基于单片机的高分辨率多通道数据采集系统
- 格式:docx
- 大小:11.60 KB
- 文档页数:2
课程设计报告书设计任务书一、设计任务1一秒钟采集一次。
2把INO口采集的电压值放入30H单元中。
3做出原理图。
4画出流程图并写出所要运行的程序。
二、设计方案及工作原理方案: 1. 采用8051和ADC0809构成一个8通道数据采集系统。
2. 能够顺序采集各个通道的信号。
3. 采集信号的动态范围:0~5V。
4. 每个通道的采样速率:100 SPS。
5.在面包板上完成电路,将采样数据送入单片机20h~27h存储单元。
6.编写相应的单片机采集程序,到达规定的性能。
工作原理:通过一个A/D转换器循环采样模拟电压,每隔一定时间去采样一次,一次按顺序采样信号。
A/D转换器芯片AD0809将采样到的模拟信号转换为数字信号,转换完成后,CPU读取数据转换结果,并将结果送入外设即CRT/LED显示,显示电压路数和数据值。
目录第一章系统设计要求和解决方案第二章硬件系统第三章软件系统第四章实现的功能第五章缺点及可能的解决方法第六章心得体会附录一参考文献附录二硬件原理图附录三程序流程图第一章系统设计要求和解决方案根据系统基本要求,将本系统划分为如下几个部分:●信号调理电路●8路模拟信号的产生与A/D转换器●发送端的数据采集与传输控制器●人机通道的接口电路●数据传输接口电路数据采集与传输系统一般由信号调理电路,多路开关,采样保持电路,A/D,单片机,电平转换接口,接收端(单片机、PC或其它设备)组成。
系统框图如图1-1所示1.1 信号采集分析被测电压为0~5V 直流电压,可通过电位器调节产生。
1.1.1 信号采集多路数据采集系统多采用共享数据采集通道的结构形式。
数据采集方式选择程序控制数据采集。
程序控制数据采集,由硬件和软件两部分组成。
,据不同的采集需要,在程序存储器中,存放若干种信号采集程序,选择相应的采集程序进行采集工作,还可通过编新的程序,以满足不同采样任务的要求。
如图1-3所示。
程序控制数据采集的采样通道地址可随意选择,控制多路传输门开启的通道地址码由存储器中读出的指令确定。
6科技资讯科技资讯S I N &T NOLOGY I NFO RM TI ON 2008N O .15SCI ENC E &TECH NOLOG Y I N FOR M A TI ON 信息技术随着单片机技术的发展,其高稳定性和高信价比的到了个广范的认可,越来越多的应用在数据采集系统和监测系统。
我国工业自动化程度的迅速发展,对数据采集系统要求也越来越高,由原来的单一数据采集逐渐扩展到多数据的采集,如对工业生产设备的电流、电压、温度、压力、流量等数据的采集。
数据采集的准确、快速关系到生产安全及产品的质量。
数据采集系统有很多种实施方案,本文介绍采用SST89C58单片机作为中心控制单元,应用串行A/D 转换芯片完成多路数据采集,利用RS232串口驱动芯片完成单片机与PC 的数据交换,这样用户可以在上位机上利用本系统提供的数据处理平台对数据进行查询、分析、绘图和远程监控等,本系统可以是工作人对生产设备的运行监测和故障排查。
1硬件实现本系统有上位机(PC)和下位机(单片机)组成。
多线程数据采集系统的工作是:传感器将被测信号的物理量转换成电信号,经过信号调节(滤波),抑制干扰噪声信号的高频分量,经过采样器,将信号的采样值转化为数字信号,再通过接口电路将数据送到单片机中进行处理。
对于P C 机器的要求根据需要而定一般应选择处理速度快、存储量大、性能稳定。
应尽量选择品牌机器,在实际应用中品牌机器的稳定性还是的到认可的。
如果PC 一旦出现问题那对数据采集系统的影响很大,对生产安全和产品的质量都有很大的影响。
操作软件选择组态王,工业控制组态软件是一种可以各种数据采集卡等设备中实时采集数据,发出控制命令并监控系统运行是否正常的软件包,组态软件能充分利用W i ndow s 强大的图形编辑功能,以动画方式显示监控设备的运行状态,方便地构成监控画面和实现控制功能,并可以生成报表,立时数据库等。
系统采用组态王6.5作为监控软件开发平台,组态王是运行在W i ndo ws 2000/XP/NT,由工程浏览器T ouchm a k 和画面行系统T ouc hvi e w 两部分组成。
目录摘要 (1)Abstract (2)1.绪论 (3)1.1设计数据采集及其频谱分析电路的意义 (3)1.2数据采集及其频谱分析的主要功能 (3)2.数据采集硬件电路设计 (4)2.1方案选择及设计思想 (4)2.2设计方案的框图 (5)2.3工作原理 (5)2.4电路中主要芯片的引脚对应的功能 (6)2.4.1主控芯片AT89C51 (6)2.5原理图及连接关系 (8)2.5.1数据输入模块 (8)2.5.2模数转换模块 (8)2.5.3 主控电路 (9)3.数据采集软件设计 (11)3.1系统模块层次图 (11)3.2程序流程 (11)3.3程序源代码 (11)4.频谱分析硬件电路设计 (15)4.1方案论证 (15)4.2频谱分析硬件电路设计 (17)4.2.1数据采集 (17)4.2.2运算核心设计 (17)4.2.3控制核心设计 (18)4.2.4示波器显示部分设计 (20)4.2.5供电设计 (21)5.频谱分析软件电路设计 (24)5.1单片机部分 (24)5.2 FPGA部分 (25)5.3 测试说明 (28)5.3.1单频信号的频谱测试 (28)5.3.2调幅信号的频谱测试 (28)5.3.3调频信号的频谱测试 (28)5.3.4信号识别准确度测试 (29)5.3.5测试结果分析 (29)总结 (30)致谢 (32)摘要本毕业设计数据采集部分采用的是单片机AT89C51和模数转换芯片ADC0808采集系统。
用电位器模拟输入电压,经过AT89C51控制ADC0808将输入模拟电压转换成数字信号,频谱分析部分是基于外差原理的数字式频谱分析,系统采用XlinxVIRTEX-II100万门的FPGA,将本振扫频、混频、放大、低通滤波、提取峰值等工作全部通过数字化实现。
控制方面,有凌阳16位单片机SPCE061A作为控制核心,实现人机接口和最后频谱图的模拟示波器显示。
本论文主要描述了硬件设计部分和软件设计部分,硬件部分更是详细分析了本数据采集及其频谱分析的各个部分的电路原理,以及各个模块之间的线路连接。
基于单片机的模拟量数据采集系统设计摘要随着计算机技术的飞速发展和普及,数据采集系统也得到了广泛的应用。
微机在通用自动化、信息处理、信息系统等方面得到广泛的应用。
在冶金、化工、医疗等应用场合,需要对很多信号进行采集,预处理,暂存和对上位机的传输。
再由上位机对数据进行分析处理。
本文设计的模拟量采集系统采用上位机、下位机通信方式运行。
由上位机实现对下位机的控制和数据采集的显示,下位机实现模拟量的采集过程。
下位机硬件设计采用AT89C52单片机为控制核心,采用ADC0808将模拟量进行转化为数字量进行采集,完成了模拟量采集系统的硬件设计。
采用RS-232进行串口通信。
结果证明,该设计方法可行,实现了离散量采集系统的自动化,克服了传统数据采集的弊端,应用具有良好的前景和使用价值。
关键词:模拟量采集系统;单片机;通信AbstractAlong with the rapid development of computer technology and popularization, data acquisition system is also widely application. Microcomputer is widely applied in general automation, information processing and information system etc . Signal acquisition, pretreatment, temporary and PC transmission is needed by metallurgy, chemical, medical care and other applications。
The design is a discrete variables acquisition system with upper and lower operating mode. The PC machine controls the lower machine and display the date, and the lower machine realizes data collection. Hardware design of digital machines AT89C52 single-chip design Used for RS-232 serial communication, you can relay through the computer to control the realization of the bright lights out billiards control and manual control switch can monitor. The results proved that the design method is feasible to achieve a billiards automated agency management system to overcome the drawbacks of traditional management methods, the application system; communication目录1 绪论 (1)1.1 课题背景 (3)1.2 课题相关技术 (4)1.3 课题任务及要求 (9)1.4 课题内容及安排 (10)2 系统方案设计 (12)2.1 方案设计原则 (12)2.2 方案设计 (13)3 系统硬件设计与设备选型 (15)3.1 单片机模块 (15)3. 1.1 AT89C52介绍 (16)3.1.2 单片机最小系统 (27)3.2 AD转换模块 (30)3.2.1 AD转换 (30)3.2.2 ADC0808介绍 (30)3.3 输入模块 (35)3.4 串口模块 (36)3.5 电源模块 (41)3.6 设备选型 (43)4 系统软件设计与实现 (44)4.1 软件编程介绍 (45)4.2 系统软件方案设计 (48)4.2.1上位机设计部分 (48)4.2.2 下位机设计部分 (50)5 系统集成与调试 (51)5.1 Keil软件开发平台介绍 (51)5.2 调试分析 (52)5.3 调试步骤 (53)5.4 故障调试及解决方式 (54)5.5 联调结果 (55)结论 (56)社会经济效益分析 (57)参考文献 (59)致谢 (62)附录Ⅰ原理图 (64)附录Ⅱ元器件清单 (65)附录Ⅲ程序清单 (66)1 绪论目前单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。
基于单片机的多路温度采集控制系统的设计一、系统设计思路1、系统架构:本系统的所有模块分为两个主要的部分:单片机部分和PC部分。
单片机部分是整个温度控制系统的中心模组,它负责多路温度传感器的信号采集、温度计算和显示,还有一些辅助操作,如温度上下限报警等;PC部分主要实现数据采集、分析、处理、显示等功能,与单片机的交互可通过RS485、USB等接口进行。
2、硬件设计:本系统设计确定采用AT89C52单片机作为系统的处理核心,在系统中应用TLC1543数据采集芯片,采用ADC转换器将多个温度传感器的数据采集,使系统实现多路温度检测同时显示.另外,为了实现数据采集记录,系统可以选用32K字节外部存储封装。
二、系统总控程序设计系统总计程序采用C语言进行编写,根据实际情况,主要分为以下几个主要的模块:(1)初始化模块:初始化包括外设初始化、中断处理程序初始化、定时器初始化、变量初始化等功能。
(2)温度采集模块:主要对多路温度传感器的采集、计算并存储等操作,还可以实现温度的报警功能。
(3)录波模块:提供数据的实时采集、数据的存取、数据的滤波处理等功能。
(4)通信模块:主要是用于实现数据透传,采用RS485接口与PC端的上位机联网,可实现远程调试、远程控制等功能。
(5)用户界面模块:实现数据显示功能,可以根据用户的要求显示多路温度传感器检测到的数据。
三、实验检验(1)检查系统硬件的安装是否良好;(2)采用实测温度值与系统运行的实测温度值进行比对;(3)做出多路温度信号的对比,以确定系统读取的数据是否准确;(4)检查温度报警功能是否可以正常使用,也可以调整报警范围,试验报警功能是否可靠;(5)进行通信数据采集的联网检测,确保上位机和系统可以进行实时、准确的通信。
2023年 / 第9期 物联网技术710 引 言作为一种将模拟量转化为数字量的手段,数据采集在自动控制、自动检测、电子测量等自动化、智能化系统中被广泛应用,它是基于计算机实现不同工作过程的基础[1]。
在目前的发展阶段,各个产业的发展都涉及到大量的数据处理,新的发展要求不能仅仅依靠传统的数据采集系统来满足,还要将先进的数据采集设备和技术运用到实际工作中,这对于优化数据采集结果、提高工作效率、促进行业更好地发展等众多方面都具有重要意义[2]。
韩宾等人[3]设计了以FPGA 和STM32架构为数据处理和控制核心的数据采集系统,实现了16路高精度数据的实时处理和采集功能,采样频率可调,满足了精密产品所需的多通道、高精度和实时数据采集功能。
但是使用FPGA 控制模块的成本过高,不能满足更多的使用场景。
寇剑菊等人[4]设计了基于AT89S52和AD7865构成的四通道并行数据采集系统,但是AD7865是14位四路采集芯片,其精度和通道数量都有所限制,所以适用范围较小。
徐国明等人[5]利用AD7606设计了一种数字多功能表,信号采集部分使用了高性能ADC ,为了保证整个测量段的数据精度,电流线路使用了有源补偿方式,确保系统能够以最高30 MHz 的时钟速率工作。
司云朴等人[6]使用STM32配合AD7609芯片设计了组合称重装置,AD7609的8个通道可以同时采样,且均使用差分输入,每个通道的采样速率为 20 KSPS 。
整个系统运行速度快、精度高。
常见的数据采集系统大多以DSP 或者FPGA 配合12位的AD 芯片进行数据采集,已经可以满足大多数行业的使用,对于一些要求速度高、精度高的行业,常见的采集系统显然不能满足其要求[7]。
本文设计了一种以STM32F407ZET6和AD7609为核心,包含8个18位采集通道的数据采集系统,在配备电池模块和存储模块的同时,将控制部分和采集部分采用模块化设计,让用户轻松离线使用,不用固定电源,丰富使用场景。
单片机数据采集控制系统
单片机数据采集控制系统是一种利用单片机进行数据采集和控制的系统。
它通
常由单片机、传感器、执行器和外围电路组成。
在系统中,传感器用于采集环境或者物体的各种参数,例如温度、湿度、光强等。
传感器将采集到的摹拟信号转换为数字信号,并通过接口与单片机进行通信。
单片机作为系统的核心部件,负责接收传感器的信号,并进行数据处理和控制。
它可以根据采集到的数据进行各种算法运算,实现对环境或者物体的监测和控制。
同时,单片机还可以通过与执行器的通信,控制执行器的动作,实现对系统的控制。
外围电路主要包括供电电路、通信接口电路、显示电路等。
供电电路为系统提
供稳定的电源,通信接口电路实现单片机与外部设备的通信,显示电路用于显示系统的数据或者状态。
单片机数据采集控制系统在工业自动化、环境监测、智能家居等领域具有广泛
的应用。
它可以实时采集和处理数据,提高系统的自动化程度和智能化水平,提高工作效率和质量。
基于AT89C51的数据采集系统设计新方法电子元器件应用引言近年来,随着制造技术的发展,单片机的价格越来越低,性能却不断提升,因而其应用范围也越来越广。
然而在开发基于单片机的应用系统时,传统方法一般都需要大量的硬件设备,这些设备极易损坏而且携带不方便。
为此,本文基于AT89C51数据采集系统详细说明了如何利用Pro-teus和两款串口仿真软件来进行单片机程序及外围电路的仿真设计。
采用该方法可以大大简化硬件电路测试和系统调试过程,对单片机系统开发具有指导意义。
本文介绍的基于AT89C5l单片机的数据采集系统能实现16路信号输入,每一路都是0~10 mV的信号,每秒钟采集一遍,从而将数据传给上位PC计算机。
1 硬件设计1.1 主控芯片AT89C51是一种带有4 KB闪烁可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器,可为很多嵌入式控制系统提供灵活且价廉的方案。
所以,本设计采用ATMEL公司的AT89C51作为程序的主控芯片。
AT89C51数据总线是由P0口提供的,P0口本身能以多种方式提供数据总线和地址总线。
当ALE输出信号为高电平时,P0将输出的数据锁入总线驱动器中作为地址的低8位,然后和P2送出来的高8位地址一起组成一个完整的16位地址,以寻址到外部的64KB的地址空间。
AT89C51的地址总线比较简单(只有3个:RD、WR、PSEN),其中RD是用来读取外部数据内存的控制线,WR是用来写数据到外部数据内存的控制线,PSEN是用来存取外部程序内存的读取控制线。
由于P0口是数据和地址分时复用口,故要进行地址锁存,本设计使用74HC573作为锁存器。
1.2 系统硬件电路本系统的硬件电路原理如图1所示。
因为ADC0809的地址选择端A、B、C都接地,所以ADC0809的数据采集通道只有IN0被选通。
16路模拟信号连接到多路选择模拟开关HCC4067后,即可通过地址选择端A、B、C、D进行选择,每一次选通一路,选通的通道经IO COM X和ADC0809的IN0相连,以进行A/D转换。
基于单片机的高精度智能交直流电压数据采集系统设计电压是电子与电力系统中最基本的测量元素之一,快速准确地获取电压值一直是数据采集与电子测量仪器研究的重要内容之一。
传统的指针式电压表具有精度低、可视距离近、功能单一等缺陷,已不适应高速信息化的发展需要。
目前市场上广泛使用的数字电压表智能化程度低,测量电压时需手动切换量程,当量程选择不当时会出现测量精度下降、乃至烧坏电压表的极端情况;而高精度的全量程无档数字电压表一般都采用了DSP、FPGA或CPLD等复杂电路系统,硬件和软件实现成本较高。
为此,笔者设计研制出了一种以单片机为控制主体的智能交流直流电压数据采集系统,具有体积小、精度高、结构简单、使用与读数方便、性价比高、适应范围宽等优点,有效地弥补了上述各种电压表系统的缺点和弊端。
1 系统总体方案该电压数据采集系统主要由电压衰减器、量程转换及放大电路、AC/DC转换电路、A/D 转换电路、主控单片机STC89C52以及LCD显示电路等5个部分组成,其原理框图如图1所示。
电压衰减器和放大器将待测模拟信号电压值转换到AC/DC变换器的输入电压范围内,直流电压经衰减放大后不需作AC/DC转换;量程转换电路根据输入到A/D转换器的模拟直流电压大小,由单片机判断后控制继电器对衰减放大电路作相应的调整,确保选择出最佳量程;A/D转换由单片机启动,在软件中对采集到的数据作数字滤波、标度变换和系统误差校准等处理后,根据电压类型标志位在LCD上显示测量值和电压类型。
2 系统硬件设计2.1 电压衰减、放大和量程转换电路电压衰减放大和量程转换电路如图2所示。
电阻R1~R5构成衰减系数分别为1、10、100、1 000、10 000的分压器,将被测输入电压Uin衰减至0~200 mV范围内并送至后端电路放大、AC/DC转换(直流电压不需转换)、A/D转换以及由单片机进行采集、处理与显示。
为了降低测量误差,分压电阻R1~R5均选用误差为±0.5%的精密金属膜电阻。
基于单片机的实时数据采集系统设计刘松文(株洲职业技术学院,湖南株洲412001)应用科技哺要】单片机I的运算能力强有力,遥算速度快,I/O接口功能完善,抗干扰能力强。
可靠性高,对于现场数据采集处理时。
它仍然是现场数据采集器的核心元件之一。
陕麓词】数据采集;串口;单片机;M SC om m单片机的运算能力强有力,运算速度快,I/O接口功能完善,抗干扰能力强,可靠性高,对于现场数据采集处理时,它仍然是现场数据采集器的核心元件之一。
当现场测试点较为分散时,通常以串行通信方式将数据采集连接成网络,主机采用主从访问方式,实现多点的数据采集。
这种方案在数据传输量较小且频率较高、采样周期较长时,可以较好地完成多点数据采集处理任务。
但是,当现场信号频率较高时,根据香农定理可知,采样频率也应提高,这样在单位时间内的数据传输量也相应增大,若采用这种主从式网络进行多点采集,实时性难以满足,甚至会造成系统崩溃。
本文提出了一种基于单片机的并行通讯方式进行处理,然后将处理结果以串行方式通过RS485口送入监控主机。
1分布式数据采集系统的结构图1为本文设计的主从式数据采集处理系统。
I冬|l上从式数据采集处理系统该方案较好地解决了采集系统的实时性问题。
工作在现场的数据采集单元仍然是以C PU为核心的智能单元,实现对现场模拟量(比如水分、温度等)或现场状态的检测和采集,经过相应的预处理如滤波、编码,以串行通信方式发给数据处理单元。
数据处理单元与每个采集单元之间以点对点的方式收发数据,每一路数据有一个独立的收发单片机(89C51),以并行传送方式与数据处理单元主处理器(89C52)进行信息交换。
由于各路数据收发独立,并且并行传达时间很短(一般为几十个微秒),由前端数据采集单元的数据到数据处理单元的传送时间主要取决于串行通信所用的时间,以9600B ps传送7个字节数据的时间为7X10X1/9600=7.292m s,各路传送并工作,主处理器几乎可以同时获取数据,当数据采集器采样间隔不低于20m s时,该方案的数据处理具有较好的实时性。
基于单片机的高分辨率多通道数据采集系统
随着科学技术的不断发展,数据采集系统在各行各业中扮演着越来越重要的角色。
而基于单片机的数据采集系统由于其低成本、易实现、可靠性高等特点,已经成为了研究者和工程师们广泛使用的一种解决方案。
本文将介绍一种基于单片机的高分辨率多通道数据采集系统的设计与制作,该系统具有高分辨率、多通道输入、低成本等特点,能够满足各种数据采集需求。
一、系统设计
1. 系统需求
在设计该高分辨率多通道数据采集系统时,我们首先需要明确系统的需求。
该系统要求能够同时采集多个通道的信号,并且保证较高的分辨率,保证数据的准确性。
为了降低成本和体积,我们选择使用单片机来实现整个数据采集系统,因此系统的设计需要充分考虑单片机的性能和资源限制。
2. 系统架构
基于以上需求,我们设计了如下的系统架构:数据采集模块采集信号后,经过模拟信号处理和模数转换之后,传输给单片机。
单片机通过串口或者其他接口将数据传输到计算机中,由计算机对数据进行进一步处理和分析。
3. 关键技术
在设计该系统时,我们需要解决以下一些关键技术问题:
(1)高分辨率数据采集模块的设计与制作;
(2)多通道信号的采集与处理;
(3)单片机的选型和程序设计。
二、高分辨率数据采集模块的设计与制作
1. 模拟信号处理单元
为了保证高分辨率的数据采集,我们需要设计高质量的模拟信号处理单元。
该单元包括了信号放大、滤波、采样等模块,保证了采集到的模拟信号质量。
我们可以选择一些高性能的模拟信号处理器芯片,来实现这一模块。
2. 模数转换器(ADC)
模数转换器是将模拟信号转换为数字信号的关键部件,为了保证高分辨率的数据采集,我们需要选择高精度、高速度的ADC芯片。
合理的电路设计和布局也是保证ADC性能的重
要因素。
3. 电源设计
在数据采集系统中,稳定的电源是保证系统正常工作的关键因素。
我们需要设计稳压
电源电路,保证模拟信号处理单元和ADC芯片正常工作。
通过以上设计,我们可以制作出一套高分辨率的数据采集模块,并且保证数据的准确
性和稳定性。
三、多通道信号的采集与处理
在数据采集系统中,通常需要同时采集多个信号通道,因此我们需要设计多通道数据
采集接口。
该接口可以通过多路开关等器件实现对多个信号通道的快速切换,保证信号的
同步采集。
在单片机端,我们需要设计缓冲区和中断处理机制,保证每个通道的数据都能够按时
传输给计算机,避免数据丢失。
四、单片机的选型和程序设计
选择合适的单片机非常重要,它需要具备足够的存储空间和计算能力,同时需要有足
够的通信接口和定时器来处理多通道数据的采集和传输。
通过合适的编程和算法设计,我们可以实现对于多通道数据的准确采集和传输。
五、系统实现和性能测试
在完成系统设计和制作之后,我们需要对系统进行性能测试。
一方面需要测试数据采
集模块的精度和稳定性,另一方面需要测试单片机的数据传输性能和处理能力。