当前位置:文档之家› 最新大学物理化学实验报告---酸碱中和热

最新大学物理化学实验报告---酸碱中和热

最新大学物理化学实验报告---酸碱中和热
最新大学物理化学实验报告---酸碱中和热

实验目的与要求:

1、了解酸碱中和热测定的有关原理

2、掌握SWC—ZH中和热(焓)测定装置的使用

实验原理:

许多化学变化过程都伴随着热效应,即有热量的释放或吸收,中和反应也一样。这些热效应符合热力学第一定律且与物质的状态、所参加反应的量有

关,但与反应经历的途径无关。

一定温度、压力和浓度下,1mol强酸和1mol强碱中和时所放出的热量叫中和热。在固定温度和浓度足够稀的情况下,1mol强酸和1mol强碱中和放出来的热几乎是相等的。在不同温度下中和热的经验公式为:

△H/J= -57111.6 + 209.2(T/℃-25) (1)式中T为反应温度。

本文采用SWC-ZH中和热(焓)测定装置进行中和热的测定。实验时,

采用已知电压、电流和通电时间下电热丝所产生的热量来标定热量计的热容

量常数K。然后在相同条件下,待测反应在热量计中进行,利用已得到体系的热容量和测得的反应体系的温差来求出待测反应的反应热,并与文献值作了

比较。本文实验方法和实验装置亦可用于其他热效应如溶解热、稀释热等的

快速、准确测定。

实验步骤:

1 热量计热容量的测定

①、热量计装置如图所示。用干布擦净热杯,用容量瓶取500.00ml蒸馏水注入其中,放入搅拌磁子,调节适当的转速(三圈半),塞紧瓶盖(实验过程的搅拌速度不再改变)。

②、将精密直流恒流电源的两输出引线分别接在电热丝的两街头上,打开

电源开关,按“状态转换”至“测试”,调节输出电压和电流(功率P为3~4W),然后将其中一根接线断开。

③、“状态转换”至“待机”,待温度基本稳后按下“采零”键。

④、打开中和热软件,在坐标轴上点击右键会出现

在点击设置坐标,会弹出如下对话框

在纵坐标(温度)里输入-2到2,时间输入60,再点击“确定”。

⑤、在“采样速率”下选择“15秒”

⑥、点击“开始绘图”会弹出如下对话框

请仔细阅读内容后,再点击“确定”.

⑦、实验开始后,大约20个数据后,“状态转换”至“测试”,同时接线并按开始

注:一定要同时。

⑧待温度升高0.8~1.0℃时,将其中一根线断开,同时点击“结束”

注:断开与点击“结束”按钮一定要同时

⑨、继续搅拌,再读大约5min,关闭磁力搅拌,实验结束。

⑩、点击“保存”,保存数据。

2 中和热的测定

①、将量热杯中的水倒掉,用干布擦净,重新用容量瓶取400.00ml蒸馏水注入其中,然后用移液管加入50ml 1 mol·dm-3的NaOH溶液。再取50ml 1 mol·dm-3的HCl溶液注入碱储液管中,仔细检查是否漏液。

②、打开搅拌,盖好瓶盖,打开软件,设置坐标(与前面相同)

③、在“过程选择”选中后采零,采零后将状态转换为测试

④、点击“开始绘图”,大约20个数据后就迅速拔出玻璃棒,加入酸溶液(不要用力过猛以免相互碰撞而损坏仪器)。

⑤、加入酸溶液后,测定大约10min后即可停止绘图和关闭磁力搅拌。

⑥、点击“保存”,保存数据。整理实验台面,将碱储液管等收拾好。

数据处理分析:

功率 3.45 T1 0.872 常数K 2358.028 T2 1.21 酸碱中和热-57064.278 J/mol

运用公式△H/J= -57111.6 + 209.2(T/℃-25)

计算得:

△H/J= -57111.6+209.2(31.2-25)

= -55814.56 J/ mol (经验值)

实际值为-57064.278 J/mol

差值= 55814.56-(57064.278)

= 1249.718 J/mol

误差= (1249.718 /55814.56)*100%

= 2.24%

深圳大学学生实验报告用纸

实验结论:

在酸碱中和反应中,实际值是-57064.278 J/mol

结果与经验值误差为 2.24%,误差比较小。

指导教师批阅意见:

成绩评定:

指导教师签字:

年月日备注:

注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。

2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。

大学物理化学实验报告---液体饱和蒸汽压的测定

纯液体饱和蒸汽压的测量 目的要求 一、 明确纯液体饱和蒸气压的定义和汽液两相平衡的概念,深入了解纯液体饱 和蒸气压与温度的关系公式——克劳修斯-克拉贝龙方程式。 二、 用数字式真空计测量不同温度下环己烷的饱和蒸气压。初步掌握真空实验 技术。 三、 学会用图解法求被测液体在实验温度范围内的平均摩尔气化热与正常沸 点。 实验原理 通常温度下(距离临界温度较远时),纯液体与其蒸气达平衡时的蒸气压称为该温度下液体的饱和蒸气压,简称为蒸气压。蒸发1mol 液体所吸收的热量称为该温度下液体的摩尔气化热。 液体的蒸气压随温度而变化,温度升高时,蒸气压增大;温度降低时,蒸气压降低,这主要与分子的动能有关。当蒸气压等于外界压力时,液体便沸腾,此时的温度称为沸点,外压不同时,液体沸点将相应改变,当外压为1atm (101.325kPa )时,液体的沸点称为该液体的正常沸点。 液体的饱和蒸气压与温度的关系用克劳修斯-克拉贝龙方程式表示: 2 m vap d ln d RT H T p ?= (1) 式中,R 为摩尔气体常数;T 为热力学温度;Δvap H m 为在温度T 时纯液体的摩尔 气化热。 假定Δvap H m 与温度无关,或因温度范围较小,Δvap H m 可以近似作为常数,积分上式,得: C T R H p +??-=1 ln m vap (2) 其中C 为积分常数。由此式可以看出,以ln p 对1/T 作图,应为一直线,直线的斜率为 R H m vap ?- ,由斜率可求算液体的Δvap H m 。 静态法测定液体饱和蒸气压,是指在某一温度下,直接测量饱和蒸气压,此 法一般适用于蒸气压比较大的液体。静态法测量不同温度下纯液体饱和蒸气压,有升温法和降温法二种。本次实验采用升温法测定不同温度下纯液体的饱和蒸气压,所用仪器是纯液体饱和蒸气压测定装置,如图1所示: 平衡管由A 球和U 型管B 、C 组成。平衡管上接一冷凝管,以橡皮管与压

实验四 燃烧热的测定

实验四燃烧热的测定 The Measurement of Heat of Combustion 王暮寒PB10207067 中国科学技术大学生命科学学院 Wang Muhan PB10207067 School of Life Science, University of Science & Technology of China, Hefei 【关键词】 燃烧热 氧弹量热计 雷诺图 【Keywords】 Heat of Combustion Oxygen Bomb Calorimeter Renault Figure 【摘要】 利用标准物质苯甲酸测出氧弹量热计的热容,再根据氧弹量热计温度变化得到待测物质萘的恒容燃烧热、恒压燃烧热。利用雷诺图法对温度进行校正来减小与外界热交换引起的实验误差。 【Abstract】 Firstly we cal culate the thermal capacity of the oxygen bomb cal orimeter, utilizing Benzoic Acid as the standard substance. Therefore the heat of combustion of Naphthalene, the substance to be measured, coul d be known through the change of temperature of the oxygen bomb cal orimeter. In ad dition , the method of Renault Figure was used to minimize the error causing by the inevitable exchange of heat between the system and the environment. 【前言】 一摩尔的物质完全燃烧时所放出的热量叫做物质的燃烧热。直接测定热很难,往往转化为温度的测量。如果先测出恒温氧弹量热计每升高一度所吸收的热量,就可以在其中进行完全燃烧反应,通过测定它所升高的温度就可得到燃烧放出的热量。 而为测定恒温氧弹量热计的热容,需利用标准物质苯甲酸进行完全燃烧反应, 然后再使被测物质(如萘)在其中完全燃烧。由于体系与环境之间会有热交换,在数据处理过程中利用雷诺图进行校正,可以减小误差。 【实验部分】 一、实验仪器与试剂 BH-IIS 型燃烧热数据采集接口装置南京大学应用物理研究所监制 HR-15B 型氧弹式量热计 CPA224SS 万分之一电子天平赛多利斯科学仪器(北京)有限公司 BP310P 千分之一电子天平赛多利斯科学仪器(北京)有限公司

差热分析__实验报告

差热分析 一、实验目的 1. 用差热仪绘制CuSO4·5H2O等样品的差热图。 2. 了解差热分析仪的工作原理及使用方法。 3. 了解热电偶的测温原理和如何利用热电偶绘制差热图。 二、实验原理 物质在受热或冷却过程中,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化,并伴随着有焓的改变,因而产生热效应,其表现为物质与环境(样品与参比物)之间有温度差。差热分析就是通过温差测量来确定物质的物理化学性质的一种热分析方法。 差热分析仪的结构如下图所示。它包括带有控温装置的加热炉、放置样品和参比物的坩埚、用以盛放坩埚并使其温度均匀的保持器、测温热电偶、差热信号放大器和信号接收系统(记录仪或微机)。差热图的绘制是通过两支型号相同的热电偶,分别插入样品和参比物中,并将其相同端连接在一起(即并联,见图5-1)。A 两支笔记录的时间—温度(温差)图就称为差热图,或称为热谱图。 图5-1 差热分析原理图 图5-1 典型的差热图从差热图上可清晰地看到差热峰的数目、位置、方向、宽度、高度、对称性以及峰面积等。峰的数目表示物质发生物理化学变化的次数;峰的位置表示物质发生变化的转化温度(如图5-2中T B);峰的方向表明体系发生热效应的正负性;峰面积说明热效应的大小。相同条件下,峰面积大的表示热效应也大。在相同的测

定条件下,许多物质的热谱图具有特征性:即一定的物质就有一定的差热峰的数目、位置、方向、峰温等,因此,可通过与已知的热谱图的比较来鉴别样品的种类、相变温度、热效应等物理化学性质。因此,差热分析广泛应用于化学、化工、冶金、陶瓷、地质和金属材料等领域的科研和生产部门。理论上讲,可通过峰面积的测量对物质进行定量分析。 本实验采用CuSO 4·5H 2O ,CuSO 4·5H 2O 是一种蓝色斜方晶系,在不同温度下,可以逐步失水: CuSO 4·5H 2O CuSO 4·3H 2O CuSO 4·H 2O CuSO 4 (s ) 从反应式看,失去最后一个水分子显得特别困难,说明各水分子之间的结合能力不一样。 四个水分子与铜离子的以配位键结合,第五个水分子以氢键与两个配位水分子和SO 4 2-离子结合。 加热失水时,先失去Cu 2+ 左边的两个非氢键原子,再失去Cu 2+ 右边的两个水分子,最后失去以氢键连接在SO 4 2- 上的水分子。 三、仪器试剂 差热分析仪1套;分析物CuSO 4·5H 2O ;参比物α-Al 2O 3。 四、实验步骤 1、 开启仪器电源开关,将各控制箱开关打开,仪器预热。开启计算机开关。 2、参比物(α-Al 2O 3)可多次重复利用,取干净的坩埚,装入CuSO 4·5H 2O 样品、装满,再次加入CuSO 4·5H 2O 将坩埚填满,备用。 3、抬升炉盖,将上步装好的CuSO 4·5H 2O 样品放入炉中,盖好炉盖。 4、打开计算机软件进行参数设定,横坐标2400S 、纵坐标300℃、升温速率

物化实验报告:燃烧热的测定_苯甲酸_萘

华南师范大学实验报告 课程名称 物理化学实验 实验项目 燃烧热的测定 【实验目的】 ①明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的区别。 ②掌握量热技术的基本原理,学会测定奈的燃烧热。 ③了解氧弹卡计主要部件的作用,掌握氧弹量热计的实验技术。 ④学会雷诺图解法校正温度改变值。 【实验原理】 燃烧热是指1摩尔物质完全燃烧时所放出的热量。在恒容条件下测得的燃烧热称为恒容燃烧热(O v ),恒容燃烧热这个过程的内能变化(ΔU )。在恒压条件下测得的燃烧热称为恒压燃烧热(Q p ),恒压燃烧热等于这个过程的热焓变化(ΔH )。若把参加反应的气体和反应生成的气体作为理想气体处理,则有下列关系式: ?c H m = Q p =Q v +Δn RT (1) 本实验采用氧弹式量热计测量蔗糖的燃烧热。测量的基本原理是将一定量待测物质样品在氧弹中完全燃烧,燃烧时放出的热量使卡计本身及氧弹周围介质(本实验用水)的温度升高。 氧弹是一个特制的不锈钢容器(如图)为了保证化妆品在若完全燃烧,氧弹中应充以高压氧气(或者其他氧化剂),还必须使燃烧后放出的热量尽可能全部传递给量热计本身和其中盛放的水,而几乎不与周围环境发生热交换。 但是,热量的散失仍然无法完全避免,这可以是同于环境向量热计辐射进热量而使其温度升高,也可以是由于量热计向环境辐射出热量而使量热计的温度降低。因此燃烧前后温度的变化值不能直接准确测量,而必须经过作图法进行校正。 放出热(样品+点火丝)=吸收热 (水、氧弹、量热计、温度计) 量热原理—能量守恒定律 在盛有定水的容器中,样品物质的量为n 摩尔,放入密闭氧弹充氧,使样品完全燃烧,放出的热量传给水及仪器各部件,引起温度上升。设系统(包括内水桶,氧弹本身、测温器件、搅拌器和水)的总热容为C (通常称为仪器的水当量,即量热计及水每升高1K 所需吸收的热量),假设系统与环境之间没有热交换,燃烧前、后的温度分别为T 1、T 2,则此样品的恒容摩尔燃烧热为: n T T C Q m V ) (12,-- = (2) 式中,Qvm 为样品的恒容摩尔燃烧热(J·mol -1);n 为样品的摩尔数(mol);C 为仪器的总热容(J·K -1或J / oC)。上述公式是最理想、最简单的情况。

物理化学实验报告.

《大学化学基础实验2》实验报告 课程:物理化学实验 专业:环境科学 班级: 学号: 学生姓名:邓丁 指导教师:谭蕾 实验日期:5月24日

实验一、溶解焓的测定 一、实验名称:溶解焓的测定。 二、目的要求:(1)学会用量热法测定盐类的积分溶解焓。 (2)掌握作图外推法求真实温差的方法。 三、基本原理: 盐类的溶解通常包含两个同时进行的过程:一是晶格的破坏,为吸热过程;二是离子的溶剂化,即离子的水合作用,为放热过程。溶解焓则是这两个过程热效应的总和,因此,盐类的溶解过程最终是吸热还是放热,是由这两个热效应的相应大小所决定的。影响溶解焓的主要因素有温度、压力、溶质的性质以及用量等。热平衡式: △sol H m=-[(m1C1+m2C2)+C]△TM/m2 式中, sol H m 为盐在溶液温度及浓度下的积分溶解焓, J·mol , m1 , m2 分别为水和溶质的质量, M 为溶质的摩尔质量,kg·mol -1 ;C1 ,C 2 分别为溶剂水, kg; 溶质的比热容,J·kg -1;T 为溶解过程中的真实温差,K;C 为量热计的热容, J·K- 1 ,也称热量计常数.本实验通过测定已知积分溶解焓的标准物质 KCl 的 T ,标定出量热计热容 C 的值. 四、实验主要仪器名称: NDRH-2S型溶解焓测定实验装置1套(包括数字式温度温差测量仪1台、300mL简单量热计1只、电磁搅拌器1台);250mL容量瓶1个;秒表1快;电子 ;蒸馏水 天平1台;KCl;KNO 3 五、实验步骤: (1)量热计热容 C 的测定 ( 1 ) 将仪器打开 , 预热 . 准确称量 5.147g 研磨好的 KCl , 待用 . n KCl : n水 = 1: 200 (2)在干净并干燥的量热计中准确放入 250mL 温室下的蒸馏水,然后将温度传感器的探头插入量热计的液体中.打开搅拌器开关,保持一定的搅拌速度,待温差变化基本稳定后,读取水的温度 T1 ,作为基温. (3)同时, 每隔30s就记录一次温差值,连续记录8 次后, 将称量好的 5.174g KCl 经漏斗全部迅速倒入量热计中,盖好.10s记录一次温度值,至温度基本稳定不变,再每隔 30s记录一次温度的数值,记录 8 次即可停止. (4)测出量热计中溶液的温度,记作 T2 .计算 T1 , T2 平均值,作为体系的温度.倒出溶液,取出搅拌子,用蒸馏水洗净量热计. KNO3 熔解热的测定:标准称量 3.513g KNO3 ,代替 KCl 重复上述操作.

热分析实验报告

热分析实验报告 一、实验目的 1、了解STA449C综合热分析仪的原理及仪器装置; 2、学习使用TG-DSC综合热分析方法。

二、实验内容 1、对照仪器了解各步具体的操作及其目的。 2、测定纯Al-TiO2升温过程中的DSC、TG曲线,分析其热效应及其反应机理。 3、运用分析工具标定热分析曲线上的反应起始温度、热焓值等数据。 三、实验设备和材料 STA449C综合热分析仪 四、实验原理 热分析(Thermal Analysis TA)技术是指在程序控温和一定气氛下,测量试样的物理性质随温度或时间变化的一种技术。根据被测量物质的物理性质不同,常见的热分析方法有热重分析(Thermogravimetry TG)、差热分析(Difference Thermal Analysis,DTA)、差示扫描量热分析(Difference Scanning Claorimetry,DSC)等。其内涵有三个方面:①试样要承受程序温控的作用,即以一定的速率等速升(降)温,该试样物质包括原始试样和在测量过程中因化学变化产生的中间产物和最终产物;②选择一种可观测的物理量,如热学的,或光学、力学、电学及磁学等;③观测的物理量随温度而变化。

热分析技术主要用于测量和分析试样物质在温度变化过程中的一些物理变化(如晶型转变、相态转变及吸附等)、化学变化(分解、氧化、还原、脱水反应等)及其力学特性的变化,通过这些变化的研究,可以认识试样物质的内部结构,获得相关的热力学和动力学数据,为材料的进一步研究提供理论依据。 综合热分析,就是在相同的热条件下利用由多个单一的热分析仪组合在一起形成综合热分析仪,见图1,对同一试样同时进行多种热分析的方法。 图1 综合热分析仪器(STA449C) (1)、热重分析( TG)原理 热重法(TG)就是在程序控温下,测量物质的质量随温度变化的关系。采用仪器为日本人本多光太郎于1915年制作了零位型热天平(见图2)。其工作原理如下:在加热过程中如果试样无质量变化,热天平将保持初始的平衡状态,一旦样品中有质量变化时,

物化实验报告燃烧热的测定

华南师范大学实验报告 一、实验目的 1、明确燃烧热的定义,了解定压燃烧热与定容燃烧热的差别。 2、掌握量热技术的基本原理;学会测定萘的燃烧热 3、了解氧弹量热计的主要组成及作用,掌握氧弹量热计的操作技术。 4、学会雷诺图解法校正温度改变值。 二、 实验原理 通常测定物质的燃烧热,是用氧弹量热计,测量的基本原理是能量守恒定律。一定量被测物质样品在氧弹中完全燃烧时,所释放的热量使氧弹本身及其周围的介质和量热计有关附件的温度升高,测量介质在燃烧前后温度的变化值T ?,就能计算出该样品的燃烧热。 ()p V Q Q RT n g =+? (1) ()V W W Q Q C W C M +=+样品21总铁丝铁丝水水(T -T ) (2) 用已知燃烧热的物质(本实验用苯甲酸)放在量热计中燃烧,测其始末温度,求出T ?。 便可据上式求出K ,再用求得的K 值作为已知数求出待测物(萘)的燃烧热。 三、仪器和试剂 1.仪器 SHR-15氧弹量热计1台;贝克曼温度计;压片机 2台;充氧器1台;氧气钢瓶1个;1/10℃温度计;万能电表一个;天平 2.试剂 铁丝;苯甲酸(AR);萘(AR );氧气 四、实验步骤 1、测定氧氮卡计和水的总热容量 (1)样品压片:压片前先检查压片用钢模,若发现钢模有铁锈油污或尘土等,必须擦净后,才能进行压片,用天平称取约0.8g 苯甲酸,再用分析天平准确称取一根铁丝质量,从模具的上面倒入己称好的苯甲酸样品,徐徐旋紧 压片机的螺杆,直到将样品压成片状为止。抽出模底的托板,再继续向下压,使模底和样品一起脱落,然后在分析天平上准确称重。 分别准确称量记录好数据,即可供燃烧热测定用。 (2)装置氧弹、充氧气:拧开氧弹盖,将氧弹内壁擦净,特别是电极下端的不锈钢接线柱更应擦十净,将点火丝的两端分别绑紧在氧弹中的两根电极上,选紧氧弹盖,用万用表欧姆档检查两电极是否通路,使用高压钢瓶时必须严格遵守操作规则。将氧弹放在充氧仪台架上,拉动板乎充入氧气。 (3)燃烧温度的测定:将充好氧气后,再用万用表检查两电极间是否通路,若通路将氧弹放入量热计内简。用量筒称3L 自来水,倒入水桶内,装好搅拌轴,盖好盖子,将贝克曼温度计探头插入水中,此时用普通温度计读出水外筒水温和水桶内的水温。接好电极,盖上盖了,打开搅拌开关。待温度温度稳定上升后,每个半分钟读取贝克曼温度计一次,连续记

大学物理化学实验报告-络合物的磁化率的测定

物理化学实验报告 院系化学化工学院 班级化学 061 学号 13 姓名沈建明

实验名称 络合物的磁化率的测定 日期 同组者姓名 史黄亮 室温 ℃ 气压 kPa 成绩 一、目的和要求 1、掌握古埃(Gouy )法磁天平测定物质磁化率的基本原理和实验方法; 2、通过对一些络合物的磁化率测定,推算其不成对电子数,判断这些分子的配键类型 二、基本原理 物质的磁性一般可分为三种: 顺磁性, 反磁性和铁磁性。 a .反磁性是指磁化方向和外磁场方向相反时所产生的磁效应。反磁物质的χD < 0(电子的拉摩进动产生一个与外磁场方向相反的诱导磁矩,导致物质具有反磁性)。 b. 顺磁性是指磁化方向和外磁场方向相同时所产生的磁效应,顺磁物质的 Xp > 0。(外磁场作用下,粒子如原子、分子、离子,中固有磁矩产生的磁效应)。 c. 铁磁性是指在低外磁场中就能达到饱和磁化,去掉外磁场时,磁性并不消失,呈现出滞后现象等一些特殊的磁效应。 d. 摩尔磁化率: 古埃法测定物质的摩尔磁化率( )的原理 通过测定物质在不均匀磁场中受到的力,求出物质的磁化率 。 把样品装于园形样品管中,悬于两磁极中间,一端位于磁极间磁场强度最大区域 H ,而另一端位于磁场强度很弱的区域 H 0,则样品在沿样品管方向所受的力F 可表示为: M χH F mH Z χ?=?P P D M χχχχ≈+=

其中:m 为样品质量,H 为磁场强度, 为沿样品管方向的磁场梯度。 本实验用摩尔氏盐(六水合硫酸亚铁铵)标定外磁场强度H 。测定亚铁氰化钾 和硫酸亚铁的摩尔磁化率,求金属离子的磁矩并考察电子配对状况。 三、仪器、试剂 MB-1A 磁天平(包括电磁铁,电光天平,励磁电源) 1套 软质玻璃样品管 1只 角匙 1只 漏斗 1只 莫尔氏盐(NH 4)2SO 4·FeSO 4·6H 2O (分析纯) FeSO 4·7H 2O (分析纯) K 4Fe(CN)6·3H 2O (分析纯) 四、实验步骤 1. 磁场强度(H )的测定 : 用已知摩尔磁化率的莫尔氏盐标定某一固定励磁电流时的磁场强度(H ).励磁电流变化0A →3A →→4A →→3A →0A ,分别测定励磁电流在各值下的天平的读数(4A 的值可以不读,持续2分钟左右,消磁),用同一仪器在同等条件下进行后续的测定。 具体操作如下: (1)把样品管悬于磁场的中心位置,测定空管在加励磁电流前,后磁场中的重 量。求出空管在加磁场前,后的重量变化管 ,重复测定三次读数,取平均值。 (2)把已经研细的莫尔氏盐通过小漏斗装入样品管,样品高度约为8m (此时样 品另一端位于磁场强度H=0处)。读出样品的高度,要注意样品研磨细小,装样均匀不能有断层。测定莫尔氏盐在加励磁电流前,后磁场中的重量。求出在加磁场前后的重量变化样品+管,重复测定三次读数,取平均值。 2.样品的莫尔磁化率测定: 把测定过莫尔氏盐的试管擦洗干净,把待测样品 ,分别装在样品管中,按着上述步骤(1) ,(2)分别测定在加磁场前,后的重量。求出重量的变化(管和样品+管),重复测定三次读数,取 H Z ??[]462()3K Fe CN H O ?4 2 7FeSO H O ?

燃烧热的测定实验报告

实验二 燃烧热的测定 一、目的要求 1.用氧弹量热计测定萘的燃烧热。 2.了解氧弹量热计的原理、构造及使用方法。 二、实验原理 1摩尔物质完全氧化时的反应热称为燃烧热。所谓完全氧化是指C 变为CO 2(气),H 变为H 2O(液),S 变为SO 2(气),N 变为N 2(气),如银等金属都变成为游离状态。 例如:在25℃、1.01325×105Pa 下苯甲酸的燃烧热为-3226.9kJ/mol ,反应方程式为: 1.01325105165222225C H COOH()+7O ()7CO H O Pa s g g l ??????→℃ ()+3() 3226.9kJ/mol c m H O ?=- 对于有机化合物,通常利用燃烧热的基本数据求算反应热。燃烧热可在恒容或恒压条件下测定,由热力学第一定律可知:在不做非膨胀功的情况下,恒容燃烧热V Q U =?,恒压燃烧热p Q H =?。在体积恒定的氧弹式量热计中测得的燃烧热为Q V ,而通常从手册上查得的数据为Q p ,这两者可按下列公式进行换算 ()p V Q Q RT n g =+? (2-1) 式中,Δn(g)——反应前后生成物和反应物中气体的物质的量之差; R ——气体常数; T ——反应温度,用绝对温度表示。 通常测定物质的燃烧热,是用氧弹量热计,测量的基本原理是能量守恒定律。一定量被测物质样品在氧弹中完全燃烧时,所释放的热

量使氧弹本身及其周围的介质和量热计有关附件的温度升高,测量介质在燃烧前后温度的变化值T ?,就能计算出该样品的燃烧热。 ()V W W Q Q C W C M + =+样品 21总铁丝铁丝水水(T -T ) (2-2) 式中,W 样品,M ——分别为样品的质量和摩尔质量; Q V ——为样品的恒容燃烧热; W 铁丝,铁丝Q ——引燃用的铁丝的质量和单位质量的燃烧热 (-16.69kJ g Q =?铁丝); C W 水水,——分别为水的比热容和水的质量; C 总——是量热计的总热容(氧弹、水桶每升高1K ,所需的总 热量); 21T T -——即T ?,为样品燃烧前后水温的变化值。 若每次实验时水量相等,对同一台仪器C 总不变,则(C W C +总水水)可视为定值K ,称为量热计的水当量。 水当量K 的求法是:用已知燃烧热的物质(本实验用苯甲酸)放在量热计中燃烧,测其始末温度,求出T ?,便可据式2-2求出K 。 三、仪器和药品 1.仪器 SHR-15氧弹量热计1台;SWC-ⅡD 精密温度温差仪1台;压片机 1台;充氧器1台;氧气钢瓶1个。部分实验仪器如图2.1和图2.2所示。

物理化学实验报告-BZ振荡反应

物理化学实验报告 BZ 振荡反应 1.实验报告 (1)了解BZ 反应的基本原理。 (2)观察化学振荡现象。 (3)练习用微机处理实验数据和作图。 2. 实验原理 化学振荡:反应系统中某些物理量随时间作周期性的变化。 BZ 体系是指由溴酸盐,有机物在酸性介质中,在有(或无)金属离子催化剂作用下构成的体系。有苏联科学家Belousov 发现,后经Zhabotinski 发现而得名。 本实验以 +4 ~ CH 2(COOH)2 ~ H 2SO 4作为反映体系。该体系的总反应为: 体系中存在着下面的反应过程。 过程A : 2 3 过程B : 4 5 6 Br - 的再生过程: 当[Br - ]足够高时,主要发生过程A ,2反应是速率控制步骤。研究表明,当达到准定态 当[Br -]低时,发生过程B ,Ce +3 被氧化。4反应是速率控制步骤。4.5反应将自催化产生HBrO 2

可以看出:Br - 和 HbrO 2的。当K 3 [Br - ]>K 4时,自催化过程不可能发生。自催化是BZ 振荡反应中必不可少的步骤,否则该振荡不能发生。研究表明,Br - 的临界浓度为: 若已知实验的初始浓度,可由上式估算[Br - ]crit 。 体系中存在着两个受溴离子浓度控制的过程A 和过程B ,当[Br - ]高于临界浓度[Br - ]crit 时发生过程A ,当[Br - ]低于[Br -]crit 时发生过程B 。[Br - ]起着开关的作用,他控制着A,B 之间的变化。这样体系就在过程A 、过程B 间往复振荡。 在反应进行时,系统中[Br - ]、[HbrO 2]、[Ce +3 ]、[Ce +4 ]都随时间作周期性的变化,实验中,可以用溴离子选择电极测定[Br - ],用铂丝电极测定[Ce +4 ]、[Ce +3 ]随时间变化的曲线。溶液的颜色在黄色和无色之间振荡,若再加入适量的FeSO 4邻菲咯啉溶液,溶液的颜色将在蓝色和红色之间振荡。 从加入硫酸铈铵到开始振荡的时间为t 诱 ,诱导期与反应速率成反比。 即 并得到 本实验使用的BZ 反应数据采集接口系统,并与微型计算机相连。通过接口系统测定电极的电势信号,经通讯口传送到PC 。自动采集处理数据。 3.实验仪器与试剂 BZ 反应数据采集接口系统 恒温槽 溴酸钾0.25 mol ·dm -3 磁力搅拌器 硫酸3.00 mol ·dm -3 丙二酸0.45mol ·dm -3 硫酸铈铵4×10-3 mol ·dm -3 微型计算机 反应器 4.实验步骤

物化实验燃烧热的测定

物化实验燃烧热的测定 Revised by BLUE on the afternoon of December 12,2020.

实验2 燃烧热的测定 实验日期:2012-4-14;提交报告日期:2012-4-27; 带实验的助教姓名:陈双龙 1 引言(简明的实验目的/原理) 实验目的 1 2熟悉弹式量热计的原理、构造及使用方法。 3 4明确恒压燃烧热与恒容燃烧热的差别及相互关系。 5 6掌握温差测量的实验原理和技术。 7 8学会用雷诺图解法校正温度改变值。 实验原理 在指定温度及一定压力下,1mol物质完全燃烧时的定压反应热,称为该物 质在此温度下的摩尔燃烧热,记作△ c H m 。通常,完全燃烧是指C→CO 2 (g),H 2 →H 2O(l),S→SO 2 (g),而N、卤素、银等元素变为游离状态。由于在上述 条件下△H=Q p ,因此△ c H m 也就是该物质燃烧反应的等压热效应Q p 。 在实际测量中,燃烧反应在恒容条件下进行(如在弹式量热计中进行), 这样直接测得的是反应的恒容热效应Q v (即燃烧反应的△ c U m )。若反应系统中 的气体均为理想气体,根据热力学推导,Q p 和Q v 的关系为

p V Q Q nRT =+? (1) 式中:T ——反应温度,K ;△n ——反应前后产物与反应物中气体的物质的量之差;R ——摩尔气体常数。 通过实验测得Q v 值,根据上式就可计算出Q p ,即燃烧热的值。 测量热效应的仪器称作量热计。量热计的种类很多。一般测量燃烧热用弹式量热计。本实验所用量热计和氧弹结构如图2-2-1和图2-2-2所示。实验过程中外水套保持恒温,内水桶与外水套之间以空气隔热。同时,还对内水桶的外表面进行了电抛光。这样,内水桶连同其中的氧弹、测温器件、搅拌器和水便近似构成一个绝热体系。 弹式量热计的基本原理是能量守恒定律。样品完全燃烧所释放的能量使得氧弹本身及周围的介质和量热计有关附件的温度升高。测量介质在燃烧前后的变化值,就可求算该样品的恒容燃烧热。 V V V r m Q K T Q m Q m M ??=??--棉线棉线点火丝点火丝 (2) 式中:m ——为待测物的质量,kg ;r M ——为待测物的摩尔质量,kg ·mol -1 ;K ——仪器常数,kJ ·℃-1 ;T ?——样品燃烧前后量热计温度的变化值; V Q 棉线,V Q 点火丝——分别为棉线和点火丝的恒容燃烧热(-16736和- 3243kJ ·kg )m 棉线,m 点火丝——分别为棉线和点火丝的质量,kg 。 先燃烧已知燃烧热的物质(如苯甲酸),标定仪器常数K ,再燃烧未知物质,便可由上式计算出未知物的恒容摩尔燃烧热,再根据(1)式计算出摩尔燃烧热。

差热分析_实验报告

学生实验报告 实验名称差热分析 姓名:学号:实验时间: 2011/5/20 一、实验目的 1、掌握差热分析原理和定性解释差热谱图。 2、用差热仪测定和绘制CuSO4·5H2O等样品的差热图。 二、实验原理 1、差热分析原理 差热分析是测定试样在受热(或冷却)过程中,由于物理变化或化学变化所产生的热效应来研究物质转化及花絮而反应的一种分析方法,简称DTA(Differential Thermal Analysis)。 物质在受热或者冷却过程中个,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸收、脱附等物理或化学变化,因而产生热效应,其表现为体系与环境(样品与参比物之间)有温度差;另有一些物理变化如玻璃化转变,虽无热效应发生但比热同等某些物理性质也会发生改变,此时物质的质量不一定改变,但温度必定会变化。差热分析就是在物质这类性质基础上,基于程序控温下测量样品与参比物的温度差与温度(或时间)相互关系的一种技术。 DTA的工作原理(图1 仪器简易图)是在程序温度控制下恒速升温(或降温)时,通过热偶点极连续测定试样同参比物间的温度差ΔT,从而以ΔT对T 作图得到热谱图曲线(图2 差热曲线示意图),进而通过对其分析处理获取所需信息。 图1 仪器简易图

实验仪器实物图 图2 差热曲线示意图 在进行DTA测试是,试样和参比物分别放在两个样品池内(如简易图所示),加热炉以一定速率升温,若试样没有热反应,则它的温度和参比物温度间温差ΔT=0,差热曲线为一条直线,称为基线;若试样在某温度范围内有吸热(放热)反应,则试样温度将停止(或加快)上升,试样和参比物之间产生温差ΔT,将该信号放大,有计算机进行数据采集处理后形成DTA峰形曲线,根据出峰的温度 及其面积的大小与形状可以进行分析。 差热峰的面积与过程的热效应成正比,即 ΔH。式中,m为样品质量;b、d分别为峰的 起始、终止时刻;ΔT为时间τ内样品与参比物的温差;

燃烧热的测定实验报告

浙江万里学院生物与环境学院化学工程实验技术实验报告 实验名称:燃烧热的测定

一、 实验预习(30分) 1. 实验装置预习(10分)_____年____月____日 指导教师______(签字)成绩 2. 实验仿真预习(10分)_____年____月____日 指导教师______(签字)成绩 3. 预习报告(10分) 指导教师______(签字)成绩 (1) 实验目的 1.用氧弹量热计测定蔗糖的燃烧热。 2.掌握恒压燃烧热与恒容燃烧热的概念及两者关系。 3.了解氧弹量热计的主要结构功能与作用;掌握氧弹量热计的实验操作技术。 4.学会用雷诺图解法校正温度变化。 (2) 实验原理 标准燃烧热的定义是:在温度T 、参加反应各物质均处标准态下,一摩尔β相的物质B 在纯氧中完全燃烧时所放出的热量。所谓完全燃烧,即组成反应物的各元素,在经过燃烧反应后,必须呈显本元素的最高化合价。如C 经燃烧反应后,变成CO 不能认为是完全燃烧。只有在变成CO 2时,方可认为是完全燃烧。同时还必须指出,反应物和生成物在指定的温度下都属于标准态。如苯甲酸在298.15K 时的燃烧反应过程为: (液)(气)(气)(固)O H CO O COOH H C 22256372 15 +?+ 由热力学第一定律,恒容过程的热效应Q v ,即ΔU 。恒压过程的热效应Q p ,即ΔH 。它们之间的相互关系如下: nRT Q Q V P ?+= (1) 或nRT U H ?+?=? (2) 其中Δn 为反前后气态物质的物质的量之差。R 为气体常数。T 为反应的绝对温度。本实验通过测定蔗糖完全燃烧时的恒容燃烧热,然后再计算出蔗糖的恒压燃烧ΔH 。在计算蔗糖的恒压

实验讲义燃烧热的测定

实验一燃烧热的测定 一、目的要求 1.掌握氧弹式量热计的原理、构造及使用方法; 2.了解微机氧弹式量热计系统对燃烧热测定的应用。 二、实验原理 燃烧热是指1摩尔物质等温、等压下与氧完全燃烧时的焓变,是热化学中重要的基本数据。本实验采用的氧弹式量热计是一种恒温夹套式量热计,在热化学、生物化学以及工业部门中用得很多。它测定的是恒容燃烧热。 对于有固定化学组成的纯化学试剂:(1)固体样品如奈、硫;(2)液体样品如乙醇、环己烷,可以准确写出它们的化学反应方程式,通过下列关系式求出常用的恒压燃烧热,最终得到它们的反应焓变ΔC H m。 =+ B(g)RT (1-1) 对于化学组成不固定的物质,有化学组分相同,但化学组成不一样,例如甘蔗由于压榨的工艺不同,虽然都是甘蔗渣,但它们的含水量、糖分等可能不同;有的化学组成也不同,例如不同号的柴油,由于提炼分馏时的温度不同,不但它们的化学成分不同,化学组成也不同,对这类物质只能测定恒容燃烧热,并且只能在具体的物质间进行比较,反过来研究工艺等类的问题,这类燃烧热的结果,在实践中经常用到,也是一种研究工作的方法之一。 测量燃烧热的原理是能量守恒定律,一定量待测物质在氧弹中完全燃烧,放出的热量使量热计本身及氧弹周围介质(本实验用水)温度升高,测量介质燃烧前后温度的变化值ΔT,就可以算出样品的恒容燃烧热Qv —(m/M)=(VρC水+C卡)ΔT-l (1-2) 式中:m是样品的质量(g),M是待测物质的分子量,是待测物质的恒容摩尔燃烧热(J/mol),V是测定时倒入内桶中水的体积(mL),ρ是水的密度,C水是水的热容, l是点火铁丝实际消耗长度(其燃烧值为cm),C卡是量热计的热容,表示量热计本身温度每升高一度所需吸收的热量,可用已知燃烧热的标准物质来标定。如苯甲酸,它的恒容燃烧热Q v=-26460J/g。 本实验的关键是首先样品必须完全燃烧,所以氧弹中须充高压氧气。其次必须使燃烧尽可能在接近绝热的条件下进行。但是系统与周围环境发生热交换仍无法完全避免,因此燃烧

热重分析实验报告

南昌大学实验报告 学生姓名:_______ 学号:_______专业班级:__________ 实验类型:□演示□验证□综合□设计□创新实验日期:2013-04-09实验成绩: 热重分析 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造; 2.掌握热重分析仪的使用方法; 3.测定硫酸铜晶体试样的差热谱图,并根据所得到的差热谱图,分析样品在加热过程中发生的化学变化。 二、实验原理 热重法(TG)是在程序控制温度的条件下测量物质的质量与温度关系的一种技术。热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。最常用的测量的原理有两种,即变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。 热重实验仪器主要由记录天平、炉子、程序控温装置、记录仪器和支撑器等几个部分组成,其中最主要的组成部分是记录天平,它基本上与一台优质的分析天平相同,如准确度、重现性、抗震性能、反应性、结构坚固程度以及适应环境温度变化的能力等都有较高的要求。记录天平根据动作方式可以分为两大类:偏转型和指零型,无论哪种方式都是将测量到的重量变化用适当的转换器变成与重量变化成比例的电信号,并可以将得到的连续记录转换成其他方式,如原始数据的微分、积分、对数或者其他函数等,用来对实验的多方面热分析。在上述方法中又以指零型天平中的电化学法适应性更强。发生重量变化时,天平梁发生偏转,梁中心的纽带同时被拉紧,光电检测元件的偏转输出变大,导致吸引线圈中电流的改变。在天平一端悬挂着一根位于吸引线圈中的磁棒,能通过自动调节线圈电流时天平梁保持平衡态,吸引线圈中的电流变化与样品的重量变化成正比,由计算机自动采集数据得到 TG 曲线。燃烧失重速率曲线 DTG 可以通过对曲线的数学分析得到。 热重分析原理如下图所示:

燃烧热的测定 实验报告

燃烧热的测定 一、实验目的 ●使用氧弹式量热计测定固体有机物质(萘)的恒容燃烧热,并 由此求算其摩尔燃烧热。 ●了解氧弹式量热计的结构及各部分作用,掌握氧弹式量热计的 使用方法,熟悉贝克曼温度计的调节和使用方法 ●掌握恒容燃烧热和恒压燃烧热的差异和相互换算 二、实验原理 摩尔燃烧焓?c H m 恒容燃烧热Q V ?r H m = Q p ?r U m = Q V 对于单位燃烧反应,气相视为理想气体 ?c H m = Q V +∑νB RT=Q V +△n(g)RT 氧弹中 放热(样品、点火丝)=吸热(水、氧弹、量热计、温度计) 待测物质 QV-摩尔恒容燃烧热Mx-摩尔质量 ε-点火丝热值bx-所耗点火丝质量q-助燃棉线热值cx-所耗棉线质量 K-氧弹量热计常数?Tx-体系温度改变值

三、仪器及设备 标准物质:苯甲酸待测物质:萘 氧弹式量热计 1-恒热夹套2-氧弹3-量热容器4-绝热垫片5-隔热盖盖板6-马达7,10-搅拌器8-伯克曼温度计9-读数放大镜11-振动器12-温度计

四、实验步骤 1.量热计常数K的测定 (1) 苯甲酸约1.0g,压片,中部系一已知质量棉线,称取洁净坩埚放置样片前后质量W1和W2 (2)把盛有苯甲酸片的坩埚放于氧弹内的坩埚架上,连接好点火丝和助燃棉线 (3) 盖好氧弹,与减压阀相连,充气到弹内压力为1.2MPa为止 (4)把氧弹放入量热容器中,加入3000ml水 (5) 调节贝克曼温度计,水银球应在氧弹高度约1/2处 (6) 接好电路,计时开关指向“1分”,点火开关到向“振动”,开启电源。约10min后,若温度变化均匀,开始读取温度。读数前5s振动器自动振动,两次振动间隔1min,每次振动结束读数。 (7)在第10min读数后按下“点火”开关,同时将计时开关倒向“半分”,点火指示灯亮。加大点火电流使点火指示灯熄灭,样品燃烧。灯灭时读取温度。 (8)温度变化率降为0.05°C·min-1后,改为1min计时,在记录温度读数至少10min,关闭电源。先取出贝克曼温度计,再取氧弹,旋松放气口排除废气。 (9)称量剩余点火丝质量。清洗氧弹内部及坩埚。 实验步骤 2. 萘的恒容燃烧热的测定 取萘0.6g压片,重复上述步骤进行实验,记录燃烧过程中温度

大学物理化学实验报告

年月日评定: 姓名:学号: 年级:专业: 室温:大气压: 一、实验名称:BET容量法测定固体的比表面积 二、实验目的: 三、实验原理: 四、实验数据及处理: 五、讨论思考: 1. 氮气及氢气在该实验中的作用是什么? 2. 若用Langmuir方法处理测量得到的数据,样品的比表面偏大还是偏 小?

年月日评定:姓名:学号: 年级:专业: 室温:大气压: 一、实验名称:恒温水浴的组装及其性能测试 二、实验目的: 三、实验原理: 四、实验数据及处理: 请完成下表: 表1 恒温槽灵敏度测量数据记录

五、作图: 以时间为横坐标,温度为纵坐标,绘制25℃和30℃的温度—时间曲线,求算恒温槽的灵敏度,并对恒温槽的性能进行评价。 六、讨论思考: 1. 影响恒温槽灵敏度的主要因素有哪些,试作简要分析? 2. 欲提高恒温槽的控温精度,应采取哪些措施?

年月日评定: 姓名:学号: 年级:专业: 室温:大气压: 一、实验名称:最大泡压法测定溶液的表面张力 二、实验目的: 三、实验原理: 四、实验数据及处理 1.以纯水的测量结果计算仪器毛细管常数K′,纯水的表面张力σ查书附录。 ?p1=?p2=?p3= 平均值:?p=K′=σ /?p 2.计算各溶液的σ值(K′=σ /?h) 表1 各溶液的表面张力σ c/mol· L-1 σ /N·m-1 3.做σ-c图,并在曲线上取十个点,分别做出切线,求得对应的斜率(dσ -d c)r,求算各浓度的吸附量Γ,附图。

表2 各溶液的吸附量 4. 做(c /Γ)-c 图,由直线斜率求其饱和吸附量∞Γ,并计算乙醇分子的横 截面积σB ,附图。 表3 c /~c 数据表 斜率= ,∞Γ= , σB =1/∞ΓL = 五、讨论思考: 1. 与文献值(见书中附录)对照,检验你的测定结果,并分析原因。 2. 增(减)压速率过快,对测量结果有何影响?表面张力测定仪的清洁与 否和温度之不恒定对测量结果有何影响?

物化实验燃烧热的测定

实验2 燃烧热的测定 实验日期:2012-4-14;提交报告日期:2012-4-27; 带实验的助教姓名:陈双龙 1引言(简明的实验目的/原理) 实验目的 1 2熟悉弹式量热计的原理、构造及使用方法。 3 4明确恒压燃烧热与恒容燃烧热的差别及相互关系。 5 6掌握温差测量的实验原理和技术。 7 8学会用雷诺图解法校正温度改变值。 实验原理 在指定温度及一定压力下,1mol物质完全燃烧时的定压反应热,称为该物质在此温度下的摩尔燃烧热,记作△c H m。通常,完全燃烧是指C→CO2(g),H2→H2O(l),S→SO2(g),而N、卤素、银等元素变为游离状态。由于在上述条件下△H=Q p,因此△c H m也就是该物质燃烧反应的等压热效应Q p。 在实际测量中,燃烧反应在恒容条件下进行(如在弹式量热计中进行),这样直接测得的是反应的恒容热效应Q v(即燃烧反应的△c U m)。若反应系统中的气体均为理想气体,根据热力学推导,Q p和Q v的关系为

p V Q Q nRT =+? (1) 式中:T ——反应温度,K ;△n ——反应前后产物与反应物中气体的物质的量之差;R ——摩尔气体常数。 通过实验测得Q v 值,根据上式就可计算出Q p ,即燃烧热的值。 测量热效应的仪器称作量热计。量热计的种类很多。一般测量燃烧热用弹式量热计。本实验所用量热计和氧弹结构如图2-2-1和图2-2-2所示。实验过程中外水套保持恒温,内水桶与外水套之间以空气隔热。同时,还对内水桶的外表面进行了电抛光。这样,内水桶连同其中的氧弹、测温器件、搅拌器和水便近似构成一个绝热体系。 弹式量热计的基本原理是能量守恒定律。样品完全燃烧所释放的能量使得氧弹本身及周围的介质和量热计有关附件的温度升高。测量介质在燃烧前后的变化值,就可求算该样品的恒容燃烧热。 V V V r m Q K T Q m Q m M ??=??--棉线棉线点火丝点火丝 (2) 式中:m ——为待测物的质量,kg ;r M ——为待测物的摩尔质量,k g ·mol -1 ;K ——仪器常数,k J ·℃ -1 ;T ?——样品燃烧前后量热计温度的变化值;V Q 棉线,V Q 点火丝——分别 为棉线和点火丝的恒容燃烧热(-16736和-3243k J ·kg )m 棉线,m 点火丝——分别为棉线和点火丝的质量,kg 。 先燃烧已知燃烧热的物质(如苯甲酸),标定仪器常数K ,再燃烧未知物质,便可由上式计算出未知物的恒容摩尔燃烧热,再根据(1)式计算出摩尔燃烧热。 2 实验操作

相关主题
文本预览
相关文档 最新文档