当前位置:文档之家› 三维光子晶体中集成器件的设计与模拟

三维光子晶体中集成器件的设计与模拟

GeoMountain三维观测系统设计软件的开发及应用

作者简介:刘鸿,1971年生,高级工程师;主要从事软件研发工作。地址:(610213)四川省成都市双流县华阳镇华阳大道一段1号。电话:(028)85762508。E‐mail:lh_1971@sohu.com GeoMountain三维观测系统设计软件的开发及应用 刘鸿 巫骏 敬龙江 朱晨 陈三平 川庆钻探工程公司地球物理勘探公司技术发展中心 刘鸿等.GeoMountain三维观测系统设计软件的开发及应用.天然气工业,2009,29(7):32‐34. 摘 要 为了实现包括适应山地特点的三维地震勘探观测系统的优化设计,研发了GeoMountain三维观测系统设计软件,较好地解决了在观测系统的布设与设计中复杂的逻辑处理、功能间的协调关系以及计算上的精度等问题。该软件采用了先进的图片矢量化处理技术和高效率的大容量数据处理技术。应用结果表明:该软件系统能正确高效地完成包括超大面积三维工区的观测系统设计工作。 关键词 GeoMountain软件系统 地震数据 采集 三维 观测 系统 面积 应用 DOI:10.3787/j.issn.1000‐0976.2009.07.010 0 引言 目前,我国东部各大油气田已经进入以三维地震勘探为主的时期,西部条件较好的地区在勘探早期已直接进入三维地震勘探,并逐渐向复杂地表地区推广。伴随着三维地震勘探被石油工业界的广泛接受和应用,以及三维地震勘探所涉及的近地表条件与地下构造的多样性(海上、陆上与滩浅海、山地、沙漠、黄土塬等),三维地震资料采集技术的研究也就受到人们的广泛重视。 三维地震数据采集技术研究一般包括采集设计、采集方法、质量控制及装备制造等方面的研究内容。对于三维地震采集设计中观测系统参数的选择,必须要满足各种地球物理条件的要求、野外施工作业和投资成本的约束。由于计算机硬件和软件的迅速发展,国外地球物理公司在观测系统设计方面的软件也有较大进展,先后开发出了一系列交互式的三维观测系统设计软件。而在激烈的海内外勘探采集市场竞争中,拥有具有自主知识产权的采集软件系统的重要性和紧迫性越来越突出。因此,川庆钻探工程有限公司地球物理勘探公司技术发展中心 研发了GeoMountain三维观测系统设计软件[1] ,实现了三维地震勘探中观测系统的优化设计。 1 软件功能与特色 GeoMountain三维观测系统设计软件基于 Microsoft.NETFramework1.1平台,采用VisualStudio2003集成开发环境,开发语言使用C#[2‐4]。 根据三维观测系统设计的技术路线(图1),软件 实现了进行三维观测系统设计所需的各项功能。 图1 技术路线图 1.1 软件主要功能 三维观测系统设计软件主要提供布设理论观测系统的方法和进行观测系统属性分析,帮助用户分析设计的观测系统是否能满足调查地质目标的需要。 GeoMountain三维观测系统设计软件可以用于纵波勘探设计和横波勘探设计,软件界面友好、操作方便、实时动态、设计功能强。1.1.1 模板设计与分析 软件可设计线束模板、斜交模板、砖墙模板。在 ? 1?第29卷第7期 天 然 气 工 业 地质与勘探

微纳光子学

微纳光子学主要研究在微纳尺度下光与物质相互作用的规律及其光的产生、传输、调控、探测和传感等方面的应用。微纳光子学亚波长器件能有效提高光子集成度,有望像电子芯片一样把光子器件集成到尺寸很小的单一光芯片上。纳米表面等离子体学是一新兴微纳光子学领域,主要研究金属纳米结构中光与物质的相互作用。它具有尺寸小,速度快和克服传统衍射极限等特点,有望实现电子学和光子学在纳米尺度上的完美联姻,将为新一代的光电技术开创新的平台。金属-介质-金属F-P腔是最基本的纳米等离子体波导结构,具有良好的局域场增强和共振滤波特性,是制作纳米滤波器、波分复用器、光开关、激光器等微纳光器件的基础。但由于纳米等离子体结构中金属腔的固有损耗和能量反射,F-P腔在波分复用器应用中透射效率往往较低,这给实际应用带来不利。 最近,科研人员提出了一种提高表面等离子体F-P腔波分复用器透射效率的双腔逆向干涉相消法。该方法能有效避免腔的能量反射,使入射光能完全从通道端口出射,极大增强了透射效率。此设计方法还能有效的抑制噪声光的反馈。同时,科研人员利用耦合模方法验证了这种设计方法的可行性。这种波分复用器相比目前报道的基于F-P单腔共振滤波的波分复用器的透射效率提高了50%以上。相关的成果于2011年6月20日发表在Optics Express上,论文题目为:Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities。 “新兴光器件及集成技术专题报告会”上发布《纳米光子学对光子技术更新换代的重要作用》精彩演讲。报告摘要;从上世纪70年代开始,光子学进入微光子学阶段,经过40年的研究,现在已经比较成熟。以半导体激光器为重点的研究已经逐渐转向对激光控制问题的研究和激光应用的研究。同时,光子技术已经进入光电子技术阶段,其特点是研究开发以电控光、光电混合的器件和系统。光电子技术已经逐步占领了电子技术原有的阵地。它的应用领域已经扩大到人类社会生活的各方面,如光通信与光网,平板显示、半导体照明、光盘存储、数码相机等。光电子产业迅速发展壮大起来。在经济发达国家,光电子产业的总产值已经可以与电子产业相比,甚至超过电子产业。近十年来,国际学术界开始大力发展纳光子学及其技术,使光电子技术与纳米技术相结合,对现有光电子技术进行升级改造。 与国际上科技发达的国家相比,目前我国微纳光子学的研究还不算落后,这从我国在微纳光子学领域发表的论文数量和投稿的杂志级别就可看出。但是我国的光子学研究论文大部分是理论方面的,大多数是跟踪国外的。由于国内缺乏先进的科学实验平台,特别是缺乏制备微纳光子学材料和器件的工艺条件,实验方面的论文比较少(除了少数与国外合作研究的论文),创新的思想无法得到实验验证。微光子学方面的情况尚且如此,在纳光子学方面,由于对仪器、设备、工艺和技术的要求更高,与国外的差距正在加大。 在光电子技术方面,由于国际经济的全球化和我国的改革开放形势,吸引跨国公司将制造、加工基地向我国转移。21世纪初光电子企业的大公司纷纷落户我国。而且大量资金投向我国沿海经济发达地区(如广东、上海和京津地区),建立起一大批中外合资或独资企业。但是这些外国企业或技术人员,控制着产业的高端技术,对我国实行技术垄断,使我国的光电子技术至今还处于“下游”,成为外向加工企业。大多数光电子企业采用这样的生产模式:购买国外的芯片进行器件封装,或者购买国外的器件进行系统组装。目前我国光电子企业严重缺乏核心技术和自主知识产权,无法抵御国际经济危机,面临着很大的风险。 为了加快我国的微纳光子学与相关光子技术的发展,我国应该集中投入一部分资金,凝聚一批高水平研究人才,在某些光电子企业集中的地区,依托光子学研究有实力的单位,采用先进的管理模式,建设我

光子晶体的应用及其发展前景

光子晶体的应用及其发展前景 摘要:光子晶体是一种介电常数不同的,是人工设计的由两种或两种以上介质材料排列的一维·二维或三维周期结构的晶体。一维光子晶体已得到实际应用,三维光子晶体仍处于实验室实验阶段。由于光子晶体有带隙和慢光等优良特性,所以具有广泛的应用前景。 关键字:光子晶体物理基础材料制备应用 1、物理基础 (1)1987年,E.Y allonovitch 和S.John在研究抑制自发辐射和光子局域时提出光子这概念。概念提出后,其研究经历了一个从一维、二维到三维的过程,并将带隙不断向短波方向推进。微波波段的逞隙常称为电磁带隙(ElectromagneticBand-Gap,简称为EBG),光子晶体的引入为微波领域提供了新的研究方向。光子晶体完全依靠自身结构就可实现带阻滤波,且结构比较简单,在微波电路、微波天线等方面均具有广阔的应用前景。国外在这一方面的研究已经取得了很多成果,而国内的研究才刚刚起步,所以从事光子晶体的研究具有重要的意义。光子晶体是指具有光子带隙(Photonic Band-Gap,简称为PBG)特性的人造周期性电介质结构,有时也称为PBG结构。所谓的光子带隙是指某一频率范围的波不能在此周期性结构中传播,即这种结构本身存在“禁带”。这一概念最初是在光学领域提出的,现在它的研究范围已扩展到微波与声波波段。由于这种结构的周期尺寸与“禁带”的中心频率对应的波长可比拟,所以这种结构在微波波段比在光波波段更容易实现。相比一维二维光子晶体只能产生方向禁带,三维光子晶体能产生全方向的禁带,具有更普遍的实用性。 2、光子晶体的原理 (1)什么是光子晶体 光子晶体是指具有光子带隙的周期性介电结构材料,所谓光子带隙是由于介电常数不同的材料在空间周期性排列导致介电常数的空间周期性,使得光折射率产生周期性分布,光在其中传播时产生能带结构,在带隙中的光子频率被禁止传播,因此称光子禁带,具有光子禁带特征的材料称光子晶体。 (2)光子晶体的特性 根据固体物理的理论知识,在电子晶体中,由原子排布的晶格结构产生的周期性势场会对其中的运动电子形成调制。类似于电子晶体的一些特性,光子晶体中由于介电常数的空间周期分布带来的调制作用,所以也会形成光波的的带状分布,出现不连续的光子能带,能带的间隙称为光子禁带。禁带中对应频率的光波不能被传播。 光子禁带是光子晶体的两个重要特征之一,它的另一重要特征是光子局域。按照形成光子晶体结构的介电材料的空间周期性,可将其分为一维、二维和三维光子晶体。对于一维的光子晶体来说,由于介电材料只在一个空间方向上周期排列,所以只能在这一方向上产生光子禁带。对于二维光子晶体来说,由于介电常数在两个空间方向上均具有周期分布,所以产生的光子禁带位于这两个方向或这两个波矢交面上。三维光子晶体具有全方位的周期结构,可在所有方向上产生光子禁带。产生的光子禁带又分完全带隙和不完全带隙。在具有完全带隙的光子晶体中,落在光子禁带中的光在任何方向都不能传播,而在具有不完全带隙的光子晶体中,光波只是在某些方向上被禁止。

微纳电子器件3-3(总第十一次课)

微纳电子器件
陈 军
课程内容简介
? 微纳电子器件发展
1. 2. 3. MEMS/NEMS器件 柔性微纳电子器件 真空微纳电子器件
1. 硅基CMOS器件 的发展 2. 小尺寸硅基 CMOS器件面临 的问题 3. 硅基纳米CMOS 器件技术 1. 碳纳米管和纳米线器件 2. 石墨烯纳米电子器件 3. 其它新型纳电子器件
1

第三章 硅基纳米CMOS器件技术
本章内容
1、MOSFET的演变(历史) 2、亚微米、 深亚微米MOS器件(85’-) 3、新型MOS器件(00’-) 4、SiP与3D集成(10’-)
2

2、亚微米、 深亚微米MOS管器件
? 漏工程
– LDD,FOND
? 沟道工程
– Halo,逆向掺杂(retrograde)结构
? 栅工程
– 金属栅(Silicide),高k栅绝缘层(MGHK)
? 超浅结(USJ)
(3)栅工程
? 优化栅材料和栅结构,以克服短 沟道效应 ? 分两部分
– 栅电极
? 导电率,功函数
– 栅介质层
? 介电常数 ? 厚度
3

栅极材料的要求
? 栅极材料的一般要求:
– 电阻率低 – 合适的功函数 – 热稳定性 – 机械和化学稳定性 – 与栅介质层附着力
栅极材料的发展
? 铝栅 ? 重掺杂多晶硅栅:
– 自对准,减少寄生效应 – 缺点:电阻率高,寄生电阻
? 掺杂多晶硅-金属硅化物复合栅
– 减小了寄生电阻
? 双掺杂多晶硅栅
– 亚微米器件,为抑制短沟道效应,pMOSFET采用P+多晶硅 – 问题:带来硼扩散,出现掺氮的二氧化硅介质层来解决 – 问题:器件缩小时,多晶硅耗尽效应越来越严重
? 金属栅
4

微纳光纤的光学传输特性研究【开题报告】

毕业设计开题报告 电子信息科学与技术 微纳光纤的光学传输特性研究 一、选题的背景与意义 近年来,器件的微型化成为科学研究和技术应用的趋势之一,与电子器件相比,光子器件的微型化的研究刚刚开始。从商业的角度来看,光子器件的研究源于超大量数据传输的光纤通讯行业。光纤网络的铺设实现了光子的回路,而在目前的光子回路里,光子器件的尺寸比较大。如此以来,微型光子器件的设计和集成成为光子学领域发展的重要研究课题。 微电子学技术领域也有发展微纳尺度上光子学技术的内在要求。随着集成电子技术的进展,单位电子芯片面积上的集成器件越来越多,芯片间的通讯速度成为集成电子技术的一大瓶颈,研究者们开始考虑用电子器件间微纳光波导的光互连的办法解决这个问题。 在这样的研究背景下,微纳尺度上的光子器件及集成进入研究者的视界。随着对微纳尺度上的材料和光学研究的深入,研究者在微纳尺度发现了非常有趣的光学现象,并基于这些现象研究具有各种功能的微纳光子学器件。微纳光波导是这些光学现象和器件实现的最基本的单元,成为研究微纳光子学现象和构筑光子学器件的基石。 微纳光纤是一种典型的微纳光波导,因制备简单、损耗低而受到越来越多的关注。将玻璃材料通过不同方法制成微纳米直径的光纤具有很好的直径均匀度和表面光滑度,可用于低损耗光传输,并可在可见和近红外光学传输中表现出强光场约束、大比例倏逝波传输和大波导色散等特性,在光通信、传感和非线性光学等领域具有良好的应用前景。微纳光子器件通过在波长和亚波长尺度上对光的操控,实现各种各样的功能,例如微纳传感器,微纳激光器,微纳干涉仪等。 本文主要对微纳光纤中微米级光纤的光强分布特性的进行研究,可作为的微纳光纤器件制备的参考。 二、研究的基本内容与拟解决的主要问题: 1. 基本内容 本课题建立了空气包层的微纳光纤模型,推导单模传输模式下微纳光纤的光传输速

光子晶体基本原理

光子晶体 2.1光子晶体的基本原理 大家都知道,许多研究都因类似的现象作出的假设。这是因为宇宙具有相同的模式,其中有一个高度一致的内部规则,即使拥有千变万化的外观。光子晶体也是这样,这是第一先假设光子也具有类似于电子的传输性质,不同的是电子是在普通晶体中传输,而光子是在光子晶体中传输,然后在半导体的基础上发展起来的。 另外,晶体的原子是周期性的,有序排列的,由于这个周期势场,电子的运动收到周期性布拉格散射效应,从而形成一个能带结构,带隙存在于带与带之间。如果电子波带隙能量落到带隙中,就不能继续传播。事实上,无论什么电磁波,只要受到周期性调制,就会产生一个能带结构,也有可能出现带隙。 简而言之,由于半导体中离子的周期性排列引起了能带结构的产生,而能带控制着载流子(半导体中的电子或者空穴)在半导体中运动。同样的,在光子晶体由周期性变化所产生的光的光带隙结构,从而由光带隙结构控制着光在光子晶体中的移动。 2.2光子晶体的制备 人们已广泛认识到光子晶体具有的巨大应用前景, 这是光子晶体得以应用的必要条件———光子晶体的制备工艺得到世界上众多研究人员的深入研究,在此后的时间里,关于光子晶体的理论研究和实际应用的探索得到突飞猛进的发展,已然成为国际信息科技领域的一个热点问题。 从光子晶体的维数上看,光子晶体可以分为一维光子晶体, 二维光子晶体和三维光子晶体。一维光子晶体,顾名思义,就是在一个维度上周期性排布的光子晶体,它是由两种介质块构成的,而且这两种介质块须具有不同的介电常数,并在空间上交替排列。二维光子晶体是不同介电常数的介质柱(或其他规则介质)在二维空间上周期性排列的结构,如石墨结构,在某一平面上具有周期性,而在垂直这个平面的方向上是连续不变的。三维光子晶体是在三个方向上均具有周期性结构,因此与一维、二维光子晶体在某一个或两个方向上具有光子带隙不同,它在三个方向也都具有光子禁带,也被称为全方位光子带隙。

微纳光学加工及应用

微纳光学加工及应用 孙奇 一、微纳光学结构 光是一种电磁波,是由同相相互垂直的电场与磁场在空间中以波的形式移动而形成的,其传播方向垂直于电场与磁场所构成的平面,电磁波能有效的传递能量和动量[1]。从低频到高频,电磁波可以分为:无线电波、微波、红外线、可见光、紫外光、X射线和γ射线等,人眼可见波长在380nm至780nm之间,如图1所示。 (a ) (b ) 图1. (a) 电磁波传播方式 (b) 电磁波按频率分段图(图片来自网络) 传统光学只研究可见光与物质的相互作用,而现代光学已扩展到对全波段电磁波的研究。随着微加工技术的日臻成熟,电磁波在微纳结构中的传播,散射和吸收等性质开始逐渐被人们研究。1987年,Yabnolovich和John 首次提出了光子晶

体的概念[2, 3];1998年,Ebbesen等人发现在打了周期性亚波长纳米空洞的厚金属膜上存在着超强的光投射峰,这一发现激起了对金属周期结构中表面等离激元的研究热潮[4]。从1987年至今,各领域对光学微纳结构的研究一直在迅猛发展。1.1光子晶体 从固体物理的概念中可以得知,当电子在周期性的势场中运动时,由于电子受到周期性势场的布拉格散射的作用形成了电子的能带结构,同时电子的能带与能带之间在一定的晶格条件下将存在带隙。在带隙能量范围内的电子其传播是被禁止的。运动的电子实际上也是一种物质波。无论何种波动形式,只要其受到相应周期性的调制,都将有类似于电子的能带结构同样也都可能出现禁止相应频率传播的带隙。 微纳光学结构技术是指通过在材料中引入微纳光学结构,实现新型光学功能器件。1987年,Yabnolovitch和 John在讨论如何抑制原子的自发辐射和光子局域的问题时,把电子的能带概念拓展到光学中,提出了光子晶体的概念。光子晶体就是规律性的三维微结构,其周期远小于波长,形成光子禁带,通过引入局部缺陷,控制光的传播与分束。同样的,固体物理晶格中的许多概念都可以类似的运用到光子晶体中,诸如倒格矢空间、布里渊区、色散关系、Bloch函数、Van Hove奇点等物理概念。由于周期性,对光子也可以定义有效质量。不过需要指出的是,光子晶体与固体晶格有相似处,也有本质的区别。如光子服从的是麦克斯韦方程,电子则服从薛定谔方程;光子是矢量波而电子是标量波;电子是自旋为1/2的费米子,而光子是自旋为1的波色子,等等。 根据空间的周期性分布的不同,光子晶体可以分为一维、二维和三维光子晶体,如图2所示。一维光子晶体的材料一般在一个方向上进行周期排列,例如传统的多层薄膜结构;二维光子晶体表现为材料在平面上进行周期性排列;三维光子

光子晶体简介及应用

光子晶体及其应用的研究 (程立锋物理电子学) 摘要:光子晶体(PbmDftic Crystal)是一种新型的人工材料,其最显著的特点就是具有光子禁带(Photonic B锄d.G £lp,简称PBG),频率落在光子禁带内的电磁波是禁止传播的,因而具有光子带隙的周期性奔电结构就称为光子晶体。近几年,光子晶体被广泛地应用于微波、毫米波的电路设计中。的滤波特性,加以优化,则可以实现带通滤波器。迄今为止,已有多种基于光子晶体的全新光子学器件被相继提出,包括无阈值的激光器,无损耗的反射镜和弯曲光路,高品质因子的光学微腔,低驱动能量的非线性开关和放大器,波长分辨率极高而体积极小的超棱镜,具有色散补偿作用的光子晶体光纤,以及提高效率的发光二极管等。光子晶体的出现使光子晶体信息处理技术的"全光子化"和光子技术的微型化与集成化成为可能,它可能在未来导致信息技术的一次革命,其影响可能与当年半导体技术相提并论。 关键词:光子晶体;算法;应用;

1光子晶体简介 在过去的半个世纪里,随着人们对电子在物质尤其是半导体中运动规律的研究,使得对电子控制能力的增加,从而产生了各种微电子器件以及大规模的集成电路。推动了电子工业和现代信息产业的迅猛发展,半导体技术在人们生活中扮演着越来越重要的角色。半导体的工作载体是电子,因此半导体的研究围绕着怎样利用和控制电子的特性。但近年来,电子器件的进一步小型化以及在减小能耗下提高运行速度变得越来越困难。人们感到了电子产业发展的极限,转而把目光投向了光子。与电子相比,以光子作为信息和能量的载体具有优越性。光子是以光速运动的微观粒子,速度快;它的静止质量为零,彼此间不存在相互作用,即使光线交汇时也不存在相互干扰:它还有电子所不具备的频率和偏振等特征。电子能带和能隙结构是电子作为一种波的形式在凝聚态物质中传播的结构,而光子和电子一样具有波动性,那么是否存在这样一种材料,光子作为一种波的形式在其中传播也会产生光子能带和带隙。近来大量的理论和实验表明确实存在这样一种材料,其典型的结构是一个折射率周期变化的三维物体,它的周期为光的波长,折射率变化比较大时,会出现类似于电子情况的光子能带和带隙。这种具有光子能带和带隙的材料被称为光子晶体。 在半导体材料中,电子在晶体的周期势场中传播时,由于电子波会受到周期势场的布拉格散射而形成能带结构,带与带之间可能存在

清华大学微纳电子系课程

微电子与纳电子学系 00260011 晶体管的发明和信息时代的诞生 1学分 16学时 The Invention of Transistors and the Birth of Information Age 晶体管的发明,是二十世纪最重要的科技进步。晶体管及以晶体管核心的集成电路是现代信息社会的基础,对社会的进步起着无以伦比的作用。晶体管的发明,源于19世纪末20世纪初物理学、电子学以及相关技术科学的迅速成熟。晶体管的发明造就了一大批物理学家、工程师。晶体管的发明,也随之产生了许多著名的研究机构与重要的公司,如贝尔实验室、仙童公司、Intel等都与晶体管的发明密切相关。“以铜为鉴,可正衣寇;以古为鉴,可知兴替;以人为鉴,可明得失”。晶体管发明作为现代科技史上的重大事件发生过鲜为人知的重要经验和教训,涉及科研管理、人才和科学方法等诸多方面,可以从成功和失败两个方面为后人提供十分重要的借鉴与启示。本课程试图从晶体管的发明到信息社会的诞生,探讨技术革命和创新的方向,为大学低年级学生将来从事科学研究建立正确的思想观。所讨论的课题包括,科学预见和准确选题的重要性、科学研究的方法、放手研究的政策、知人善任和合理配备专业人才等。 00260051 固体量子计算器件简介 1学分 16学时 Introduction to solid-state quantum computing devices 作为量子力学和信息学的交叉,量子信息学是最近二十多年迅速发展起来的新兴学科,量子信息处理技术能够完成许多经典信息技术无法实现的任务。比如,一旦基于量子信息学的量子计算机得以实现,其在几分钟内就可解决数字计算机几千年才能解决的问题,那么用它就可及时地破解基于某些数学问题复杂性假定之上的传统保密通信的密钥,从而对建立于经典保密系统行业的信息安全构成根本性的威胁。这种新兴技术的实现可以直接地应用于国防,政治,经济和日常生活。本课程在此大的学术背景下展开,主要介绍最有希望成为量子比特的固体量子相干器件的基本原理和目前的研究状况,以及如何用这些器件实现量子计算。 00260061 量子信息处理的超导实现 1学分 16学时 Quantum information process and its implemention with superconducting devices 基于半导体集成电路的经典信息处理技术已渗透到我们生活的各个方面,信息处理器件,例如个人电脑和手机,为我们生活质量的提高提供了强有力的技术支持。但是经典信息处理技术的继续发展面临着技术上的瓶颈,其性能很难在现有技术路线上继续提高。一种新型的完全基于量子力学原理的量子信息处理技术,有望提高信息处理的效率并解决一些经典信息处理技术无法解决的问题。量子信息处理技术的成功实施,将为我们提供绝对保密的量子通信技术和高效的量子计算机。本课程将学习量子信息处理的基本原理;超导材料的基本特性以及利用超导器件实现量子信息处理的原理与方法。通过文献调研和小组讨论等方式了解利用超导器件实现量子信息处理的最新进展和面临的挑战,探讨可能的解决方案。 00260071 智能传感在社会生活中的应用 1学分 16学时 Smart Sensing in Social Activities 智能传感已经深入到社会生活的每个领域,深刻地影响着我们的社会组织方式和行为方式。本课程采用视频、图片等多媒体方式,以活泼生动地方式,向具有不同专业背景的学生深入浅出地讲述智能传感器及其在社会和生活中的应用。例如,在文化与智能传感器章节中,结合大家熟知的电影形象《指环王》中的“咕噜”,介绍智能运动传感器在电影制作中的应用;结合《机械战警》中的形象,介绍脑机接口传感器在脑神经科学研究及帕金森症等疾病治疗中的应用。在传感器与智能交通章节中,介绍汽车中种类繁多的传感器对未来无人驾驶汽车的作用。在传感器与智能家居章节中,介绍iphone手机中集成的多种传感器,及其功能扩展。在传感器与现代国防章节中,结合南斯拉夫亚炸馆事件,介绍控制炸弹穿透多层建筑后再爆炸的

分会场十三微纳米光子学

分会场十三:微纳米光子学 主席:吴一辉(中国科学院长春光学精密机械与物理研究所) 李铁(中国科学院上海微系统与信息技术研究所) 特邀报告1:半导体太赫兹光频梳 黎华,中国科学院上海微系统与信息技术研究所,博士生导师,研究 员。2009年博士毕业于中国科学院上海微系统与信息技术研究所, 然后分别在德国慕尼黑工业大学、日本东京大学、法国巴黎七大材料 与量子现象实验室开展博士后研究工作,2015年回国工作,2016年 获得中国科学院“百人计划”A类择优支持。主要研究方向为太赫兹 量子级联激光器及其光频梳、锁模激光器、太赫兹成像及高分辨光谱 技术等。在Advanced Science、Optica、Applied Physics Letters、Optics Express等期刊上发表50余篇论文,曾获“2015中国中国电子学会优秀科技工作者”,“上海市自然科学二等奖”(排名第三)、德国“洪堡”学者奖学金、日本JSPS奖学金等。担任科技部973计划课题负责人、国家自然科学基金面上项目(2项)负责人、KJW 项目(2项)负责人等。 报告摘要: 太赫兹(THz)波(频率范围:0.1-10 THz; 1 THz=1012 Hz)位于红外光和微波之间,在国防安全、生物医疗、空间等领域具有潜在应用。由于缺乏高效THz辐射源和探测器,THz波还没有被完全认知,所以其被称为THz间隙(“terahertz gap”)。在1-5 THz 频率范围内,基于半导体电泵浦的光子学器件THz量子级联激光器(quantum cascade laser, QCL)在输出功率和效率方面比电子学和差频器件高,是关键的THz辐射源器件。本报告主要介绍我们在高性能THz核心器件以及半导体光频梳方面的研究进展。在高性能核心器件方面,我们突破分子束外延生长和半导体工艺技术,研制出高功率(1.2 W)、低发散角(2.4°)、宽频率范围THz QCL器件并实现THz高速探测和多色成像。基于高性能半导体THz QCL器件,成功实现THz QCL光频梳以及双光梳。克服传统THz光谱仪在测量时间和光谱分辨率方面的缺陷,开发出基于THz QCL双光梳的紧凑型高分辨实时光谱检测系统,为将来实现新一代THz光谱仪奠定基础。

光子晶体并行Matlab仿真研究与实现

基金项目:国家自然科学基金(60571020) 收稿日期:2007-08-09 修回日期:2007-08-22 第25卷 第9期 计 算 机 仿 真 2008年9月 文章编号:1006-9348(2008)09-0312-04 光子晶体并行M atl ab 仿真研究与实现 刘 瑜,梁 正,杨梓强 (电子科技大学物理电子学院,四川成都610054) 摘要:由于M atl ab 软件的网络通信局限,使得在并行时域有限差分(FDTD)计算仿真中,难以实现子域间的消息发送与接收操作。针对这个问题,提出一种新的基于磁盘-内存互逆映射的解决方法,在简化并行F DTD 算法实现的同时,显著提高了算法执行性能。作为算法实现的应用,对光子晶体光波导的电磁耦合效应进行了数值仿真研究,结果证实:波导耦合区域内不同半径比介质柱所导致的结构变化将造成耦合长度的改变,且其耦合关系曲线具有平稳区与迅变区两类不同特性的变化范围区间。 关键词:并行时域有限差分算法;磁盘-内存互逆映射;光子晶体;电磁耦合效应中图分类号:TP391.9 文献标识码:A Study and I mple m entati on of Parallel FDTD A l gorith m for Si m ul ati on of Photonic C rystals U si ng M atl ab L I U Yu ,LI ANG Zheng ,YANG Z i-qiang (Schoo l of Phy si ca l E l ec tron i cs ,U nivers it y of E lectronic Sc ience and T echno l ogy of Chi na , S i chuan Chengdu 610054,China) ABSTRACT :O n account o f the li m itati on of the communicati ons i n M a tlab soft w are ,it is d ifficult to carry out mes sage send i ng and rece iv i ng a m ong subdo m a i ns fo r the pa ra lle l fi n ite-diff e rence ti m e-doma i n (FDTD )a l gor it hm .T o reso l ve t h is proble m,a new m ethod based on m ut ua lly i nv erse m apping o f the d i sk-m e m ory is presented ,w hich can s i m p lify and i m prove obv i ousl y t he para llel FDTD a l go rith m.By usi ng this me t hod ,si m ulati on o f the e lectro m ag ne tic coupli ng effect of photon i c crystals w avegu i de i s co m pleted .N u m erical resu lts show that the structural changes caused by d ifferent rad i us rati o of die l ectric cy li ndersw ill a lter the coupli ng length o f the w aveguide ,and the coup li ng re l ationsh i p curve has t wo k i nds of d ifferent v ary i ng scope zone :stab l e zone and a ltering zone . KEY W ORDS :P ara ll e l fi n ite-difference ti m e-do m a i n a l go rith m;M utua ll y i nverse m appi ng o f the disk-m e m ory ;Photon i c crystals ;E lectro m agne tic coupli ng effect 1 引言 作为一种强有力的工程仿真工具,M a tlab 在光子晶体的FDTD (时域有限差分法)模拟中得到了广泛应用。由于M at lab 具有数值计算与图形处理能力,可以很好的简化FDTD 算法的编程实现,使研究者将重点放在模拟算法本身上,而不必在编程细节上花费过多时间。因此,对于光子晶体数值研究的一些原型问题,M atlab 平台是算法实现的一种很好选择。 M a tl ab 软件本身不具备网络通信的功能,限制了其在并行与协同仿真计算中的应用,但数值模拟问题规模的不断扩大,使单机的内存容量与计算能力都难以承担。对此,文献 [1]通过开发M a tlab 环境下的网络通信工具箱来扩展并行功能,而M atlab 软件本身也从7.0版本后增加了分布式计算工具箱[2],对并行计算提供一定的支持。但是,这些工具箱存在种种使用上的限制,对FDTD 仿真缺乏通用性,计算性能也难以令人满意。本文针对光子晶体并行FDTD 仿真的实际情况,利用操作系统提供的内存-网络-硬盘三者之间的映射与重定向功能,通过统一简洁的M atlab 文件I /O (输入/输出)方式来实现并行协同计算。并以此为工具,对光子晶体光波导的电磁耦合效应进行了FDTD 仿真研究。 2 M atlab 并行FDTD 仿真原理 FDTD 算法的基础是对M ax w e ll 方程组中两个旋度方程在时间和空间上进行差分离散[3],空间离散在计算机内存中的表示形式是多维数组,而时间离散则表现为紧耦合多维数

以平面波展开法分析光子晶体能带结构.

以平面波展開法分析光子晶體能帶結構 廖淑慧講師 中州技術學院電子工程系 黃坤賢學生 黃照智學生 中州技術學院電子工程系 摘要 光子晶體的主要特色在於所謂的光子能隙—電磁波無法在能隙中傳播。雖然三維的光子晶體被認為是最具應用潛力的,但是二維光子晶體的結構在製程上卻佔有較易製作的優勢,所以在光電元件裝置及相關研究領域上亦廣為使用。我們使用平面波展開法,分別計算一維和二維光子晶體的能帶結構。根據理論分析的結果,我們發現一維光子晶體無論介電常數差異如何,總是存在著光子能隙。對於二維正方晶格的結構計算,我們發現正方晶格對TM波有能隙,對TE波則無。 關鍵詞: 光子晶體,光子能隙,平面波展開法 壹﹑前言 當半導體中的電子受到晶格的週期性位勢(periodic potential)散射時,部份波段會因破壞性干涉而形成能隙(energy gap),導致電子的色散關係(dispersion relation)呈帶狀分佈,此即所謂的電子能帶結構(electronic band structure)。西元1987年,E. Yablonovitch 與S. John不約而同地提出相關見解[1][2],說明類似的現象亦存在於所謂的光子系統中。根據他們提出的研究報告顯示,在介電係數呈週期性排列的三維介電材料中,電磁波被散射後,某些波段的電磁波強度將會因破壞性干涉而呈指數衰減,無法在該材料內傳遞,這樣的現象相當於在對應的頻譜上形成能隙,因此,色散關係也具有帶狀結構,此即所謂的光子能帶結構(photonic band structure)。這種具有光子能帶結構的介電物質,就稱為光子晶體(photonic crystal)。 事實上,在三維光子能帶結構的概念尚未被提出之前,科學家們對於一維的光子晶體(層狀介電材料) 的研究早已行之多年。電磁波在一維的光子晶體中的干涉現象早已應用在各種光學實驗以及相關的應用產品之中,例如作為波段選擇器、濾波器、繞射光柵元件或反射鏡等。因為科學界一直未能以「晶格」的角度來看待週期性光學材料,所以遲遲未能將固態物理上已發展成熟的能帶理論運用在這方面。直到1989年,Yablonovitch與Gmitter首次嘗試在實驗上證明三維光子能帶結構的存在[3],終於引起相關研究領域的注意,並且開始大舉投入這方面的研究。

常见光学仿真设计软件

1.APSS.v 2.1.Winall.Cracked 光子学设计软件,可用于光材料、器件、波导和光路等的设计 2.ASAP.v7.14/7.5/8.0.Winall.cracked/Full 世界各地的光学工程师都公认ASAPTM(Advanced Systems Analysis Program,高级系统分析程序)为光学系统定量分析的业界标准。 注:另附9张光源库 3.Pics3d.v200 4.1.28.winall.cracked 电子.光学激光2D/3D有限元分析及模形化装置软件 https://www.doczj.com/doc/c87353248.html,stip.v2004.1.28.winall.cracked 半导体激光装置2D模拟软件 5.Apsys.2D/3D.v2004.1.28.winall.cracked 激光二极管3D模拟器 6.PROCOM.v2004.1.2.winall.cracked 化合物半导体模拟软件 7.Zemax.v2003.winall.cracked/EE ZEMAX 是一套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起。 8.ZEBASE Zemax镜头数据库 9.OSLO.v6.24.winall.licensed/Premium OSLO 是一套处理光学系统的布局和优化的代表性光学设计软件。最主要的,它是用来决定光学系统中最佳的组件大小和外型,例如照相机、客户产品、通讯系统、军事 /外太空应用以及科学仪器等。除此之外,它也常用于仿真光学系统性能以及发展出一套对光学设计、测试和制造的专门软件工具。 10.TracePro.v324.winall.licensed/Expert TracePro 是一套能进行常规光学分析、设计照明系统、分析辐射度和亮度的软件。它是第一套以符合工业标准的ACIS(固体模型绘图软件)为核心所发展出来的光学软件,是一个结合真实固体模型、强大光学分析功能、信息转换能力强及易上手的使用界面的仿真软件,它可将真实立体模型及光学分析紧紧结合起来,其绘图界面非常地简单易学。 11.Lensview.UPS.winall.cracked LensVIEW 为搜集在美国以及日本专利局申请有案的光学设计的数据库,囊括超过 18,000个多样化的光学设计实例,支持Zemax,OSLO,Code V等光学设计软件。 12.Code V.v940.winall.licensed CODE V是美国著名的Optical Research Associates公司研制的具有国际领先水平的大型光学工程软件。 13.LightTools.v4.0/sr1.winall.cracked LightTools是一个全新的具有光学精度的交互式三维实体建模软件体系,提供最现代化的手段直接描述光学系统中

光子晶体

光子晶体的特点、制备与应用 (哈尔滨工业大学,黑龙江省哈尔滨150090) 摘要:光子晶体是20世纪80年代末提出的具有光子能带及能隙的新概念和新材料,由于光子晶体具有光子带隙、光子局域和控制光子态密度等特性, 所以它具有广阔的应用前景。本文简述了光子晶体的主要特征, 重点介绍了其制备方法、进展以及现有应用和发展前景。 关键词:光子晶体;光子晶体的制备;光子晶体的应用; Characteristics, preparation and application of the photonic crystal Abstract:Photonic crystal is a new concept and new material with photonic band and energy gap at the end of the 1980 s. Because photonic crystal has the properties of photonic band gap, photon localization and control the photon density of states, it has peculiar properties and vast application prospect. This essay briefly introduce the main features of photonic crystal, emphasis introduce the preparation methods, progress and the existing application and development prospect. Keywords: Photonic crystal, the preparation of photonic crystals,the application of the photonic crystal 1引言 光子晶体是电介质材料周期性排列形成的人造晶体,电磁波在其中的色散关系可以用类似于表征电子在半导体中运动的能带结构来描述称之为光子带结构。在光子晶体中可能存在的带隙称之为光子带隙。人们从各个角度展开了对它的理论和实验研究, 取得了迅速的发展, 尤其是介电常数呈三维周期性排列的光子晶体的理论研究和实验制作更受到高度重视。[1]由于光子带隙的存在,

光子晶体光纤设计与分析

光子晶体光纤设计与分析 摘要:光学物理学家探索的光子晶体材料应用中,光纤无疑是最具有前景的一项应用。光子晶体光纤(以下简称PCF)是一种新型光波导,具有与普通光纤截然不同的特性。这种新型光纤可以分为两个基本类型——折射率波导和带隙波导。由于横向折射率分布有很大的自由度,所以折射率波导型PCF可以设计成具有高度反常色散、非线性以及双折射等特性的光纤。关键词:PCF原理结构分析制备特性应用 正文: 一.PCF的导光原理 按导光机理来说,PCF可以分为两类:折射率导光机理和光子能隙导光机理。 1.1折射率导光机理 周期性缺陷的纤芯折射率(石英玻璃)和周期性包层折射率(空气)之间有一定差别,从而使光能够在纤芯中传播,这种 同,由于包层包含空气,所以这种机理称为改进的全内反射,这是因为空芯PCF中的小孔尺寸比传导光的波长还小的缘故[3]。 1.2光子能隙导光机理 理论上求解光波在光子晶体中的本征方程即可导出实芯和空芯PCF的传导条件,即光子能隙导光理论。如图2所示,光纤中心为空芯,虽然空芯折射率比包层石英玻璃低,但仍能保证光不折射出去,这是因为包层中的小孔点阵构成光子晶体。当小孔间距和小孔直径满足一定条件时,其光子能隙范围内就能阻止相应光传播,光被限制在中心空芯之内传输。最近有研究表明,这种PCF可传输99%以上的光能,而空间光衰减极低,光纤衰减只有标准光纤的1/2~1/4[4]。 空芯PCF光子能隙传光机理具体解释为:在空芯PCF中形成周期性的缺陷是空气,传光机理是利用包层对一定波长的光形成光子能隙,光波只能在空气芯形成的缺陷中存在和传播。虽然在空芯PCF中不能发生全内反射,包层中的小孔点阵结构起到反射镜的作用,使光在许多小孔的空气和石英玻璃界面多次发生反射。 二.PCF的结构与制作 PCF的结构一般是在石英光纤中沿径向有规律地排列着许多空气孔道,这些微小的孔道沿光纤轴线平行排列。根据其结构类型可以分为实心光纤和空心光纤。实心光纤是纤芯为石英玻璃、包层为石英玻璃中分布许多空气孔道和石英玻璃壁的组合体。空心光纤的纤芯为一条直径较大的空气孔道,包层与实心光纤类似。通过设计这些空气孔的位置、大小、间距及占空比等波长量级的特征参数,对某以波段形成带隙,从而对这一波段的光传播是实现控制。 光子晶体的制作都要经过拉伸、堆积和熔合等过程,如Knight J C等的制作方法: (1)取一根直径为30mm的石英棒,沿其轴线方向上钻一条直径为16mm的孔,随后将石英棒研磨成一个正六棱柱; (2)把该石英棒放在2000℃的光纤拉丝塔中,将它拉成直径为0.8mm的细长正六棱柱丝; (3)把正六棱柱丝切成适当长度的若干段,然后堆积成需要的晶体结构,再把它们放到拉丝塔中熔合、拉伸,使内部空气孔的间距减小到50Λm左右,形成更细的石英丝; (4)在以上工作的基础上,把上述石英丝高温拉伸,形成最后的PCF。在以上3个阶段的拉伸过程中,晶胞减少了104数量级以上,最后形成的光子晶体的孔间距在2Λm左右。PCF 沿着石英丝的轴向均匀排列着空气孔,从PCF 的横切面看,存在着周期性的二维结构。如果核心处引入一个多余的空气孔,或者在应该出现空气孔的地方由均匀硅代替,从而在光子晶体中引入一

相关主题
文本预览
相关文档 最新文档