当前位置:文档之家› 放射治疗技术新进展(一)

放射治疗技术新进展(一)

肿瘤放射治疗知识点及试题

名词解释 1.立体定向放射治疗(1. 2.2)指借助CT、MRI或血管数字减影仪(DSA)等精确定位技术和标志靶区的 头颅固定器,使用大量沿球面分布的放射源,对照射靶区实行聚焦照射的治疗方法。 2.立体适形放射治疗(1.2.2)是通过对射线束强度进行调制,在照射野内给出强度变化的射线进行治疗,加 上使用多野照射,得到适合靶区立体形状的剂量分布的放射治疗。 3.潜在致死性放射损伤(1.2.4)当细胞受到非致死放射剂量照射后所产生的非致死性放射损伤,结局可导 致细胞死亡,在某些环境下(如抑制细胞分裂的环境)细胞的损伤也可修复。 4.亚致死性放射损伤(1.2.4)较低剂量照射后所产生的损伤,一般在放射后立即开始被修复。 5.加速再增殖(1.2.4)在放疗疗程中,细胞增殖的速率不一,在某一时间里会出血细胞的加速增殖现行,此 现象被为称为加速再增殖。 6.常规放射分割治疗(1.2.1)是指每天照射1次,每次1.8-2.0Gy,每周照射5d,总剂量60-70Gy,照射 总时间6~7周的放疗方法。 7.非常规放射分割治疗(1.2.1)指对常规放射分割方式中时间-剂量-分割因子的任何因素进行修正。一 般特指每日照射1次以上的分割方式,如超分割治疗及加速超分割治疗。 8.放射增敏剂(1.2.1)能够提高放射肿瘤细胞的放射敏感性以增加对肿瘤的杀灭效应,提高局控率的药物。 包括嘧啶类衍生物、化疗药物和缺氧细胞增敏剂。 9.放射保护剂(1.2.1)能够有效的保护肿瘤周围的正常组织,减少放射损伤,同时不减少放射对肿瘤的杀灭 效应化学修饰剂。 10.热疗(1.2.1)是一种通过对机体的局部或全身加温以达到治疗疾病的目的的治疗方法。 11.亚临床病灶临床及显微镜均难于发现的,弥散于正常组织间或极小的肿瘤细胞群集,细胞数量级≤ 106,如根治术或化疗完全缓解后状态。 12.微小癌巢为显微镜下可发现的肿瘤细胞群集,细胞数量级>106,如手术边缘病理未净。 13.临床病灶临床或影像学可识辨的病灶,细胞数量级≥109,如剖腹探查术或部分切除术后。 14.密集肿瘤区(GTV)指通过临床检查或影像检查可发现(可测量)的肿瘤范围,包括原发肿瘤及转移灶。 15.计划靶区(PTV)指考虑到治疗过程中器官和病人的移动、射野误差及摆位误差而提出的一个静态 的几何概念,包括临床靶区和考虑到上述因素而在临床靶区周围扩大的范围。CTV+0.5cm 16.“B”症状临床上将不明原因发热38℃以上,连续3天;盗汗;不明原因体重减轻(半年内体重减 轻大于10%)称为“B”症状。 17.咽淋巴环(韦氏环,Waldege’s ring)是由鼻咽腔、扁桃体、舌根、口咽以及软腭背面淋巴组织 所围绕的环形区域。 1、肿瘤放射治疗学:是研究和应用放射物质或放射能来治疗肿瘤的原理和方法一门临床学科。它包括放射物理学、放射生物学、放疗技术学和临床肿瘤学。 2、放射物理学——研究各种放射源的性能和特点,治疗剂量学和防护。 3、放疗技术学——研究具体运用各种放射源或设备治疗病人,射野设置定位技术摆位技术。 4、放射生物学——研究机体正常组织及肿瘤组织对射线反应以及如何改变这些反应的质和量。 5、临床肿瘤学——肿瘤病因学,病理组织学,诊断学以及治疗方案的选择,各种疗法的配合。 6、亚致死性损伤(sublethaldamage,SLD) 细胞受到照射后在一定时间内能够完全修复的损伤。 7、潜在致死性损伤(potential lethal damage,PLD)细胞受到照射后在适宜的环境或条件能够修复,否则将转化为不可逆损伤,从而最终丧失分裂能力。 8、致死性损伤(lethal damage,LD)细胞所受损伤在任何条件下都不能修复。 9、氧效应:放射线和物质作用在有氧和无氧状态下存在差异的现象 无氧状态产生一定生物效应的剂 10、氧增强比=————————————————————

肿瘤放射治疗技术的现状与发展

原创:肿瘤放射治疗技术的现状与发展 摘要放射治疗在过去的十年中经历了一系列技术革命,相继出现了三维适形放疗(3DCRT)、调强放疗(IMRT)、质子放疗等技术,这些技术的主要进步是靶区剂量分布适形性的提高。但是,由于呼吸运动等因素的影响,在放疗实施过程中肿瘤及其周围正常组织会发生形状和位置的变化,这种不确定性一定程度阻碍了3DCRT和IMRT技术的发展。图像引导放疗技术(IGRT)的出现,对补偿呼吸运动影响的肿瘤放疗取得了很好的疗效,特别是近年来提出的四维放射治疗(4DRT)技术,进一步丰富了IGRT的实现方式。本文将详细介绍现有的各种放疗技术及其存在的问题,同时讨论一下放疗技术的未来发展方向。 关键词图像引导放疗;锥形束CT;四维放疗;呼吸门控系统 1引言 理想的放疗目的是精确给予肿瘤高剂量的同时尽量减少对靶区周围正常组织的照射。近年来3DCRT和IMRT技术实现了静态三维靶区剂量分布的高度适形,较大程度上解决了静止且似刚性靶区的剂量适形放射问题。然而,在实际放疗过程中,主要由呼吸运动引起的内部组织的运动和形变(主要是胸部和腹部的靶组织),严重影响了IMRT和3DCRT技术的准确实施。如在单次放疗中,呼吸运动和心脏跳动会影响胸部器官或上腹部器官的位置和形状,胃肠蠕动也会带动邻近的靶区;在分次放疗间随着疗程的进行出现的肿瘤的缩小或扩展;消化系统和泌尿系统的充盈程度;在持续的治疗过程中患者身体变瘦或体重减轻等造成的靶区和标记的相对移位。针对上述问题,我们迫切需要某种技术手段去探测肿瘤的摆位误差和运动形态,并且这种技术可以对靶区的形态变化采取相应的补偿和控制措施。IGRT正是基于以上问题的出现而产生的。现在我们可以采用在线校位和自适应放疗技术去解决分次间的摆位误差和靶区移位问题,也可以采用呼吸限制、呼吸门控、四维放疗等技术对单次放疗中出现的靶区运动进行补偿和控制,而这些技术都是属于IGRT的范畴[2]。后面的内容将分别介绍IMRT技术、IGRT 技术的不同实现方式,包括呼吸限制、呼吸门控、自适应放疗、四维放疗,最后介绍一下未来放疗技术及设备的发展方向。 2肿瘤放疗技术的现状 由于目前各种放疗技术各具优势及经济市场发展等原因,不同的放疗技术还处于并存的状态,适形调强放疗和图像引导放疗的部分技术代表了放疗领域的现状。 2.1适形调强放射治疗 适形调强放疗技术包括三维适形放疗和调强放疗。三维适形放疗是通过采用立体定位技术,在直线加速器前面附加特制铅块或利用多叶准直器来对靶区实施非共面照射,各射野的束轴视角(beam eye view, BEV)方向与靶区的形状一样,使得剂量在靶区上的辐射分布可以更加准确,而对周围正常组织的照射又可降到较低程度[3]。与以往的常规放疗相比,三维适形放疗设备的突出优势是多叶准直器的使用。多叶准直器所产生的辐射野可以根据肿瘤在空间任何角度方向(一般指机架旋转360度范围内)上的几何投影形状而改变,使辐射野的几何形状与肿瘤投影相匹配。如美国Varian生产的23EX直线加速器上面装配有60对多叶

质子和重离子加速器放射治疗技术临床应用质量控制指标

附件14 质子和重离子加速器放射治疗技术 临床应用质量控制指标 (2017年版) 一、适应证符合率 定义:符合质子或重离子放射治疗临床适应证的患者例次数占同期质子或重离子放射治疗总例次数的比例。 计算公式: ×100% 适应证符合率= 符合该机构制定的临床治疗适应证的例次数 同期质子或重离子放射治疗总例次数 意义:反映医疗机构质子或重离子放射治疗的规范性。 二、病理诊断率 定义:实施质子或重离子放射治疗前有明确病理诊断的患者数占同期质子或重离子放射治疗患者总数的比例。 计算公式: 病理诊断率= 接受质子或重离子放射治疗前有明确病理诊断的患者数 ×100% 同期质子或重离子放射治疗患者总数 意义:反映医疗机构质子或重离子放射治疗的规范性。 三、临床TNM分期比例 定义:根据AJCC/UICC临床TNM分期标准,对于接受质子或重离子放射治疗的患者进行分期。临床TNM分期比例是指对实施质子或重离子放射治疗的患者进行各临床TNM分期的患者数占同期质子或重离子放射治疗患者总数的比例。 计算公式:

临床TNM分期比例= 进行各临床TNM分期的患者数 ×100% 同期质子或重离子放射治疗患者总数 意义:反映医疗机构质子或重离子放射治疗的规范性。 四、MDT执行率 定义:MDT(Multidiciplinary Team)是指多学科综合治疗团队。MDT执行率是指实施质子或重离子放射治疗的患者,治疗前执行MDT的患者数占同期质子或重离子放射治疗患者总数的比例。 计算公式: MDT执行率= 治疗前执行MDT的患者数 ×100% 同期质子或重离子放射治疗患者总数 意义:反映医疗机构质子或重离子放射治疗的规范性。 五、知情同意书签署率 定义:实施质子或重离子放射治疗的患者,治疗前签署知情同意书的患者数占同期质子或重离子放射治疗患者总数的比例。 计算公式: ×100% 知情同意书签署率= 治疗前签署知情同意书的患者数 同期质子或重离子放射治疗患者总数 意义:反映医疗机构质子或重离子放射治疗的规范性。 六、治疗方案完成率 定义:实施质子或重离子放射治疗的患者,完成既定治疗方案的患者数占同期质子或重离子放射治疗患者总数的比例。 计算公式:

放射治疗专业技术规范

肿瘤放射治疗技术规范 1.放射治疗技术操作基本规范............................................................22.放射治疗医嘱规范 (5) 3.乳腺癌放疗摆位规范……………………………………………………………74.胸部肿瘤放疗摆位规范………………………………………………………105. 头颈部肿瘤放疗摆位规范……………………………………………………116.腹部肿瘤放疗摆位规范………………………………………………………1 2 7.全中枢神经系统肿瘤放疗摆位规范…………………………………………13 8.放射治疗计划制定规范 (14) 9.加速器操作规程..................................................................1810.模拟机操作规程 (19) 11. CT模拟定位机操作规程 (20) 12.洗片机工作规程.....................................................................21 13.治疗计划室操作规程 (22) 14. 模具室操作规程 (24) 15.放射治疗技术规范质量保证﹑质量控制(QA﹑QC)…………………………26

放射治疗技术操作基本规范 1、放疗患者治疗单的接受 当拿到治疗单时要做“三查五对”的工作: 1)查机器类型、射线性质。 2)查治疗单内容是否清楚、是否有主管医生的签名。 3)查患者体表照射野是否清楚,特殊患者请主管医生来共同摆位。 4)对姓名、对性别、对诊断及医嘱、对累积剂量、对病人联系电话及地址。 确认上述各项正确情况下实施技术员双签名制度(摆位签名、抄单签名)。2.进入治疗室前与患者的谈话 治疗前与患者的谈话主要是交待注意事项: 1)放疗期间保证照射野的清晰。保持皮肤干燥。 2)不能随意擦洗红色线条和红色十字中心。 3)照射时不要紧张、不能移动。 4)在治疗中如有不适请随时示意。 5)治疗结束不能自己下治疗床。 3、数据的输入:按医嘱正确的输入该次治疗所需的全部数据及指令,核对所有技术文件是否准确。 4、进入治疗室: 1)同中心摆位,需要两位技术员共同摆位,进机房时一人在前一人在后,确保患者安全进入治疗室。 2)检查治疗机机架归零,光栏归零,床体归零。 3)放置同定装置,按照医嘱使患者处于治疗体位。 4)充分暴露照射野,清除照射野区异物,确定照射野及同中心标记清晰。 5)两位技术员共同确认辅助装置使用是否正确。 6)若非共面照射时,应做到先转机架再转床。 7)成角照射:ssD照射必须先打机架角度,再升降床面对源皮距。SAD照射则先调整源皮距后再打机架角度。检查机头托盘上是否有铅块或其他附件,防止掉

肿瘤放射治疗技术新进展

肿瘤放射治疗技术新进展 2007-12-17 放射肿瘤学由于高科技的发展已取得了许多理论上和技术上的突破,本文简要介绍了放射生物科学,生物等效剂量超分割以及三维调强立体定向放射等技术的进展。 1放射生物学进展 1.1放射生物学的进展以线性——平方模式(Linear-Quadratic model)来解释放射生物学中的反应,以α/β系数来预测放射治疗剂量时间疗效关系,为放射生物学开辟了较为广阔的天地。近年来深入研究了细胞周期,即增殖期(G1-S-G2-M)和静止期(G0)的关系,为此提出了4个R:即是修复(Repair),再氧化(Reoxygenation)和再分布(Redistribution)和再增殖(Regeneration)作为指导放射生物中克服乏氧等问题的研究要点,放射生物学推进到目的明确,针对性强的有效研究中去。近年来在研究细胞修复和增殖中又进一步了解到细胞凋亡(Apoptosis)和细胞分裂(Mitosis)的关系后,提出了凋亡指数(AI)与分裂指数(MI) (Apoptosisindex/Mitosisindex)比来予测放射敏感性和预后,指导调发自发性凋亡和平衡各种细胞的抗放、耐药(即Resistant RT和Resistant Chemotherapy),并由此估计复发,研究增敏,开发出超分割、加速超分割治疗等新技术,从而取得了科研及临床的许多新结果,加深了理论深度,开拓出新的领域,推动了放射治疗学的进展。 1.2DNA和染色体研究 为了测定肿瘤细胞本身辐射损伤,染色体中DNA链中的断裂(单链断裂SSB和双链断裂DS,其断裂的准确位置,以及在这个过程中,肿瘤细胞如何进行修复,也观察到错误修复,以及无修复等对细胞的子代产生的决定作用。目前临床用对DNA调节机制的多种原理表达进行测试,可以分清那些是有意义的表达,那些是灵敏的表达,建立对临床治疗,预后评估的方法学和化验项目,指导放射生物学,放射物理学,临床放射肿瘤学的发展,使更有目的性,针对性和实用性。放射生物学从细胞水平已进入到大分子水平,从纯实验室过渡到临床初步应用阶段。 2放射物理技术的进展 2.1立体定向治疗的实现 基于电子计算机精度提高,双螺旋CT及高清晰度MRI出现,因此立体定向治疗应运而生,目前使用的γ-刀,从某种意义来说是一个立体定向放射手术过程(Sterol Radiation Surgery,SRS),它通过聚焦,等中心照准,于单次短时间或多次较长时间给予肿瘤超常规致死量治疗,达到摧毁瘤区细胞的目的,γ刀利用约30~200个钴源,在等中心条件下,从立体不同方向位置,在短距离内对细小肿瘤(或良性肿瘤,先天畸形等病灶,一般约1~2cmΦ)进行一次或多次照射,给予总剂量超过肿瘤及正常组织耐受量,用准确聚焦的办法使多个60Co源的剂量集中在靶区,分射束聚焦使周围正常组织受量仍在可能的耐受量中,由于采用电脑、CT,以及准确的立体设计定位,因而射野边界锐利可达±2mm以下,确保了非瘤区正常组织安全。应用于脑部的良性小肿瘤和先天性畸形效果尤佳,应用于脑干等生命禁区

放射治疗技术介绍

放射治疗技术介绍 肿瘤是一种常见病、多发病,恶性肿瘤是危害人类健康最严重的疾病。1983年,吴桓兴在肿瘤学中将肿瘤定义为;肿瘤是肌体中成熟的或在发展中的正常细胞,在有关因素的作用下,呈现过度增生或异常分化而形成的新生物。我们应从以下几点来认识肿瘤。1肿瘤是由正常细胞在多种致瘤因素的长期作用下转变而来的。2肿瘤是失去机体控制、过度生长的细胞群体。3肿瘤的发生、发展与机体的免疫系统的功能密切相关。 放射治疗是通过射线的电离作用引起生物体细胞产生一系损伤过程。放射肿瘤学是建立在放射生物学、放射物理学、临床肿瘤学和放疗技术学基础上的学科。随着肿瘤学的发展,它和外科肿瘤学、内科肿瘤学组成了治疗恶性肿瘤主要手段。 放射治疗临床简称为放疗,是治疗恶性肿瘤的主要手段之一,被称之为放射肿瘤学。1895年伦琴发现X线,1896年居里夫妇发现了镭,它的生物学效应很快就得到了认识。1899年放射治疗治愈了第一例病人。至今已有百年的历史。放疗已成为当今治疗恶性肿瘤的主要手段之一。Tubiana(蒂比亚纳)1999年报告45%的恶性肿瘤可治愈。其中手术治愈22%,放疗治愈18%,化疗药物治愈5%。 一、放射治疗 1.1 放射物理学术语 放射源:一切能产生电离辐射(光子和粒子)的物质或设备,称为放射源。 体外照射(远距离治疗):用各种放射源在体外进行照射,远距离治疗剂量分布均匀,深度量高,适用于深部肿瘤。 远距离治疗(体外照射)的主要设备:(1)深部X线机:作为外照射源,深部X线已很少使用,以往多用于浅表肿瘤的治疗,管电压多在180~250kV。(2)钴-60远距离治疗机:该机由一个不断放射源钴-60及附属防护装置和治疗机械装置构成。主要依靠它发射的γ 射线来治疗肿瘤,平均能量1.25MeV,它与深部X射线比较有下列优点:皮肤量低,最大剂量点在皮下0.5cm,深部剂量高,骨吸收量低等特点。缺点:半衰期短,为5.3年,一般3年要更换源1次。(3)直线加速器:使用最多的是电子感应加速器及电子直线加速器,因其既可产生电子束,又可产生高能X射线。高能电子束具有突出内四)的物理学特点:剂量自皮肤到达预定深度后骤然下降,可保护靶区后面的正常组织;可以通过调节能量来调节电子束的深度;皮肤剂量介于深部X射线及钴-60之间,但其剂量骤然下降的特点,随着能量超过25MeV以后逐渐消失,所以适合治疗中、浅层偏心肿瘤;等剂量曲线很扁平,放射野内剂量分布均匀;对不同组织的吸收剂量差别不大。 1.2 高能X射线特点皮肤反应小,其最大剂量点在皮肤下;等剂量曲线均匀、平坦,照射野中心和边缘剂量相差5%左右;深度剂量高,容积剂量小,骨吸收小。能量4~15MeV,最常用6MeV。但加速器设备复杂,对水电要求高,对维修技术要求高,价格昂贵。照射野:表示射线束经准直器后垂直通过体模的范围,以体模表面的截面大小表示照射野的面积。源皮距:照射源到体模表面照射野中心的距离。源轴距:照射源到机架旋转轴或机器等中心的距离。 放疗是研究各种放射线与生物体相互作用,并用它来治疗各种恶性肿瘤的一门学科。是在放射物理学、临床放射生物学及肿瘤学三种学科的基础上发展起来的,是根据肿瘤的生物学特性和临床特点,应用射线的物理特性及剂量分布的特点、生物学的特点进行治疗它可以破坏肿瘤细胞而很小损伤正常组织。与外科手术比较有其独特的优越性。是对前列腺癌、鼻咽癌、口腔癌、宫颈癌、膀胱癌、皮肤癌等放射敏感肿瘤进行治疗的首选方案。取代了外科

磁共振模拟(MRSIM)_肿瘤放疗模拟技术新前沿

磁共振模拟——站在肿瘤放疗的最前沿 磁共振模拟 站在肿瘤放疗的最前沿
黄岁平 博士 关键词:磁共振模拟 MRSIM 据有关调查显示,目前全世界范围内的肿瘤患者,约有 70%需要接受不同程 度的放射治疗,以达到治愈肿瘤或缓解症状、改善生活质量的目的。能够最大限度 地把放射剂量集中到病变(靶区)内,杀灭肿瘤细胞,同时使其周围正常组织和器 官少受或免受不必要的照射,从而得到保护,是肿瘤放射治疗一直以来追求的目 标。 20世纪 70年代 CT的使用是放射治疗计划所取得的一个巨大进步。引入 CT 图像的模拟增加了临床医生对靶区体积的空间意识,从而较之原有的传统治疗的靶 区体积(由垂直 X线胶片确定)产生了一个质的改变-----CT扫描得到一系列断层 轴面,经过多种方式的三维重建,形成一个三维计划,这使得适形放射治疗 (CRT)的概念得以实现。但 CT却有一些先天的局限性----它只对具有不同的电 子密度或 X线吸收特征的组织结构具有较好的分辨率(如空气对骨或对水或软组 织),但如果没有明显的脂肪或空气界面,则对具有包括肿瘤在内的相似电子密度 的不同软组织结构区分较差。相比之下,磁共振最大的优点就是对具有相似电子密 度的软组织有较强的显示能力并且能区分其特征。在这种情况下,磁共振能够更好 的提供靶区的轮廓,不但包括肿瘤的范围,而且还包括临近的重要软组织器官。通 过更准确地定位肿瘤靶区、避免危及临近的组织器官、以及提高局部控制率等。
一.磁共振模拟独特的优越性。
事实上,临床医生早已意识到诊断性的 MRI扫描对肿瘤体积的确定具有相当 重要的信息补充,引入 MR图像作定位由来已久。最早通常是由医生用肉眼在 MRI上观察疾病的范围,然后手工将数据转移至模拟胶片或 CT扫描片上,这种方 法极易产生解释和转译错误。第二种方式是通过使用一种放大投影系统将 MRI图 像叠加到模拟胶片或 CT图像上进行融合处理的 MR辅助的模拟。第三种更加定量 的方式是将 MRI图像与 CT图像进行融合,那样就可以将 MRI上具有较高分辨率 的肿瘤图像与几何精确的 CT图像中电子密度信息结合起来。但以上任意一种融合 方式都是在放疗过程中增加了一个步骤,也就是说,延长了整个放疗过程花费的时 间,加重了医生的工作任务,加大了病人的经济负担,也增加了误差的可能性及偏 离度。现在我们已经很明确对于中枢神经系统部位如颅底和脊髓部位的肿瘤,以及 软组织肉瘤和盆腔肿瘤,MRI成像已远优于 CT成像。这些情况下,就可以单纯借 助 MR图像完成模拟工作,因为 MRI有许多优于 CT方面的特点, 直接利用 MR 图像进行模拟定位有着不可替代的优越性:

肿瘤放射治疗知识点及试题

名词解释 1.立体定向放射治疗(1. 2.2)指借助CT、MRI或血管数字减影仪(DSA)等精确 定位技术和标志靶区的头颅固定器,使用大量沿球面分布的放射源,对照射靶区实行聚焦照射的治疗方法。 2.立体适形放射治疗(1.2.2)是通过对射线束强度进行调制,在照射野内给出 强度变化的射线进行治疗,加上使用多野照射,得到适合靶区立体形状的剂量分布的放射治疗。 3.潜在致死性放射损伤(1.2.4)当细胞受到非致死放射剂量照射后所产生的非 致死性放射损伤,结局可导致细胞死亡,在某些环境下(如抑制细胞分裂的环境)细胞的损伤也可修复。 4.亚致死性放射损伤(1.2.4)较低剂量照射后所产生的损伤,一般在放射后立 即开始被修复。 5.加速再增殖(1.2.4)在放疗疗程中,细胞增殖的速率不一,在某一时间里会 出血细胞的加速增殖现行,此现象被为称为加速再增殖。 6.常规放射分割治疗(1.2.1)是指每天照射1次,每次1.8-2.0Gy,每周照射 5d,总剂量60-70Gy,照射总时间6~7周的放疗方法。 7.非常规放射分割治疗(1.2.1)指对常规放射分割方式中时间-剂量-分割因子 的任何因素进行修正。一般特指每日照射1次以上的分割方式,如超分割治疗及加速超分割治疗。 8.放射增敏剂(1.2.1)能够提高放射肿瘤细胞的放射敏感性以增加对肿瘤的杀 灭效应,提高局控率的药物。包括嘧啶类衍生物、化疗药物和缺氧细胞增敏剂。

9.放射保护剂(1.2.1)能够有效的保护肿瘤周围的正常组织,减少放射损伤, 同时不减少放射对肿瘤的杀灭效应化学修饰剂。 10.热疗(1.2.1)是一种通过对机体的局部或全身加温以达到治疗疾病的目的的 治疗方法。 11.亚临床病灶临床及显微镜均难于发现的,弥散于正常组织间或极小的肿瘤 细胞群集,细胞数量级≤106,如根治术或化疗完全缓解后状态。 12.微小癌巢为显微镜下可发现的肿瘤细胞群集,细胞数量级>106,如手术边 缘病理未净。 13.临床病灶临床或影像学可识辨的病灶,细胞数量级≥109,如剖腹探查术或 部分切除术后。 14.密集肿瘤区(GTV)指通过临床检查或影像检查可发现(可测量)的肿瘤范围, 包括原发肿瘤及转移灶。 15.计划靶区(PTV)指考虑到治疗过程中器官和病人的移动、射野误差及摆位 误差而提出的一个静态的几何概念,包括临床靶区和考虑到上述因素而在临床靶区周围扩大的范围。 CTV+0.5cm 16.“B”症状临床上将不明原因发热38℃以上,连续3天;盗汗;不明原因 体重减轻(半年内体重减轻大于10%)称为“B”症状。 17.咽淋巴环(韦氏环,Waldege’s ring)是由鼻咽腔、扁桃体、舌根、口咽 以及软腭背面淋巴组织所围绕的环形区域。 1、肿瘤放射治疗学:是研究和应用放射物质或放射能来治疗肿瘤的原理和方法一门临床学科。它包括放射物理学、放射生物学、放疗技术学和临床肿瘤学。 2、放射物理学——研究各种放射源的性能和特点,治疗剂量学和防护。 3、放疗技术学——研究具体运用各种放射源或设备治疗病人,射野设置定位技术摆位技术。 4、放射生物学——研究机体正常组织及肿瘤组织对射线反应以及如何改变这些反应的质和量。

医用放射治疗设备新进展

医用放射治疗设备新进展 北京医疗器械研究所 赵洪斌 王小韵 北京市北三环中路2号,100011 摘 要:放射治疗(Radiation therapy)是利用放射线治疗各种肿瘤的临床方法。放射治疗与外科手术治疗、化学药物治疗是现代临床治疗肿瘤的三大手段。国际卫生组织(WTO)的统计数据表明:(1)70%左右的肿瘤患者需要接受放射治疗;(2)肿瘤治愈率45%中,手术治疗贡献为22%,放射治疗为18%,化疗为5%。因此,放射治疗在肿瘤治疗中所起的作用是不可替代的。近十几年,临床放射医学提出了避免照射和提高肿瘤局部控制率的新要求,为适应临床医学的新要求,以医用电子直线加速器为代表的外照射放疗设备呈现出前所未有的技术快速提升,设备不断推陈出新的发展态势。概括总结其技术发展历程为:上世纪80年代以前的常规放疗,90年代初的立体定向治疗,90年代中期的适形放射治疗,90年代末期的适形调强放射治疗,以及当今的图象引导放射治疗。 以医用电子直线加速器为代表的国产放疗设备事业经过30年的磨砺,在国内市场的激烈竞争中取得了令人瞩目的成绩,国际一流水准的产业化基地相继建成标志着国产放疗设备事业已经进入成熟发展阶段。 1.放射治疗分类 (1) 按射线源类型分类 放射治疗使用的放射源主要有三类:①放射性核素产生的α、β、γ射线;②电子加速器产生的不同能量的X射线和电子束;③重离子加速器产生的质子束、中子束、π- 介子束和其它重粒子束等。 (2) 按照射方式不同分类 临床治疗上,上述放射源以三种基本照射方式进行治疗:①体外远距离照射(简称体外照射)(External Irradiation),放射源位于患者体外一定距离,集中照射身体某一部位,如图1所示; ②近距离照射(Brachytherapy),包括腔内照射、组织间照射等。将放射源密封后直接放入被治疗的组织内或放入人体的天然腔内,如舌、鼻、咽、食管、宫颈等部位进行照射,如图2、3、4所示;③内照射(Internal Irradiation),是用液态放射性核素经口服或静脉注射进入患者体内,这些核素被病变组织选择性吸收,对特定组织进行照射,如用碘-131治疗甲状腺癌、磷-32治疗癌性胸水等。内照射又称为内用核素治疗。 能够产生符合临床放射治疗要求的设备统称为放射治疗设备(The Equipment of Radiotherapy)。 图1 体外远距离照射(External Irradiation)

HypofractionationSBRT技术特点放射治疗的未来

Hypofractionation/SBRT技术特点—放射治疗的未来 现代放射治疗技术为提高肿瘤剂量 提供了技术基础 提高肿瘤剂量的方式 直接提高肿瘤的物理剂量 改变分次治疗模式,提高肿瘤的等效生物剂量 Karolinska医院SBRT(1991—2003) 不能手术早期-NSCLC SBRT多中心 临床研究 北美10个中心59例早期NSCLC(<5cm)病理证实周边型不能手术(医学原因) 18GyX3(1.5-2周) y 3年局控率97.6%(常规治疗30-40%) 3年生存率55.8%(常规治疗20-35%) “这是近50年来,此类患者疗效的 第一次显著改变” R Timmerman…. JAMA,2010;303(11):1070-1076

新的照射技术对治疗模式的挑战 常规治疗模式始于二十世纪三十年代:一周照射五次,每次照射1.8—2.0Gy,持续治疗6—7周,总剂量60—70Gy。基于早期治疗设备采用常规照射技术 备,采用常规照射技术 采用新的照射技术,可以减小正常组织的剂量,对某些部位和期别的病变,可采用高分次剂量和总剂量,并且缩短总治疗时间的治疗模式 放射治疗技术和治疗模式的发展 3DCRT/IMRT已逐渐成为放射治疗的常规技术 先进的IGRT,ART技术开始为越来越多的放射治疗中心所应用 物理技术的发展,可降低正常组织的剂量,提供了改变治疗模式的基础,SRT和SBRT治疗模式(hypofractionated)会有较大的发展 分次治疗模式的改变 增加肿瘤的总剂量和分次剂量; 减少正常组织特别是敏感器官的总剂量和分次剂量; 缩短总治疗时间和减少分次次数 Anders Brahme (Acta Oncol. V ol. 39, pp 579-595, 2000)

肿瘤放射治疗学试题及答案

肿瘤放射治疗学试题及答案 1、恶性肿瘤:是在人类正常细胞基础上,在多种致癌因素作用下,逐渐形成的、 不断增殖的、个体形态变异或缺失的、具有迁徙和浸润行为的细胞群。临床上常表现为一定体积的肿物。 2、我国目前肿瘤放疗事故(恶性肿瘤最新发病率)为:10万人口每年280例。 3、肿瘤放疗:放射治疗就是用射线杀灭肿瘤细胞的一种局部治疗技术。 4、放疗时常用的射线:射线分两大类:一类是光子射线,如X、γ线,是电磁 波;一类是粒子,如电子、质子、中子。 5、放疗的四大支柱:放射物理学、放射生物学、放射技术和临床肿瘤学。 6、肿瘤细胞放射损伤关键靶点:DNA。 7、射线的直接作用:(另一种答案:破坏单键或双键)。任何射线在被生物物质 所吸收时,是直接和细胞的靶点起作用,启动一系列事件导致生物改变。如:电离、光电、康普顿。 8、射线的间接作用:(另一种答案:电解水-OH,自由基破坏)。射线在细胞内可 能和另一个分子或原子作用产生自由基,它们扩散一定距离,达到一个关键的靶并产生损伤。 9、B-T定律:细胞的放射敏感性与它们的增殖能力成正比。与它们的分化程度 成反比。 10、影响肿瘤组织放射敏感性的因素:组织类型、分化程度、临床因素。 肿瘤自身敏感性:肿瘤负荷、肿瘤分型、分期;肿瘤来源和分化程度;肿瘤部位和血供;照射剂量;2、化学修饰与肿瘤放射效应:放射增敏剂:氧气、多种药物;放射保护剂:低氧、谷胱甘肽加温与放疗;430C加温自身即可杀灭肿瘤细胞;能使S期细胞、乏氧细胞变的敏感;热休克蛋白,42-4450C, 2/周;3、放疗与同步化疗:空间协作:放射控制原发,化疗控制转移;毒性依赖:必须注意两者叠加问题;互相增敏:联合应用,疗效1+1>2,机制不详;保护正常组织:缩小病灶,减少剂量; 11、放射野设计四原则:1、靶区剂量均匀:治疗的肿瘤区域内吸收剂量要均匀,剂量梯度部超5%,90%剂量线包整个靶区。(野对称性);2、准确的靶区和剂量:即CTV准确,考虑到肿瘤类型和生物学行为(不同胶质瘤外扩大不一样),

放射治疗设备与技术的应用和最新进展_徐胜

放射治疗设备与技术的应用和最新进展第二军医大学东方肝胆外科医院(200438)徐胜孟岩 现阶段,肿瘤已经发展成为威胁人类生命健康的常见疾病,而手术、肿瘤放射治疗及化学治疗是目前对恶性肿瘤进行治疗的主要手段。2008年统计资料表明,恶性肿瘤的治愈率已经达到了45%,手术、放射治疗、化学治疗的贡献率分别为22%、18%、5%,从这一资料我们可以看出,除手术治疗外,放射治疗已经发展成为局部治疗肿瘤的一种极为有效的手段[1]。现对近年来在临床广泛应用的几种放射治疗设备和技术、分析其应用和进展,希望能为临床肿瘤的治疗提供一定的参考。 1三维适形放射治疗设备的应用及进展 随着医学技术的不断进步与发展,计算机和医学数字图像处理技术得到了飞速发展,已经能够准确勾画出人体内的实体肿瘤空间形状,在此基础上,临床放射治疗将剂量分布应吻合靶区形状的想法提了出来,常规放射治疗设备的圆形和矩形照射野逐渐退出医疗舞台,3D适形放射治疗设备随之被成功研制出来并在短时间内在临床得到了广泛的应用。在直线加速器基础上增加双肺平均剂量(MDL)和相应的三维治疗计划系统(3D-TPS)[2]。运用3D-TPS对非共面不规则野进行设计,然后进行分次照射,多叶准直器调节截面形状,符合束流观视方向上得肿瘤靶区轮廓,可以运用直观射线束包裹肿瘤,使重要器官免受损伤,这样就能够有效提高靶区边缘剂量,使靶区剂量得到总体的提升,从而促进肿瘤局部控制率得到极大程度提升。运用3D TPS能够将精度在2%~3%范围的精确计划得出来,达到精确治疗肿瘤的目的,同时也要求医用直线加速器具有更为良好的运行效率[3]。2调强适形放射治疗设备的应用及进展 三维适形放射技术保持了射野方向的剂量分布和靶区截面形状的统一,但是临床更希望在三维方向上保持高剂量去的剂量分布和靶区体积的统一,并且做到靶区内任一点的剂量等于处方剂量,这就要求束流调控方式能够运用到治疗设备中去,从而对X线束的方向和强度进行有效的控制,或在固定野和旋转运动中运用动态多叶准直器实行调强,同时最大限度地减小靶区以外的组织剂量和受照体积[4-6]。随着CT、磁共振成像(MRI)、容积成像技术(VCAD)、加速器束流控制技术等技术的迅速发展,调强三维适形放射治疗设备应运而生,使临床相关需要得到了有效的满足。该设备的主要技术特点是首先在立体定向定位靶区时借助CT定位机等,然后在这些立体定向定位数据的基础上重建靶区三维图像,再依据临床要求的靶区三维剂量分布,将各射野方向上的二维强度调制函数计算出来,最后运用具有笔形束扫描方式的回旋加速器等对患者进行有效的治疗。该设备显著提升了肿瘤局部控制率,但是需要有较长的治疗时间。 3图像引导放射治疗设备的应用及进展 在肿瘤治疗中,临床上为了更加精确病灶靶区,要求运用新技术有效控制呼吸造成的靶区空间位置移动。肿瘤的位置和大小在一段治疗时间内也会发生变化,图像引导能够自动检测、验证和调整呼吸、位置及肿瘤大小的变化,也就是所说的图像引导放射治疗。图像引导放射治疗设备的主要技术特点是有机结合直线加速器和MV级或kV级的X射线产生、图像实时获取及处理技术,也就是说将Cone Beam(锥形束)CT增加在常规加速器上,从而有效地实现图像引导放射 native coronary artery lesions)trial.Circulation,2002,106(7):798-803. [3]Sousa JE,Costa MA,Abizaid A,et al.Sirolimuseluting stent for the treatment of instent restenosis:a quantitative coronary an-giography and three-dimensional intravascular ultrasound study. Circulation,2003,107(1):24-27. [4]Park SJ,Shim WH,Ho DS,et al.A paclitaxel eluting stent for the prevention of coronary restenosis.N Engl J Med,2003,348(16):1537-1545. [5]Perlman H,Luo Z,Krasinski K,et al.Adenovirus-mediated delivery of the gax transcription factor to rat carotid arteries in-hibits smooth muscle proliferation and induces apoptosis.Gene Ther,1999,6(5):758-763. [6]Ascher E,Scheinman M,Hingorani A,et al.Effect of p53gene therapy combined with CTLA4Ig selective immunosuppression on prolonged neointima formation reduction in a rat model.Ann Vasc Surg,2000,14(4):385-392. [7]Lamfers ML,Lardenoye JH,de Vries MR,et al.In vivo sup- pression of restenosis in balloon-injured rat carotid artery by adenovirus-mediated gene transfer of the cell surface-directed plasmin inhibitor ATF BPTI.Gene Ther,2001,8(7):534-541. [8]金波,罗心平,施海明.冠状动脉再狭窄的动物模型.心血管 病学进展,2005,26(B08):14-16. [9]Ikeno F,Buchbinder M,Yeung AC.Novel stent and delivery systems for the treatment of bifurcation lesions:porcine coronary artery model.Cardiovasc Revasc Med,2007,8(1):38-42. [10]Schwartz RS,Edelman ER,Carter A,et al.Drug-eluting stents in preclinical studies:recommended evaluation from a consensus group.Circulation,2002,106(14):1867-1873. [11]蔡芙侠,史四季,丰慧艳.心血管介入治疗后出现低血压的原 因分析及护理.中国医学工程,2010,18(1):163. [12]李萍,马萍.探讨心血管介入患者医院感染相关因素及防控措 施.中国疗养医学,2012,21(1):29-30. (收稿日期:2013-03-12) 通信作者:孟岩

《放射治疗学》考试题

. '. 《放射治疗学》试卷姓名专业 一、单项选择题(每题2分,共40分。请将答案写在表格内) 1.用于治疗肿瘤的放射线可以是放射性核素产生的射线是: A.αB.δC.θ 2.X线治疗机和各类加速器产生的不同能量的射线是: A.γB.αC.X 3.各类加速器也能产生的射线是: A.电子束B.高级质子束C.低能粒子束 4.放射治疗与外科手术一样,是: A.局部治疗手段B.全身治疗手段C.化学治疗手段 5.放射治疗是用什么物质杀伤肿瘤细胞,达到治愈的目的? A.放射线B.化学药物C.激光 6.放射线治疗的适应证比较广泛,临床上约有多大比例的恶性肿瘤病人需要做放射治疗?A.50% B.70% C.90% 7.60钴的半衰期是: A.5.27年B.6.27年C.7.27年 8.几个半价层厚度的铅,可使原射线的透射率小于5%? A.4.5~5.0 B.6.5~7.0 C.7.5~8.0 9.照射患者一定深度组织的吸收剂量为: A.组织量B.空气量C.机器输出量 10.放射源到体模表面照射野中心的距离是: A.源皮距B.源瘤距C.源床距 11在放射治疗中,直接与肿瘤患者治疗有关的常用设备有: A.DSA B.适形调强C.加速器和钴-60治疗机 12.60钴治疗机的半影有: A.物理半影B.化学半影C.散射半影 13.高能x射线的基本特点是: A.等中心照射较60钴治疗机更准B.在组织中有更高的穿透能力C.照射更准确 14.高能电子束的基本特点是: A.高能电子束易于散射B.主要用于深部肿瘤的照射 C.不同能量的电子束在介质中有确定的有限射程 15.模拟治疗定位机的临床应用主要表现在: A.肿瘤和敏感器官的定位B.评价治疗计划的好坏C.固定病人的体位 16.放射治疗中用的楔形板的楔形角度有: A.100 B.200 C.300 D.400 17.放射敏感的肿瘤是指: A.给以较低的剂量即可达到临床治愈B.给以较低的剂量即可达到永久治愈C.该类肿瘤不易远处转移 18.立体定向放射治疗是: A.精确放射治疗B.根治性放射治疗C.普通放射治疗 19.一般来讲,人体组织细胞对放射线的敏感性与组织繁殖能力成正比,与分化程度成反比,即: A.繁殖能力愈强的组织对放射线愈敏感 B.繁殖能力愈强的组织对放射线愈不敏感 C.分化程度愈高的组织对放射线愈敏感 20.各种不同组织接受照射后能够耐受而不致造成不可逆性损伤所需要的最大剂量为: A.该组织的耐受剂量B.该组织的损伤剂量C.该组织的治疗剂量 二、填空题(每空1分,共40分) 1.在照射的线束内,把线束内测量的同等剂量点连线的曲线称_______________。 2.远距离放射治疗的方式有__________放射治疗技术,__________放射放射治疗技术,_________放射治疗技术。3.近距离放射治疗的方式有____________技术,______________技术,_________技术,_____________技术。 4.放射治疗的种类有___________放射治疗,____________放射治疗,__________放射治疗,__________放射治疗,___________放射治疗。 5.肿瘤区__________是指通过临床或影像检查可发现的肿瘤范围,包括_____________,_____________和____________。 6.恶性肿瘤的放射治疗剂量应当选择在正常组织能够耐受且肿瘤细胞致死的范围内,这样才能使肿瘤逐渐消退,周围正常组织不产生严重损伤。对射线不同敏感的肿瘤放射剂量大致分:_______________的肿瘤剂量,______________肿瘤剂量,______________的肿瘤剂量,_____________的肿瘤剂量,_________放射治疗剂量。 7.根据楔形板造成的等剂量曲线倾斜变形结果看,楔形板使用具有__________,放疗摆位中必须注意其__________,严格遵守___________的要求,如果使用中楔形板方向出现错误,结果将适得其反。 8.肿瘤放疗中,由于病灶总是不规则形状,常需要用铅挡块或加速器多叶准直器系统屏蔽遮挡___________或____________,使其免受或少受照射,形成___________。 9.斗蓬野照射技术一般适用于___________隔上病变的治疗,照射范围包括______,___________,__________,___________。 10.全身照射主要用于____________及某些全身广泛性且对_______________的恶性肿瘤的治疗。 11.全身照射技术主要用于白血病的骨髓移植予处理,可以达到三个目的,_________________,________________,________________________。 12.体位固定技术大致分两种_______________, ________________。 三、问答题(20分) 阐述60钴治疗机的临床应用特点。

放射治疗质量控制标准

放射治疗质量控制标准-----------------------作者:

-----------------------日期:

放射治疗质量保证的基本概念 根据国际标准化组织(ISO)所发布的ISO9001标准,质量保证的定义为:为提供对于符合质量要求的产品或服务的足够信任,所必须进行的全部有计划的和系统的活动。按照卫生组织的定义,放射治疗的质量保证,指的是以肿瘤患者获得有效治疗为目标,使患者的靶体积获得足够的辐射剂量,同时正常组织所受剂量最小,及正常人群所受剂量最小,为确保安全实现这一医疗目的而制定和采取的所有规程和方法。 放射治疗是对肿瘤患者提供的一种医疗服务,是一个复杂的医疗过程。为使肿瘤患者在这一过程中获得安全有效的治疗,取决于各类技术人员的素质,专业水平,及相互之间的配合和协调,也取决于相关的资源,主要是放射治疗设备的合理配置,完好状态极正确操作和使用。 方针和组织:按照国家颁布的相关标准,制定放射治疗中心质量保证的方针,建立和完善质量保证体系。同时确认治疗中心各方面工作人员的组成,权限,指责,相互工作关系设备:放射治疗中心制定设备购置(包括各类材料),验收,维护,检验,使用和操作的相关规程 过程控制:放射治疗中心必须明确和规范,肿瘤患者从进入放射治疗程序直至治疗结束离开,所涉及的所以医疗活动。必要时,参照国家和国际发展水平,制定各类病种的治疗规范。 知识和技能:放射治疗中心应负责按系统方法,培养和提高所有工作人员的知识和技能质量控制:监督质量保证体系的有效性,使其不断完善,并发展相关质量控制的方法 放射治疗质量控制与评价标准 为保证临床放射治疗的医疗质量和安全,根据中华人民共和国卫生部2006年1月20日发布的46号令《放射诊疗管理规定》,结合我省情况,特将原制定的《放射治疗质量控制标准及评估标准》修改如下: 一、放射治疗质量控制标准 开展放射治疗工作的医疗机构,必须获准省级卫生行政主管部门对放疗诊疗科目的注册登记。 (一)房屋的基本要求 1、有独立的医、护办公室,诊疗室,普通或特制防护的病房(有低剂量率近距离放射单位)。 2、有放射治疗机房、定位设备机房、型模室、物理室。 注:放射治疗及定位机房的设计、防护、消防均须通过省、地市劳动卫生放射质量技术监督部门检测及验收合格。 (二)放射治疗及配置设备的基本要求 1、深部病灶外部照射治疗机:60Co治疗机或医用直线加速器 2、浅层病灶外照射治疗机:千伏级X线机或医用电子线 3、模拟定位设备和治疗计划系统(TPS) 4、型模制作设备 5、头、胸、腹、四肢等固定装置

相关主题
文本预览
相关文档 最新文档