P Λ,

∈。因为任何ram k X 一定是输入空间某个模式类的成员,各个权向量按上式初始化后从训练一开始就分别接近了输入空间的各模式类,占据了十分有利的“地形”。另外一种可行的办法是先计算出全体样本的中心向量:

∑==P 1

p p X P 1X 在该中心向量基础上叠加小随机数作为权向量初始值,也可将权向量的初始位置确定在样本群中。

21、SOM 网的局限性

①隐层神经元数目难以确定,因此隐层神经元往往未能充分利用,某些距离学习向量远的神经元不能获胜,从而成为死节点;

②聚类网络的学习速率需要人为确定,学习终止往往需要人为控制,影响学习进度; ③隐层的聚类结果与初始权值有关。

22、正则化RBF 网络与广义RBF 网络的不同:

①径向基函数的个数M 与样本的个数P 不相等,且M 常常远小于P 。

②径向基函数的中心不再限制在数据点上,而是由训练算法确定。

③各径向基函数的扩展常数不再统一,其值由训练算法确定。

④输出函数的线性中包含阈值参数,用于补偿基函数在样本集上的平均值与目标值之间的差别。

23、BP 网络与RBF 网络的不同

①RBF 网络只有一个隐层,而BP 网络的隐层可以是一层也可以是多层的。

②BP 网络的隐层和输出层其神经元模型是一样的;而RBF 网络的隐层神经元和输出层神经

元不仅模型不同,而且在网络中起到的作用也不一样。

③RBF网络的隐层是非线性的,输出层是线性的。然而,当用BP网络解决模式分类问题时,它的隐层和输出层通常选为非线性的。当用BP网络解决非线性回归问题时,通常选择线性输出层。

④RBF网络的基函数计算的是输入向量和中心的欧氏距离,而BP网络隐单元的激励函数计算的是输入单元和连接权值间的内积。

⑤RBF网络使用局部指数衰减的非线性函数(如高斯函数)对非线性输入输出映射进行局部逼近。BP网络的隐节点采用输入模式与权向量的内积作为激活函数的自变量,而激活函数则采用Sigmoid函数或硬限幅函数,因此BP网络是对非线性映射的全局逼近。RBF网络最显著的特点是隐节点采用输入模式与中心向量的距离(如欧式距离)作为函数的自变量,并用径向基函数(如Gauss函数)作为激活函数。径向基函数关于N维空间的的一个中心点具有径向对称性,而且神经元的输入离该中心越远,神经元的激活程度就越低。隐层节点的这个特性常被称为“局部特性”。

24、支持向量机的基本思想/方法是什么?

答:支持向量机的主要思想是建立一个最优决策超平面,使得该平面两侧距平面最近的两类样本之间的距离最大化,从而对分类问题提供良好的泛化能力。对于非线性可分模式分类问题,根据Cover定理:将复杂的模式分类问题非线性的投射到高维特征空间可能是线性可分的,因此只要变换是非线性的且特征空间的维数足够高,则原始模式空间能变换为一个新的高维特征空间,使得在特征空间中模式以较高的概率为线性可分的。此时,应用支持向量机算法在特征空间建立分类超平面,即可解决非线性可分的模式识别问题。

25、cover定理:将复杂的模式分类问题非线性的投射到高维空间比投射到低维空间更可能是线性可分的。

26、画图并说明权值调整的通用学习规则。

答:通用学习规则可表达为:权向量j W 在t 时刻的调整量)

(t W j ?与t 时刻的输入向量)

(t X 和学习信号r 的乘积成正比。用数学表达式为: )()](),(),([r W j t X t d t X t W j j η=?

式中,η为正数,称为学习常数,其值决定了学习速率。基于离散时间调整时,下一时刻的权向量应为:

)()](),(X )(W [)(W )1(W j j j t X t d t t r t t j ,η+=+(补充图)

27、BP 算法的误差曲线存在平坦区,利用图形、相关公式说明造成平坦区的原因、平坦区造成的问题、如何改进进而快速度过平坦区。

答:造成平坦区的原因:造成这种情况的原因与各节点的净输入过大有关。平坦区造成的问题:会使训练次数大大增加,从而影响了收敛速度。如何改进进而快速度过平坦区:①自适应调节学习率②引入陡度因子

28、批训练BP 算法步骤

29、SOM 神经网络学习算法

⑴初始化 对输出层各权向量赋予小随机数并进行归一化处理,得到j ^

W ,;,,m 2,1j Λ=建立初始优胜邻域)0(N *j ;学习率η赋初始值。

⑵接受输入 从训练集中选取一个输入模式并进行归一化处理,得到^p X ,。,,P}2,1{p Λ∈ ⑶寻找获胜节点 计算^p X 与j ^

W 的点积,m 2,1j ,,

Λ=,从中选出点积最大的获胜节点*j ;如果输入模式未经归一化,应计算欧式距离,从中找出距离最小的获胜节点。

⑷定义优胜邻域)(t *N j 以*j 为中心确定t 时刻的权值调整域,一般初始邻域)(0*N j 较

大,训练过程中)(t *N j 随训练时间逐渐收缩。

⑸调整权值 对优胜邻域)(t *N j 内的所有节点调整权值:

)]t (w )[,()t (w )1t (w ij ij ij -+=+p i x N t η ;2,1i n ,,

Λ= )(t *N j j ∈ 30、K-means 聚类算法确定数据中心

(1)初始化 选择M 个互不相同向量作为初始聚类中心:),0(,),0(),0(21M c c c Λ选择时可采用对各聚类中心向量赋小随机数的方法。

(2) 计算输入空间各样本点与聚类中心点的欧式距离:

(k c -X j p ;,,2,1P p Λ= M j ,,2,1Λ= (3)相似匹配 令*

j 代表竞争获胜隐节点的下标,对每一个输入样本p X 根据其与聚类中心的最小欧式距离确定其归类)(*p

X j ,即当有如下等式时: )(m in )(*k c X X j j p j

p -= P p ,,2,1Λ= p X 被归为第*j 类,从而将全部样本划分M 个子集,),(,),(),(21k U k U k U M Λ每个子集构成一个以聚类中心为典型代表的聚类域。

(4)更新各类的聚类中心 可采用两种调整方法,一种方法是对各聚类域中的样本取均值,令)(k U j 表示第j 个聚类域,j N 为第j 个聚类域中的样本数,则:

∑∈=+)(j 1

)1(c k U X l j X N k

另一种方法是采用竞争学习规则进行调整,即

??

???≠=-+=+*),(*)],([)()1(j j k c j j k c X k c k c j j p j j η 式中,η是学习率,且10<<η。可以看出,当1=η时,该竞争规则即为Winner-T ake-All 规则。

(5)将k 值加1,转到第(2)步。重复上述过程直到k c 的改变量小于要求的值。 各聚类中心确定后,可根据各中心之间的距离确定对应径向基函数的扩展常数。令: i j i

j c c d -=min 则扩展常数取:j j d λδ= 式中,λ为重叠系数。

31、结合cover 定理,从模式可分性观点论述RBF 处理线性不可分问题的原理。

(1)cover 定理 将复杂的模式分类问题非线性的投射到高维空间比投射到低维空间更可能是线性可分的。

(2)RBF 神经元模型 )()(1∑=-=P p p p

X X w X F ?

(3)

RBF 的拓扑结构

X1

X2 X3

人工智能期末试题及答案完整版

xx学校 2012—2013学年度第二学期期末试卷 考试课程:《人工智能》考核类型:考试A卷 考试形式:开卷出卷教师: 考试专业:考试班级: 一单项选择题(每小题2分,共10分) 1.首次提出“人工智能”是在(D )年 A.1946 B.1960 C.1916 D.1956 2. 人工智能应用研究的两个最重要最广泛领域为:B A.专家系统、自动规划 B. 专家系统、机器学习 C. 机器学习、智能控制 D. 机器学习、自然语言理解 3. 下列不是知识表示法的是 A 。 A:计算机表示法B:“与/或”图表示法 C:状态空间表示法D:产生式规则表示法 4. 下列关于不确定性知识描述错误的是 C 。 A:不确定性知识是不可以精确表示的 B:专家知识通常属于不确定性知识 C:不确定性知识是经过处理过的知识 D:不确定性知识的事实与结论的关系不是简单的“是”或“不是”。 5. 下图是一个迷宫,S0是入口,S g是出口,把入口作为初始节点,出口作为目标节点,通道作为分支,画出从入口S0出发,寻找出口Sg的状态树。根据深度优先搜索方法搜索的路径是 C 。 A:s0-s4-s5-s6-s9-sg B:s0-s4-s1-s2-s3-s6-s9-sg C:s0-s4-s1-s2-s3-s5-s6-s8-s9-sg D:s0-s4-s7-s5-s6-s9-sg 二填空题(每空2分,共20分) 1.目前人工智能的主要学派有三家:符号主义、进化主义和连接主义。 2. 问题的状态空间包含三种说明的集合,初始状态集合S 、操作符集合F以及目标

状态集合G 。 3、启发式搜索中,利用一些线索来帮助足迹选择搜索方向,这些线索称为启发式(Heuristic)信息。 4、计算智能是人工智能研究的新内容,涉及神经计算、模糊计算和进化计算等。 5、不确定性推理主要有两种不确定性,即关于结论的不确定性和关于证据的不确 定性。 三名称解释(每词4分,共20分) 人工智能专家系统遗传算法机器学习数据挖掘 答:(1)人工智能 人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等 (2)专家系统 专家系统是一个含有大量的某个领域专家水平的知识与经验智能计算机程序系统,能够利用人类专家的知识和解决问题的方法来处理该领域问题.简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统 (3)遗传算法 遗传算法是一种以“电子束搜索”特点抑制搜索空间的计算量爆炸的搜索方法,它能以解空间的多点充分搜索,运用基因算法,反复交叉,以突变方式的操作,模拟事物内部多样性和对环境变化的高度适应性,其特点是操作性强,并能同时避免陷入局部极小点,使问题快速地全局收敛,是一类能将多个信息全局利用的自律分散系统。运用遗传算法(GA)等进化方法制成的可进化硬件(EHW),可产生超出现有模型的技术综合及设计者能力的新颖电路,特别是GA独特的全局优化性能,使其自学习、自适应、自组织、自进化能力获得更充分的发挥,为在无人空间场所进行自动综合、扩展大规模并行处理(MPP)以及实时、灵活地配置、调用基于EPGA的函数级EHW,解决多维空间中不确定性的复杂问题开通了航向 (4)机器学习 机器学习(Machine Learning)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎 (5)数据挖掘 数据挖掘是指从数据集合中自动抽取隐藏在数据中的那些有用信息的非平凡过程,这些信息的表现形式为:规则、概念、规律及模式等。它可帮助决策者分析历史数据及当前数据,并从中发现隐藏的关系和模式,进而预测未来可能发生的行为。数据挖掘的

人工智能习题&答案-第4章-计算智能1-神经计算-模糊计算

第四章计算智能(1):神经计算模糊计算4-1 计算智能的含义是什么?它涉及哪些研究分支? 贝兹德克认为计算智能取决于制造者提供的数值数据,而不依赖于知识。计算智能是智力的低层认知。 主要的研究领域为神经计算,模糊计算,进化计算,人工生命。 4-2 试述计算智能(CI)、人工智能(AI)和生物智能(BI)的关系。 计算智能是智力的低层认知,主要取决于数值数据而不依赖于知识。人工智能是在计算智能的基础上引入知识而产生的智力中层认知。生物智能,尤其是人类智能,则是最高层的智能。即CI包含AI包含BI 4-3 人工神经网络为什么具有诱人的发展前景和潜在的广泛应用领域? 人工神经网络具有如下至关重要的特性: (1) 并行分布处理 适于实时和动态处理 (2)非线性映射 给处理非线性问题带来新的希望 (3) 通过训练进行学习 一个经过适当训练的神经网络具有归纳全部数据的能力,能够解决那些由数学模型或描述规则难以处理的问题 (4) 适应与集成 神经网络的强适应和信息融合能力使得它可以同时输入大量不同的控制信号,实现信息集成和融合,适于复杂,大规模和多变量系统 (5) 硬件实现 一些超大规模集成是电路实现硬件已经问世,使得神经网络成为具有快速和大规模处理能力的网络。 4-4 简述生物神经元及人工神经网络的结构和主要学习算法。

生物神经元 大多数神经元由一个细胞体(cell body或soma)和突(process)两部分组成。突分两类,即轴突(axon)和树突(dendrite),轴突是个突出部分,长度可达1m,把本神经元的输出发送至其它相连接的神经元。树突也是突出部分,但一般较短,且分枝很多,与其它神经元的轴突相连,以接收来自其它神经元的生物信号。 轴突的末端与树突进行信号传递的界面称为突触(synapse),通过突触向其它神经元发送信息。对某些突触的刺激促使神经元触发(fire)。只有神经元所有输入的总效应达到阈值电平,它才能开始工作。此时,神经元就产生一个全强度的输出窄脉冲,从细胞体经轴突进入轴突分枝。这时的神经元就称为被触发。突触把经过一个神经元轴突的脉冲转化为下一个神经元的兴奋或抑制。学习就发生在突触附近。 每个人脑大约含有10^11-10^12个神经元,每一神经元又约有10^3-10^4个突触。神经元通过突触形成的网络,传递神经元间的兴奋与抑制。大脑的全部神经元构成极其复杂的拓扑网络群体,用于实现记忆与思维。 人工神经网络的结构 人工神经网络由神经元模型构成。每个神经元具有单一输出,并且能够与其它神经元连接,存在许多输出连接方法,每种连接方法对应于一个连接权系数。 人工神经网络的结构分为2类, (1)递归(反馈)网络 有些神经元的输出被反馈至同层或前层神经元。信号能够从正向和反向流通。Hopfield网络,Elmman网络和Jordan网络是代表。 (2) 前馈网络 具有递阶分层结构,由一些同层神经元间不存在互连的层级组成。从输入层至输出层的信号通过单向连接流通,神经元从一层连接至下一层,不存在同层神经元之间的连接。多层感知器(MLP),学习矢量量化网络(LVQ),小脑模型连接控制网络(CMAC)和数据处理方法网络(GMDH)是代表。 人工神经网络的主要学习算法 (1) 指导式(有师)学习 根据期望和实际的网络输出之间的差来调整神经元连接的强度或权。包括Delta规则,广义Delta规则,反向传播算法及LVQ算法。 (2) 非指导(无导师)学习 训练过程中,神经网络能自动地适应连接权,以便按相似特征把输入模式分组聚集。包括

人工神经网络原理及实际应用

人工神经网络原理及实际应用 摘要:本文就主要讲述一下神经网络的基本原理,特别是BP神经网络原理,以及它在实际工程中的应用。 关键词:神经网络、BP算法、鲁棒自适应控制、Smith-PID 本世纪初,科学家们就一直探究大脑构筑函数和思维运行机理。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在“计算"某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。1943年Macullocu和Pitts融合了生物物理学和数学提出了第一个神经元模型。从这以后,人工神经网络经历了发展,停滞,再发展的过程,时至今日发展正走向成熟,在广泛领域得到了令人鼓舞的应用成果。本文就主要讲述一下神经网络的原理,特别是BP神经网络原理,以及它在实际中的应用。 1.神经网络的基本原理 因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。其结构如下图所示: 从上图可看出生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成;

轴突:是从细胞体向外伸出的细长部分,也就是神经纤维。轴突是神经细胞的输出端,通过它向外传出神经冲动;树突:是细胞体向外伸出的许多较短的树枝状分支。它们是细胞的输入端,接受来自其它神经元的冲动;突触:神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。 对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高;当膜电位升高到一阀值(约40mV),细胞进入兴奋状态,产生神经冲动,并由轴突输出神经冲动;当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。细胞进入抑制状态,此时无神经冲动输出。“兴奋”和“抑制”,神经细胞必呈其一。 突触界面具有脉冲/电位信号转换功能,即类似于D/A转换功能。沿轴突和树突传递的是等幅、恒宽、编码的离散电脉冲信号。细胞中膜电位是连续的模拟量。 神经冲动信号的传导速度在1~150m/s之间,随纤维的粗细,髓鞘的有无而不同。 神经细胞的重要特点是具有学习功能并有遗忘和疲劳效应。总之,随着对生物神经元的深入研究,揭示出神经元不是简单的双稳逻辑元件而是微型生物信息处理机制和控制机。 而神经网络的基本原理也就是对生物神经元进行尽可能的模拟,当然,以目前的理论水平,制造水平,和应用水平,还与人脑神经网络的有着很大的差别,它只是对人脑神经网络有选择的,单一的,简化的构造和性能模拟,从而形成了不同功能的,多种类型的,不同层次的神经网络模型。 2.BP神经网络 目前,再这一基本原理上已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。 这里我们重点的讲述一下BP神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,其网络模型如下图所示。它可以分为输入层,影层(也叫中间层),和输出层,其中中间层可以是一层,也可以多层,看实际情况而定。

人工智能习题作业神经计算I习题答案

第五章 神经网络课后习题及答案 一、选择题: 1. 在BP算法中,设y=f(xi)为xi的平滑函数,想知道xi对y增大变化的情况, 我们可求 ,然后进行下列的哪一项? ( B ) A 取最小 B 取最大 C 取积分 D 取平均值 2. 对于反向传播学习,无论是在识别单个概念的学习或识别两个概念的学习中,都涉及到下列的哪一个操作? ( A ) A 权值的修正 B 调整语义结构 C 调整阀值 D 重构人工神经元 3. 根据Hopfield网络学习的特点,能实现联想记忆和执行线性和非线性规划等求解问题其应用没有涉及到下列的哪一个内容? ( D ) A 模糊推理模型 B 非线性辨认 C 自适应控制模型 D 图象识别 4. 对于神经网络的二级推理产生式规则由三个层次构成,它不含下列的哪一个层次? ( C ) A 输入层 B 输出层 C 中间层 D 隐层 5. 人工神经网络借用了生理神经元功能的一些描述方式,它涉及到下列的哪一些内容? ( ABC ) A 模拟神经元 B 处理单元为节点 C 加权有向图 D 生理神经元连接而成

6. 在应用和研究中采用的神经网络模型有许多种,下列的哪一些是具有代表性的? ( ABD ) A 反向传递(BP) B Hopfield网 C 自适应共振 D 双向联想存储器 7. 下列的哪一些内容与反向传播学习算法有关? ( ABCD ) A 选取比率参数 B 误差是否满足要求 C 计算权值梯度 D 权值学习修正 8. 构造初始网络后,要用某种学习算法调整它的权值矩阵,使NN在功能上满足样例集给定的输入一输出对应关系,并由此产生推理,该矩阵必须满足下列的哪一个性质? ( A ) A 收敛性 B 对称性 C 满秩性 D 稀疏性 9. 在人工神经元的功能描述中,往往会用一激发函数来表示输出,常用的一般非线性函数有下列的哪一些项? ( ABD ) A 阀值型 B 分段线性强饱和型 C 离散型 D S i gm oid型 10. 基于神经网络的推理,其应用中必须涉及到下列的哪一些内容? ( ACD ) A NN的结构模型 B NN的推理规则 C NN的学习算法 D 从NN到可解释的推理网 二、填空题: 1. 前馈网络是一种具有很强学习能力的系统,结构简单,易于编程。前馈网络通

《神经网络》试题

《神经网络》试题 (2004年5月9日) 张翼王利伟 一、填空 1.人工神经元网络(ANN)是由大量神经元通过极其丰富和完善 的连接而构成的自适应非线形动力学系统。 2.神经元(即神经细胞)是由细胞体、树突、轴突和突触四 部分构成。 3.大量神经元相互连接组成的ANN将显示出人脑的分布存储和容 错性、大规模并行处理、自学习、自组织和自适应性、复杂的非线形动态系统、处理复杂、不确定问题。 4.ANN发展大体可为早期阶段、过度期、新高潮、热潮。 5.神经元的动作特征主要包括空间性相加,时间性相加,阈值 作用,不应期,疲劳和可塑性。 6.神经元与输入信号结合的两种有代表的结合方式是粗结合和 密结合。 7.1943年由美国心理学家McCulloch和数学家Pitts提出的形式神经 元数学模型简称为MP 模型,它规定了神经元之间的联系方式只 有兴奋、抑制联系两种。 8.目前,神经网络模型按照网络的结构可分为前馈型和反馈型, 按照学习方式可分为有导师和无导师学习。 9.神经网络工作过程主要由学习期和工作期两个阶段组成。 10.反馈网络历经状态转移,直到它可能找到一个平衡状态,这个平

衡状态称为 吸引子 。 二、问答题 1.简述Hebb 学习规则。 Hebb 学习规则假定:当两个细胞同时兴奋时,它们之间的连接强度应该增强,这条规则与“条件反射”学说一致。 在ANN 中Hebb 算法最简单可描述为:如果一个处理单元从另一处理单元接受输入激励信号,而且如果两者都处于高激励电平,那么处理单元间加权就应当增强。用数学来表示,就是两节点的连接权将根据两节点的激励电平的乘积来改变,即 ()()i i n ij n ij ij x y ηωωω=-=?+1 其中()n ij ω表示第(n+1)是第(n+1)次调节后,从节点j 到节点i 的连接权值;η为学习速率参数;x j 为节点j 的输出,并输入到节点i ;i y 为节点i 的输出。 2、简述自组织特征映射网络的算法。 自组织特征映射网络的算法分以下几步: (1) 权连接初始化 就是说开始时,对所有从输入节点到输出节点的连接权值都赋以随机的小数。时间设置t=0。 (2) 网络输入模式为 ),,,(21n b x x x =X (3) 对X k 计算X k 与全部输出节点所连接权向量T j W 的距离

人工神经网络

人工神经网络(ANN)又称神经网络,是在现代神经科学研究成果的基础上,对生物神经系统的结构和功能进行数学抽象、简化和模仿而逐步发展起来的一种新型信息处理和计算系统。由于人工神经网络具有自学习、高容错、高度非线性描述能力等优点,现已广泛应用于经济、机器人和自动控制、军事、医疗、化学等领域[l ~ 3],并取得了许多成果。本文简要介绍人工神经网络的原理和特点,论述人工神经网络在高分子科学与工程领域的应用。 橡胶配方是决定橡胶制品性能的关键因素,由于材料配方与制品性能之间存在很复杂的非线性关系,多数情况下无法建立完整精确的理论模型,只能借助于回归方法得到经验公式。 传统的回归方法存在以下局限性: (1)使用不同的回9j方法可获得不同的经验公式,导致经验公式的繁多和不一致; (2)当配方项目及性能指标项目较多时,采用回归公式无法完全再现实验数据; (3)当实验进一步完善,实验数据增多的时候.其他人员再进行回归时,如果无法找到原来的回归方法、程序和实验数据,原来的回归公式将不能被利用,造成一定的浪费。随着计箅机的发展而出现的人工神经网络是人工智能方法.它不像回归方法那样,需预先给定基本函数,而是以实验数据为基础.经过有限次的迭代计算而获得的一个反映实验数据内在联系的数学模型,具有极强的非线性处理、自组织调整、自适应学习及容错抗噪能力,特别适用于研究像材料配方与制品性能之间关系的复杂非线性系统特性【¨】。因此,人们开始将人工神经网络应用于橡胶配方设计”J。 随着橡胶制品在各领域应用的拓展,橡胶配方设计变得越来越重要。人们进行橡胶配方设计主要有3个目的:提高制品的性能;改善加工工艺;降低生产成本。传统的橡胶配方设计方法有全因素设计、正交试验设计n_3]、均匀设计[4‘60等,而这些配方设计试验数据的处理方法无外乎方差分析和回归分析口]。由于材料的配方和性能之问存在非常复杂的非线性关系,回归分析只适合于单目标优化数据处理的模型,对于不同的性能,需要建立不同的模型,因此将其应用于配方设计有一定的局限性。近年来,发展日趋成熟的人工神经网络技术,尤其是BP神经网络凭借其结构简单、收敛速度快、预测精度高等优势越来越多地应用到橡胶配方设计试验中。 1橡胶配方设计 1.1橡胶配方设计概述 配方设计¨J是橡胶工业中的首要技术问题,在橡胶工业中占有重要地位。所谓配方设计,就是根据产品的性能要求和工艺条件,通过试验、优化、鉴定,合理地选用原材料,确定各种原材料的用量配比关系。 橡胶配方人员的主要工作就是要确定一系列变量对橡胶各项性能的定量或定性影响。变量可以是硫化剂、促进剂、填充剂、防老剂等,也可以是加工:[艺条件(如硫化温度、硫化时间等),总之是配方人员可能控制或测得的变量。橡胶各项基本性能包括拉伸强度、撕裂强度、硬度、定伸应力等物理机械性能,以 及加工性能、光洁度、外观等。 橡胶配方设计常常是多变量的试验设计,配方设计理论和试验设计方法对于 配方设计具有重要意义。

人工神经网络大作业

X X X X大学 研究生考查课 作业 课程名称:智能控制理论与技术 研究生姓名:学号: 作业成绩: 任课教师(签名) 交作业日时间:2010年12月22日

人工神经网络(artificial neural network,简称ANN)是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能元件(即人工神经元),按各种不同的联结方式组成的一个网络。模拟大脑的某些机制,实现某个方面的功能,可以用在模仿视觉、函数逼近、模式识别、分类和数据压缩等领域,是近年来人工智能计算的一个重要学科分支。 人工神经网络用相互联结的计算单元网络来描述体系。输人与输出的关系由联结权重和计算单元来反映,每个计算单元综合加权输人,通过激活函数作用产生输出,主要的激活函数是Sigmoid函数。ANN有中间单元的多层前向和反馈网络。从一系列给定数据得到模型化结果是ANN的一个重要特点,而模型化是选择网络权重实现的,因此选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法就能得到包含学习训练样本范围的输人和输出的关系。如果用于学习训练的样本不能充分反映体系的特性,用ANN也不能很好描述与预测体系。显然,选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法是ANN的重要研究内容之一,而寻求应用合适的激活函数也是ANN研究发展的重要内容。由于人工神经网络具有很强的非线性多变量数据的能力,已经在多组分非线性标定与预报中展现出诱人的前景。人工神经网络在工程领域中的应用前景越来越宽广。 1人工神经网络基本理论[1] 1.1神经生物学基础 可以简略地认为生物神经系统是以神经元为信号处理单元,通过广泛的突触联系形成的信息处理集团,其物质结构基础和功能单元是脑神经细胞即神经元(neu ron)。(1)神经元具有信号的输入、整合、输出三种主要功能作用行为。突触是整个神经系统各单元间信号传递驿站,它构成各神经元之间广泛的联接。(3)大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物,其变化是先天遗传信息确定的总框架下有限的自组织过程。 1.2建模方法 神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系,这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法:①神经生物学模型方法,即根据微观神经生物学知识的积累,把脑神经系统的结构及机理逐步解释清楚,在此基础上建立脑功能模型。②神经计算模型方法,即首先建立粗略近似的数学模型并研究该模型的动力学特性,然后再与真实对象作比较(仿真处理方法)。 1.3概念 人工神经网络用物理可实现系统来模仿人脑神经系统的结构和功能,是一门新兴的前沿交叉学科,其概念以T.Kohonen.Pr的论述最具代表性:人工神经网络就是由简单的处理单元(通常为适应性)组成的并行互联网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。 1.4应用领域 人工神经网络在复杂类模式识别、运动控制、感知觉模拟方面有着不可替代的作用。概括地说人工神经网络主要应用于解决下述几类问题:模式信息处理和模式识别、最优化问题、信息的智能化处理、复杂控制、信号处理、数学逼近映射、感知觉模拟、概率密度函数估计、化学谱图分析、联想记忆及数据恢复等。 1.5理论局限性 (1)受限于脑科学的已有研究成果由于生理试验的困难性,目前对于人脑思维与记忆机制的认识尚很肤浅,对脑神经网的运行和神经细胞的内部处理机制还没有太多的认识。 (2)尚未建立起完整成熟的理论体系目前已提出的众多人工神经网络模型,归纳起来一般都是一个由节点及其互连构成的有向拓扑网,节点间互连强度构成的矩阵可通过某种学

《人工神经网络原理与应用》试题

1 / 1 《人工神经网络原理与应用》试题 试论述神经网络的典型结构,常用的作用函数以及各类神经网络的基本作用,举例说明拟定结论。 试论述BP 算法的基本思想,讨论BP 基本算法的优缺点,以及改进算法的思路和方法。以BP 网络求解XOR 问题为例,说明BP 网络隐含层单元个数与收敛速度,计算时间之间的关系。要求给出计算结果的比较表格,以及相应的计算程序(.m 或者.c )试论述神经网络系统建模的几种基本方法。利用BP 网络对以下非线性系统进行辨识。 非线性系统 )(5.1) 1()(1)1()()1(22k u k y k y k y k y k y +-++-=+ 首先利用[-1,1]区间的随机信号u(k),样本点500,输入到上述系统,产生y(k), 用于训练BP 网络;网络测试,利用u(k)=sin(2*pi*k/10)+1/5*sin(2*pi*k/100),测试点300~500,输入到上述系统,产生y(k),检验BP 网络建模效果要求给出程序流程,matlab 程序否则c 程序,训练样本输入输出图形,检验结果的输入输出曲线。 试列举神经网络PID 控制器的几种基本形式,给出相应的原理框图。 试论述连续Hopfield 网络的工作原理,讨论网络状态变化稳定的条件。 谈谈学习神经网络课程后的心得体会,你准备如何在你的硕士(博士)课题中应用神经网络理论和知识解决问题(给出一到两个例)。《人工神经网络原理与应用》试题 试论述神经网络的典型结构,常用的作用函数以及各类神经网络的基本作用,举例说明拟定结论。 试论述BP 算法的基本思想,讨论BP 基本算法的优缺点,以及改进算法的思路和方法。以BP 网络求解XOR 问题为例,说明BP 网络隐含层单元个数与收敛速度,计算时间之间的关系。要求给出计算结果的比较表格,以及相应的计算程序(.m 或者.c )试论述神经网络系统建模的几种基本方法。利用BP 网络对以下非线性系统进行辨识。 非线性系统 )(5.1) 1()(1)1()()1(22k u k y k y k y k y k y +-++-=+ 首先利用[-1,1]区间的随机信号u(k), 样本点500,输入到上述系统,产生y(k), 用于训练BP 网络;网络测试,利用u(k)=sin(2*pi*k/10)+1/5*sin(2*pi*k/100),测试点300~500,输入到上述系统,产生y(k),检验BP 网络建模效果要求给出程序流程,matlab 程序否则c 程序,训练样本输入输出图形,检验结果的输入输出曲线。 试列举神经网络PID 控制器的几种基本形式,给出相应的原理框图。 试论述连续Hopfield 网络的工作原理,讨论网络状态变化稳定的条件。 谈谈学习神经网络课程后的心得体会,你准备如何在你的硕士(博士)课题中应用神经网络理论和知识解决问题(给出一到两个例)。

人工神经网络作业-单层感知器

3.5单层感知器 # include # include # define N 100 int sgn(double x) //符号运算函数 { int y; if(x>0||x==0) y=1; else y=-1; return y; } void main() { double W[4]={0.0,0.0,0.0,0.0},X[6][4]={{-1,0.8,0.5,0},{-1,0.9,0.7,0.3},{-1,1,0.8,0.5}, {-1,0,0.2,0.3},{-1,0.2,0.1,1.3},{-1,0.2,0.7,0.8}}; int err,o[6],i,j,k,num,d[6]={1,1,1,-1,-1,-1}; double n,WX; n=1.0; k=0; do { k++; num=0; for(i=0;i<6;i++) { WX=0.0; for(j=0;j<4;j++) WX=WX+W[j]*X[i][j]; o[i]=sgn(WX); err=d[i]-o[i]; for(j=0;j<4;j++) W[j]=W[j]+n*err*X[i][j]; if(err==0) num++; } }while(num!=6); printf("调整后的权值矩阵为:\n"); for(j=0;j<4;j++) printf("%f\n",W[j]); printf("分类结果为:\n"); for(i=0;i<6;i++) printf("%d\n",o[i]);

} 3.6单次训练的结果 # include # include double Sig(double x) //单极性函数 { double y; y=1.0/(1.0+exp(-x)); return y; } void main() { double x[3]={-1,1,3},V[3][3]={{0,3,-1},{0,1,2},{0,-2,0}},W[3][3]={{0,2,3},{0,1,1},{0,0,-2}}; double d[3]={0,0.95,0.05},nety[3],neto[3],Y[3],O[3],dety[3],deto[3]; double D,yita; int i,j; yita=1.0; FILE *fp; fp=fopen("out.txt","w"); fprintf(fp,"初始W矩阵:\n"); for(i=0;i<3;i++) { for(j=1;j<3;j++) fprintf(fp,"%f ",W[i][j]); fprintf(fp,"\n"); } fprintf(fp,"初始V矩阵:\n"); for(i=0;i<3;i++) { for(j=1;j<3;j++) fprintf(fp,"%f ",V[i][j]);

人工神经网络复习题

《神经网络原理》 一、填空题 1、从系统的观点讲,人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应、非线性、动力学系统。 2、神经网络的基本特性有拓扑性、学习性和稳定收敛性。 3、神经网络按结构可分为前馈网络和反馈网络,按性能可分为离散型和连续型,按学习方式可分为有导师和无导师。 4、神经网络研究的发展大致经过了四个阶段。 5、网络稳定性指从t=0时刻初态开始,到t时刻后v(t+△t)=v(t),(t>0),称网络稳定。 6、联想的形式有两种,它们分是自联想和异联想。 7、存储容量指网络稳定点的个数,提高存储容量的途径一是改进网络的拓扑结构,二是改进学习方法。 8、非稳定吸引子有两种状态,一是有限环状态,二是混沌状态。 9、神经元分兴奋性神经元和抑制性神经元。 10、汉明距离指两个向量中对应元素不同的个数。 二、简答题 1、人工神经元网络的特点? 答:(1)、信息分布存储和容错性。 (2)、大规模并行协同处理。 (3)、自学习、自组织和自适应。 (4)、人工神经元网络是大量的神经元的集体行为,表现为复杂

的非线性动力学特性。 (5)人式神经元网络具有不适合高精度计算、学习算法和网络设计没有统一标准等局限性。 2、单个神经元的动作特征有哪些? 答:单个神经元的动作特征有:(1)、空间相加性;(2)、时间相加性;(3)、阈值作用;(4)、不应期;(5)、可塑性;(6)疲劳。 3、怎样描述动力学系统? 答:对于离散时间系统,用一组一阶差分方程来描述: X(t+1)=F[X(t)]; 对于连续时间系统,用一阶微分方程来描述: dU(t)/dt=F[U(t)]。 4、F(x)与x 的关系如下图,试述它们分别有几个平衡状态,是否为稳定的平衡状态? 答:在图(1)中,有两个平衡状态a 、b ,其中,在a 点曲线斜率|F ’(X)|>1,为非稳定平稳状态;在b 点曲线斜率|F ’(X)|<1,为稳定平稳状态。 在图(2)中,有一个平稳状态a ,且在该点曲线斜率|F ’(X)|>1,为非稳定平稳状态。

人工神经网络大作业

X X X X 大学 研究生考查课 作业 课程名称:智能控制理论与技术 研究生姓名:学号: 作业成绩: 任课教师(签名) 交作业日时间:2010 年12 月22 日

人工神经网络(artificial neural network,简称ANN)是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能元件(即人工神经元),按各种不同的联结方式组成的一个网络。模拟大脑的某些机制,实现某个方面的功能,可以用在模仿视觉、函数逼近、模式识别、分类和数据压缩等领域,是近年来人工智能计算的一个重要学科分支。 人工神经网络用相互联结的计算单元网络来描述体系。输人与输出的关系由联结权重和计算单元来反映,每个计算单元综合加权输人,通过激活函数作用产生输出,主要的激活函数是Sigmoid函数。ANN有中间单元的多层前向和反馈网络。从一系列给定数据得到模型化结果是ANN的一个重要特点,而模型化是选择网络权重实现的,因此选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法就能得到包含学习训练样本范围的输人和输出的关系。如果用于学习训练的样本不能充分反映体系的特性,用ANN也不能很好描述与预测体系。显然,选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法是ANN的重要研究内容之一,而寻求应用合适的激活函数也是ANN研究发展的重要内容。由于人工神经网络具有很强的非线性多变量数据的能力,已经在多组分非线性标定与预报中展现出诱人的前景。人工神经网络在工程领域中的应用前景越来越宽广。 1人工神经网络基本理论[1] 1. 1神经生物学基础 可以简略地认为生物神经系统是以神经元为信号处理单元, 通过广泛的突触联系形成的信息处理集团, 其物质结构基础和功能单元是脑神经细胞即神经元(neu ron)。(1) 神经元具有信号的输入、整合、输出三种主要功能作用行为。突触是整个神经系统各单元间信号传递驿站, 它构成各神经元之间广泛的联接。(3) 大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物, 其变化是先天遗传信息确定的总框架下有限的自组织过程。 1. 2建模方法 神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系, 这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法: ①神经生物学模型方法, 即根据微观神经生物学知识的积累, 把脑神经系统的结构及机理逐步解释清楚, 在此基础上建立脑功能模型。②神经计算模型方法, 即首先建立粗略近似的数学模型并研究该模型的动力学特性, 然后再与真实对象作比较(仿真处理方法)。 1. 3概念 人工神经网络用物理可实现系统来模仿人脑神经系统的结构和功能, 是一门新兴的前沿交叉学科, 其概念以T.Kohonen. Pr 的论述最具代表性: 人工神经网络就是由简单的处理单元(通常为适应性) 组成的并行互联网络, 它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。 1. 4应用领域 人工神经网络在复杂类模式识别、运动控制、感知觉模拟方面有着不可替代的作用。概括地说人工神经网络主要应用于解决下述几类问题: 模式信息处理和模式识别、最优化问题、信息的智能化处理、复杂控制、信号处理、数学逼近映射、感知觉模拟、概率密度函数估计、化学谱图分析、联想记忆及数据恢复等。 1. 5理论局限性 (1) 受限于脑科学的已有研究成果由于生理试验的困难性, 目前对于人脑思维与记忆机制的认识尚很肤浅, 对脑神经网的运行和神经细胞的内部处理机制还没有太多的认识。 (2) 尚未建立起完整成熟的理论体系目前已提出的众多人工神经网络模型,归纳起来一般都是一个由节点及其互连构成的有向拓扑网, 节点间互连强度构成的矩阵可通过某种学

人工神经网络的发展及应用

人工神经网络的发展及应用 西安邮电学院电信系樊宏西北电力设计院王勇日期:2005 1-21 1 人工神经网络的发展 1.1 人工神经网络基本理论 1.1.1 神经生物学基础生物神经系统可以简略地认为是以神经元为信号的处理单元,通过广泛的突触联系形成的信息处理集团,其物质结构基础和功能单元是脑神经细胞,即神经元(neuron) 。 (1)神经元具有信号的输人、整合、输出三种主要功能作用行为,结构如图1 所示: (2)突触是整个神经系统各单元间信号传递驿站,它构成各神经元之间广泛的联接。 (3)大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物,其变化是先天遗传信息确定的总框架下有限的自组织过程。 1.1.2 建模方法神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系,这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法:①神经生物学模型方法,即根据微观神经生物学知识的积累,把脑神经系统的结构及机理逐步解释清楚,在此基础上建立脑功能模型;②神 经计算模型方法,即首先建立粗略近似的数学模型并研究该模型的动力学特性,然后冉与真实对象作比较(仿真处理方法)。1.1.3 概

念人工神经网络用物理町实现系统采模仿人脑神经系统的结构和功能,是一门新兴的前沿交义学科,其概念以T.Kohonen.Pr 的论述 最具代表性:人工神经网络就是由简单的处理单元(通常为适应性神经元,模型见图2)组成的并行互联网络,它的组织能够模拟生物神 经系统对真实世界物体所作出的交互反应。 1.2 人工神经网络的发展 人工神经网络的研究始于40 年代初。半个世纪以来,经历了兴起、高潮与萧条、高潮及稳步发展的较为曲折的道路。1943 年,心理学家W.S.Mcculloch 和数理逻辑学家W.Pitts 提出了M—P 模型, 这是第一个用数理语言描述脑的信息处理过程的模型,虽然神经元的功能比较弱,但它为以后的研究工作提供了依据。1949 年,心理学家D. O. Hebb提出突触联系可变的假设,根据这一假设提出的学习规律为神经网络的学习算法奠定了基础。1957 年,计算机科学家Rosenblatt 提出了著名的感知机模型,它的模型包含了现代计算机的一些原理,是第一个完整的人工神经网络。1969 年,美国著名人工智能学者M.Minsky 和S.Papert 编写了影响很大的Perceptron 一书,从理论上证明单层感知机的能力有限,诸如不能解决异或问题,而且他们推测多层网络的感知能也不过如此,在这之后近10 年,神经网络研究进入了一个缓慢发展的萧条期。美国生物物理学家J.J.Hopfield 于1982年、1984 年在美国科学院院刊发表的两篇文章,有力地推动了神经网络的研究,引起了研究神经网络的

神经网络作业20092676吴戈林电子0901班

神经网络原理及其应用——基于BP 人工神经网络的图像分割器 学校:东北大学 班级:电子信息工程0901班 姓名:吴戈林 学号:20092676 指导老师:王斐 时间:2012年12月

目录 人工神经网络 (3) 一、特点与优势 (3) 二、人工神经网络的主要研究方向 (4) 三、人工神经网络的应用分析 (4) 四、人工神经网络在图像分割中的应用 (6) 1.问题概述 (7) 2.基于BP 人工神经网络的图像分割器 (8) 2.1神经网络结构的确定 (8) 2. 2 神经网络结构的改进 (9) 2. 3 BP 神经网络的图像分割基本训练 (9) 2. 4 BP 神经网络的针对性训练 (10) 3.网络应用 (10) 4.结论 (11) 五、课程收获与感想 (11) 六、参考文献 (12)

人工神经网络 人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model),是对人脑或自然神经网络(Natural Neural Network)若干基本特性的抽象和模拟。人工神经网络以对大脑的生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。国际著名的神经网络研究专家,第一家神经计算机公司的创立者与领导人Hecht Nielsen给人工神经网络下的定义就是:“人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作状态相应而进行信息处理。”这一定义是恰当的。人工神经网络的研究,可以追溯到1957年Rosenblatt提出的感知器模型(Perceptron) 。它几乎与人工智能——AI(Artificial Intelligence)同时起步,但30余年来却并未取得人工智能那样巨大的成功,中间经历了一段长时间的萧条。直到80年代,获得了关于人工神经网络切实可行的算法,以及以Von Neumann体系为依托的传统算法在知识处理方面日益显露出其力不从心后,人们才重新对人工神经网络发生了兴趣,导致神经网络的复兴。目前在神经网络研究方法上已形成多个流派,最富有成果的研究工作包括:多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。人工神经网络是在现代神经科学的基础上提出来的。它虽然反映了人脑功能的基本特征,但远不是自然神经网络的逼真描写,而只是它的某种简化抽象和模拟。 一、特点与优势 人工神经网络的以下几个突出的优点使它近年来引起人们的极大关注: (1)可以充分逼近任意复杂的非线性关系; (2)所有定量或定性的信息都等势分布贮存于网络内的各神经元,故有很强的鲁棒性和容错性; (3)采用并行分布处理方法,使得快速进行大量运算成为可能; (4)可学习和自适应不知道或不确定的系统; (5)能够同时处理定量、定性知识。 人工神经网络的优越性,主要表现在三个方面: 第一,具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。 第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。 第三,具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。

人工智能 经典考试试题答案

一、选择题(每题1分,共15分) 1、AI的英文缩写是 A)Automatic Intelligence B)Artifical Intelligence C)Automatice Information D)Artifical Information 2、反演归结(消解)证明定理时,若当前归结式是()时,则定理得证。 A)永真式B)包孕式(subsumed)C)空子句 3、从已知事实出发,通过规则库求得结论的产生式系统的推理方式是 A)正向推理B)反向推理C)双向推理 4、语义网络表达知识时,有向弧AKO 链、ISA 链是用来表达节点知识的()。 A)无悖性B)可扩充性C)继承性 5、(A→B)∧A => B是 A)附加律B)拒收律C)假言推理D)US 6、命题是可以判断真假的 A)祈使句B)疑问句C)感叹句D)陈述句 7、仅个体变元被量化的谓词称为 A)一阶谓词B)原子公式C)二阶谓词D)全称量词 8、MGU是 A)最一般合一B)最一般替换C)最一般谓词D)基替换 9、1997年5月,著名的“人机大战”,最终计算机以3.5比2.5的总比分将世界国际象棋棋王卡斯帕罗夫击败,这台计算机被称为() A)深蓝B)IBM C)深思D)蓝天 10、下列不在人工智能系统的知识包含的4个要素中 A)事实B)规则C)控制和元知识D)关系 11、谓词逻辑下,子句, C1=L∨C1‘, C2= ? L∨C2‘,若σ是互补文字的(最一般)合一置换,则其归结式C=() A) C1’σ∨C2’σB)C1’∨C2’C)C1’σ∧C2’σD)C1’∧C2’ 12、或图通常称为 A)框架网络B)语义图C)博亦图D)状态图 13、不属于人工智能的学派是 A)符号主义B)机会主义C)行为主义D)连接主义。 14、人工智能的含义最早由一位科学家于1950年提出,并且同时提出一个机器智能的测试模型,请问这个科学家是 A)明斯基B).扎德C)图林D)冯.诺依曼 15.要想让机器具有智能,必须让机器具有知识。因此,在人工智能中有一个研究领域,主要研究计算机如何自动获取知识和技能,实现自我完善,这门研究分支学科叫()。 A)专家系统B)机器学习C)神经网络D)模式识别 二、填空题(每空1.5分,共30分) 1、不确定性类型按性质分:,, ,。 2、在删除策略归结的过程中删除以下子句:含有的子句;含 有的子句;子句集中被别的子句的子句。 3、对证据的可信度CF(A)、CF(A1)、CF(A2)之间,规定如下关系: CF(~A)=、CF(A1∧A2 )=、 CF(A1∨A2 )= 4、图:指由和组成的网络。按连接同一节点的各边的逻辑关系又可分为和。 5、合一算法:求非空有限具有相同谓词名的原子公式集的 6、产生式系统的推理过程中,从可触发规则中选择一个规则来执行,被执行的规则称为。

相关主题
文本预览
相关文档 最新文档