当前位置:文档之家› 离子注入技术的发展与在材料方面的应用

离子注入技术的发展与在材料方面的应用

离子注入技术的发展与在材料方面的应用
离子注入技术的发展与在材料方面的应用

离子注入技术的发展

及其在材料方面的应用

摘要

离子注入是一项新兴的材料表面改性技术。它可以使材料表面的机械、物理、化学、电学等性能发生变化。有效地提高材料表面的硬度以及耐磨擦、耐磨损、抗腐蚀、抗疲劳等能力,延长材料使用寿命,增加经济收益。本文介绍了离子注入的基本原理以及技术特点,描述了离子注入在金属材料表面改性、半导体材料以及超导方面的技术应用,并展望了离子注入的应用前景。

关键词:离子注入;材料;表面改性;半导体;超导

一、绪论

离子注入技术于七十年代初首先成功地应用于半导体工业,成为制备大规模集成电路必不可少的手段之一。八十年代起人们把离子注入技术开始用于金属材料的表面改性。由于该项技术本身的独特优点、良好的改性效果以及潜在的巨大经济效益,近年来吸引了愈来愈多的研究者开始从事该项技术的开发研究。日前,随着应用围的日益扩大和理论研究的不断深入,离子注入技术日趋成熟。

近年来离子注入的方式也更加多样化,除了常规离子注入外,由此派生出的其它注入方法有:反冲注入、动态反冲注入、离子束混合等。注入方式的多样化完善了注入实验手段,使人们对各种具体情况可以选择恰当的注入方式,以满足不同的要求。

在实际应用中,很多方面都需要固体材料有较好的表面性能,如耐腐蚀性,抗磨损性,较高的硬度和抗氧化性等,而这些性能都直接与固体材料表面成分,结构组态,化台物相等有关,离于注入技术是最重要的手段之一。

离子注入技术应用于金属材料的改性,从碳素工具钢、硬质合金刚到人造或天然金刚石制造的量具、刃具、刀具、模具和工件等,通过表面改性,可提高使用寿命。经离子注入后,材料(或工件)韵表面硬度、耐磨损性能、抗腐蚀能力及使用寿命等,一般可提高几倍到十几倍。目前,离子注入已经发展成为一门核技术与金属学之间新兴的边缘学科——“离子注入冶金学” (Ion Implantation Metallurgy)。各发达国家都十分关注这门学科的发展和应用。

二、关于离子注入的简单介绍

(一)离子注入的定义

离子注入是利用某些杂质原子经离化后形成带电杂质离子,离子经过一定的电场加速,直接轰击靶材料实现掺杂或其他作用。一般的说,离子能量在1-5KeV 的称为离子镀;0.1-50KeV称作离子溅射;一般称10-几百KeV的称为离子注入。注入到材料中的离子具有很高的能量,足以使注入层的化学组分和原子结构发生变化,这样使得材料表面的机械、物理、化学、电学等性能也随之改变.从而达到材料表面改性的目的。

简单地说,离子注入的过程,就是在真空系统中,用经过加速的,要掺杂的原子的离子照射(注入)固体材料,从而在所选择的(即被注入的)区域形成一

个具有特殊性质的表面层(注入层),是把掺杂剂的原子引入固体中的一种材料改性方法。下面是一个离子注入系统的示意图。

不同类型的离子源用于产生各种强度的离子束;质量分析器用来除去不需要的杂质离子;束流扫描装置用来保证大面积注入的均匀性;靶室用来安装需要注入的样品或元器件,对不同的对象和不同的注入条件要求可选用不同构造的靶室。

(二)离子注入技术的特点

离子注入是一种新型表面处理技术。它是通过注入外来离子改变材料近表面化学成分和表面层结构, 从而提高材料表面的物理、力学和化学性能, 同时又保持基体材料原有性能、尺寸和表面光洁度。

与其它处理技术相比, 离子注入有以下特点

1、可将任何元素注入基体材料的近表面层, 而不受热力学的限制;

2、注入元素和基体材料的选配不受限制,注入量不受材料溶解度的限制, 可以得到常规方法不能得到的表面层结构;

3、注入层和基体材料之问无明显界面, 不存在脱落分层问题, 不妨碍基体传热;

4、注入元素的数量和注入深度均可精确控制, 易于实现自动化生产。由于可控制性的改善, 离子注入使半导体器件的产量提高10倍;

5、可在低温、室温和高温下进行离子注入能在低温下处理是离子注入的一个突出优点,这对高温下处理时会使基体性能恶化的零部件是十分重要的;

6、注入工件表面的元素均匀性好, 这特别有利于半导体集成电路的掺杂,

改善掺杂的均匀性, 可以提高集成电路的成品率;

7、注入工件表面的元素纯度比较高;

8、不会产生污染环境的排泄物。

上述优点使离子注入技术在许多应用领域研部门和工业界的广泛注意。它首先在航空航天和军械工业中得到重视和应用。目前研制的离子注入设备可降低生产成本, 使离子注入技术可与传统的精饰工艺相竞争。

三、离子注入技术的发展及应用

(一)在金属材料改性方面的应用

离子注入作为金属材料表面改性的手段已受到关注, 其应用主要有以下三点改变金属材料表面的力学性能,如摩擦、摩损、硬度以及材料的疲劳寿命等,改变金属材料表面的化学性能, 如高温及中温条件下的抗氧化性能、抗水溶液腐蚀性能及提高表面电化学性能等改变金属材料表面的物理性能, 如电性能、超导性能、光学性能及绝缘性能等。

1.材料表面改性的一般方式及物理过程

离子注人材料表面改性的一般方式是,选择一些合适种类的离子,如N、C、Ti等,经加速器加速达到一定能量后,轰击金属材料表面,入射离子的剂量为1O17离子/cm2 量级,在多数情况下,把入射离子与靶的相互作用仅仅看成是电子碰撞是不够的.还必须考虑入射粒子与靶原子核的相互作用,在入射粒子能量较低时,主要考虑入射离子与靶原子核的弹性碰撞,几百KeV的离子注入其相互作用情形即为如此。入射离子在靶中会形成一定的射程分布,对非晶靶,该分布接近于高斯型。相同的离子,以不同的能量射入靶中,其射程分布是不相同的。一般而言能量越大其射程值越大。不同的离子,以相同的能量入射,一般来说,轻离子的射程值要大些,能量越大,平均射程的值也越大。

人射离子进入靶后,通过与靶物质中的电子和原子核相互作用,逐渐损失自己的动能,直至在靶中停止下来。这一过程称为离子在固体中的慢化。从能量转换的角度来说,离子在所经过的路径上将能量传递给靶原子核和电子,这一过程为能量淀积过程.失去能量后的入射离子,最后将终止在晶体中的某一位置.而被碰撞后的原子则获得足够的能量.使它摆脱原来晶格的束缚,离开平衡位置进人间隙态.而使晶体产生一个缺陷,这是离子注入辐射损伤中最简单、最基本的一种晶格损伤。若被移位的原子把它的能量依次转移到其它原子上去,将发生级

联位移,形成更多的缺陷,造成更为复杂的损伤复合体。以上由离子注入造成的辐射损伤对半导体的电性能有很大影响。因此,有时需在一定条件下进行热处理(称退火),以消除辐射损伤造成的缺陷,使损伤的晶格得到一定程度的恢复。

离子注入技术是一种影响或改变材料表面性能的有效手段之一。通过选择合适能量(几百KeV).剂量(1O15离子/cm2)以及合适种类的离子注人金属材料表面。以降低其摩擦系数.提高其耐磨损.耐腐蚀性能等方面均有明显效果。离子注人技术将在改善材料表面性能、构造新材料等方面起到越来越重要的作用。

2.金属材料表面改性的经济效益。

2.1.提高表面硬度

大量实验表明,金属材料经离子注入后表面硬度会有明显提高。表面硬度的提高是由于荷能离子是强行轰击进入材料表面,注入离子与表面层原子发生相互作用交换能量最终停留在基体材料中.它们或者处于表面晶格原子的间隙成为间隙原子,或者与表面晶格原子发生置换成为替代原子,这将使注入区发生膨胀。但它又受到基体的抑制,因此会产生很强的侧向压应力,与喷丸强化相似起到硬化表面的效果。另外,固溶强化、分散强化也是使表面硬化的重要机制。

2.2.改善材料表面口的耐磨性

一般情况下,金属中注入某种离子 (用得最多的是氮离子N +),在经过退火处理后往往就会使表面硬度和耐磨性有明显提高,对此有几种解释:a.注入表面存在非常大的应力;b.注入层存在细微分散的新合金相;c.离子注入在表面屡形成大量缺陷(如空位间隙原子、位错线、位错环等)产生的位错钉扎效应,它们部可以改善材料表面的耐磨性能。

2.3.提高金属抗电化学腐蚀性能

用离子注入技术可以降低材料在电解质溶液中的钝化势和临界电流密度,影响阳极氧化过程,从而降低材料被腐蚀速度,提高抗腐蚀能力。离子注入在材料表面形成的新台金相、非晶层等结构是提高材料耐腐蚀性能的重要原因。

2.4.提高金属的抗疲劳强度

离子注入可以提高材料的抗疲劳性能。一般认为离子注入可以改变材料表面层的剩余应力。由于表面剩余力能加速疲劳裂纹的生成,加速材料疲劳;而表面剩余压应力能延缓疲劳裂纹的生成,所以离子注入改善金属疲劳强度的关键是选择适当类型的离子,略大于基质原子的离子经注入后能填塞于基质原子的间隙中,使有害的剩余应力减少,甚至转化为压应力,延缓疲劳裂纹的生成。

(二)在半导体、集成电路和超大规模集成电路上的应用

离子注入已成为半导体生产的常规工艺。它和电子束、激光束配合而形成超大规模集成电路的亚微米加工技术。离子注入砷化嫁可制出超高速集成电路, 其速度比同样规模的硅材料制的电路快几倍、而且工艺也大大简化。离子注入HgCdTe可制出卫星照象和遥感用高灵敏度的红外探测器。

离子注入技术在半导体中的应用主要涉及以下几个方面:

1.离子注入在浅结形成中的应用

为了抑制MOS穿通电流和减小器件的短沟效应,半导体工艺的重要要减小CMOS源/漏结深。先进CMOS工艺对器件p-n结有很高要求,要有高的表面掺杂浓度、极浅的结深、低接触和薄层电阻以及小的结漏电流等。

为了形成浅结,离子注入是一种可选技术,结深由注入能量和下一步扩散工艺决定。注入能量的下限受束流下降限制,扩散温度的下限取决于消除注入损伤、激活杂质和避免退火期间的瞬时增强扩散。现代商业注入机通常不低于10keV,非常低的能量存在束流稳定和低束流问题。为了制作超浅p-n结,现代商业注入机所采用的注入杂质的射程太大,为获得小于60nm的结深,要严格控制注入分布,对此还存在于射程偏差、横向偏差和沟道等有关的问题。为了形成非晶的表面层,注入一种电不激活物质,如硅或锗,可以制作p-n浅结。这样可以消除沟道效应,而且与重损伤注入层相比,完全非晶层退火后有更好的晶体质量。

在形成p-n浅结的工艺过程中,与离子注入相关的主要缺点是在结区附近存在剩余缺陷,要用高温才能消除这些缺陷,为了克服用离子注入制备浅p-n结的困难,已试验了各种工艺,主要包括:由掺杂沉积层扩散、外延Si ,Ge , Si1-xGex、多晶Si和Si1-xGex、硅化物、硼硅玻璃、涂布二氧化硅乳胶、气相浸没激光掺杂、气相扩散、等离子体浸没离子注入等。

2.化合物半导体集成电路工艺中的离子注入

(1) 掺杂工艺

化合物半导体相对于硅的主要优点在于其较大的能隙和较高的载流子迁移率。一般来说,这些性质允许它们在较高温度和较高频率下工作。一个附加的化合物半导体的性质是其应用带隙工程的本领,通过组分改变产生二元、三元、四元或更复杂的化合物。Ⅲ-Ⅴ族化合物半导体元素可以子晶格混合来调整能隙、光学及电学性质。

掺杂工艺选择离子注入还是扩散方法,或直接由外延生长产生导电层,这取

决于器件所要求的电学特性和允许的制造工艺。用扩散产生结的方法近年来在化合物材料中并不常用,虽然在GaAs工艺中有一些重要应用。但是,扩散层深度和剖面的控制比离子注入或外延生长掺杂方法困难得多。因此基于扩散的掺杂工艺日益被冷落。离子注入的广泛应用是许多制造工厂的选择。这主要是由于其类似硅的工艺流程和相对低的器件制造成本。尽管外延层成本高于离子注入的衬底,但它以异质结构材料的发展和对掺杂及组分接近原子级的精确控制充分发挥出化合物半导体的能力,由于异质结构的许多优点,这些材料很快取代了基于离子注入或外延工艺的MESFET,特别是在高频和光电子应用方面。

(2) 隔离工艺

为了阻止集成电路中器件间的相互作用,需要电学隔离,其目的是限制或消除器件间电流和电场的相互作用程度,使它们不会影响器件的工作。应用适当的隔离技术可以降低电路的寄生效应,结果实现了器件的较高性能。电容、电感耦合和漏电流都能被消除。此外,电子或空穴可以更好地被限制于晶体管单元胞中。使用隔离技术,导致更好的电学特性的重复性,对有源区电荷分布的更好控制,及类似的对无源元件,如电阻、电感和电容特性的控制。

用于化合物半导体集成电路的制造有两种隔离技术:离子注入和台面腐蚀。每一方法都有其优点和缺点,但台面腐蚀技术是首先发展的。由于衬底质量和器件制作工艺的不断改进,离子注入技术逐渐变为隔离技术的首选方法。离子注入允许所希望的平坦化外观,并可产生更精确的器件几何尺寸,这对于高成品率和高可靠性及制造高密度电路是必不可少的。然而,非常浅的或高掺杂层的有效隔离在实际中是十分困难的,主要是因为离子注入工艺中杂质是高斯型分布的。为此,则使注入离子通过光刻胶,使杂质分布的峰值在表面附近,从而解决了这一问题。

3.半导体器件生产中离子注入技术与常规掺杂工艺比较

3.1.注入的杂质不受靶材料溶解度的限制。离子注入过程和高温扩散工艺相比,具有本质不同的物理过程。前者掺杂指标不受扩散系数和化学结合力等因素的限制,原则上对各种元素均可掺杂,并且能够在低温、室温、高温三种情况下进行注入。所以,这不仅可以避免热扩散的高温过程所带来的不良影响,而且在制造半导体器件工艺上,可以灵活多样、适应性强,可根据需要从几十种元素中挑选合适的n型或p型杂质,注入到各种半导体材料(如半导体Si, Ge, GaAs, InSb……等)中去。

3.2.可以精确地控制掺杂杂质的数量和掺杂浓度。热扩散工艺,本质上伴随着化学变化,对于浓度极低和极浅的结是很难控制的,难于实现工艺过程的自动控制。而离子注入技术则可以自由地支配两个独立参量(能量和剂量),从而能精确地控制掺杂的深度和浓度分布。对于要求杂质浓度分布形状很特殊的某些器件,就更需要离子注入进行掺杂。因为离子注入机容易实现控制装置的自动化,从而保证了掺杂的精度和重复性。正因为离子注入掺杂的参数可以精确控制,故可用来调整大规模集成电路的电参量,如MOS电路阈值,双极电路中三极管的β、f T等参数。因此,这种技术被称作精密的掺杂技术,用这种技术生产的集成电路,其批次重复性要比扩散掺杂好得多。这种特性结果,也提高了电路成品率。

3.3.离子注入不会产生像热扩散那样严重的横向扩散。一般在较低的温度处理时,由于离子的直进性,注入杂质是按图形板模近于垂直向里选择掺杂。根据右川理论,这种掺杂有着比热扩散小得多的横向扩散。按照这个道理,采用离子注入技术制备这种电路,其线条间距可以进一步缩短,最小可缩短到1微米(热扩散线条间距要大于3微米),因此可以提高集成电路的集成度。

3.4.离子掺杂可使大面积均匀。由于离子注入加入了电扫描控制掺杂,因而掺杂的均匀性比扩散掺杂好得多。比如对3英寸的片子来说,用离子注入时,整个片子上的电阻率的均匀性可做到3%,而热扩散法则仅为10%。因此,这种技术更适用于大型硅片生产,并且成为超大规模集成电路的主要手段。

3.5.由于离子掺杂过程是低温过程,可以避免热扩散所引入的热缺陷。因此特别适用于易被热分解的半导体材料的掺杂(如化合物半导体)。

3.6.掺杂杂质纯度高。离子注入是通过质量分析器来选取单一杂质离子的,从而保证了掺杂纯度不受杂质源纯度的影响。

3.7.高能量的入射离子能够穿透一定厚度的掩蔽膜(如SiO2膜)进行注入。利用这个特点,可以准确地调节MOS器件的阈值电压;能够提高大规模集成电路中(MOS)的厚膜开启电压(VT值),使器件能大为提高;通过SiO2层向n沟道注入p+后,n沟道向体移动,表面束缚电荷的影响减小,使迁移率提高,MOS开关速度提高,从而制得高速度MOS器件;利用这种技术还可以制造埋沟CCD等。另外,离子能通过表面层注入,在一定的条件下,使晶体表面避免如热扩散所带来的不规则和吸附层等不良影响。

3.8.离子注入技术在化合物半导体方面的应用则具有更特殊的意义。因为化合物半导体材料是由几种元素按照一定的组分比构成的,所以,进行掺杂时比元

素半导体复杂,采用常规的高温扩散工艺会遇到更多的困难。若采用离子注入技术,就比较方便易行。例如,向GaAs半导体片中注入S+是在室温中(或较低的靶加热温度下)进行,然后在一定的保护条件下将注入S+的GaAs样品进行热处理。由此可见,离子注入技术是把向衬底进行定量掺杂和高温处理分为两个独立的过程进行的,从而防止了衬底材料的热分解或杂质自补偿以及杂志外扩散等问题的发生。目前,采用离子注入技术在Ⅲ-Ⅴ族化合物半导体、Ⅱ-Ⅵ族化合物半导体以及三元或三元以上混合晶体等方面,都取得了可喜的成就。许多新型的化合物半导体器件,由于离子注入技术的发展,突破了常规工艺中的难关,先后被研制成功。

(三)在超导材料中的应用

在超导研究的早期,人们就开始利用离子注入寻求具有较高临界温度的超导材料。通过离子注入可改变超导材科的化合物成分配比,形成新的超导亚稳相;还能增加难溶元素的含量而不受溶解度的限制;同时又能在材料中形成可控制的缺陷或消除材料中的空位,由此可控制影响临界温度的某些因素。自液氟温区的超导体问世来,不断有研究者在这方面进行了尝试,分别对钇系薄膜,钇系和铋系的烧结样品进行各种能量和各种离子的注入,研究由此引起的超导电性和结构方面的变化。

1.钇系

各项研究表明,YBa2Cu3O7的临界温度对辐射较敏感,随结构的损伤程度增加,不仅出现临界温度下降,还可引起正交一四方相转变,并伴有金属一半导体的行为转变。

YBazCuaO7薄膜受5OokeV--O 和2MeV—As辐射时,随剂量增加电导率呈指数下降,同时还可观察到非晶态在晶界处逐渐形成,由此导致临界温度下降。

2.铋系

铋系玻璃是在晶化以后才显出超导电性的,所以离子注入产生的结构变化将会影响晶化过程中的晶相形成及晶体生长,进而影响最终样品的超导电性。实验中发现,注入银离子的玻璃晶化后,表面析出的晶相和晶体形貌与原始玻璃完全不同,组成接近超导相的片状晶体和含SrCaCu的非超导相在注入样品表面上共存,使相应的R—T曲线上出现两个电阻转变点,临界温度分别为110K和90K。同时还观察到注入样品表面有结构为单晶、组成为超导相、排列整齐的晶须定向生长。结构分析表明。,注入产生的辐射损伤使得玻璃表面组成和结构发生变化,

注入引起的增扩散效应又加速了质点在晶化过程中的迁穆,影响了结构中各组成的化学环境和分布状态,最终导致了注入样品与原始玻璃在析晶行为和超导电性方面的差异。

四、离子注入技术的应用前景

离子注入作为一门新的材料表面处理技术,发展前景也是十分诱人的。目前处于发展阶段,但专家们认为它是一门非常有前途的新兴技术。在极薄的材料表面层经过离子注入技术处理,就能使工件的使用寿向延长几倍甚至十几倍,效果和收益相当可观。它还可以有控制地产生其它方法所不能得到的新的表面合金。被冶金学家称之为特殊的冶金技术,出现了离子注入冶金学这一新的研究领域。本文重点讨论了离子注入在金属的表面改性、半导体器件及超导方面的应用研究,并已取得了令人满意的结果。当然还有其他方面的应用,例如:通过注入离子和生物体的相互作用实现诱变育种、细胞加工和基因转移等;通过离子注入还可以研究表面物理和非晶态特性;另外离子注入还可以用于瓷、玻璃、晶体、聚合物等材料的表面改性。

特别是到目前为止,人类对超导电性的研究和开发应用还远没有完成,关于高温超导机制的问题尚未解决,超导材料的临界温度也未能再进一步提高,这方面的探索还在继续进行。离子注入这一材料表面改性方法作为研究超导材料的有力工具还将在这一领域发挥其特有的作用。

因此我们可以说离子注入技术的发展水平,会影响到现代工业中许多行业的发展,对离子注入这门学科我们还有很长的路要走。

参考文献

[1]向荣,离子注入方法在金属材料表面改性技术中的应用.华东师大学学报,1992,第25卷第1期

[2]敏,离子注入在超导研究领域中的应用.材料导报,1997,第11卷第4期

[3]吴建军,永志,建华,离子注入技术及其应用. 材料导报,1995

[4]江红,阳,爱成,离子注入技术的发展及其应用.制造与工艺,2004

[5]John Cooke.Future trends in implantation[EBOL]..materiall863.,2003

[6]J M Poate,K Saadatmand.Ion beam technologies in the semiconductor world.Review of Scientific Instruments,2002,73(2):868-872

现代材料测试技术期末测试题汇总

《材料现代分析测试技术》思考题 1.电子束与固体物质作用可以产生哪些主要的检测信号?这些信号产生的原理是什么?它们有哪些特点和用途? (1)电子束与固体物质产生的检测信号有:特征X射线、阴极荧光、二次电子、背散射电子、俄歇电子、吸收电子等。 (2)信号产生的原理:电子束与物质电子和原子核形成的电场间相互作用。 (3)特征和用途: ①背散射电子:特点:电子能量较大,分辨率低。用途:确定晶体的取向,晶体间夹角,晶粒度及晶界类型,重位点阵晶界分布,织 构分析以及相鉴定等。 ②二次电子:特点:能量较低,分辨率高。用途:样品表面成像。 ③吸收电子:特点:被物质样品吸收,带负电。用途:样品吸收电子成像,定性微区成分分析。 ④透射电子:特点:穿透薄试样的入射电子。用途:微区成分分析和结构分析。 ⑤特征X射线:特点:实物性弱,具有特征能量和波长,并取决于被激发物质原子能及结构,是物质固有的特征。用途:微区元素定 性分析。 ⑥俄歇电子:特点:实物性强,具有特征能量。用途:表层化学成分分析。 ⑦阴极荧光:特点:能量小,可见光。用途:观察晶体内部缺陷。 ①电子散射:当高速运动的电子穿过固体物质时,会受到原子中的电子作用,或受到原子核及周围电子形成的库伦电场的作用,从而 改变了电子的运动方向的现象叫电子散射 ②相干弹性散射:一束单一波长的电子垂直穿透一晶体薄膜样品时,由于原子排列的规律性,入射电子波与各原子的弹性散射波不但 波长相同,而且有一定的相位关系,相互干涉。 ③不相干弹性散射:一束单一波长的电子垂直穿透一单一元素的非晶样品时,发生的相互无关的、随机的散射。 ④电子衍射的成像基础是弹性散射。 3.电子束与固体物质作用所产生的非弹性散射的作用机制有哪些? 非弹性散射作用机制有:单电子激发、等离子激发、声子发射、轫致辐射 ①单电子激发:样品内的核外电子在收到入射电子轰击时,有可能被激发到较高的空能级甚至被电离,这叫单电子激发。 ②等离子激发:高能电子入射晶体时,会瞬时地破坏入射区域的电中性,引起价电子云的集体振荡,这叫等离子激发。 ③声子发射:入射电子激发或吸收声子后,使入射电子发生大角度散射,这叫声子发射。 ④轫致辐射:带负电的电子在受到减速作用的同时,在其周围的电磁场将发生急剧的变化,将产生一个电磁波脉冲,这种现象叫做轫 致辐射。 1)二次电子产生:单电子激发过程中,被入射电子轰击出来并离开样品原子的核外电子。应用:样品表面成像,显微组织观察,断口形貌观察等 2)背散射电子:受到原子核弹性与非弹性散射或与核外电子发生非弹性散射后被反射回来的入射电子。应用:确定晶体的取向,晶体间夹角,晶粒度及晶界类型,重位点阵晶界分布,织构分析以及相鉴定等。 3)成像的相同点:都能用于材料形貌分析成像的不同点:二次电子成像特点:(1)分辨率高(2)景深大,立体感强(3)主要反应形貌衬度。背散射电子成像特点:(1)分辨率低(2)背散射电子检测效率低,衬度小(3)主要反应原子序数衬度。 5.特征X射线是如何产生的,其波长和能量有什么特点,有哪些主要的应用? 特征X-Ray产生:当入射电子激发试样原子的内层电子,使原子处于能量较高的不稳定的激发态状态,外层的电子会迅速填补到内层电子空位上,并辐射释放一种具有特征能量和波长的射线,使原子体系的能量降低、趋向较稳定状,这种射线即特征X射线。 波长的特点:不受管压、电流的影响,只决定于阳极靶材元素的原子序。 应用:物质样品微区元素定性分析

离子液体的应用前景

离子液体的应用前景 离子液体是指全部由离子组成的液体,如高温下的KCI,KOH呈液体状态,此时它们就是离子液体。在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体、室温熔融盐、有机离子液体等,目前尚无统一的名称,但倾向于简称离子液体。在离子化合物中,阴阳离子之间的作用力为库仑力,其大小与阴阳离子的电荷数量及半径有关,离子半径越大,它们之间的作用力越小,这种离子化合物的熔点就越低。某些离子化合物的阴阳离子体积很大,结构松散,导致它们之间的作用力较低,以至于熔点接近室温。 离子液体的优点 一、离子液体无味、不燃,其蒸汽压极低,因此可用在高真空体系中,同时可减少因挥发而产生的环境污染问题; 二、离子液体对有机和无机物都有良好的溶解性能,可使反应在均相条件下进行,同时可减少设备体积; 三、可操作温度范围宽(-40~300℃),具有良好的热稳定性和化学稳定性,易与其它物质分离,可以循环利用; 四、表现出Lewis、Franklin酸的酸性,且酸强度可调。 上述优点对许多有机化学反应,如聚合反应、烷基化反应、酰基化反应,离子溶液都是良好的溶剂。 离子液体的应用前景 迄今为止,室温离子液体的研究取得了惊人的进展。北大西洋公约组织于2000年召开了有关离子液体的专家会议;欧盟委员会有一个有关离子液体的3年计划;日本、韩国也有相关研究的相继报道。在我国,中国科学院兰州化学物理研究所西部生态绿色化学研究发展中心、北京大学绿色催化实验室、华东师范大学离子液体研究中心等机构也开展专门的研究。兰州化学物理研究所已在该领域取得重大突破,率先制备了多种咪唑类离子液体润滑剂。 世界领先的离子液体开发者—德国SolventInnovation公司即将推出数以吨计的商品。SolventInnovation公司也正在开发一系列的离子液体,以取代对环境极有害的溶剂。其

现代材料测试技术——知识点识记

现代材料测试技术知识点识记、掌握 1.材料现代分析方法的类别: 基于电磁辐射及运动粒子束与材料相互作用的各种性质建立起来的分析方法已成为材料现代分析方法的重要组成部分,大体可分为光谱分析、电子能谱分析、衍射分析和电子显微分析等四大类。此外,基于其它物理性质或电化学性质与材料的特征关系建立的色谱分析、质谱分析、电化学分析及热分析等方法,也是材料现代分析的重要方法。 材料分析测试技术的发展,使得材料分析不仅包括材料整体的成分、结构分析,也包括材料表面与界面分析、微区分析、形貌分析等内容。 组织形貌分析—— A.光学显微分析:光学显微镜最先用于医学及生物学方面,直接导致了细胞的发现,在此基础上形成了19世纪最伟大的发现之一------细胞学说。冶金及材料学工作者利用显微镜观察材料的显微结构,例如:经过抛光腐蚀后可以看到不同金属或合金的晶粒大小及特点,从而判断其性能及其形成条件,使人们能够按照自己的意愿改变金属的性能,或合成新的合金。举例:纯钨丝退火过程中的组织变化。 B. 扫描电镜分析:扫描电子显微镜是用细聚焦的电子束在样品表面进行逐行扫描,电子束激发样品表面发射二次电子,二次电子被收集并转换成电信号,在荧光屏上同步扫描成像。由于样品表面形貌各异,发射的二次电子强度不同。对应在屏幕上亮度不同,得到表面形貌像。目前扫描电子显微镜的分辨率已经达到了2nm左右。举例:金属铸锭的树枝晶结构;化学法生长的纳米ZnO;钢铁中的珠光体组织(铁素体 -Fe和渗碳体Fe3C间层混合物);Al-Cu合金;Ni合金大变形冷轧后晶粒状态; C. 透射电镜分析:举例:Ni合金大变形冷轧后晶粒状态;纯Al热轧晶粒状态; D. 扫描探针显微镜:1982年发明扫描隧道显微镜。扫描隧道显微镜没有镜头,它使用一根探针。探针和物体之间加上电压,如果探针距离物体表面大约在纳米级的距离时,就会产生电子隧穿效应。电子会穿过物体与探针之间的空隙,形成一股微弱的电流。如果探针与物体的距离发生变化,这股电流也会相应的改变。这样,通过测量电流可以探测物体表面的形状,分辨率可以达到原子的级别。因为这项奇妙的发明,Binnig和Rohrer获得了1986年的诺贝尔物理学奖。 改变微探针的性能,可以测量样品表面的导电性、导磁性等等,现在已经成为庞大的扫描探针显微镜(SPM)家族。建立在SPM技术之上的纳米加工工艺研究、纳米结构理化性能表征、材料和器件纳米尺度形貌分析、高密度储存技术,是当今科学技术中最活跃的前沿领域之一。它已被用来探测各种表面力、纳米力学性能、对生物过程进行现场观察;还被用来将电荷定向沉积、对材料进行纳米加工等。 晶体的相结构分析—— 在材料科学领域,相是指具有特定的结构和性能的物质状态。材料中原子排列方式决定晶体的相结构,原子排列方式的变化导致了相结构的变化。在一种组织中可以同时存在几种相;同种材料在不同条件下会以不同的相存在。改变加工成形工艺及后续热处理来获得不同的相组成,并实现可控的相变。 物相分析是指利用衍射的方法探测晶格类型和晶胞常数,确定物质的相结构。主要的物相分析手段有三种:X射线衍射(XRD)、电子衍射(ED)及中子衍射(ND),其共同的原理是:利用电磁波或运动电子束、中子束等与材料内部规则排列的原子作用产生相干散射,获得材料内部原子排列的信息,从而重组出物质的结构。 晶体的相结构分析:电子衍射TEM 依据入射电子的能量大小,电子衍射可分为高能电子衍射和低能电子衍射。低能电子衍射 (LEED)以能量为10~500eV的电子束照射样品表面,产生电子衍射。由于入射电子能量低,因而低能电子衍射给出的是样品表面1~5个原子层的(结构)信息,故低能电子衍射是分析晶体表面结构的重要方法,应用于表面吸附、腐蚀、催化、外延生长、表面处理等材料表面科学与工程领域。 高能电子衍射分析(HEED),入射电子能量为10~200 keV。由于原子对电子的散射强(比X 射线高4个数量级),电子穿透能力差,因而透射式高能电子衍射只适用于对薄膜样品的分析。 随着透射电子显微镜的发展,电子衍射分析多在透射电子显微镜上进行。由于电子束可以在 电磁场作用下会聚得很细小,所以特别适合测定微细晶体或亚微米尺度的晶体结构。透射电子显微镜具有可实现样品选定区域电子衍射,并可实现微区样品结构(衍射)分析与形貌观察相对应的特点。 晶体的相结构分析------中子衍射 与X射线、电子受原子的电子云或势场散射的作用机理不同,中子受物质中原子核的散射,轻重原子对中子的散射能力差别比较小,中子衍射利于测定材料中轻原子分布。中子衍射仪价格较高,不普及。

现代材料测试技术复习题及答案

. ... .. 现代材料测试技术复习 第一部分 填空题: 1、X射线从本质上说,和无线电波、可见光、γ射线一样,也是一种电磁波。 2、尽管衍射花样可以千变万化,但是它们的基本要素只有三个:即衍射线的峰位、线形、强度。 3、在X射线衍射仪法中,对X射线光源要有一个基本的要求,简单地说,对光源的基本要稳定、强度大、光谱纯洁。 4、利用吸收限两边质量吸收系数相差十分悬殊的特点,可制作滤波片。 5、测量X射线衍射线峰位的方法有七种,它们分别是7/8高度法、峰巅法、切线法、弦中点法、中线峰法、重心法、抛物线法。 6、X射线衍射定性分析中主要的检索索引的方法有三种,它们分别是哈那瓦尔特索引、芬克索引、字顺索引。 7、特征X射线产生的根本原因是原子层电子的跃迁。 8、X射线衍射仪探测器的扫描方式可分连续扫描、步进扫描、跳跃步进扫描三种。 9、实验证明,X射线管阳极靶发射出的X射线谱可分为两类:连续X射线光谱和特征X射线光谱。 10、当X射线穿过物质时,由于受到散射,光电效应等的影响,强度会减弱,这种现象称为X射线的衰减。 11、用于X射线衍射仪的探测器主要有盖革-弥勒计数管、闪烁计数管、正比计数管、固体计数管,其中闪烁计数管和正比计数管应用较为普遍。 12、光源单色化的方法:试推导布拉格方程,解释方程中各符号的意义并说明布拉格方程的应用 名词解释 1、X-射线的衰减:当X射线穿过物质时,由于受到散射,光电效应等的影响,强度会减弱,这种现象称为X-射线的吸收。 2、短波限:电子一次碰撞中全部能量转化为光量子,此光量子的波长 3、吸收限:物质对电磁辐射的吸收随辐射频率的增大而增加至某一限度即骤然增大,称吸收限。吸收限:引起原子层电子跃迁的最低能量。 4、吸收限电子--hv 最长波长与原子序数有关 5、短波限 hv--电子最短波长与管电压有关 6、X射线:波长很短的电磁波 7、特征X射线:是具有特定波长的X射线,也称单色X射线。 8、连续X射线:是具有连续变化波长的X射线,也称多色X射线。 9、荧光X射线:当入射的X射线光量子的能量足够大时,可以将原子层电子击出,被打掉了层的受激原子将发生外层电子向层跃迁的过程,同时辐射出波长严格一定的特征X射线 10、二次特征辐射:利用X射线激发作用而产生的新的特征谱线 11、Ka辐射:电子由L层向K层跃迁辐射出的K系特征谱线 12、相干辐射:X射线通过物质时在入射电场的作用下,物质原子中的电子将被迫围绕其平衡位置振动,同时向四周辐射出与入射X射线波长相同的散射X射线,称之为经典散射。由于散射波与入射波的频率或波长相同,位相差恒定,在同一方向上各散射波符合相干条件,称为相干散射 13、非相干辐射:散射位相与入射波位相之间不存在固定关系,故这种散射是不相干的 14、俄歇电子:原子中一个K层电子被激发出以后,L层的一个电子跃迁入K层填补空白,剩下的能量不是以辐射 15、原子散射因子:为评价原子散射本领引入系数f (f≤E),称系数f为原子散射因子。他是考虑了各个电子散射波的位相差之后原子中所有电子散射波合成的结果

材料分析测试技术》试卷(答案)

《材料分析测试技术》试卷(答案) 一、填空题:(20分,每空一分) 1. X射线管主要由阳极、阴极、和窗口构成。 2. X射线透过物质时产生的物理效应有:散射、光电效应、透射X射线、和热。 3. 德拜照相法中的底片安装方法有:正装、反装和偏装三种。 4. X射线物相分析方法分:定性分析和定量分析两种;测钢中残余奥氏体的直接比较法就属于其中的定量分析方法。 5. 透射电子显微镜的分辨率主要受衍射效应和像差两因素影响。 6. 今天复型技术主要应用于萃取复型来揭取第二相微小颗粒进行分析。 7. 电子探针包括波谱仪和能谱仪成分分析仪器。 8. 扫描电子显微镜常用的信号是二次电子和背散射电子。 二、选择题:(8分,每题一分) 1. X射线衍射方法中最常用的方法是( b )。 a.劳厄法;b.粉末多晶法;c.周转晶体法。 2. 已知X光管是铜靶,应选择的滤波片材料是(b)。 a.Co ;b. Ni ;c. Fe。 3. X射线物相定性分析方法中有三种索引,如果已知物质名时可以采用(c )。 a.哈氏无机数值索引;b. 芬克无机数值索引;c. 戴维无机字母索引。4. 能提高透射电镜成像衬度的可动光阑是(b)。 a.第二聚光镜光阑;b. 物镜光阑;c. 选区光阑。 5. 透射电子显微镜中可以消除的像差是( b )。 a.球差;b. 像散;c. 色差。 6. 可以帮助我们估计样品厚度的复杂衍射花样是(a)。 a.高阶劳厄斑点;b. 超结构斑点;c. 二次衍射斑点。 7. 电子束与固体样品相互作用产生的物理信号中可用于分析1nm厚表层成分的信号是(b)。 a.背散射电子;b.俄歇电子;c. 特征X射线。 8. 中心暗场像的成像操作方法是(c)。 a.以物镜光栏套住透射斑;b.以物镜光栏套住衍射斑;c.将衍射斑移至中心并以物镜光栏套住透射斑。 三、问答题:(24分,每题8分) 1.X射线衍射仪法中对粉末多晶样品的要求是什么 答:X射线衍射仪法中样品是块状粉末样品,首先要求粉末粒度要大小 适中,在1um-5um之间;其次粉末不能有应力和织构;最后是样品有一 个最佳厚度(t =

测试技术的发展现状以及未来的发展趋势

测试技术的发展现状以及未来的发展趋势 姓名:赵新 班级:机械5-1班 学号: 10号

测试技术的发展现状以及未来的发展趋势 概述 测试是测量与试验的简称。 测量内涵:对被检测对象的物理、化学、工程技术等方面的参量做数值测定工作。 试验内涵:是指在真实情况下或模拟情况下对被研究对象的特性、参数、功能、可靠性、维修性、适应性、保障性、反应能力等进行测量和度量的研究过程。 试验与测量技术是紧密相连,试验离不开测量。在各类试验中,通过测量取得定性定量数值,以确定试验结果。而测量是随着产品试验的阶段而划分的,不同阶段的试验内容或需求则有相对应的测量设备和系统,用以完成试验数值、状态、特性的获取、传输、分析、处理、显示、报警等功能。 产品测试是通过试验和测量过程,对被检测对象的物理、化学、工程技术等方面的参量、特性等做数值测定工作,是取得对试验对象的定性或定量信息的一种基本方法和途径。 测试的基本任务是获取信息。因此,测试技术是信息科学的源头和重要组成部分。 信息是客观事物的时间、空间特性,是无所不在,无时不存的。但是人们为了某些特定的目的,总是从浩如烟海的信息中把需要的部分取得来,以达到观测事物某一本值问题的目的。所需了解的那部分信息以各种技术手段表达出来,提供人们观测和分析,这种对信息的表达形式称之为“信号”,所以信号是某一特定信息的载体。 信息、信号、测试与测试系统之间的关系可以表述为:获取信息是测试的目的,信号是信息的载体,测试是通过测试系统、设备得到被测参数信息的技术手段。 同时,在军事装备及产品全寿命周期内要进行试验测试性设计与评价,并通过研制相应的试验检测设备、试验测试系统(含软、硬件)确保军事装备和产品达到规定动作的要求,以提高军事装备和产品的完好性、任务成功性,减少对维修人力和其它资源要求,降低寿命周期费用,并为管理提供必要的信息。 全寿命过程又称为全寿命周期,是指产品从论证开始到淘汰退役为止的全过程。产品全寿命过程的划分,各国有不同的划分。美国把全寿命过程划分为6个阶段:初步设计、批准、全面研制、生产、使用淘汰(退役)。我国将全寿命周期划分为5个阶段:论证、研制、生产、使用、退役。 这五个阶段都必须采用试验、测量技术,并用试验手段,通过测量设备和测量系统确保研制出高性能、高可靠的产品。因此,测试技术是具有全局性的关键技术。尤其在高新技术领域,测试技术具有极其重要地位。 美军武器装备在试验与评定管理中,对试验与评定的类型分为:研制试验与评定、使用试验与评定、多军种试验与评定、联合试验与评定、实弹试验、核防护和生存性试验等类。 但最主要的和最重要的是研制性试验与评定、使用试验与评定两种。试验与评定是系统研制期间揭示关键性参数问题的一系列技术,这些问题涉及技术问题(研制试验);效能、实用性和生存性问题(使用试验);对多个军种产生影响问题(多军种联合试验);生存性和杀伤率(实弹试验)等。但核心是研制性试验与评定及使用性试验与评定,主要解决军工产品在研制过程中的技术问题和使用的效能、适应性和生存性问题。 研制试验与评定是为验证工程设计和研制过程是否完备而进行的试验与评定,通过研制试验与

现代材料测试技术作业

现代材料测试技术 作业

第一章X射线衍射分析 一、填空题 1、X射线从本质上说,和无线电波、可见光、γ射线一样,也是一种。 2、尽管衍射花样可以千变万化,但是它们的基本要素只有三个:即、、。 3、在X射线衍射仪法中,对X射线光源要有一个基本的要求,简单地说,对光源的基本要求是、、。 4、利用吸收限两边相差十分悬殊的特点,可制作滤波片。 5、测量X射线衍射线峰位的方法有六种,它们分别是、、 、、、。 6、X射线衍射定性分析中主要的检索索引的方法有三种,它们分别是、 、。 7、特征X射线产生的根本原因是。 8、X射线衍射定性分析中主要的检索索引的方法有三种,它们分别是、 和字顺索引。 9、X射线衍射仪探测器的扫描方式可分、、三种。 10、实验证明,X射线管阳极靶发射出的X射线谱可分为两类:和 11、当X射线穿过物质时,由于受到散射,光电效应等的影响,强度会减弱,这种现象称为。 12、用于X射线衍射仪的探测器主要有、、、,其中和应 用较为普遍。 13、X射线在近代科学和工艺上的应用主要有、、三个方面 14、X射线管阳极靶发射出的X射线谱分为两类、。 15、当X射线照射到物体上时,一部分光子由于和原子碰撞而改变了前进的方向,造成散射线;另一部分光子可能被原子吸收,产生;再有部分光子的能量可能在与原子碰撞过程中传递给了原子,成为。 二、名词解释 X-射线的吸收、连续x射线谱、特征x射线谱、相干散射、非相干散射、荧光辐射、光电效应、俄歇电子、质量吸收系数、吸收限、X-射线的衰减 三、问答与计算 1、某晶体粉末样品的XRD数据如下,请按Hanawalt法和Fink法分别列出其所有可能的检索组。 2、产生特征X射线的根本原因是什么? 3、简述特征X-射线谱的特点。 4、推导布拉格公式,画出示意图。 5、回答X射线连续光谱产生的机理。

离子液体概述及其应用要点

离子液体概述及其应用 前言:离子液体是仅由阴阳两种离子组成的有机液体,也称之为低温下的熔盐。离子液体具有低蒸汽压,良好的离子导电导热性,液体状态温度范围广和可设计性等优点。离子液体所具备的这些其他液体无法比拟的性质,给大部分传统化工反应提供了新的思路,特别是在绿色化学设计中的应用。本文首先阐述了离子液体的基础知识,而后着重讨论了离子液体在催化及有机合成领域,摩擦领域,生物医药领域中的应用。 主题: 一 离子液体概述 1.1离子液体的发展及性质 20世纪时“离子液体”(IL )仅仅是表示熔融盐或溶盐的一个术语,比如高温盐。现在,术语IL 大部分广泛的用在表示在液态或接近室温条件下存在的熔盐。早在1914年,Walden [1]合成出乙基硝酸铵,熔点为12℃,但当时这一发现并未引起关注。20世纪40年代,Hurley 等人报道了第一个氯铝酸盐离子液体系AlCl3-[EPy]Br 。此后对这一氯铝酸盐离子液体系进行了不断的扩充,包括各种基团修饰,如N-烷基吡啶,1,3-二烷基咪唑等,另外研究了此类离子液体系在电化学,有机合成以及催化领域的应用并有很好的效果[2]。但是由于此类离子液体共同的缺点就是遇水反应生成腐蚀性的HCl ,对水和空气敏感,从而限制了他们的应用。所以直到1992年,Wilkes [3]领导的小组合成了一系列由咪唑阳离子与-4BF ,-6PF 阴离子构成的对水和空气

都很稳定的离子液体。此后在全世界范围内形成了研究离子液体的热潮。这是由于ILs 存在很多优异而特殊的性质。(1)液体状态温度范围广,300℃;(2)蒸汽压低,不易挥发;(3)对有机物,无机物都有很好的溶解性,是许多化学反应能够在均相中完成;(4)密度大,与许多溶剂不溶,当用另一溶剂萃取产物时,通过重力作用,可实现溶剂与产物的分离;(5)较大的可调控性;(6)作为电解质具有较大的电化学窗口,良好的导电性,热稳定性。这些特殊的物理化学性质可以产生许多新应用,同时也会提高现有的科技水平。到目前为止,已经合成并报道了大量的ILs ,图1显示了典型的阳离子结构,阴离子结构和侧基链[4]。我们可以通过选择合适的离子组成从而实现ILs 物理化学性质的设计。比如说咪唑阳离子(1-丁基-3-甲基咪唑阳离子)和-4BF 或-4AlCl 组合,生成的离子液体是亲水性的,而同样的阳离子和 -6PF 或-2NTf 产生的是强憎水性的离子液体。 目前研究较多的是咪唑阳离子和吡啶阳离子与含氟阴离子构成的离子液体。

离子液体(综述)

离子液体的现状、应用及其前景 姓名:丁文章专业:轻工技术与工程学号:6140206024摘要:离子液体因为具有如蒸汽压低,电化学窗口宽,物质溶解性好,稳定诸多优点而被极多的化学工作者关注.本文就离子液里的研究进展.离子液体的类型及应用,离子液体的毒性等几个方面做出详细的阐述,并对离子液体的前景做出了初步的预测. 关键词:离子液体;离子液体的类型;应用;毒性; Abstract:Ionic liquid has the following advantages, wide electrochemical window, steam down material good solubility ,This paper is about of the research progress in the ionic liquid, the types and application of ionic liquids and the toxicity of ionic liquid, and made a preliminary forecast to the prospect of the ionic liquid. Keyword:Ionic liquid;the types of Ionic liquid; application of ionic liquids; toxicity of ionic liquid; 1引言 离子液体[1]是指全部由有机阳离子和无机或有机阴离子构成的液体,如高温下的KCI,KOH呈液体状态,此时它们就是离子液体,在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体. 离子液体的历史可以追溯到1914年,当时Walden报道了(EtNH2)+HNO3-的合成(熔点12℃) .这种物质由浓硝酸和乙胺反应制得,但是,由于其在空气中很不稳定而极易发生爆炸,它的发现在当时并没有引起人们的兴趣,这是最早的离子液体.1951年F.H.Hurley和T.P. Wiler首次合成了在环境温度下是液体状态的离子液体.他们选择的阳离子是N-乙基吡啶,合成出的离子液体是溴化正乙基吡啶和氯化铝的混合物(氯化铝和溴化乙基吡啶摩尔比为1:2) .但这种离子液体的液体温度范围还是相对比较狭窄的,而且,氯化铝离子液体遇水会放出氯化氢,对皮肤有刺激作用.直到1976年,美国Colorado州立大学的Robert利用AICl3/[N-EtPy]Cl作电解液,进行有机电化学研究时,发现这种室温离子液体是很好的电解液,能和有机物混溶,不含质子,电化学窗口较宽.1992年Wilkes以1-甲基-3-乙基咪唑为阳离子合成出氯化1-甲基-3-乙基咪唑,在摩尔分数为50%的AICl3存在下,其熔点达到了8℃.在这以后,离子液体的应用研究才真正得到广泛的开展. 与传统的有机溶剂相比,离子液体具有如下特点[2]:(1) 液体状态温度范围宽,从低于或接近室温到300℃, 且具有良好的物理和化学稳定性;(2)无色、无臭, 不挥发, 几乎没有蒸气压.(3) 蒸汽压低,不易挥发,消除了VOC(Volatile Organic Compounds)环境污染问题;(4) 对大量的无机和有机物质都表现出良好的溶解能力, 且具有溶剂和催化剂的双重功能,可作为许多化学反应溶剂或催化活性载体;(5) 具有较大的极性可调控性, 粘度低, 密度大, 可以形成二相或多相体系, 适合作分离溶剂或构成反应

离子液体及其在化学中的应用

离子液体及其在化学中的应用 随着科技发展和环保意识的增强,清洁、低耗、高效的化学化工反应是发展的必然趋势.由于绝大多数化学反应需要在溶剂中进行,而有机溶剂的用量大、挥发性强是造成化学化工污染的主要原因之一.寻找对环境友好、有利于反应控制的介质和溶剂是目前化学化工需要解决的迫切问题之一.室温离子液体适应这种需要,正在快速为是继超临界CO2之后的新一代绿色溶剂。 一离子液体及其特点 离子液体[1]是指在室温或接近室温呈液态的离子型化合物,也称为低温熔融盐.常见的阳离子有季铵、季、咪唑盐和吡作为离子化合物,离子液体熔点较低的主要原因是:结构的不对称性使离子难以规则紧密地堆积,难以形成晶体或固体. 与传统的溶剂相比,离子液体具有以下3个显著的特性: 1 在室温下,离子液体蒸汽压几乎为零,并且不燃烧、不爆炸、毒性低,溶解性能强,可以较好地溶解多数有机物、无机物和金属配合物.多数离子液体在300e仍能保持液态,因而离子液体液态温度范围大,既可室温使用,也可以高温使用.离子液体作为溶剂,不仅不会造成溶剂损耗和环境污染,而且使用温度范围大,适用范围广.

2) 离子液体具有良好的导电性和较宽的电化学稳定电位窗.离子液体的电化学稳定电位窗比传统溶剂大得多,多数为4V左右,而水在酸性条件下为1.3V,在碱性条件下只有0.4V.因此使离子液体在电化学研究中有着广泛的用途. 3) 离子液体具有可调节的酸碱性,作为反应介质使用极为方便.例如,将Lewis酸AlCl3加入到离子液体氯化1-丁基-3-甲基咪唑中,当AlCl3的摩尔分数x<0.5时,体系呈碱性;当x=0.5时,呈体系呈中性;当x>0.5时,体系表现强酸性[4].同时,还发现离子液体存在/潜酸性0和/超酸性0.例如,把弱碱吡咯或N,N)二甲基苯胺加到中性的离子液体1-丁基 -甲基咪唑四氯铝酸盐中,体系表现出很强的潜酸性[5],如果把无机酸溶于上述离子液体中可观察到超强酸性[6]. 二离子液体在化学中的应用 由于离子液体所具有的独特性能,目前它被广泛应用于化学研究的各个领域中 .1 用作反应溶剂 2.1.1 氢化反应离子液体作为氢化反应的溶剂已有大量的报道[7~9],对于氢化反应,用离子液体替代普通溶剂的优点是:反应速率提高数倍,离子液体和催化剂的混合液可以重复利用.研究表明,离子液体在氢化反应中发挥了溶剂和催化剂的双重

最新现代流动测试技术大作业

现代流动测试技术 大作业 姓名: 学号: 班级: 电话: 时间:2016

第一次作业 1)孔板流量计测量的基本原理是什么?对于液体、气体和蒸汽流动,如何布置测点? 基本原理:充满管道的流体流经管道的节流装置时,在节流件附近造成局部收缩,流速增加,在上下游两侧产生静压差。在已知有关参数的条件下,根据流动连续性原理和伯努利方程可以推导出差压与流量之间的关系而求得流量。公式如下: 4v q d π α== 其中: C -流出系数 无量纲 d -工作条件下节流件的节流孔或喉部直径 D -工作条件下上游管道内径 qv -体积流量 m3/s β-直径比d/D 无量纲 ρ—流体的密度Kg/m3 测量液体时,测点应布置在中下部,应为液体未必充满全管,因此不可以布置的太靠上。 测量气体时,测点应布置在管道的中上部,以防止气体中密度较大的颗粒或者杂质对测量产生干扰。 测量水蒸气时,测点应该布置在中下部。 2)简述红外测温仪的使用方法、应用领域、优缺点和技术发展趋势。 使用方法:红外测温仪只能测量表面温度,无法测量内部温度;安装地点尽量避免有强磁场的地方;现场环境温度高时,一定要加保护套,并保证水源的供应;现场灰尘、水汽较大时,应有洁净的气源进行吹扫,保证镜头的洁净;红外探头前不应有障碍物,注意环境条件:蒸汽、尘土、烟雾等,它阻挡仪器的光学系统而影响精确测温;信号传输线一定要用屏蔽电缆。 应用领域:首先,在危险性大、无法接触的环境和场合下,红外测温仪可以作为首选,比如: 1)食品领域:烧面管理及贮存温度 2)电气领域:检查有故障的变压器,电气面板和接头 3)汽车工业领域:诊断气缸和加热/冷却系统 4)HVAC 领域:监视空气分层,供/回记录,炉体性能。 5)其他领域:许多工程,基地和改造应用等领域均有使用。 优点:可测运动、旋转的物体;直接测量物料的温度;可透过测量窗口进行测量;远距离测量;维护量小。 缺点:对测量周围的环境要求较高,避免强磁场,探头前不应有障碍物,信号传输线要用屏蔽电缆,当环境很恶劣时红外探头应进行保护。 发展趋势:红外热像仪,可对有热变化表面进行扫描测温,确定其温度分布图像,迅速检测出隐藏的温差。便携化,小型化也是其发展趋势。 3)简述LDV 和热线的测速原理及使用方法。

《材料分析测试技术》试卷答案

《材料分析测试技术》试卷(答案) 一、填空题:(20分,每空一分) 1.X射线管主要由阳极、阴极、和窗口构成。 2.X射线透过物质时产生的物理效应有:散射、光电效应、透射X 射线、和热。 3.德拜照相法中的底片安装方法有: 正装、反装和偏装三种。 4. X射线物相分析方法分: 定性分析和定量分析两种;测钢中残余奥氏体的直接比较法就属于其中的定量分析方法。 5.透射电子显微镜的分辨率主要受衍射效应和像差两因素影响。 6.今天复型技术主要应用于萃取复型来揭取第二相微小颗粒进行分析。 7. 电子探针包括波谱仪和能谱仪成分分析仪器。 8.扫描电子显微镜常用的信号是二次电子和背散射电子。 二、选择题:(8分,每题一分) 1.X射线衍射方法中最常用的方法是( b )。 a.劳厄法;b.粉末多晶法;c.周转晶体法。 2. 已知X光管是铜靶,应选择的滤波片材料是(b)。 a.Co;b. Ni;c.Fe。 3.X射线物相定性分析方法中有三种索引,如果已知物质名时可以采用( c )。 a.哈氏无机数值索引;b. 芬克无机数值索引;c. 戴维无机字母索引。 4.能提高透射电镜成像衬度的可动光阑是(b)。 a.第二聚光镜光阑;b.物镜光阑;c. 选区光阑。 5. 透射电子显微镜中可以消除的像差是( b )。 a.球差; b. 像散; c. 色差。 6.可以帮助我们估计样品厚度的复杂衍射花样是( a)。 a.高阶劳厄斑点;b.超结构斑点;c. 二次衍射斑点。 7. 电子束与固体样品相互作用产生的物理信号中可用于分析1nm厚表层成分的信号是(b)。 a.背散射电子; b.俄歇电子;c. 特征X射线。 8. 中心暗场像的成像操作方法是(c)。 a.以物镜光栏套住透射斑;b.以物镜光栏套住衍射斑;c.将衍射斑移至中心并以物镜光栏套住透射斑。 三、问答题:(24分,每题8分) 1.X射线衍射仪法中对粉末多晶样品的要求是什么? 答: X射线衍射仪法中样品是块状粉末样品,首先要求粉末粒度要大小适 中,在1um-5um之间;其次粉末不能有应力和织构;最后是样品有一个 最佳厚度(t =

检测技术的新发展

本文由手套007贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 检测技术的新发展 孙培明 ( 广州市政建设学校广东 510500) 检测技术是科技领域的重要组成部分 , 可以说科技发展的每一步都离不开检测技术的配合 , 尤其是极端条件下的检测技术 , 已成为深化认识自然的重要手段。近几十年来 ,随着电子技术的快速发展 , 各种弱物理量 ( 如弱光、、、、弱电弱磁弱声小位移、微温差、微电导、微振动等) 的测量有了长足的发展 ,其检测方法大都是通过各种传感器作电量转换 , 使测量对象转换成电量 , 基本方法有 : 相干测量法 , 重复信号的时域平均法 , 离散信号的统计平均法及计算机处理法等 ,但由于弱信号本身的涨落、传感器本身及测量仪噪声等的影响 , 检测的灵敏度及准确性受到了很大的限制。近年来 , 各国的科学家们对光声光热技术进行了大量广泛而深入的研究 , 人们通过检测声波及热效应便可对物质的力、、、、热声光磁等各种特性进行分析和研究 ; 并且这种检测几乎适用于所有类型的试样 ,甚至还可以进行试样的亚表面无损检测和成像。还由此派生出几种光热检测技术 ( 如光热光偏转法、光热光位移法、热透射法、光声喇曼光谱法及光热释电光谱法等 ) 。这些方法成功地解决了以往用传统方法所不易解决的难题 , 因而广泛地应用于物理、、、、、、化学生物医学化工环保材料科学等各个领域 ,成为科学研究中十分重要的检测和分析手段。尤其是近几年来 , 随着光声光热检测技术的不断发展 ,光声光热效应的含义也不断拓宽 ,光源也由传统的光波 ,电磁波、射线、 X 微波等扩展到电子束、离子束、同步辐射等 ,探测器也由原来的传声器扩展到压电传感器、热释电探测器及光敏传感器等 ,从而适应了不同应用场合的实际需要。 1. 光声光热检测的特点光声光热检测之所以有如此迅速的发展并得到日益广泛的应用 ,是由其本身的特点所决定的。 1. 1 与普通的光谱测量技术相比 ,光声检测的光声信号直接取决于物质吸收光能的大小 ,反射光、 14 卷 4 期 ( 总 82 期) 散射光对光声检测的干扰很小 ; 因此 ,对于弱信号则可以通过增大入射光功率的办法来提高检测的信噪比 ; 同时 ,它还是惟一可用以检测试样剖面吸收光谱的方法。 1. 2 在光声检测中 , 试样本身既是被测物质 , 又是吸收光波的检测器 ,因此 ,可以在一个很宽的波谱范围内进行研究 ,而不必改变检测系统 ,给实际操作带来极大的方便。 1. 3 光声效应是研究物质荧光、光电和光化学现象的极其灵敏而又十分有效的方法 , 这是因为光声信息是物质吸收了经调制后的外界入射能量 , 由受激态跃迁到低能态而产生的 ,因此 ,它与物质受激后的辐射过程、光化学过程等是互补的 ,从而大大地提高了检测的灵敏度。 1. 4 光声效应还可以用来测量其他一些非光谱研究领域的物理量 ( 如薄膜厚度、弹性形变、不透 )。明材料的亚表面热波成像等 2. 光声光热检测技术的分类当物质吸收强度变化的辐射能而使自身加热时 ,便会在它的内部产生热应力、热应变及折射率变化等多种效应 ; 如果采用适当的检测手段及检测系统 ,便可对其物理、化学性质进行测量和研究。根据试样特性和检测目的的不同 , 可采用不同的检测方法。各种检测方法都有自己相应的检测装置。每个光声光热检测系统 ,通常都是由强度时变的辐射源、光声光热信号检测器和信号处理系统等 3 个部分组成的。常见的光声光热检测技术有以下几类。 2. 1 传声器光声检测技术这是目前使用最广泛的一种光声检测系统 , 它适用于固体、、液体气体、粉末及胶体等各种形态物质特性的检测 ,其特点是理论较完善 ,易于实现定量检测。该系统的主要部分是一个光声腔 , 用以安装传声器和放置被测试样 , 检测过程中的光—————热—

2016《材料现代分析测试方法》复习题

《近代材料测试方法》复习题 1.材料微观结构和成分分析可以分为哪几个层次?分别可以用什么方法分析? 答:化学成分分析、晶体结构分析和显微结构分析 化学成分分析——常规方法(平均成分):湿化学法、光谱分析法 ——先进方法(种类、浓度、价态、分布):X射线荧光光谱、电子探针、 光电子能谱、俄歇电子能谱 晶体结构分析:X射线衍射、电子衍射 显微结构分析:光学显微镜、透射电子显微镜、扫面电子显微镜、扫面隧道显微镜、原子力显微镜、场离子显微镜 2.X射线与物质相互作用有哪些现象和规律?利用这些现象和规律可以进行哪些科学研究工作,有哪些实际应用? 答:除贯穿部分的光束外,射线能量损失在与物质作用过程之中,基本上可以归为两大类:一部分可能变成次级或更高次的X射线,即所谓荧光X射线,同时,激发出光电子或俄歇电子。另一部分消耗在X射线的散射之中,包括相干散射和非相干散射。此外,它还能变成热量逸出。 (1)现象/现象:散射X射线(想干、非相干)、荧光X射线、透射X射线、俄歇效 应、光电子、热能 (2)①光电效应:当入射X射线光子能量等于某一阈值,可击出原子内层电子,产生光电效应。 应用:光电效应产生光电子,是X射线光电子能谱分析的技术基础。光电效应 使原子产生空位后的退激发过程产生俄歇电子或X射线荧光辐射是 X射线激发俄歇能谱分析和X射线荧光分析方法的技术基础。 ②二次特征辐射(X射线荧光辐射):当高能X射线光子击出被照射物质原子的 内层电子后,较外层电子填其空位而产生了次生特征X射线(称二次特征辐射)。 应用:X射线被物质散射时,产生两种现象:相干散射和非相干散射。相干散射 是X射线衍射分析方法的基础。 3.电子与物质相互作用有哪些现象和规律?利用这些现象和规律可以进行哪些科学研究工作,有哪些实际应用? 答:当电子束入射到固体样品时,入射电子和样品物质将发生强烈的相互作用,发生弹性散 射和非弹性散射。伴随着散射过程,相互作用的区域中将产生多种与样品性质有关的物理信 息。 (1)现象/规律:二次电子、背散射电子、吸收电子、透射电子、俄歇电子、特征X射 线 (2)获得不同的显微图像或有关试样化学成分和电子结构的谱学信息

离子液体的发展与应用

绿色化学又称环境无害化学、环境友好化学、清洁化学。绿色化学即用化学的技术和方法去减少或停止那些对人类健康、社区安全、生态环境有害的原料、催化剂、溶剂和试剂、产物、副产物等的使用与产生,使污染消除在生产的源头,并使整个合成过程和生产过程对环境友好。绿色化学是当今国际化学科学研究的前沿学科之一,是一门具有明确社会需求和科学目标的新型交叉学科。由于绿色化学化工所追求的目标是淘汰有毒原材料,探求新的合成路线,采用无污染的反应途径和工艺,能最大限度地减少“三废”,并实行“原材料筛选-产品生成-产品使用循环再利用”全过程控制;绿色化学技术的发展和应用不但能提高生产效率和优化产品,而且能同时提高资源和能源的利用率,减轻污染负荷,改善环境质量,从而大幅度地提高生产过程中的社会和经济效益,成为实现经济和社会可持续发展的途径之一。因此,绿色化学与技术的推广应用必然带来一场新的产业革命。这个绿色浪潮将使环境变得经济性,而不再仅是使经济性成为技术创新的主要推动力。 美国科学家、绿色化学的倡导者阿纳斯塔斯(Anastas P.T.)和韦纳(Waner J.C.)提出绿色化学的12条原则,这些原则在许多论述中被多次引用,其内容:(1)防止废物的生成比在其生成后处理更好;(2)设计的合成方法应使生产过程中所采用的原料最大量地进入产品之中;(3)设计合成方法时,只要可能,不论原料、中间产物和最终产品,均应对人体健康和环境无毒、无害;(4)设计的化学产品应在保持原有功效的同时,尽量无毒或毒性很小;(5)应尽可能避免使用溶剂、分离试剂等助剂,如不可避免,也要选用无毒无害的助剂;(6)合成方法必须考虑反应过程中能耗对成本与环境的影响,应设法降低能耗,最好采用在常温常压下的合成方法;(7)在技术可行和经济合理的前提下,采用可再生资源代替消耗性资源;(8)在可能的条件下,尽量不产生衍生物;(9)合成方法中采用高选择性的催化剂比使用化学计量助剂更优越;(10)化工产品要设计成在终结其使用功能后,不会永存于环境中,要能分解成可降解的无害物质;(11)进一步发展分析方法,对危险物质在生成前实行在线监测和控制;(12)一个化学过程中使用的物质或物质的形态,应考虑尽量减小实验事故的潜在危险,如气体释放,爆炸和着火等[1]。 绿色化学发展至今已经取得了很大的进展,笔者主要通过对离子液体的讨论来对绿色化学的进展进行综述。 1离子液体的发展 离子液体是由特定阳离子和阴离子构成的在室温或近于室温下呈液态的物质,其主要的特点是:几乎没有蒸气压,不挥发,无色,无嗅;具有较大的稳定温度范围,较好的化学稳定性及较宽的电化学稳定电位窗口;通过阴阳离子的设计可调节其对无机物、水、有机物及聚合物的溶解性,且其酸度可调至超强酸。离子液体良好的环境友好性和可设计性,使得其作为新型的反应介质正在成为研究热点[2~3]。与传统溶剂相比,用离子液体作有机化学反应的介质,可获得更高的选择性和更快的反应速率,同时还具有反应条件温和、环境友好的特点[4~6]。多种重要的有机合成反应,如加成反应、聚合反应、氧化还原反应、烷基化反应、酰基化反应、酯化反应等均可在离子液体介质中进行,避免了其它有毒溶剂及催化剂的使用。反应中离子液体可循环使用,且效率无明显下降。因此,离子液体越来越受到大家的重视,2007年发表和待发表的各研究小组以总结自己离子液体工作为主的评述就有10余篇[7~18],说明大家都在思考离子液体的明天。 1.1离子液体改变了载体模板的概念 以离子液体为“载体”实现多相催化剂的液相化近年来受到高度重视,热点之一就是担载金属催化剂向可溶性纳米粒子催化剂方向的发展。此前很多 离子液体的发展与应用 李长途 (吉林石化公司海特化工厂吉林132000)

先进测试技术及发展趋势课件

先进测试技术及其发展趋势 摘要:先进测试技术与仪器对于现代制造系统的发展具有重要支撑作用。在分析现代制造系统与先进测试技术同步发展特征的基础上,探讨现代制造系统与先进测试技术相互关系和协同发展的问题。针对先进测试技术的研究要紧紧围绕现代制造业的发展需要,分析论述了先进测试技术领域的一些值得关注、重点研究和应用的技术发展方向。 关键词:现代制造系统先进测试技术发展趋势 1 绪论 制造业进入21世纪以来,面临着如何增强企业间的合作能力,缩短产品上市时间,提高产品质量和生产效率,提高企业对市场需求的应变能力和综合竞争能力的问题。用信息技术来提升、改造我国的传统制造业,实施制造业信息化工程,推动制造企业实施数字化设计与制造集成,是机械制造业面临的一项紧迫任务。制造业信息化工程实施对先进测试技 术的需要更为迫切。因此,采用先进信息化数字测试技术和产品来迅速提升机械制造业水平,是当前一个重要的发展方向。作为现代制造系统运行质量保证体系中数据信息的获取、分析和评定环节,先进测试技术和精密量具量仪是现代加工技术与装备的眼睛,成为现代制造系统不可或缺的重要组成部分。 目前,先进检测技术有机集成到机械学科和先进制造中,为现代制造系统提供高效率、高精度和高质量的保证。该文针对当前制造业信息化工程技术、高档数控加工等现代制造系统应用的实际情况,分析论述现代制造技术与先进测试技术的协同发展的问题。通过讨论先进测试技术现状、需求与特征,分析论述了现代制造系统中的精密测试、在线检测、数字化测试、计算机视觉测试、三坐标测试机等技术和应用发展概况,目的是围绕现代制造业的发展需要,提出了先进测试技术领域的一些值得关注和重点研究的问题。 2 现代制造与先进测试技术 现代制造系统是在吸收和发展机械、电子、信息、材料、能源及现代管理技术成果的基础上,综合应用于产品设计、制造、检验、管理、服务等产品生命周期的全过程,以实现优

相关主题
文本预览
相关文档 最新文档