当前位置:文档之家› 齿轮泵设计步骤2016

齿轮泵设计步骤2016

齿轮泵设计步骤2016
齿轮泵设计步骤2016

第2章 液压泵的设计与计算

齿轮泵的设计与计算

设计齿轮泵时,应该在保证所需性能和寿命的前提下,尽可能使泵的尺寸小、重量轻、制造容易、成本低,以求技术上先进,经济上合理。因此,合理选择齿轮泵的各项参数及有关尺寸是非常关键的,设计时通常给出泵的额定压力p 和排量V 作为原始设计参数。现以两个齿轮基本参数相同的高压齿轮泵为例来说明其设计要点。

2.1.1齿轮泵各参数的选择原则

齿轮泵各参数的主要关系式是平均流量计算公式,即:

620102-?=n BZm Q πχ (min /L ) (2—1)

62102-?=V n BZm Q ηπχ (min /L ) (2—2)

式中:0Q ——泵的理论流量;

Q ——泵的实际流量;

χ——流量修正系数;χ值通常为~;

低压齿轮泵齿数Z 一般为13~19,推荐66.62=πχ;

高压齿轮泵齿数Z 一般为6~13,推荐72=πχ;

B ——齿宽(mm);

Z ——齿数;

m ——模数(mm);

n ——转速(r/min);

V η——容积效率,—般V η=~。

流量Q 是设计参数,只要确定B 、Z 、m 、n 后泵的结构尺寸就大体确定了,然后参考有关结构进行设计,最后进行强度校验。下面来讨论如何确定B 、Z 、m 、n 这些参数。

1.确定转速n :从流量公式可知,齿轮泵的流量Q 与转速n 成正比,转速越高,则流量越大。但转速不能太高,因为转速太高时,油液在离心力的作用下,不能填满吸油腔的工作容积,并且对吸油腔的吸油也造成阻力,这时很容易产生气蚀现象,使泵的容积效率降低,特别是当油液粘度高时,齿轮节圆的线速度就受一定限制。在各种油液粘度下,允许最大节圆线速度见表2-1。

此外,液压泵的转速也不能太低,因为当工作压力一定时,液压泵的泄漏量也接近于一定值,它与转速的关系不大;但转速越低,流量越小,则液压泵的泄漏量与输油量的相对比值将越大,也就是液压泵的容积效率越低。当转速低至液压泵的理论流量和泄漏量相等时,则液压泵就不能出油。最低节圆圆周速度m in V 可按下列经验公式确定:

50

min 17.0E p V ?= (s m /) (2—3)

式中:p ——液压泵的工作压力(bar);

50E ?—— 油液在50℃时的恩氏粘度。

当齿轮泵的转速低于200~300 r/min 时,泵已不能正常工作了。若齿轮泵采用交流电动机拖动,转速一般为:750 r/min 、1000 r/min 、1500 r/min ,在航空上用到3000 r/min 或更高。

2.确定齿数Z :齿数Z 的确定,应根据液压泵的设计要求从流量、压力脉动、机械效率等方面综合考虑。从泵的流量方面来看,在齿轮分度圆直径不变的条件下,齿数越少,模数越大,泵的流量就越大。从泵的性能来看,齿数减少后,对改善困油及提高机械效率有利,但使泵的流量及压力脉动增加。

目前齿轮泵的齿数Z 一般为6~19。对于低压齿轮泵,由于应用在机床方面较多,要求流量脉动小,因此低压齿轮泵齿数Z 一般为13~19。齿数14~17的低压齿轮泵,由于根切较小,—般不进行修正。对于高压齿轮泵,要求有较大的齿根强度。此外为了减小轴承的受力,要减小齿顶圆直径,这样势必要增大模数,减少齿数,因此高压齿轮泵的齿数较少,一般取Z=6~14。为了防止根切,削弱了齿根强度,齿形均须进行修正。

3.确定齿宽B :齿轮泵的流量与齿宽成正比。增加齿宽可以相应地增加流量。而齿轮与泵体及盖板间的摩擦损失及容积损失的总和与齿宽并不成比例地增加,因此,齿宽较大时,液压泵的总效率较高。但对高压齿轮泵,齿宽不宜过大,否则将使齿轮轴及轴承上的载荷过大,使轴及轴承设计困难。一般对于高压齿轮泵,m B )6~3(=。对于低压齿轮泵,m B )10~6(=。这里m 为齿轮模数。泵的工作压力越高,上述系数应取得越小。

4.确定齿轮模数:对于低压齿轮泵来说,确定模数m 主要不是从强度方面着眼,而是从泵的流量、压力脉动、噪声以及结构尺寸大小等方面考虑。

从流量公式(2—1)可以看出,模数m 越大,泵的流量就越大。并且当齿轮节圆直径一定时,对流量来讲,增大模数比增加齿数有利。因此为了减小泵的体积,希望在可能的条件下尽量增大模数,减少齿数。但齿数太少将使液压泵的流量及压力脉动增加,因此模数选择要适当。模数m 的粗略估算可用下面的经验公式:

Q m )6.0~4.0(= (mm ) (2—4)

式中:Q ——泵的实际流量(min /L )。

上述计算公式中,假定m B )10~6(=;容积效率85.0=V η;当这些参数不在此范围内时,系数值也要变化。

目前中低压齿轮泵所用的模数值如表2-2所示。

齿轮泵精确流量计算公式为(见式(2—5))

62022

010)12(2-?--=t R R Bn Q H

e π (min /L )(2—5) 当齿顶高等于模数m (即齿顶高系数10=h )的标准齿轮,其

2)2(+=Z m R e ,2

mZ R H =,απcos 0m t = 式中:e R ——齿顶圆半径;

H R ——节圆半径;

0t ——齿轮基节;

将上式代入流量公式得

6222010)12cos 1(2-?-+=α

ππZ Bnm Q (min /L ) (2—6)

式中:α——标准压力角,?=20α。

令B=Km ,经整理后得

36

0)

27.0(210+?=Z nK Q m π (mm ) (2—7) 式中:0Q ——泵的理论流量,(min /L );

n ——泵的转速,(r/min);

K ——齿宽系数,对于低压齿轮泵K=6~10,对于高压齿轮泵K=3~6;

Z ——齿数,Z=6~19。

对于齿数Z<13的齿轮泵,齿形须修正,其模数的精确计算公式为:

36

0)

27.1(210+?=Z nK Q m π (mm ) (2—8) 2.1.2齿轮泵的设计步骤

齿轮泵的流量Q 、压力p 为已知的设计参数。

1.确定泵的理论流量0Q 为

V Q Q η/0= (2—9)

式中:V η——泵的容积效率,一般V η=~。

2.选定转速:由原动机直接驱动,原动机的转速即为泵的转速,或将原动机减速后作泵的转速。若采用交流电动机驱动,一般转速为750、1000、1500、3000r/min 。

3.选取齿宽系数K :对于低压齿轮泵K=6~10,对于高压齿轮泵K=3~6。压力高取小值,压力低取大值。

4.选取齿数Z :

对于中低压齿轮泵:Z=13~19;

对于高压齿轮泵: Z=6~14(须齿形修正)。

5.计算齿轮模数m :

当为标准齿轮时:

36

0)

27.0(210+?=Z nK Q m π (mm ) (2—10) 当为修正齿轮时:

36

0)

27.1(210+?=Z nK Q m π (mm ) (2—11) 选取不同的K 值及Z 代入上式可以得到不同的m 值,这样可以获得许多组齿轮泵的参数,可以从其中选择一组比较理想方案,作为所要设计的齿轮泵的参数,并把计算模数圆整为标准模数。

6.校验齿轮泵的流量。该流量与设计理论流量相差5%以内为合格。

当为标准齿轮时:

6222010)12cos 1(2-?-+=α

ππZ Bnm Q (min /L ) (2—12)

当为修正齿轮时:

6222010)12cos 2(2-?-+=α

ππZ Bnm Q (min /L ) (2—13)

当泵流量与设计理论流量相差很小时,可以修改齿宽系数来调整流量,当相差大时,则需重新修改选定的参数。

7.校核齿轮节圆线速度H V 。

][601000H H H V n

D V

式中:H D ——节圆直径,(mm)

n ——转速,(r/min)

][H V ——齿轮节圆许用线速度,其值见表2-1。

若轮周速度太大,须减少节圆直径,办法是减少齿数或增加齿宽,有时也可以修改转速n 。

8.确定困油卸荷槽尺寸。

(1)两卸荷槽之间的距离a

απ22cos ?=A Z

m a

式中:0t ——齿轮基节(mm )

H α——齿轮啮合角(°)

α——分度圆压力角(°)

A ——两齿轮实际中心距(mm )

m ——模数(mm )

Z ——齿数

(2)卸荷槽宽度:min C

ααεπ2222min cos 1cos A

Z m m C -= 式中:ε——重叠系数。

(3)卸荷槽深度h :

卸荷槽深度的大小,影响困油排出的速度,一般取m h 8.0>。

式中:m ——齿轮模数(mm )。

图2-1 困油卸荷槽尺寸计算图

9.计算齿轮各部分尺寸:e D 、1D 、D 、B 等,对于修正齿轮,则还须计算中心距A ,移距系数ξ、啮合角H α等。

修正后的实际中心距A 为标准值: )1(+=Z m A (2—15)

修正后的齿顶圆直径e D 为标准值:)3(+=Z m D e (2—16)

啮合角H α由下式决定:)cos 1

(

cos 1αα+=-Z Z H (2—17) 式中:m ——齿轮模数(mm )

Z ——齿数

D ——齿轮分度圆直径,)(mm mZ D =;

1D ——齿根圆直径;

H α——齿轮啮合角

α——齿轮压力角

保证齿侧间隙为的移距系数ξ可以通过下式计算:

α

αααξtg inv inv Z H 2cos /04.0)(--= (2—18) 式中:ααinv inv H ,——渐开线函数 。

上述修正方法称为“增一齿修正”,采用此种修正方法所求得的ξ值是大于为消除根切所需的最小移距系数m in ξ值。

按ξ值可以求出加工时刀具的切削深度,即全齿高

m m h )5.0(25.2--=ξ。

经修正后的齿形不仅消除了根切现象,增加了齿根的强度,而且使齿面接触更紧密,减小了齿面的滑移,提高了泵的机械效率和容积效率。

10.参考有关结构对齿轮泵进行结构设计,边计算、边绘图、边修改。

例如根据工作压力的高低确定是否需要采用径向液压平衡及轴向间隙的自动补偿;采用何种径向力平衡措施;当压力MPa p 10>时,一般采用轴向间隙的自动补偿。

是采用三片式结构(由前泵盖、泵体、后泵盖)还是采用两片式结构(由壳体和前盖组成)。三片式结构有以下优点:

(1) 毛坯制造容易,甚至可用型材切料;

(2)便于机械加工;

(3)便于布置双向端面间隙自动补偿,从而改善补偿性能和提高寿命;

(4)便于双出轴布置,根据需要可以串接另一个齿轮泵。

11.确定液压泵的驱动功率

η

61060?=pQ N (kW ) (2—19) 式中:p ——齿轮泵压力,(2/m N );

Q ——齿轮泵输出流量,(L/min);

η——齿轮泵总效率,一般取η=~。

12.强度校核和轴的刚度计算。对低压齿轮泵,齿轮强度不必验算,—般均能满足要求;对高压齿轮泵,必须进行齿轮强度校验。

采用滚动轴承时,精确地计算轴颈的挠度非常重要。因为即使轴的挠曲并不显著,也会

引起滚针或滚柱滚道边缘接触应力剧烈增加,导致这些表面很快就会损坏。采用滑动轴承时,轴的挠曲也会使局部接触应力剧烈增加并破坏润滑油膜,造成轴承的烧伤。为了防止这种破坏,必须尽可能采取措施减少轴的挠度。

13.轴承的设计与选择。由于两齿轮的轴线距离较小,往往不能安装所需的球轴承,因此在传统齿轮泵中一般采用径向尺寸较小的滚针轴承或滑动轴承。

当采用滑动轴承时,计算出滑动轴承的尺寸d、l。当采用滚针轴承时,选择合适的滚针轴承并算出轴承寿命。目前一般齿轮泵轴承的计算寿命不低于1000小时。

滚针轴承的优点:工作时摩擦系数小,起动摩擦力矩小,机械效率高;承载能力强;既适用低转速也适用于高转速;能在较大温度范围内工作;抗污染能力强。其缺点是:工作中噪声大;轴承尺寸较大,结构布置不便;当采用长的滚针轴承时,对制造和装配误差较敏感;

在高压齿轮泵中,pv值较大,对滚针精度要求较高以及热处理工艺规程要严格控制。近来趋

向于选取短而粗的滚针。

滑动轴承的优点是:结构简单;安装方便;工作中噪声低;抗冲击性能好;价格便宜;只要材质和加工精度选择恰当,润滑条件良好,就能承受相当高的负载。其缺点是:抗污染能力差;在高温时油膜强度低,易烧坏;起动时摩擦力矩大;当转速很低时不易形成油膜,易烧坏。

复合材料轴承由于结构简单、成本低廉、过载能力强、抗污染能力强等优点,目前在齿轮泵中得到应用。与金属轴承相比,复合材料轴承的摩擦、磨损性能有以下特点:

(1)工作负荷与摩擦系数之间的关系不像金属那样决定于弹性接触变形或塑性接触变形,而是决定于摩擦对偶材料之间的工作状态;

(2)相对滑动速度和摩擦系数之间的关系决定于聚合物基体材料的蠕变特性、纤维的方位及相对滑动的方向。

因而复合材料轴承对相配的轴颈材料、硬度、表面粗糙度等有相应的要求,与轴颈的配合间隙必须严格按厂家推荐的公差进行设计和制造。

齿轮泵是可逆元件,从原则上来讲,一般的齿轮泵都可以作为齿轮马达来使用,因此齿轮马达的设计方法和步骤与齿轮泵是相同的,但考虑到马达工作的特殊性,如带载起动、正反转,冲击等,齿轮马达在结构上有如下特点:

(1)考虑到马达要正反转,因此马达具有左右对称结构,采用外泄油口。

(2)为了改善起动性能,马达一般不宜采用端面间隙自动补偿装置,并选用滚针轴承。

(3)要求马达尺寸小,输出转矩脉动小,齿轮马达齿数Z取10~14。

2.1.3齿轮泵的工艺、材料及技术要求

目前使用的齿轮泵中,齿轮和轴通常做成整体。其优点是结构紧凑,装配方便。对于尺寸较大的齿轮泵,齿轮和轴可以做成分离式,齿轮和轴之间采用键联接,这样结构工艺性好,加工齿轮侧面较容易,在平面磨床上加工相同的齿宽很容易获得。

齿轮泵通常采用的零件材料是:泵体和端盖采用铸铁或铝合金,齿轮和轴采用45号钢、40Cr、18CrMnTi、20Cr、38CrMoAl等材料(前面两种材料用于低压齿轮泵,后面三种材料用于高压齿轮泵),材料经渗碳氮化处理,表面硬度达HRC=60~62,心部硬度HRC=28~44。使齿轮具有较高的耐磨性和冲击韧性。淬火后的工作表面必须磨光。轴套—般采用40号钢、40Cr 和青铜。

下面给出齿轮泵典型零部件的工艺要求,仅供参考。

齿轮泵的主要零件的技术要求如下:

(1)泵体内孔锥度和椭圆度小于;

(2)齿顶圆和泵体配合H7/f7;

泵径向间隙一般为~0.06mm;

(3)一对齿轮宽度差小于~0.01mm,一对齿轮同侧轴套宽度差小于~0.01mm;

(4) 齿轮轴孔和齿顶圆之间的偏心量小于;

(5) 用涂色法检查,在齿高方向上,齿轮啮合长度大于65%,在齿宽方向上齿轮啮合长度

大于60%;

(6) 齿面粗糙度为m μ,齿轮两侧面粗糙度为m μ,轴颈的粗糙度为m μ,泵的其它主要密

封面(如轴套内孔表面,轴套端面,齿顶圆表面及泵壳内表面等)的粗糙度一般为m μ;

(7) 轴椭圆度及锥度小于;

(8) 泵体中心偏心距偏差小于~,中心线平行度小于~。

齿轮油泵设计说明书

绪论 一、课程设计内容 根据齿轮油泵的工作原理和零件图,看懂齿轮油泵的全部零件图,并将标准件按其规定标记查出有关尺寸。应用AutoCAD软件绘制所有正式零件图,装配图(A3图纸幅面1张),用UG绘制所有正式零件的三维图形。 二、齿轮油泵工作原理 齿轮油泵示意图 工作原理部分:齿轮油泵是依靠一对齿轮的传动把油升压的一种装配,泵体12内有一对齿轮,轴齿轮15是主动轮,轴齿轮16是被动轮,如下图所示。动力从主动轮输入,从而带动被动轮一起旋转。转动时齿轮啮合区的左方形成局部真空,压力降低将油吸入泵中,齿轮继续转动,吸入的油沿着泵体内壁被输送到啮合处的右方,压力升高,从而把高压油输往需要润滑的部位。 防渗漏:为使油泵不漏油,泵体和泵盖结合处有密封垫片13(垫片形状与泵体、泵盖结合面相同),主动轴齿轮伸出的一端处填料压盖防漏装置,由填料10、填料压盖9、螺栓组(件18、件8)组成。

连接与定位:泵体与泵盖之间用螺钉18连接,为保证相对位置的准确,用定位销11定位。 齿轮油泵工作原理 拆装顺序:泵体---主动轴和被动轴---垫片、泵体—定位销—螺钉---填料---压盖 三、齿轮油泵零件之间的公差配合 1. 齿轮端面与泵体、泵盖之间为32K6; 2. 齿顶圆与泵体内孔为Φ48H7/d7; 3. 主动轴齿轮、被动轴齿轮的两支承轴与泵体、泵盖下轴孔为Φ16H7/h6; 4. 填料压盖与泵体孔径为Φ32H11/d11。 四、齿轮油泵的其它技术要求 1. 装配后应当转动灵活,无卡阻现象; 2. 装配后未加工的外表面涂绿色。

第一章 二维零件图

第一章绘制三维零件图 第一节、泵盖 齿轮油泵泵盖如图所示。 具体建模步骤如下: 图1-1 泵盖 一、整体建模 1、打开UG,新建模型。在菜单栏中选择“插入”\“设计特征”\“长方体”命令。系统弹出“长方体”对话框。如图1-2a所示。 2、在“类型”下拉表框中选择“两点和高度”选项,单击按钮弹出点对话框设置两点位置,相对于wcs坐标系第一点位置为(42,21,0)、第二点为(-42、-21、0),在“尺寸”选项中输入高度为10mm。点击确定建立一个长84mm、宽42mm、高10mm的长方体,完成如图1-2b所示 图1-2a 长方体对话框图1-3b 3、在菜单栏中选择“插入”\“设计特征”\“圆柱”命令。系统弹出“圆柱”对话框。

齿轮泵使用说明书

齿轮泵使用说明书 使用前必须遵守事项 ■本注意事项仅适用于本公司齿轮泵产品。 ■本说明书重点说明了产品使用方法。 ■为了充分发挥产品的性能,预防事故,并且使泵长时间正常运转需要定期检查各项部位,本产品安装测试前要仔细阅读本说明书。 ■为了安全不能随意改动本产品,修理,改动后发生事故,我公司不负责任。 ■要熟读本说明书上实际安装,运转,保修,检查等最终使用步骤。 ■长时间不使用时需要断电,放在通风干燥的地方保管。 ■对本产品有疑问时可以通过代理商或是办事处联系解决。 安全注意事项 ●使用产品(安装,运转,保修,检查)前要熟读本说明书上正确使用方法。 ●本说明书把安全注意事项以危险和注意区分说明。 ●齿轮泵禁止使用带有挥发性的油和危险性高的液体,如用以上液体漏出后容易引发火灾,环境污染等危险。 ●禁止使用漏油的泵,如泵出现漏油的现象,请尽快终止使用并替换或修理,如油漏到地面请尽快擦净,以免滑倒受伤。 ●齿轮泵使用温度范围在(-5℃~80℃),如超过以上温度密封件将失去其功能出现漏油等现象,请不要在超出以上温度范围下使用。 ●泵出油口部位的接头等配件要选择能够承受比泵最大压力大1.5倍的产品。 ●请按照说明书上的方法安装泵,设计管道。 齿轮泵的旋转方向是一致的,如安装不正确,驱动时容易磨损密封件,使油溢出。 ●泵的出油口部分一定要安装完成后驱动。 容易造成泵的损坏或是发生火灾等危险。 ●泵在驱动状态时请勿将出油管拆卸,容易使油溢出造成危险。 ●请勿拆卸泵上任何螺丝或配件。 ●出油管上请安装压力调节阀。 ●为了防止出现漏油现象,请确保使用压力低于泵的最高压力。 ●泵的表面温度较高时请勿用手背触摸,容易烫伤。 ●请勿踩踏泵。 ●泵需移动时要注意不要摔落。

齿轮油泵课程设计

课程设计说明书 课程名称《工程图学综合实践》 设计名称齿轮油泵拆装测绘 设计时间 2011年10-12月 系别机电工程系 专业机械设计制造及自动化 班级 14班 姓名陈振明 指导教师邓宝清 2011 年 12 月12 日

目录 一、任务 (3) (一)本次课程设计内容 (3) (二)齿轮油泵简介 (3) (三)实际分配任务 (4) 二、进度表 (5) 三、课程设计过程 (5) (一)拆装与测绘 (5) (二)建模 (6) (三)装配与爆炸 (10) (四)绘制零件图 (13) (五)绘制装配图 (13) 四、本次课程设计的感受 (13) 附表 (14) 附图 (155) 主要参考文献 (21)

一、任务 (一)本次课程设计内容:齿轮油泵的拆装、测绘、建模及工程图绘制。 (二)齿轮油泵简介 1.齿轮油泵的工作原理 齿轮泵是用两个齿轮互啮转动来工作,对介质要求不高。一般的压力在6Mpa以下,流量较大。齿轮油泵在泵体中装有一对回转齿轮,一个主动,一个被动,依靠两齿轮的相互啮合,把泵内的整个工作腔分成两个独立的部分。右边为吸入腔,左边为排出腔,齿轮油泵在运转时主动齿轮带动被动齿轮旋转,当齿轮从啮合到脱开时在吸入侧就形成局部真空,液体被吸入。被吸入的液体充满齿轮的各个齿谷而带到排出侧,齿轮进入啮合时液体被挤出,形成高压液体并经泵排出口排出泵外。 图1 工作原理 齿轮油泵在正常工作时,具有一定的油压范围,为使工作油压不超过该额定压力,一般在泵盖上都有限压阀装置,它由螺塞、小垫片、弹簧、钢珠定位圈和钢珠组成。当油压超过额定压力时,高油压就克服弹簧压力,将钢珠阀门顶开,使润滑油自压油腔流回吸油腔,以保证整个润滑系统安全工作。其他零件,如填料、垫片、小垫片等起密封防漏作用。垫片的厚度大小不同,可以调节齿轮两侧面间隙的大小。 2.齿轮油泵的说明 本课程设计中所用到的齿轮油泵型号为CB-B2.5,是一种无侧板、三片式结构的外啮合低压齿轮油泵,它没有径向平衡结构和轴向间隙补偿装置,依靠间隙密封原理工作。该产品具有体积小、重量轻、结构简单,工作可靠、价格低廉、维护方便等优点,主要应用于各种机床液压系统及负载较小的液压传动系统中。

齿轮泵设计步骤

一、主要技术参数 根据任务要求,确定齿轮泵的理论设计流量q t . 二、根据公式选定齿轮泵的转速n ,齿宽系数k b 及齿数z 1.齿轮参数的确定及几何要素的计算 确定设计的零件在工作时的工作介质的粘度,然后再由表一进行插补可得此 次设计的最大节圆线速度V 。即: 节圆线速度V : 601000V ???= n D π 式中D ——节圆直径(mm ) n ——转速 表2.1 齿轮泵节圆极限速度和油的粘度关系 流量与排量关系式为: n 00P Q = 0Q ——流量·· 0P ——理论排量(ml/r ) 2.齿数Z 的确定

应根据液压泵的设计要求从流量、压力脉动、机械效率等各方面综合考虑。从泵的流量方面来看,在齿轮分度圆不变的情况下,齿数越少,模数越大,泵的流量就越大。从泵的性能看,齿数减少后,对改善困油及提高机械效率有利,但使泵的流量及压力脉动增加。 目前齿轮泵的齿数Z 一般为6-19。对于低压齿轮泵,由于应用在机床方面较多,要求流量脉动小,因此低压齿轮泵齿数Z 一般为13-19。齿数14-17的低压齿轮泵,由于根切较小,一般不进行修正。 3.确定齿宽。齿轮泵的流量与齿宽成正比。增加齿宽可以相应地增加流量。而齿轮与泵体及盖板间的摩擦损失及容积损失的总和与齿宽并不成比例地增加,因此,齿宽较大时,液压泵的总效率较高.一般来说,齿宽与齿顶圆尺寸之比的选取围为0.2~0.8,即: )(8.0~2.0B =a D 20m 66.6q 1000Z B = Da ——齿顶圆尺寸(mm ) 4.确定齿轮模数。 对于低压齿轮泵来说,确定模数主要不是从强度方面着眼,而是从泵的流量、压力脉动、噪声以及结构尺寸大小等方面。 通过对不同模数、不同齿数的齿轮油泵进行方案分析、比较结果,确定此型齿轮油泵的齿轮参数,最后得到齿轮的基本参数即模数m 齿数Z 齿宽b 。 得到齿轮的齿数后,若齿轮的齿数≥17则不会发生根切的现象,所以在这里不考虑修正,接下来按照标准公式计算齿轮的基本参数。 (1)理论中心距mz D A f ==0

齿轮泵设计说明书

% 武汉科技大学 本科毕业设计(论文) · 题目:中高压外啮合齿轮泵设计 姓名: 专业: 学号: 指导教师: 【 武汉科技大学机械工程学院 二0一三年五月

目录 摘要.................................................................. I Abstract.......................................................................... II 1绪论. (1) 研发背景及意义 (1) 齿轮泵的工作原理 (2) 齿轮泵的结构特点 (3) 外啮合齿轮泵基本设计思路及关键技术 (3) 2 外啮合齿轮泵设计 (5) 齿轮的设计计算 (5) 轴的设计与校核 (7) 齿轮泵的径向力 (7) 减小径向力和提高齿轮轴轴颈及轴承负载能力的措施 (8) 轴的设计与校核 (8) 卸荷槽尺寸设计计算 (11) 困油现象的产生及危害 (11) 消除困油危害的方法 (13) 卸荷槽尺寸计算 (15) 进、出油口尺寸设计 (17) 选轴承 (17) 键的选择与校核 (17) 连接螺栓的选择与校核 (18) 泵体壁厚的选择与校核 (18) 总结 (19) 致谢 (20) 参考文献 (22)

摘要 外啮合齿轮泵是一种常用的液压泵,它靠一对齿轮的进入和脱离啮合完成吸油和压油,且均存在泄漏现象、困油现象以及噪声和振动。减小外啮合齿轮泵的径向力是研究外啮合齿轮泵的一大课题,为减小径向力中高压外啮合齿轮泵多采用的是变位齿轮,并且对轴和轴承的要求较高。为解决泄漏问题,低压外啮合齿轮泵可采用提高加工精度等方法解决,而对于中高压外啮合齿轮泵则需要采取加浮动轴套或弹性侧板的方法解决。困油现象引起齿轮泵强烈的振动和噪声还大大所短外啮合齿轮泵的使用寿命,解决困油问题的方法是开卸荷槽。 关键词:外啮合齿轮泵,变位齿轮,浮动轴套,困油现象,卸荷槽 (此毕业设计获得2013届优秀毕业设计荣誉,共有5张零件图,1张装配图,并且有开题报告、外文翻译、答辩稿,答辩ppt,保证让你的毕业设计顺利过关!先找份好的工作,不再为毕业设计而发愁!!!有需要零件图和装配图的同学请联系)

CB-B16型外啮合齿轮泵齿轮副参数设计及其绘制(唐柑培)详解

机械原理综合实训课程 设计计算说明书 设计题目: 外啮合齿轮泵的设计 班级: 2013 级材料一班班 学号:201310112113 学生: 唐柑培 指导教师: 李玉龙 起止日期: 2015 年 5 月11 日至 2015 年5月22 日

成都学院(成都大学) 机械工程学院 【机械原理】综合实训课程任务书

目录 一、外啮合齿轮泵工作原理············ 二、电机型号以及减速装置的选型········ 三、齿轮副参数的确定·············· 四、齿轮绘制················· 五、设计小结················· 六、参考文献················

一、外啮合齿轮泵工作原理 外啮合齿轮泵简介 图 1 是外啮合齿轮泵的工作原理图。由图可见,这种泵的壳体内装有一对外啮合齿轮。由于齿轮端面与壳体端盖之间的缝隙很小,齿轮齿顶与壳体内表面的间隙也很小,因此可以看成将齿轮泵壳体内分隔成左、右两个密封容腔。当齿轮按图示方向旋转时,右侧的齿轮逐渐脱离啮合,露出齿间。因此这一侧的密封容腔的体积逐渐增大,形成局部真空,油箱中的油液在大气压力的作用下经泵的吸油口进入这个腔体,因此这个容腔称为吸油腔。随着齿轮的转动,每个齿间中的油液从右侧被带到左侧。在左侧的密封容腔中,轮齿逐渐进入啮合,使左侧密封容腔的体积逐渐减小,把齿间的油液从压油口挤压输出的容腔称为压油腔。当齿轮泵不断地旋转时,齿轮泵的吸、压油口不断地吸油和压油,实现了向液压系统输送油液的过程。在齿轮泵中,吸油区和压油区由相互啮合的轮齿和泵体分隔开来,因此没有单独的配油机构。 齿轮泵是容积式回转泵的一种,其工作原理是:齿轮泵具有一对互相啮合的齿轮,齿轮(主动轮)固定在主动轴上,齿轮泵的轴一端伸出壳外由原动机驱动,

KCB齿轮泵说明书

一、产品概述 KCB型齿轮泵适于输送重油、机械油、燃油以及不含固体颗粒、纤维的石油、化工产品等液态物质。该型号的泵配有安全阀,能防止因过载而对泵和电机所造成的损坏。 适用温度:-10-150℃粘度:5-1500cst 性能范围:流量:18.3-5400L/min 压力:0.33-1.45Mpa 型号说明: 例 K CB 55 流量(L/min) 齿轮泵 带安全阀 二、性能参数(见表一) 三、泵的结构原理 1.外啮合齿轮泵的工作原理 啮合的齿轮在泵体内旋转时,轮齿不断进入和退出啮合。在吸入室,轮齿逐渐退出啮合状态,这样吸入室的容积逐步增大,压力降低,液体在液面压力的作用下进入吸入室,随齿轮齿间进入排出室。在排出室,轮齿又逐渐进入啮合状态,齿轮的齿间逐渐被一齿轮的轮齿占据,排出室的容积减少,排出室内液体压力升高,于是液体从泵的排出口被排出泵外,齿轮连续旋转,上述过程不断进行,形成连续的输油过程。 其原理图见图一。(在电机后端看,箭头所示为泵的出口) 图一

KCB系列齿轮油泵性能参数

2.泵的结构: 泵主要有泵体、齿轮、轴、轴承、安全阀、前盖、后盖、密封部件、联轴器部件组成。 设有安全阀的泵、当排油管路的液压值超过泵的规定时,安全阀开启,保证泵及原动机不致因压力过高而受到损坏。 轴端密封有三种形式:填料密封、机械密封、橡胶圈密封,用户可根据具体的使用条件选择合适的密封结构。 泵有良好的自吸性,泵内运动部件利用输送的液体实现润滑,致工作时可以不加引液和润滑剂。 四、安装 1、泵安装前应检查泵和电机在运输过程中是否受到损坏,如电机是否受潮,泵的进出口防尘盖是否损坏而使污物进入泵腔内等。 2、泵在搬运过程中,应选择合适起吊位置,减少泵的变形。 3、泵的底座应固定在牢固的基础上,以免产生振动影响泵的正常工作。 4、泵的进出口管路应清理干净不得存有硬颗粒的报告杂物。 5、管路口径一般不小于泵的进出口径,进油管路应尽量短,并减少弯路。必要时在进油口安装金属过滤器,过滤器的有效面积不应小于管道过流面积的三倍。 6、安装时,不得用泵来承担管路的重量。 7、用手转动联轴器,泵应转动灵活,不得有过紧或轻重不均现象,如有应立即排除。 五、开机 1、开机前应检查泵轴转动是否灵活,有无卡阻现象,进出口管道上的阀门是否开启,泵的转动方向是否正确。 2、长时间没有使用的泵开机前应向泵腔中注入一定量的润滑液,以减少泵在吸油过程中的干摩擦,并可提高泵的自吸性能。 3、开机后如有不正常的噪音或过热现象,应立即停车检查。 4、检查泵轴端有无泄漏现象,如:对填料密封应适当调紧压紧盖,其它密封则应拆机检查; 5、若输送热油,在开机时应均匀预热,预热是利用被输送的介质不断通过泵体进行的。 预热标准:吸入口的油温不得高于泵体温度40℃,预热的升温速度控制在<40℃/h,在预热时应将固定泵体的螺栓松开,预热完毕,将其拧紧。 在预热过程中,应注意观察泵的运行情况,以但发生不良情况,应立即停泵检查。 6、泵停机后,首先切断电源,然后关闭进出口管道上的阀门,避免造成泵倒转。 7、泵经过长期使用,压力流量有明显下降时,应拆泵检查,更换其己磨损的零件。

齿轮油泵设计说明书

绪论 一、课程设计容 根据齿轮油泵的工作原理和零件图,看懂齿轮油泵的全部零件图,并将标准件按其规定标记查出有关尺寸。应用AutoCAD软件绘制所有正式零件图,装配图(A3图纸幅面1),用UG绘制所有正式零件的三维图形。 二、齿轮油泵工作原理 齿轮油泵示意图 工作原理部分:齿轮油泵是依靠一对齿轮的传动把油升压的一种装配,泵体12有一对齿轮,轴齿轮15是主动轮,轴齿轮16是被动轮,如下图所示。动力从主动轮输入,从而带动被动轮一起旋转。转动时齿轮啮合区的左方形成局部真空,压力降低将油吸入泵中,齿轮继续转动,吸入的油沿着泵体壁被输送到啮合处的右方,压力升高,从而把高压油输往需要润滑的部位。 防渗漏:为使油泵不漏油,泵体和泵盖结合处有密封垫片13(垫片形状与泵体、泵盖结合面相同),主动轴齿轮伸出的一端处填料压盖防漏装置,由填料10、填料压盖9、

螺栓组(件18、件8)组成。 连接与定位:泵体与泵盖之间用螺钉18连接,为保证相对位置的准确,用定位销11定位。 齿轮油泵工作原理 拆装顺序:泵体---主动轴和被动轴---垫片、泵体—定位销—螺钉 ---填料---压盖 三、齿轮油泵零件之间的公差配合 1. 齿轮端面与泵体、泵盖之间为32K6; 2. 齿顶圆与泵体孔为Φ48H7/d7; 3. 主动轴齿轮、被动轴齿轮的两支承轴与泵体、泵盖下轴孔为Φ16H7/h6; 4. 填料压盖与泵体孔径为Φ32H11/d11。 四、齿轮油泵的其它技术要求 1. 装配后应当转动灵活,无卡阻现象; 2. 装配后未加工的外表面涂绿色。

第一章 二维零件图

第一章绘制三维零件图 第一节、泵盖 齿轮油泵泵盖如图所示。 具体建模步骤如下: 图 1-1 泵盖 一、整体建模 1、打开UG,新建模型。在菜单栏中选择“插入”\“设计特征”\“长方体”命令。系统弹出“长方体”对话框。如图1-2a所示。 2、在“类型”下拉表框中选择“两点和高度”选项,单击按钮弹出点对话框设置两点位置,相对于wcs坐标系第一点位置为(42,21,0)、第二点为(-42、-21、0),在“尺寸”选项中输入高度为10mm。点击确定建立一个长84mm、宽42mm、高10mm的长方体,完成如图1-2b所示

齿轮泵设计

UG实训设计报告 ——齿轮泵的设计 姓名: 班级: 学号: 指导老师: 时间:

一、从动轴 从动轴零件图如图所示: 1.、新建文件 单击菜单栏中“文件”→“新建”命令,或单击“标准”工具栏中的(新建)按钮,在“模板”列表框中选择“模型”选项,在“名称”文本框中输入“congdongzhou”,单击“确定”按钮,进入UG主界面。 2、创建圆柱体特征 (1)、单击菜单栏中的“插入”→“设计特征”→“圆柱体”命令,打开如图1所示的“圆柱”对话框,数据如图1所示,其它选项默认。 3、倒斜角

(1)、选择菜单栏中的“插入”→“细节特征”→“倒斜角”命 令,打开如图所2所示的对话框。 1 图1 图2 (2)、数据如图所示,选择圆柱体上、下表面的边,点击“确定”按钮。 二、填料压盖

1.、新建文件 单击菜单栏中“文件”→“新建”命令,或单击“标准”工具栏中的(新建)按钮,在“模板”列表框中选择“模型”选项,在“名称”文本框中输入“tianliaoyagai”,单击“确定”按钮,进入UG主界面。 2 2、创建草图 (1)、单击标准工具栏中的(草图)按钮,或选择菜单栏中的“插入”→“草图”命令。进入如图3所示对话框,默认选项,点击“确定”按钮。 图3

(2)、创建如图4所示草图,数据如图所示,点击“完成草图”按钮。 3、拉伸 (1)、选择菜单栏中的“插入”→“设计特征”→“拉伸”命令,或单击“特征”工具栏中的(拉伸)按钮,打开如图4所示的对话框。 (2)在绘图窗口中选择草图的外边框拉伸,数据如图5所示,Z轴为指定矢量,点击“确定”按钮。 图4 图5 (3)、同理对直径5,32和22的圆拉伸,数据分别如图6、7、8所示。 3

齿轮泵设计说明书

齿轮泵设计说明书

文档仅供参考 武汉科技大学 本科毕业设计(论文) 题目:中高压外啮合齿轮泵设计姓名: 专业: 学号: 指导教师: 武汉科技大学机械工程学院 二0一三年五月

目录 摘要 (3) Abstract..........................................................................................................II 1绪论 (1) 1.1 研发背景及意义 (1) 1.2齿轮泵的工作原理 (2) 1.3 齿轮泵的结构特点 (4) 1.4外啮合齿轮泵基本设计思路及关键技术 (5) 2 外啮合齿轮泵设计 (5) 2.1 齿轮的设计计算 (5) 2.2 轴的设计与校核 (7) 2.2.1.齿轮泵的径向力 (7) 2.2.2减小径向力和提高齿轮轴轴颈及轴承负载能力的措施 (9) 2.2.3 轴的设计与校核 (10) 2.3 卸荷槽尺寸设计计算 (13) 2.3.1 困油现象的产生及危害 (13) 2.3.2 消除困油危害的方法 (15) 2.3.3 卸荷槽尺寸计算 (19) 2.4 进、出油口尺寸设计 (20) 2.5 选轴承 (20) 2.6 键的选择与校核 (21)

2.7 连接螺栓的选择与校核 (21) 2.8 泵体壁厚的选择与校核 (22) 总结 (23) 致谢 (24) 参考文献 (26) 摘要 外啮合齿轮泵是一种常见的液压泵,它靠一对齿轮的进入和脱离啮合完成吸油和压油,且均存在泄漏现象、困油现象以及噪声和振动。减小外啮合齿轮泵的径向力是研究外啮合齿轮泵的一大课题,为减小径向力中高压外啮合齿轮泵多采用的是变位齿轮,而且对轴和轴承的要求较高。为解决泄漏问题,低压外啮合齿轮泵可采用提高加工精度等方法解决,而对于中高压外啮合齿轮泵则需要采取加浮动轴套或弹性侧板的方法解决。困油现象引起齿轮泵强烈的振动和噪声还大大所短外啮合齿轮泵的使用寿命,解决困油问题的方法是开卸荷槽。 关键词:外啮合齿轮泵,变位齿轮,浮动轴套,困油现象,卸荷槽 (此毕业设计获得优秀毕业设计荣誉,共有5张零件图,1张装配图,而且有开题报告、外文翻译、答辩稿,答辩ppt,保证让你的毕业设计顺利过关!先找份好的工作,不再为毕业设计而发愁!!!有需要零件

齿轮泵毕业设计

苏州托普信息职业技术学院 毕业论文 论文题目齿轮泵的设计 指导教师吴小花 专业机械制造与自动化班级机械1201 姓名张杰学号 1205300125

摘要:在当今社会泵的应用是很广泛的,在国民经济的许多部门要用到它。在供给系统中几乎是不可缺少的一种设备。在泵的实际应用中损耗严重,特别是化工用泵在实际应用中损耗,主要是轴封部分,在输送过程中由于密封不当而出现泄漏造成重大损失和事故。轴封有填料密封和机械密封。填料密封使用周期短,损耗高,效率低。本设计中设计的齿轮泵排量较小安全性较高,轴封设计合理,精度较高,齿轮泵使用寿命较高。 关键词:泵填料密封机械密封

一、课程设计任务书………………………………………( 4 ) 二、齿轮的设计与校核……………………………………( 5 ) 三、卸荷槽的计算…………………………………………( 12 ) 四、泵体的校核……………………………………………( 13 ) 五、滑动轴承的计算………………………………………( 14 ) 六、联轴器的选择及校核计算……………………………( 17 ) 七、连接螺栓的选择与校核………………………………( 18 ) 八、连接螺栓的选择与校核………………………………( 20 ) 九、齿轮泵进出口大小确定………………………………( 21 ) 十、齿轮泵的密封…………………………………………( 22 ) 十一、法兰的选择…………………………………………( 23 ) 十二、键的选择……………………………………………( 24 ) 十三、键的选择……………………………………………( 25 ) 设计小结……………………………………………………( 27 ) 参考文献……………………………………………………( 29 )

齿轮油泵的产品说明书(中英文)

CONTRACTOR SHANGHAI ELECTRIC GROUP CO. LTD PT. MAXIMA INFRASTRUKTUR

Gear Oil Pump Production Instruction 齿轮油泵产品说明书 四川高精净化设备有限公司SICHUAN FINE PURIFICATION EQUIPMENT CORP.LTD

1.RIEF INTRODUCTION With history of more than 20 years in producing large separation equipment, our compary manufactures Model ZJA High Vacuum Oil Purifier, ZLY Vacuum Oil Filter, JYG Fine Filter,BMS, BAS Manual/Automatic Board Frame Press Oil Filter Which are designed for filtering turbine oil, transformer oil, aviation hydraulic oil, machine oils and Diesel fuel. Besides, We produce WCB,KCB,2CY Geared Oil Delivery Pumps suitable for delivering various medium oils. Model WCB, KCB,2CY Gear Oil Pumps are suitable for fertilizer factory, oil refinery, oil-pressing factory, power plant, transformer station, lubrication oil storehouse, capacitor plant, painting factory and grain departments for delivering oils, such as turbine oil ,transformer oil, aviation oil, mechanical oil, diesel oil and edible oil. WCB,KCB Geared Oil Pump features of good appearance, compact construction, stable performance, low pulsation impact value and low noise less than the specified of the national standard, safety and reliability as well as easy maintenance and service. We provide our customers with wear parts for a long term. Series of gear oil pumps produced by our company find their wide use in national defense, scientific research, Petroleum, light/chemical industry, metallurgy, textile, transportation, Pharmaceutical-making and food departments for delivering non-corrosion heavy oil, mid-viscosity oil, light oil, edible oil and other similes with viscosity below Engler 10°E at temperature below 60℃.However, they are not suitable for delivering dirty oils, lubricating/corrosive medium. Explosion-proof motors and special motors can be provided according to user's requirements. Model WCB Geared oil pump is of one with excellent performance and reasonable price. It can be used in grain sales department for delivering edible oil with illumination power.

齿轮泵三维设计报告

三维设计技术课程设计说明书设计题目:齿轮泵的三维设计 班级:2013级冶炼-2班 设计人员(按贡献大小排序): 吴迪 荣强 伟 朱宝 指导教师:王 2016年11月

一、设计任务概述:本设计主要围绕齿轮泵这个实例展开。液压油泵作为 一种重要的液压元件,其规格和型号比较繁多,传统的开发过程繁琐,效率低下、Solidworks是一款快捷的制图软件,克服了以上的不足之处,大大提高了设计人员的开发速度,本文将着重就Solidworks的实体建模、虚拟装配、爆炸式图等功能进行齿轮泵的设计。齿轮泵包含多个零部件,本设计巧妙的利用Solidworks这种综合运用多种建模方法和设计方法进行。 二、设计任务分工: 查找资料:吴迪 三维图设计:吴迪 二维图设计:吴迪、荣强 说明书书写:吴迪、荣强、伟、朱宝 齿轮泵工作原理分析:吴迪 设备的工作原理:外啮合齿轮泵是应用最广泛的一种齿轮油泵,一般齿轮泵通常指的就是外啮合齿轮泵。它主要有主动齿轮、从动齿轮、泵体、泵盖和安全阀等组成。泵体、泵盖和齿轮构成的密封空间就是齿轮泵的工作室。两个齿轮的轮轴分别装在两泵盖上的轴承孔,主动齿轮轴伸出泵体,由电动机带动旋转。 齿轮泵工作时,主动轮随电动机一起旋转并带动从动轮跟着旋转。当吸入室一侧的啮合齿逐渐分开时,吸入室容积增大,压力降低,便将吸人管中的液体吸入泵;吸入液体分两路在齿槽被齿轮推送到排出室。液体进入排出室后,由于两个齿轮的轮齿不断啮合,便液体受挤压而从排出室进入排出管中。主动齿轮和从动齿轮不停地旋转,泵就能连续不断地吸入和排出液体。泵体上装有安全阀,当排出压力超过规定压力时,输送液体可以自动顶开安全阀,使高压液体返回吸入管。

KCB齿轮泵说明书大全

KCB齿轮泵 ● 用途 适用于输送不含固体颗粒和纤维,无腐蚀性,温度不高于80℃,粘度为5×10-6~×10-3m2/s (5-1500cSt)的润滑油或性质类似润滑油的其他液体。 ● 结构特性 本系列齿轮泵主要有齿轮、轴、泵体、安全阀、轴端密封所组成。齿轮经热处理有较高的硬度和强度,与轴一同安装在可更换的轴套内运转。泵内全部零件的润滑均在泵工作时利用输出介质而自动达到。泵内有设计合理的泄油和回油槽,是齿轮在工作中承受的扭矩力最小,因此轴承负荷小,磨损小,泵效率高。 泵设有安全阀作为超载保护,安全阀的全回流压力为泵额定排除压力的倍,也可在允许排出压力范围内根据实际需要另外调整。但注意本安全阀不能作减压阀的长期工作,需要时可在管路上另行安装。从主轴外伸端向泵看,为顺时针旋转。齿轮泵是在介质粘度4×10-3m2/s(40cSt)时确定的。性能参数表中给出的参数值适用于介质粘度1×10-5~8×10-5m2/s(10~80cSt)范围内,超出这个范围则根据用户提出的性能参数要求另行确定。各型齿轮泵性能参数中给出的排出压力是给出的最大的工作压力值,在此范围内泵均能正常工作,其工作范围见图一。KCB系列齿轮油泵是有泵体、前后泵盖、齿轮、主被动轴、轴承、安全阀和轴端密封等零件组成。——主传动齿轮是一对斜齿园柱齿轮,直动式安全阀。KCB200—960主传动齿轮是四个斜齿轮组成的人字形齿轮组,差压式安全阀。全系列齿轮油泵用三爪式弹性联轴器与电动机组成的热油泵机组。本系列齿轮油泵结构简单紧凑,使用维护方便,运转平稳,使用安全可靠。 ● 适用范围 本型齿轮油泵适用于输送介质粘度不大于150mm2/S ,温度不高于120°C,无腐蚀性,不含硬质颗粒杂质和纤维的重油、柴油、机械油、植物油以及性质类似的其它液体。 本型齿轮油泵主要用于石油、化工、冶金、矿山、电站等行业油类介质的转输、增压、燃油喷射等以及大型机械设备中稀油循环中,在各类机械设备中均可做润滑泵使用。 在输油系统中可用作传输、增压泵;在燃油系统中可用作输送、加压、喷射的燃油泵;在一切工业领域中,均可作润滑油泵用。 ● KCB型齿轮泵性能参数

A型齿轮油泵说明书

南京工程学院 集中测绘说明书 测绘名称A型齿轮油泵集中测绘 姓名 *** 班级流体传动***班 学号成绩 指导老师陈**,郝**

目录 一、测绘目的和任务 (2) 二、测绘步骤 (2) 1.1用途 (2) 1.2工作原理 (3) 2.拆装零件并绘制装配示意图 (4) 2.1拆装零件(拆装零件的目的) (4) 2.2装配示意图 (4) 3.绘制零件草图(所画零件表达方案的选择) (5) 3.1 主动轴 (5) 3.2 主动齿轮 (5) 3.3 泵盖 (6) 3.4 泵体 (7) 4.绘制装配图(需说明先绘制装配草图,再绘制装配图) (9) 4.1确定表达方案 (9) 4.2标注尺寸 (10) 4.3注写技术要求,编写零件序号,填写明细栏和标题栏 (10) 5.绘制零件图 (12) 三、测绘体会(结合书本知识和测绘过程,谈了解什么、掌握什么和 提高什么等) (12) 四、参考文献 (13) 注:1.每班多领1本《集中测绘指导书》; 2.说明书用纸去书库领课程设计用纸,共15张; 3.封面、封底须用16K或A4纸(与说明书用纸配套)打印,其余手写。

一.测绘目的和任务 在工程制图课的学习过程中,我们已学习了机械零件及简单装配体的测绘。本次制图测绘课是对所学工程制图课的一次综合实践与训练。通过这次测绘,进一步巩固和提高工程制图理论及测绘技能,学会部件测绘的基本方法与步骤,进一步培养我们严肃认真的工作态度和一丝不苟的工作作风,为后续课程的学习及以后从事工程技术工作和应用高等技术解决工程实际问题打下良好的基础。 本次测绘利用五天(一周)集中进行,测绘任务是运用所学的有关制图知识,对齿轮油泵的工作原理和装配关系进行分析,结合生产实际按要求绘制出齿轮油泵的全部零件(不包括标准件)草图、装配工作图及全部非标准零件的工作,并装订成册。 二.测绘步骤 1.初步了解测绘对象 1.1用途 齿轮油泵用于发动机的润滑系统,它将发动机底部油箱中的润滑油送到发动机上有关运动部件需要润滑的部位,如发动机的主轴、连杆、摇臂、凸轮颈等。该齿轮油泵其结构大体为参照装配示意图及装配体实在泵体内装有二个齿轮,一个是主动齿轮轴6,另一个是从动齿轮轴2(均由泵体、泵

齿轮泵设计课程设计

齿轮油泵设计 中文摘要 齿轮泵是用两个齿轮互啮转动来工作,对介质要求不高。一般的压力在6MPa以下,流量较大。齿轮油泵在泵体中装有一对回转齿轮,一个主动,一个被动,依靠两齿轮的相互啮合,把泵内的整个工作腔分两个独立的部分。A为吸入腔,B为排出腔。齿轮油泵在运转时主动齿轮带动被动齿轮旋转,当齿轮从啮合到脱开时在吸入侧(A)就形成局部真空,液体被吸入。被吸入的液体充满齿轮的各个齿谷而带到排出侧(B),齿轮进入啮合时液体被挤出,形成高压液体并经泵排出口排出泵外。 齿轮油泵广泛应用于石油、化工、船舶、电力、粮油、食品、医疗、建材、冶金及国防科研等行业。齿轮油泵适用于输送不含固体颗粒和纤维,无腐蚀性、温度不高于150℃、粘度为5~1500cst 的润滑油或性质类似润滑油的其它液体。试用各类在常温下有凝固性及高寒地区室外安装和工艺过程中要求保温的场合。

English abstract Gear pump with two gears meshed rotating to work, no high requirement for medium General pressure below 6MPa, the larger flow. Gear pumps in the pump body with a pair of rotary gear, a drive, a passive, rely on the two gears mesh with each other, the whole work within the pump chamber in two separate parts. A is a suction chamber, for discharging cavity B. Gear pumps in operation when the passive gear driven rotary gear, when the gear was torn off from the mesh to the suction side ( A ) on the formation of partial vacuum, the liquid is sucked into the. The liquid was aspirated with gear each tooth Valley and take to the discharge side ( B ), into gear meshing liquid is formed by extrusion, high pressure liquid pump outlet and discharged out of the pump. Gear pumps are widely used in petroleum, chemical, electric power, shipping, oil, food, medical, building materials, metallurgy and defense industry and scientific research. Gear pump is applicable to transport solid particles and fibers, no corrosion, no more than 150 degrees Celsius temperature, viscosity of 5~1500cSt lubricating oil or lubricating oil and other liquid similar in nature. The trial of all kinds under normal temperature

齿轮油泵说明书

学号**成绩 课程设计说明书 课程名称《工程图学课程设计》 设计名称齿轮油泵拆装测绘 设计时间 2010年10-12月 系别机电工程系 专业汽车服务工程 班级机电工程系10级16班 姓名 指导教师 2012 年 12 月**日

目录 一、任务..................................... 错误!未定义书签。(一)本次课程设计内容. (2) (二)齿轮油泵简介 (2) (三)实际分配任务 (4) 二、进度表 (4) 三、课程设计过程 (4) (一)拆装与测绘 (5) (二)绘制零件图 (6) (三)绘制装配图 (17) (四)编写说明书 (19) 四、本次课程设计的感受....................... 错误!未定义书签。 五、附表..................................... 错误!未定义书签。 六、参考文献 (22)

一、任务 (一)本次课程设计内容 本次课程设计的内容包括齿轮油泵的拆装、测绘及工程图绘制。 1、拆装 在初步了解部件的基础上,依次拆卸零件,弄清楚装配关系、工作原理、配合性质等。绘制装配示意图,列装配明细栏,包括零件序号、名称、数量、材料等。 2、测绘 学会使用测量工具,包括游标卡尺、圆角测量规等。应用测量工具测量各零件的尺寸,在坐标纸上绘制零件草图。测量时为了减少误差,每个尺寸测量三次取平均值。 3、绘制工程图 应用AUTOCAD软件绘制工程图。按照文件要求的图幅和比例,绘制除了标准件外的所有零件的零件图和一张装配图。应用尺规绘图,按照文件要求的图幅和比例,绘制指定零件的手绘图。 4、编制说明书 按照文件的要求格式和大纲编写课程设计说明书一份。 (二)齿轮油泵简介 1、简介 齿轮油泵属于液压泵的一种,是一种能量转换装置,可将电动机输入的机械能转换成液体的压力能,向系统提供具有一定压力和流量的油液。齿轮油泵广泛应用于机床、工程机械的液压系统,作为液压系统的动力源,也可作为输油泵使用。 以下是几种常见的齿轮油泵如图所示:

齿轮油泵设计

课题设计要求与任务 1.设计课题齿轮泵是依靠泵缸与啮合齿轮间所形成的工作容积变化和移动来输送液体或使之增压的回转泵。由两个齿轮、泵体与前后盖组成两个封闭空间,当齿轮转动时,齿轮脱开侧的空间的体积从小变大,形成真空,将液体吸入,齿轮啮合侧的空间的体积从大变小,而将液体挤入管路中去。吸入腔与排出腔是靠两个齿轮的啮合线来隔开的。齿轮泵的排出口的压力完全取决于泵出处阻力的大小。齿轮泵对油液的要求最低,最早的时候因为压力低,所以一般用在低压系统中,现随着技术的发展,压力可以做到25MPa 左右,常用在廉价工程机械和农友机械方面,当然在一般液压系统也有用到,但是它的油液脉动大,不能变量,好处是自吸性能好。 2.设计内容 (1)齿轮泵各零件的设计(部分); (2)齿轮泵的整体装配设计; (3)齿轮泵部分零件的数控加工程序自动编制; 3 设计要求与任务 (1)课题分析研究:安装UG NX8.0 软件,收集、整理有关齿轮泵的整资料,以备设计时使用。 (2)总体方案设计:参考相关资料,设计齿轮泵各零件。 (3)齿轮泵各零件实体造型:根据设计的零件,利用UG软件进行齿轮泵各零件的实体造型。 (4)齿轮泵的装配:按装配设计要求,将齿轮泵各零件进行装配。

(5)自动编程:对于齿轮泵的主要零件进行加工仿真,自动生成数控加工程序。 (6)编写设计说明书 二.所设计齿轮泵的用途、特点及适用对象所设计齿轮泵的用途、(一).用途适用于输送不含固体颗粒和纤维,无腐蚀性,温度不高于80 度,粘度为5×10ˉ ~1.5 3 ×10ˉ m/s(5-1500cSt)的润滑油和性质类似润滑油的其他液体以及用于液压传动系统。 (二).特点特点:体积小,重量轻,结构简单,制造方便,价格低,工作可靠,自吸性能较好,对油液污染不敏感,维护方便等。缺点:流量和压力脉动较大,噪声大,排量不可变等。 (三).适用对象在输油系统中可以作传输,增压泵;在燃油系统中可以作输送、加压、喷射的燃油泵;在液压传动系统中可用作提供液压动力的液压泵;在一切工业领域中,均可坐润滑油泵用。 短销

相关主题
文本预览
相关文档 最新文档