当前位置:文档之家› 中考数学复习锐角三角函数专项易错题及详细答案

中考数学复习锐角三角函数专项易错题及详细答案

中考数学复习锐角三角函数专项易错题及详细答案
中考数学复习锐角三角函数专项易错题及详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40,从前脚落地点D 看上嘴尖A 的仰角刚好60,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ?≈?≈?≈,,.2 1.41,3 1.73≈≈)

【答案】AB 的长约为0.6m . 【解析】 【分析】

作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可. 【详解】

解:作BF CE ⊥于F ,

在Rt BFC ?中, 3.20BF BC sin BCF ?∠≈=,

3.85CF BC cos BCF ?∠≈=,

在Rt ADE ?E 中,3 1.73tan 3AB DE ADE =

==≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣=

由勾股定理得,22BH AH 0.6(m)AB =+≈, 答:AB 的长约为0.6m .

【点睛】

考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.

2.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(3=1.7).

【答案】32.4米.

【解析】

试题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.

试题解析:如图,过点B作BE⊥CD于点E,

根据题意,∠DBE=45°,∠CBE=30°.

∵AB⊥AC,CD⊥AC,

∴四边形ABEC为矩形,

∴CE=AB=12m,

在Rt△CBE中,cot∠CBE=BE CE

∴BE=CE?cot30°=12×3=123,

在Rt△BDE中,由∠DBE=45°,

得DE=BE=123.

∴CD=CE+DE=12(3+1)≈32.4.

答:楼房CD的高度约为32.4m.

考点:解直角三角形的应用——仰角俯角问题.

3.如图13,矩形的对角线,相交于点,关于的对称图形为.

(1)求证:四边形是菱形;

(2)连接,若,.

①求的值;

②若点为线段上一动点(不与点重合),连接,一动点从点出发,以

的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点,到达点后停止运动.当点沿上述路线运动到点所需要的时间最短时,求的长和点走完全程所需的时间.

【答案】(1)详见解析;(2)①②和走完全程所需时间为

【解析】

试题分析:(1)利用四边相等的四边形是菱形;(2)①构造直角三角形求;

②先确定点沿上述路线运动到点所需要的时间最短时的位置,再计算运到的时间.

试题解析:解:(1)证明:四边形是矩形.

与交于点O,且关于对称

四边形是菱形.

(2)①连接,直线分别交于点,交于点

关于的对称图形为

在矩形中,为的中点,且O为AC的中点

为的中位线

同理可得:为的中点,

②过点P作交于点

由运动到所需的时间为3s

由①可得,

点O以的速度从P到A所需的时间等于以从M运动到A

即:

由O运动到P所需的时间就是OP+MA和最小.

如下图,当P运动到,即时,所用时间最短.

在中,设

解得:

和走完全程所需时间为

考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置4.(2013年四川攀枝花12分)如图,在平面直角坐标系中,四边形ABCD是梯形,

AB∥CD,点B(10,0),C(7,4).直线l经过A,D两点,且sin∠DAB=

2

2

.动点P

在线段AB上从点A出发以每秒2个单位的速度向点B运动,同时动点Q从点B出发以每秒5个单位的速度沿B→C→D的方向向点D运动,过点P作PM垂直于x轴,与折线

A→D→C相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),△MPQ的面积为S.

(1)点A的坐标为,直线l的解析式为;

(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围;

(3)试求(2)中当t为何值时,S的值最大,并求出S的最大值;

(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.

【答案】解:(1)(﹣4,0);y=x+4.

(2)在点P、Q运动的过程中:

①当0<t≤1时,如图1,

过点C作CF⊥x轴于点F,则CF=4,BF=3,由勾股定理得BC=5.

过点Q作QE⊥x轴于点E,则BE=BQ?cos∠CBF=5t?3

5

=3t.

∴PE=PB﹣BE=(14﹣2t)﹣3t=14﹣5t,

S=1

2

PM?PE=

1

2

×2t×(14﹣5t)=﹣5t2+14t.

②当1<t≤2时,如图2,

过点C、Q分别作x轴的垂线,垂足分别为F,E,则CQ=5t﹣5,PE=AF﹣AP﹣EF=11﹣2t﹣(5t﹣5)=16﹣7t.

S=1 2

PM?PE=

1

2

×2t×(16﹣7t)=﹣7t2+16t.

③当点M与点Q相遇时,DM+CQ=CD=7,

即(2t﹣4)+(5t﹣5)=7,解得t=

16

7

当2<t<

16

7

时,如图3,

MQ=CD﹣DM﹣CQ=7﹣(2t﹣4)﹣(5t﹣5)=16﹣7t,

S=

1

2

PM?MQ=

1

2

×4×(16﹣7t)=﹣14t+32.

综上所述,点Q与点M相遇前S与t的函数关系式为

()

()

2

2

5t14t0

S{7t16t1

16

14t322

7

-+≤

=-+≤

??

-+ ?

??

.(3)①当0<t≤1时,

2

2

749

S5t14t5t

55

??

=-+=--+

?

??

∵a=﹣5<0,抛物线开口向下,对称轴为直线t=7

5

∴当0<t≤1时,S随t的增大而增大.

∴当t=1时,S有最大值,最大值为9.

②当1<t≤2时,

2

2

864

S7t16t7t

77

??

=-+=--+

?

??

∵a=﹣7<0,抛物线开口向下,对称轴为直线t=8

7

∴当t=8

7

时,S有最大值,最大值为

64

7

③当2<t<

16

7

时,S=﹣14t+32

∵k=﹣14<0,∴S随t的增大而减小.

又∵当t=2时,S=4;当t=

16

7

时,S=0,∴0<S<4.

综上所述,当t=8

7

时,S有最大值,最大值为

64

7

(4)t=20

9

或t=

12

5

时,△QMN为等腰三角形.

【解析】

(1)利用梯形性质确定点D的坐标,由sin∠DAB=

2

2

,利用特殊三角函数值,得到

△AOD为等腰直角三角形,从而得到点A的坐标;由点A、点D的坐标,利用待定系数法求出直线l的解析式:

∵C(7,4),AB∥CD,∴D(0,4).

∵sin∠DAB=2

2

,∴∠DAB=45°.∴OA=OD=4.∴A(﹣4,0).

设直线l的解析式为:y=kx+b,则有

4k b0

{

b4

-+=

=

,解得:

k1

{

b4

=

=

.∴y=x+4.

∴点A坐标为(﹣4,0),直线l的解析式为:y=x+4.

(2)弄清动点的运动过程分别求解:①当0<t≤1时,如图1;②当1<t≤2时,如图2;

③当2<t<16

7

时,如图3.

(3)根据(2)中求出的S表达式与取值范围,逐一讨论计算,最终确定S的最大值.(4)△QMN为等腰三角形的情形有两种,需要分类讨论:

①如图4,点M在线段CD上,

MQ=CD﹣DM﹣CQ=7﹣(2t﹣4)﹣(5t﹣5)=16﹣7t,MN=DM=2t﹣4,

由MN=MQ,得16﹣7t=2t﹣4,解得t=20

9

②如图5,当点M运动到C点,同时当Q刚好运动至终点D,

此时△QMN为等腰三角形,t=12

5

∴当t=20

9或t=

12

5

时,△QMN为等腰三角形.

考点:一次函数综合题,双动点问题,梯形的性质,锐角三角函数定义,特殊角的三角函数值,由实际问题列函数关系式,一次函数和二次函数的性质,等腰三角形的性质,分类思想的应用.

5.如图,已知点从出发,以1个单位长度/秒的速度沿轴向正方向运动,以

为顶点作菱形,使点在第一象限内,且;以为圆心,为半径作圆.设点运动了秒,求:

(1)点的坐标(用含的代数式表示);

(2)当点在运动过程中,所有使与菱形的边所在直线相切的的

值.

【答案】解:(1)过作轴于,

,,

,,

点的坐标为.

(2)①当与相切时(如图1),切点为,此时,

,,

②当与,即与轴相切时(如图2),则切点为,,

过作于,则,

,.

③当与所在直线相切时(如图3),设切点为,交于,

则,,

过作轴于,则,

化简,得,

解得,

所求的值是,和.

【解析】

(1)过作轴于,利用三角函数求得OD、DC的长,从而求得点的坐标

⊙P与菱形OABC的边所在直线相切,则可与OC相切;或与OA相切;或与AB相切,应分三种情况探讨:①当圆P与OC相切时,如图1所示,由切线的性质得到PC垂直于OC,再由OA=+t,根据菱形的边长相等得到OC=1+t,由∠AOC的度数求出∠POC为30°,在直角三角形POC中,利用锐角三角函数定义表示出cos30°=oc/op,表示出OC,

等于1+t列出关于t的方程,求出方程的解即可得到t的值;②当圆P与OA,即与x轴相切时,过P作PE垂直于OC,又PC=PO,利用三线合一得到E为OC的中点,OE为OC的一半,而OE=OPcos30°,列出关于t的方程,求出方程的解即可得到t的值;③当圆P与AB所在的直线相切时,设切点为F,PF与OC交于点G,由切线的性质得到PF垂直于AB,则PF垂直于OC,由CD=FG,在直角三角形OCD中,利用锐角三角函数定义由OC表示出CD,即为FG,在直角三角形OPG中,利用OP表示出PG,用PG+GF表示出PF,根据PF=PC,表示出PC,过C作CH垂直于y轴,在直角三角形PHC中,利用勾股定理列出关于t的方程,求出方程的解即可得到t的值,综上,得到所有满足题意的t的值.

6.如图1,以点M(-1,0)为圆心的圆与y轴、x轴分别交于点A、B、C、D,直线y=

-x-与⊙M相切于点H,交x轴于点E,交y轴于点F.

(1)请直接写出OE、⊙M的半径r、CH的长;

(2)如图2,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;

(3)如图3,点K为线段EC上一动点(不与E、C重合),连接BK交⊙M于点T,弦AT 交x轴于点N.是否存在一个常数a,始终满足MN·MK=a,如果存在,请求出a的值;如果不存在,请说明理由.

【答案】(1)OE=5,r=2,CH=2

(2);

(3)a=4

【解析】

【分析】

(1)在直线y=-x-中,令y=0,可求得E的坐标,即可得到OE的长为5;连接MH,根据△EMH与△EFO相似即可求得半径为2;再由EC=MC=2,∠EHM=90°,可知CH 是RT△EHM斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半即可得出CH的长;

(2)连接DQ、CQ.根据相似三角形的判定得到△CHP∽△QPD,从而求得DQ的长,在直角三角形CDQ中,即可求得∠D的余弦值,即为cos∠QHC的值;

(3)连接AK,AM,延长AM,与圆交于点G,连接TG,由圆周角定理可知,

∠GTA=90°,∠3=∠4,故∠AKC=∠MAN,再由△AMK∽△NMA即可得出结论.

【详解】

(1)OE=5,r=2,CH=2

(2)如图1,连接QC、QD,则∠CQD =90°,∠QHC =∠QDC,

易知△CHP∽△DQP,故,得DQ=3,由于CD=4,

(3)如图2,连接AK ,AM ,延长AM , 与圆交于点G ,连接TG ,则

由于,故,

而,故

中,

故△AMK ∽△NMA

;

即:

故存在常数,始终满足 常数a="4"

解法二:连结BM ,证明∽

7.如图,已知二次函数2

12

y x bx c =

++的图象经过点A (-3,6),并与x 轴交于点B (-1,0)和点C ,顶点为点P . (1)求这个二次函数解析式;

(2)设D 为x 轴上一点,满足∠DPC =∠BAC ,求点D 的坐标;

(3)作直线AP ,在抛物线的对称轴上是否存在一点M ,在直线AP 上是否存在点N ,使AM +MN 的值最小?若存在,求出M 、N 的坐标:若不存在,请说明理由.

【答案】(1)点C坐标为(3,0),点P(1,-2);(2)点P(7,0);(3)点N(-

7 5,

14

5

).

【解析】【分析】

(1)将点A、

B坐标代入二次函数表达式,即可求解;

(2)利用S△ABC= 1

2

×AC×BH=

1

2

×BC×y A,求出sinα=

22

2105

BH

AB

==,则tanα=

1

2

,在

△PMD中,tanα= MD

PM

=

1

2

22

x

=

+

,即可求解;

(3)作点A关于对称轴的对称点A′(5,6),过点A′作A′N⊥AP分别交对称轴与点M、交AP于点N,此时AM+MN最小,即可求解.

【详解】

(1)将点A、B坐标代入二次函数表达式得:

9

633

2

1

2

b

b c

?

=-+

??

?

?=--+

??

,解得:

1

3

2

b

c

=-

?

?

?

=-

??

故:抛物线的表达式为:y=1

2

x2-x-

3

2

令y=0,则x=-1或3,令x=0,则y=-3

2

故点C坐标为(3,0),点P(1,-2);

(2)过点B作BH⊥AC交于点H,过点P作PG⊥x轴交于点G,设:∠DPC=∠BAC=α,

由题意得:AB=210,AC=62,BC=4,PC=22,

S△ABC=1

2

×AC×BH=

1

2

×BC×y A,

解得:BH=22,

sinα=BH

AB

=

22

210

=

5

,则tanα=

1

2

由题意得:GC=2=PG,故∠PCB=45°,

延长PC,过点D作DM⊥PC交于点M,则MD=MC=x,

在△PMD中,tanα=MD

PM

=

22

x+

=

1

2

解得:x=22,则CD=2x=4,

故点P(7,0);

(3)作点A关于对称轴的对称点A′(5,6),

过点A′作A′N⊥AP分别交对称轴与点M、交AP于点N,此时AM+MN最小,

直线AP表达式中的k值为:8

4-

=-2,则直线A′N表达式中的k值为

1

2

设直线A′N的表达式为:y=1

2

x+b,

将点A′坐标代入上式并求解得:b=7

2

故直线A′N的表达式为:y=1

2

x+

7

2

…①,

当x=1时,y=4,

故点M(1,4),

同理直线AP的表达式为:y=-2x…②,

联立①②两个方程并求解得:x=-7

5

故点N(-7

5

14

5

).

【点睛】

本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等知识,其中(3),利用对称点求解最小值,是此类题目的一般方法.

8.如图所示的是一个地球仪及它的平面图,在平面图中,点A 、B 分别为地球仪的南、北极点,直线AB 与放置地球仪的平面交于点D ,所夹的角度约为67°,半径OC 所在的直线与放置它的平面垂直,垂足为点E ,DE =15cm ,AD =14cm .

(1)求半径OA 的长(结果精确到0.1cm ,参考数据:s in67°≈0.92,cos67°≈0.39,tan67°≈2.36)

(2)求扇形BOC 的面积(π取3.14,结果精确到1cm )

【答案】(1)半径OA 的长约为24.5cm ;(2)扇形BOC 的面积约为2822cm . 【解析】 【分析】

(1)在Rt △ODE 中,DE=15,∠ODE=67°,根据∠ODE 的余弦值,即可求得OD 长,减去AD 即为OA .

(2)用扇形面积公式即可求得. 【详解】

(1)在Rt △ODE 中,15cm DE =,67ODE ∠=?. ∵cos DE

ODE DO

∠=, ∴15

0.39

OD ≈

, ∴()384614245cm OA OD AD =-≈-≈.

., 答:半径OA 的长约为24.5cm . (2)∵67ODE ∠=?, ∴157BOC ∠=?, ∴2

360

BOC

n r S π=

扇形 2

157 3.1424.52360

??≈

()2822cm ≈.

答:扇形BOC 的面积约为2822cm . 【点睛】

此题主要考查了解直角三角形的应用,本题把实际问题转化成数学问题,利用三角函数中余弦定义来解题是解题关键.

9.如图,正方形OABC 的顶点O 与原点重合,点A ,C 分别在x 轴与y 轴的正半轴上,点

A 的坐标为(4,0),点D 在边A

B 上,且tan ∠AOD =

1

2

,点E 是射线OB 上一动点,EF ⊥x 轴于点F ,交射线OD 于点G ,过点G 作GH ∥x 轴交AE 于点H . (1)求B ,D 两点的坐标;

(2)当点E 在线段OB 上运动时,求∠HDA 的大小;

(3)以点G 为圆心,GH 的长为半径画⊙G .是否存在点E 使⊙G 与正方形OABC 的对角线所在的直线相切?若不存在,请说明理由;若存在,请求出所有符合条件的点E 的坐标.

【答案】(1)B (4,4),D (4,2);(2)45°;(3)存在,符合条件的点为(8﹣

2,8﹣2)或(2,2)或42164216,77??

? ???或16421642,77?-- ??

,理由见解析 【解析】 【分析】

(1)由正方形性质知AB=OA=4,∠OAB=90°,据此得B (4,4),再由tan ∠AOD= 1

2

得AD=

1

2

OA=2,据此可得点D 坐标; (2)由1tan 2GF GOF OF ∠==知GF=1

2

OF ,再由∠AOB=∠ABO=45°知OF=EF ,即GF=

1

2

EF ,根据GH ∥x 轴知H 为AE 的中点,结合D 为AB 的中点知DH 是△ABE 的中位线,即HD ∥BE ,据此可得答案;

(3)分⊙G 与对角线OB 和对角线AC 相切两种情况,设PG=x ,结合题意建立关于x 的方程求解可得. 【详解】

解:(1)∵A(4,0),

∴OA=4,

∵四边形OABC为正方形,

∴AB=OA=4,∠OAB=90°,∴B(4,4),

在Rt△OAD中,∠OAD=90°,∵tan∠AOD=1

2

∴AD=1

2OA=

1

2

×4=2,

∴D(4,2);

(2)如图1,在Rt△OFG中,∠OFG=90°

∴tan∠GOF=GF

OF =

1

2

,即GF=

1

2

OF,

∵四边形OABC为正方形,

∴∠AOB=∠ABO=45°,

∴OF=EF,

∴GF=1

2

EF,

∴G为EF的中点,

∵GH∥x轴交AE于H,

∴H为AE的中点,

∵B(4,4),D(4,2),

∴D为AB的中点,

∴DH是△ABE的中位线,

∴HD∥BE,

∴∠HDA=∠ABO=45°.

(3)①若⊙G与对角线OB相切,如图2,当点E在线段OB上时,

过点G作GP⊥OB于点P,设PG=x,可得PE=x,EG=FG=2x,OF=EF=22x,

∵OA=4,

∴AF=4﹣22x,

∵G为EF的中点,H为AE的中点,

∴GH为△AFE的中位线,

∴GH=1

2AF=

1

2

×(4﹣22x)=2﹣2x,

则x=2﹣2x,

解得:x=22﹣2,

∴E(8﹣42,8﹣42),

如图3,当点E在线段OB的延长线上时,

x2x﹣2,

解得:x=2

∴E(2,2

②若⊙G与对角线AC相切,

如图4,当点E在线段BM上时,对角线AC,OB相交于点M,

过点G 作GP ⊥OB 于点P ,设PG =x ,可得PE =x , EG =FG =2x , OF =EF =22x , ∵OA =4, ∴AF =4﹣22x ,

∵G 为EF 的中点,H 为AE 的中点, ∴GH 为△AFE 的中位线, ∴GH =

12AF =1

2

×(4﹣22x )=2﹣2x , 过点G 作GQ ⊥AC 于点Q ,则GQ =PM =3x ﹣22, ∴3x ﹣22=2﹣2x , ∴422

7

x +=

, ∴42164216,E ??++ ? ???

; 如图5,当点E 在线段OM 上时,

GQ =PM =23x ,则23x =22, 解得422

7

x =

∴16421642,E ??

-- ?

???

; 如图6,当点E 在线段OB 的延长线上时,

3x ﹣22x ﹣2, 解得:422

7

x =

(舍去); 综上所述,符合条件的点为(8﹣2,8﹣2)或(2,2)或

42164216,77?? ? ???或16421642,77?-- ??

. 【点睛】

本题是圆的综合问题,解题的关键是掌握正方形和直角三角形的性质、正切函数的定义、三角形中位线定理及分类讨论思想的运用.

10.如图,在平面直角坐标系中,菱形ABCD 的边AB 在x 轴上,点B 坐标(﹣6,0),点C 在y 轴正半轴上,且cos B =

3

5

,动点P 从点C 出发,以每秒一个单位长度的速度向D 点移动(P 点到达D 点时停止运动),移动时间为t 秒,过点P 作平行于y 轴的直线l 与菱形的其它边交于点Q . (1)求点D 坐标;

(2)求△OPQ 的面积S 关于t 的函数关系式,并求出S 的最大值; (3)在直线l 移动过程中,是否存在t 值,使S =3

20

ABCD S 菱形?若存在,求出t 的值;若不存在,请说明理由.

相关主题
文本预览
相关文档 最新文档