当前位置:文档之家› 电磁流量与示踪相关流量组合测井技术

电磁流量与示踪相关流量组合测井技术

电磁流量与示踪相关流量组合测井技术
电磁流量与示踪相关流量组合测井技术

仪器设备

电磁流量与示踪相关流量组合测井技术

*

单宏宽

(大庆油田有限责任公司测试技术服务分公司 黑龙江大庆)

摘 要:电磁流量与示踪相关流量组合测井技术是通过将电磁流量计与示踪相关流量测井仪二者组合,并配以温度、压力、磁定位等参数,能有效地改善和弥补二者的不足。该方法一次性下井,可同时录取多项参数,利用电磁流量的测试结果来确定其对应的示踪相关解释模型中的系数,再利用所得参数来计算环套空间内的流量,从而减小了不同测量井段因井况不同而产生的误差。该测井技术可以根据实际情况自由组合,能够满足复杂条件下注入井的测试要求,目前已经在大庆油田多个采油厂进行推广使用。

关键词:注入井;电磁相关;组合测井;综合解释;测井单元

中图法分类号:P 631.8+1 文献标识码:B 文章编号:1004 9134(2010)04 0023 02

0 引 言

放射性示踪相关流量测井是注入井吸水剖面常用的测井方法之一,能够测量油套环形空间流量,在测量注聚井以及找窜找漏等方面有着很大的优势,具有测井施工时间短、曲线直观简洁、测量范围广、可靠性强等特点,深受广大用户的欢迎[1]。但是随着油田进入高含水开发后期,管柱由于老化等多种因素会产生变形;同时随着三次采油技术的不断进步,种类繁多的注入液会导致管壁结垢。管柱的变形与结垢都会改变注入液流动的横截面积,因此影响放射性示踪相关的测量结果。同时,由于注入液粘度的增加造成部分释放的同位素吸附在管壁上,加大重复测量时曲线的干扰,影响解释精度。因此该方法无法满足目前油田开发生产对测量精度的要求,为此大庆油田有限责任公司测试技术服务分公司研制了电磁流量与示踪相关流量(简称电磁相关)组合测井仪。

1 仪器结构及原理

电磁流量与示踪相关流量组合测井仪根据优势互补的原则,把电磁流量计、示踪相关流量计、同位素吸水剖面测井仪组合到一起,并附加井温、压力、磁性定位等参数,仪器可根据实际需要自由组合,测井资料能相互印证,进而得出更准确的综合解释成果,提高了解释精度,为油田监测提供准确的测井资料。

1.1 仪器结构

井下仪器结构如图1所示,自上而下依次为上扶正器、固体颗粒同位素释放器、液体同位素释放器、遥测四参数短节(含磁性定位器、井温、压力、伽马)、下伽马仪短接、下扶正器、电磁流量计。上下扶正器可保证仪器居中;磁性定位器可确定仪器的深度;遥测四参数短节中的伽马仪和固体颗粒同位素释放器共同组成同位素示踪注入剖面测井系统,用于管外流量的测量;上下伽马仪和液体同位素释放器组成示踪相关流量测井系统,可用于管外流量的测量;电磁流量计进行管内流量的测量。温度、压力作为环境条件测量参数[2]

图1 井下仪器结构示意图

该组合仪继承了原各测试短接的优点,还对组合仪的总体结构进行了优化,缩短仪器串长度,提高各短接的可靠性。短接的接口采取丝扣套式结构,连接方便,不易脱扣,可靠性高。1.2 技术指标

本组合仪的主要技术指标为:耐温:125 ;耐压:60MPa;

外径:38mm;组合仪全长:6.8m;

基金项目:国家科技重大专项(课题编号:2008ZX05020)和国家高技术研究发展计划(编号:2007AA06Z231)资助课题

第一作者简介:单宏宽,男,1975年生,计算机专业工程师。1997年毕业于北京化工大学,目前在大庆油田测试公司研发中心从事测井数据处理、

软件开发、方法研究工作。邮编:163453

23 2010年 第24卷 第4期

石 油 仪 器

PETROLEUM INSTRUMENTS

电磁流量计:2m 3/d~500m 3/d,!5%;

温度计:0 ~125 ,!1 ;

压力计:0.1MPa~60MPa,优于0.5级。1.3 测量原理

电磁流量计测量精度高,不受流体的压力、温度、密度、矿化度及其它物理参数的影响,不管流体的性质如何,只要有微弱的导电性(电导率>8?10-5S/m)即可进行测试。通常油田的注入水及聚合物溶液都具有良好的导电性能,符合电磁流量计的测量条件[3]。放射性相关测量方法是在油管内的配水器上方释放示踪剂,并迅速把带有2个伽马射线探测器的仪器移至测量点,示踪剂被水携带,一部分经配水器流到油套空间,进入各个吸水层,当示踪剂流经这2个探测器时测量伽马计数率随时间变化曲线;利用相关算法计算出渡越时间;由于传感器的间距和油套空间的横截面积是已知的,从而可以算出流体流速,进而得出流体流量,最后计算出要测量层的注入量。放射性相关流量计具有仪器成本低、测量范围宽、解释资料直观等特点,在水驱、聚驱、三元复合驱等注入剖面测井中应用广泛,低流量测井以及找串找漏方面优势更为明显[1]。电磁相关组合仪利用电磁流量计在管内点测流量精度高、稳定性好、操作方便的特点,准确地测量注入管柱内的流量;利用示踪相关流量计能够测量管外流量的特点,测量流入注入点后流量的分配情况。根据井温曲线和压力曲线可验证测井过程中是否有异常现象。

2 测井资料综合解释

电磁相关组合仪解释方法采用的是电磁流量计与示踪相关流量计综合解释法。

由于各个测井单元所处环境大体相同,其所对应的底层形成的时间大致相同、配注时间相同、注入液种类相同、其井温及压力变化呈均匀分布,因此认为其管柱老化变形情况基本相同,由于注入液引起的结垢情况也基本相同,因此可认为在一个测井单元内部所对应的流体横截面积是相等的,可以按照放射性相关测量方法进行测量与解释,计算出每个测井单元所对应的各个测量层的注入量[4]。

首先利用电磁流量计的测量结果来计算出各个测井单元总的绝对注入量;然后根据每个测井单元的示踪相关测量结果计算出各个注水层的相对注入量,最后把每个测井单元按电磁流量计所计算出的绝对注入量参照示踪相关流量测量所计算得的相对结果按比例分配到相应的注入层中。

其数学模型为:设电磁流量计资料确定1~N 个测井单元的总绝对注入量分别为Q 1,Q 2##,Q N ;第i

个单元的绝对注入量为Q i ,第i 个单元所对应的1~M 层的相对注入量分别为P i 1,P i 2##P iM ,其中P i 1+P i 2+#+P iM 应该等于1,则各吸水层绝对吸水量为:

Q ij =P ij ?Q i

3 测井实例及应用效果

下面是采用电磁相关组合仪在大庆油田采油三厂一口注聚井进行测井的解释成果表。该井为分层注入井,共有三个配水器,三个封隔器,井口注入量为100m 3/d 。

表1为电磁流量计测量结果和计算所得的对应配水器的绝对日吸液量。表2为示踪相关测量的相对流量成果表以及计算所得的目标地层的绝对注入量。

表1 电磁流量测得的油管内流量表

序号测点深度/m 油管流量/m 3对应配水器配水器的绝对日吸液量11020100配水器A 70m 3/d 2104030配水器B 30m 3/d 3

1060

配水器C

0m 3/d

表2 示踪相关相对及绝对吸液量表

序号对应配水器

所对应地层

相对注入量

/%计算所得绝对注入量/(m 3/d)

1234配水器A A114.320.1A214.40A3(1)28.820.2A3(2)42.529.75B1(1)37.311.26配水器B B1(2)50157B216.7 3.88

配水器C C

先用电磁流量测量各个配水器的绝对吸液量,再用示踪相关流量计测量油套空间对应深度点液体的相对流量,最后结合二者换算出要测量目标地层的绝对日注入量。由解释成果表可以看出已经完全测出目标地层吸液量,经采油厂地质部门审阅,资料准确。

由于各个配水器所对应的测井单元所处环境大致相同,因此认为其变形程度及结垢程度相似,因此能够减少由此产生的误差。目前所用的电磁流量计为外流式电磁流量计,与内流式电磁流量计对比,其操作方便,但测量精度较低,但可满足目前井况的需求。若油管管柱严重变形,可以采用内流式电磁流量计,这样可以不受管柱横截面积的影响,结果更加精确。

(下转第27页)

24

石 油 仪 器

PE T ROLEUM INSTRUMENTS

2010年08月

y =-0.324x +109.13,其中斜率就是密封高压的等效内阻。实验步骤是:将靶压空载情况下从零缓慢匀速加至100kV,由于高温下中子管内有少量放气,电离电流和靶流并不为零,此后通过手动调节电离电流,由小变大,靶流也由小变大,靶压则由大变小,逐次记录靶流和对应的靶压变化,从而得到曲线。

2.3 常、高温中子发射稳定性试验

稳定性是中子发生器的另一项重要指标,对中子发生器的靶压、产额等稳定性进行了常温、高温两种情况下的实验,如图3、4

所示。

图3 C ZF45E-150

中子发生器常温产额及靶压稳定性曲线

图4 C ZF45E-150 中子发生器高温产额及靶压稳定性曲线

在图3和图4所示的曲线中可以看出,该中子发生器的常温产额为1.4?108n/s,产额变化率为2.5%,高温情况下产额变化率为3.5%。 2.4 中子管使用寿命的试验

在2009年底对150 中子管进行了寿命消耗试验,统计证明该中子管在150 环境下使用寿命?175

h 。

3 150 中子发生器达到的整体指标

仪器的尺寸: 45mm ?1100mm + 45mm ?600mm

温度:150

常、高温产额变化率%!15%中子产额:?1.2?108n/s 产额稳定性变化率%15%靶压%110kV

靶流%120 A

发射模式:125Hz 、250Hz 、500Hz 、1kHz 中子管使用寿命:175h

4 结 论

新型150 小直径中子发生器在自成靶中子管工

艺及密封高压的负载能力方面所作的新尝试,其合理性得到了试验的验证,有望在2010年将该新技术推向市场。参考文献

[1] 梁 峰.测井用系列密封中子管[J].测井技术,1994,18

(6)

[2] 梁 峰,麻惠生.测井用中子管的损耗问题[J].测井技

术,1997,21(2)

[3] 罗顺中,杨本福,龙兴贵.中子发生器氚靶的进展[J].原

子能科学技术,2002,36(4/5)

(收稿日期:2010-02-03 编辑:高红霞)

(上接第24页)

4 结束语

电磁流量与示踪相关流量组合测井仪将多种注入参数组合在一起,发挥各流量计的优势。利用电磁流量计测量精度高、操作简便、使用范围广的优点来确定每个配水器的绝对日注入量;利用示踪相关流量可以测量油套空间内部流量的特点来测量油套空间相对流量;然后二者结合换算出要测量目标地层的绝对日注入量。此方法可以减小因管柱老化变形和井壁结垢对流量测量的影响,已经得到地质部门的认可,目前在大庆油田已经推广使用。

参考文献

[1] 张耀文,王金钟,夏慧玲,等.注入剖面放射性相关测量

方法研究[J].测井技术,2004,28(增刊)

[2] 谢荣华.生产测井技术应用与进展[M ].北京:石油工业

出版社,1998

[3] 吕殿龙,魏云飞,韦 旺.电磁流量计及其在注聚井中的

应用[J].石油仪器,2001,15(3)

[4] 李桂军,刘慧,闪俊梅,等.五参数吸水剖面测井资料解

释方法分析与研究[J].石油仪器,2006,20(4)

(收稿日期:2010-01-11 编辑:姜 婷)

27 2010年 第24卷 第4期 秦爱玲等:一种新型的小直径150 中子发生器

随钻电磁波传播电阻率测井

4地层倾角对随钻电阻率测井的影响 范宜仁等2013年发表文章“倾斜各向异性地层随钻电磁波响应模拟”,文中通过坐标变换的方法,基于柱坐标系时域有限差分(FDTD)模拟和分析了倾斜各向异性地层随钻电磁波响应。为了研究各向异性系数对相位(幅度)电阻率的影响,模拟了不同各向异性系数条件下倾斜地层随钻电磁波测井响应,模拟结果表明:当地层倾角小于30°时,不同水平电阻率条件下,各向异性系数对视电阻率影响较小,随钻电磁波视电阻率主要反映地层水平电阻率;随地层倾角增大,视电阻率受各向异性的影响增大,且地层水平电阻率越低,随钻电磁波测井响应受地层各向异性影响越大,相位电阻率比幅度电阻率更加敏感;当地层倾角较大时,随着各向异性系数增大,视电阻率甚至会超过垂直电阻率。为了研究不同发射频率对各向异性系数的敏感性,模拟了地层各向异性系数为√10,水平电阻率为0.5Ω·m时不同地层倾角条件下随钻电磁波响应,模拟结果显示:随发射频率增大,视电阻率受各向异性影响增强,当地层倾角较大时,随钻电磁波视电阻率甚至会远远超过垂直电阻率。

夏宏泉等2008年发表文章“随钻电阻率测井的环境影响校正主次因素分析”,文中分析了随钻电阻率测井中地层倾角(或井斜角)等环境因素对测井结果的影响及其校正方法。在大斜度井和水平井测井中,大部分仪器的测量值要受到井斜角或地层倾角的影响,实测曲线出现“异常”和“变形”。在直井中,如果地层是水平的,则仪器测量的是水平电阻率。但如果仪器在钻开同样地层的水平井时,则测量电流会流过地层的水平面和垂直面,视电阻率测量值R a是水平电阻率R h和垂直电阻率R v合成的[3-6]。假设在水平井中地层存在各向异性,垂直层界面方向的电阻率为R v,平行层界面方向的电阻率为R h,径向上(与地层平行的方向)为宏观各向同性,可推导出地层视电阻率R a、R h、R v的关系为 ? R a=R?√cos2θ+sin2θλ? 式中,λ为地层电阻率的各向异性系数,λ=(R v/R h)0.5;θ为相对倾角,即井轴与地层面法线的相对夹角,可由井斜角和地层倾角求得。由此可见,地层视电阻率主要与地层电性各向异性系数和相对倾角有关,其值介于R h~(R v·R h)0.5之间。对于2MHz的随钻电阻率测井仪器,相对夹角在0°~30°时影响不大(即在直径中随钻视电阻率等于水平电阻率,可以忽略地层电性各向异性的影响),大于30°时相对夹角影响较大,则必须考虑各向异性的影响。各向异性影响很大程度取决于地层和井眼的相对角度。如忽略各向异性的影响,则在大斜度井中,R ps相位电阻率、R ad衰减电阻率测井曲线的差异可能导致错误的侵入剖面解释,这是因为2MHz电阻率仪器的这2种曲线在各向异性地层中的响应特征是不同的,在θ>30°时,R ps曲线更多地反映垂向电阻率,从而导致2条曲线的分离。但是如果井眼垂直于地层,即使K值很大,它对随钻电阻率测井值无明显影响,2条曲线基本重合。此外,当相对夹角变大,即使各向异性系数不变,R ps和R ad曲线仍可出现明显的分离,因此2条电阻率曲线分离与否可以间接地指示地层的各向异性。

随钻电磁波电阻率测井的犄角效应

随钻电磁波电阻率测井的“犄角”效应 一、前言 近期,随钻电磁波电阻率测井资料中出现的一种被称为“犄角”的现象,引起了国内外专家教授、工程技术人员乃至地质家的关注,纷纷以极大的兴趣对其进行分析研究,发表文章介绍研究成果与认识,以期对其作出客观正确的阐述与解释。 目前,对于“犄角”的研究仍在深入进行中,对于它的认识和分析尽管不尽相同,甚至尚存争议,但对这一现象的破解必有积极的意义和作用。对“犄角”的地质和工程分析与应用更值得深入探讨与开发。 二、产生“犄角”效应的机理 对于“犄角”效应产生的机理,目前尚存在不同的见解与争论,在此无意参与其中,而仅以认识与分析问题的视角阐发一孔之见, 1、何为“犄角”效应 所谓“犄角”效应,是指井 眼轨迹以一定的交角进入地层 界面时,电磁波电阻率测井响应 在界面处产生的异常突变现象。 如图1所示,当井眼轨迹与 地层界面法线以θ角相交时在 地层界面处产生的“犄角”效应。 “犄角”一词来自英语“HORN” 有号角、角状物之意;其实古代 的号角也是牛角做的。这里是以牛角的形状形容电磁波电阻率测井响应的异常突变现象。 值得一提的是,有人把这一现象称为“极角”或“极化角”是不够妥当的,因为产生“犄角”效应的主要因素并非“极化”或“激化”问题。而是电磁波传播的边界效应与边值问题。 2、导致“犄角”产生的因素 究竟哪些因素导致“犄角”效应呢?一般认为有以下原因: A、地层界面两侧地层电阻率对比度。地层电阻率对比度越大,“犄角”效应越明显。 B、井眼轨迹与地层界面法线的交角大小。交角越大,“犄角”效应越明显。当然,当井眼轨迹一定时,交角大小与地层产状也有关系。 C、井眼尺寸(井径)大小及仪器外径与井壁之间的间隙大小。间隙越大,对“犄角”效应的影响越大。

电磁流量计使用说明书样本

电磁流量计 使 用 说 明 书 武汉磐宇科技发展有限公司 1 产品用途与适用范围 1.1 特点: ■频率可编程低频矩形波励磁, 提高了流量测量的稳定性, 功率损耗低; ■采用新型含有FLASH存贮器的16位超低功耗微处理器, 集成度高, 运算速度快, 计算精度高。

■全数字量处理, 抗干扰能力强, 测量可靠; ■超低EMI开关电源, 适用电源电压变化范围大, 效率高, 温升小。EMC性能好; ■中英文菜单操作, 使用方便, 操作简单, 易学易懂; ■高清晰度背光宽温型LCD显示; ■能进行双向流量测量、双向总量累计。具有量程自动切换功能, 更有效地提高了模拟电流和频率输出的测量精度, 特别适用于昼夜流量范围变化大并需要发出控制信号的场合。流量测量范围度可达1500:1。 ■内部有三个积算器, 分别记录和显示正向累计量、反向累计量及累计差值积算量, 方便于流体计量和贸易交接。 ■提供隔离或非隔离RS485/RS232C数字通讯接口, 并支持MODBUS、PROFIBUS-DP及HART等现场总线通讯方式; ■采用恒流源流体电阻测量, 能够在长线传输的情况下, 准确测量电极信号内阻。不但可用来判别传感器内流体是否空管, 而且能够判别电极被污染、覆盖等异常现象, 为用户提供清洗电极等故障处理信息; ■使用智能化判断, 不采用测量修正设置, 空管报警与电极检测应用更加便捷。 ■先进的”粗大误差处理”技术, 能够切除浆液等流体测量尖状干扰, 减小输出跳动, 保持高精度测量并使输出更加稳定; ■具有流体密度设置, 能够显示质量流量; ■恒流励磁电流范围大, 可与不同制造商、不同类型的电磁流量传感器配套使用; ■具有积算器远程清零的控制功能, 具有开启与停止累计的接点信号输入, 适于总量检验和批量处理应用; ■具有自检与自诊断功能; ■采用先进的非易失性存贮器, 电路可靠性更高, 有效地保护设置和测量参

随钻测井技术

第8卷第4期断 块 油 气 田 FAUL T-BLOCK OIL&G AS FIFLD2001年7月随钻测井技术 布志虹1 任干能2 陈 乐2 (11中原油田分公司勘探事业部 21中原石油勘探局地质录井处) 摘 要 随钻测井是一种新型的测井技术,它能够在钻开地层的同时实时测量地层信息。 本文介绍了斯伦贝谢公司最新的随钻测井技术,并通过对其新技术的分析,提出了在重点探井文古2井进行随钻测井的建议及方法。 关键词 随钻测量 随钻测井 随钻测量工具 引言 在钻井过程中同时进行的测井称之为随钻测井。 随钻测井系统中随钻测井的井下仪器的安装与常规测井的仪器基本相同,所不同的是各仪器单元均安装在钻铤中,这些钻铤必须能够适应正常的泥浆循环。 用随钻测井系统进行随钻测井作业比电缆测井作业简单。首先在地面把各种随钻测井仪器刻度好,然后把他们对接起来进行整体检验,再把随钻测井仪接在钻杆的底部,最后接上底部钻具总成和钻头,至此,就可以进行钻井和随钻测井作业了。 1 数据记录方式Ξ 随钻测井有2种记录方式,一是地面记录,即将井下实时测得的数据信号通过钻井液脉冲传送到地面进行处理记录;二是井下存储,待起钻时将数据体起出。这里仅介绍地面记录的方法。 在随钻测量仪中设计有一个十分重要的系统即钻井液脉冲遥测系统,该系统的作用是把各传感器采集的信号实时传送到地面。目前在随钻测量系统中主要使用连续钻井液脉冲进行遥测传输,它在井下用一个旋转阀在钻井液柱中产生连续压力波,这个旋转阀称为解制器。在井下改变波的相位(即调频),并在地面检测这些相位变化,就可以把信号连续地传输到地面。 来自各传感器的模拟信号首先被转换成二进制数。每一个二进制数则由一个具有适当的二进制位数的字来表示,每个字所含有的二进制位数的多少(即字长的大小)视测量结果所需的精度而定,如果所传输的信号对精度的要求不高,可用一个字长较小的字表示这个二进制数;反之,则需用一个字长较大的字表示。目前随钻测量系统中采用的字长一般为8位,即每个字含有8个二进制位,这是一个最优化方案,既满足了各测量信号对精度的要求,又能在单位时间里传送较多的二进制数到地面。 这些字由一系列的“0”和“1”组成,由调制器把它调制成代表这些字的钻井液脉冲发送到地面。调制器调制信号是一帧一帧地调制的,每一帧由16个字组成,其中15个字长为8位的字用于传输测量信号,一个字长为10位的字是用来标识一帧的起始位置的帧同步字。 最后,压力信号由安装在立管中的压力传感器检测出,由调制器调制并传送到地面。这些压力信号被送到地面计算机系统,由计算机系统调解后被还原成各传感器的测量信号值,并与其所对应的时间和深度一起存入数据库。这些测量信号和及其处理结果就可以实时地显示在荧光屏上或打印在绘图纸上。 在钻井液遥测系统的数据传输率和字长一定的情况下,系统在单位时间内向地面传送的二进 22Ξ收稿日期 2001-02-15 第一作者简介 布志虹,女,1962年生,高级工程师, 1982年毕业于江汉石油学院测井专业,现在中原油田分公司勘探事业部从事勘探管理工作,地址(457001):河南省濮阳市,电话:(0393)4822513。

随钻电阻率测井原理浅析

随钻感应电阻率测井原理浅析 1.电阻率的概念 2.电阻率的测量方法 3.电阻率的电极系分布 4.电阻率测量的数学模型 几何因子理论 摘要:本文通过对Geolink公司TRIM工具测井原理的剖析,详细介绍了感应电阻率测井的原理,并将电缆测井与随钻测井进行比较 主题词:MWD 电阻率感应测井原理浅析 随钻测量(MWD—Measurement While Drilling),是一项在钻井过程中,实时对井底的各种参数进行测量的技术,MWD的最大优点在于它使得司钻和地质工作者实时看到井下正在发生的情况,可以极大的改善决策过程。随钻测量技术极大的推动了钻井技术的发展,为地层评价提供了新的手段,由于可以直接观测井下工程参数,这就为钻井的进一步科学化提供了有利的条件,及时获得地层资料对于准确评价地层和进行地层对比以及油藏描述也具有重要的意义。 MWD系统测量的一个十分重要的方面就是电阻率地层评价测井。自从八十年代中期起,就有许多种不同的MWD电阻率被测试并投入市场,包括16’’短电位电阻率,聚焦电阻率(有活动和被动聚焦能力),基于电极的装置(可利用钻头或接触按钮),目前Sperry-Sun Drilling Service服务公司的多空间1~2MHz“电磁波电阻率相位测井”是工业上唯一商业化的、真正的多探测深度的电阻率测井工具。Geolink公司应广大用户的普遍要求,也制造生产出随钻电阻率工具,它将MWD仪器测井结果与通常使用的电缆感应(20KHZ)测井相关联,用这种方法得到的响应与电缆深感应测井的探测深度相类似,其垂直分辨率优于电缆中感应测井。这种探测深度可以减少井眼环境及泥浆侵入地层对测量产生的影响。因而不需要对在不同泥浆(水基、油基、气基及泡沫基钻液)中作业中所产

电磁流量计使用说明书

. ... .. LDC型 电磁流量计 使用说明书 1产品用途与适用围 1.1特点: ■可编程频率低频矩形波励磁,提高了流量测量的稳定性,功率损耗低; ■采用16位嵌入式微处理器,运算速度快。精度高; ■全数字量处理,抗干扰能力强,测量可靠,精度高,流量测量围度可达1500:1; ■超低EMI开关电源,适用电源电压变化围大。抗EMC性能好; ■全汉字菜单操作,使用方便,操作简单,易学易懂; ■高清晰度背光LCD显示; ■具有双向流量测量、双向总量累计功能,电流、频率具备双向输出功能。 ■部具有三个积算器可分别显示正向累计量、反向累计量及差值积算量。 ■具有RS485或RS232C数字通讯信号输出; ■具有电导率测量功能,可以判别传感器是否空管; ■具有自检与自诊断功能; ■采用SMD器件和表面安装(SMT)技术,电路可靠性高; ■仪表部设计有不掉电时钟,可记录16次掉电时间。 1.2主要用途 电磁流量计用来测量封闭管道中导电流体的体积流量。广泛地适用于石油化工、钢铁冶金、给水排水、水利灌溉、水处理、环保污水总量控制、造纸、医药、食品等工、农业部门的生产工艺过程流量测量和控制;适用于导电液体的总量计量。 1.3正常工作条件 环境温度:分体型–10~+60℃; 相对湿度:5%~90%; 供电电源:单相交流电85~265V,45~63Hz; 功率:小于20W。 1.4试验参比条件 环境温度:20℃±2℃ 相对湿度:45%~85% 电源电压:220±2% 电源频率:50Hz±5% 谐波含量小于5%。 预热时间:30min 2产品型式 电磁流量计有分体型和一体型两种结构形式。 . .. .c

电磁流量计说明书

. ... .. 电磁流量计说明书目录 一、概述 二、主要技术参数 三、电磁流量计选型编码 四、电磁流量计选型说明 五、流量计接线 六、流量计参数设置 七、流量计自诊断信息与故障处理 八、附录

QWLD 型智能电磁流量计是我公司采用国外最先进技术研制开发的全智能型电磁流量计,其全中文电磁转换器核采用高速中央处理器。计算速度非常快、精度高、测量性能可靠。转换器电路设计采用国际先进技术,输入阻抗高达1015欧姆,共模抑制比优于100db ,对于外来干扰以及60Hz/50Hz 干扰抑制能力优于90db,可以测量更低的电导率的流体介质流量。其传感器采用非均匀磁场技术及特殊的磁路结构,磁场稳定可靠,而且大的缩小了体积,减轻了重复,使流量计小型流量化的特点。使客户“买的放心,用的省心,服务称心”是我公司的宗旨。 产品特点: ▲管道无可动部件,无阻流部件,测量中几乎没有附加压力损失。 ▲测量结果与流速分布,流体压力,温度、密度、粘度等物理参数无关。 ▲在现场可根据用户实际需要在线修改量程。 ▲高清晰度背光LCD 显示,全中文菜单操作,使用方便,操作简单,易学易懂(可定制其它语言)。 ▲采用SMD 器件和表面贴装(SMT 电路可靠性高)。 ▲采用16位嵌入式微处理器,运算速度快,精度高,可编程频率低频矩形波励磁,提高了流测量的稳定性,功耗低。 ▲全数字量的处理,抗干扰能力强,测量可靠,精度高,流量测量围可达150:1 ▲超低EMI 开关电源,使用电源电压变化围大,抗EMC 好 ▲部具有三个积算器可分别显示正向累计量及差值积算量,部设有不掉电时钟,可记录16次掉电时间 ▲具有RS-485、RS-232C 、REMOTE(Hart)和Modbus 数字通讯信号输出。 ▲具有自检与自论功能 1 概述 工作原理 电流量计测量原理是基于法拉第电磁感应定律。流量计的测量管是一衬绝缘材料的非导磁合金短管。两只电极沿管径方向穿通管壁固定在测量管上。其电极头与衬里表面基本齐平。励磁线圈由双方波脉冲励磁时,将在与测量管轴线垂直的方向上产生一磁通量密度为B 的工作磁场。此时,如果具有一定电导率的流体流经测量管。将切割磁力线感应出电动势E 。电动势E 正比于磁通量密度B ,测量管径d 与平均流速v 的乘积。电动势E (流量信号)由电极检出并通过电缆送至转换器。转化器将流量信号放大处理后,可显示流体流量,并能输出脉冲,模拟电流等信号,用于流量的控制和调节。 E=KBdv 式中:E---------------为电极间的信号电压(v ) B-----------------磁通密度(T ) d------------------测量管径(m ) v------------------平均流速(m/s ) 式中k, d 为常数,由于励磁电流是恒流的,故B 也是常数,则由E= KBdv 可知,体积流量 Q

电磁流量计使用方法

电磁流量计的应用 作者:任溢 摘要:本文简要介绍了电磁流量计的测量原理、结构与分类、特点,较具体地分析了其选型及安装注意事项。 关键字:电磁流量计测量范围测量介质励磁系统衬里材料接地 电磁流量计是利用电磁感应原理造成的流量测量仪表,可用来测量导电液体体积流量(流速)。变送器几乎没有压力损失,内部无活动部件,用涂层或衬里易解决腐蚀性介质流量的测量。检测过程中不受被测量介质的温度、压力、密度、粘度及流动状态等变化的影响。没有测量滞后的现象。 1 电磁流量计的工作原理 电磁流量计是依据法拉第电磁感应定律来测量管内流体流量的测量装置。当流体在管道中流动时,相当于一根具有一定电导率的导体的切割磁力线,于是液体柱两端会产生感应电动势。它的大小与流量成正比,并通过电极将此信号引至电路转换器。 E=4BQ/πD式中:E――感应电动势;Q――流量;B――磁感应强度;D――流量计公称通径。由上式可知,管道直径D和磁感应强度B不变时,感应电势E和体积流量Q之间成正比。 sinωt,得 但是上式是在均匀直流磁场条件下导出的,由于直流磁场易使管道中的导电介质发生极化,会影响测量精度,因此工业上常采用交流磁场,B=B m sinωt Q=πDE/4B m 式中:ω――交变磁场的角频率; B ――交变磁场磁感应强度最大值。 m 由上式可知,感应电势E与被测量介质的体积流量Q成正比。但变送器输出的E是一个微弱的交流信号,其中包含有各种干扰成分,而且信号内阻变化高达几万欧姆,因此,要求转换器是一个高输入阻抗,且能抑制各种干扰成分的交流毫伏转换器,将感应电动势转换成4~20mADC的统一信号,以供显示、调节和控制,也可送到计算机进行处理。 2 电磁流量计的结构 电磁流量计一般由四部分组成:测量管、励磁系统、检测部分、变送部分。 考虑到防腐蚀的要求,测量管内部一般都加衬里材料。电磁流量计的励磁方式主要有高频励磁、低频励磁、脉冲DC励磁。由于工业的不断发展,有的厂家已经一种新的励磁方式—双频励磁,它克服了高频、低频励磁的缺点,具有“不受流量噪声影响”,“响应速度快”,“零点稳定性高”,“精度高”等优点。 检测部分主要包括电极和干扰调整部分,由于电极要和被测介质直接接触,要具有较强的抗腐蚀性。 变送器的主要作用是将传感器信号转换成与介质体积流量成正比的标准信号输出(0~20mA、4~20mA、0~10KHz)。并且要有较高的稳定性、精度和较强的抗干扰能力。 3 电磁流量计的主要性能参数和特点

电磁流量计说明书

电磁流量计使用说明书 一、产品特点、用途和适用范围 1.1特点 ●LD系列电磁流量计,具有以下特点: ●不受流体密度、粘度、温度、压力和电率变化的影响,线性测量原理能实现高精确度测量; ●测量管内无阻流件,压损小,直管段要求低; ●公称通径DN6-DN2000覆盖范围宽,衬里和电极有多种选择,能满足测量多种导电流体的要求; ●转换器采用可编程频率低频矩形波励磁,提高了流量测量的稳定性,功率损耗小; ●转换器采用16位嵌入式微处理器,全数字处理,运算速度快,抗干扰能力强,测量可靠,精确度高,流量测量范围度可达1500:1; ●高清晰度背光LCD显示,全汉字菜单操作,使用方便,操作简单,易学易懂; ●具有RS485或RS232O数字通讯信号输出; ●具有电导率测量功能,可以判别传感器是否空管,具有自检与自诊断功能; ●采用SMD器件和表面安装(SMT)技术,电路可靠性高; ●可用于相应的防爆场合。 1.2主要用途 KDLD系列电磁流量计,可用来测量封闭管道中导电流体的体积流量。广泛应用于石油化工、钢铁冶金、给水排水、水利灌溉、水处理、环保污水测控、造纸、医药、食品等工农业生产工艺过程中的流量测量和控制。 1.3使用环境条件 环境温度:传感器-25℃~+60℃转换器-10℃~+60℃ 相对温度: 5%-95% 1.4工作条件 流体最高温度:一体型 70℃ 分离型:聚四氟乙烯衬里 150℃ 氯丁橡胶衬里 80℃ 聚氨酯橡胶衬里 70℃ 流体电导率:≥5uS/cm 二、工作原理 2.1数学物理模型 电磁流量计的工作原理基于法拉第电磁感应法律。当一个导体在磁场场内运动时,在与磁场方向、运动方向相互垂直方向的导体两端,会产生感应电动势。电动势的大小与导体运动速度和磁场的磁感应强度大小成正比。 如图一,当导电流体以平均流速V(m/s)通过装有一对测量电极的一根内径为D(m)的绝缘导管内流动时,该管道处于一个均匀的磁感应强度为B(T)的磁场中,那么在一对电极上就会产生感应电动势E(V),它的方向垂直于磁场和流体的方向。

电磁流量计操作规程

电磁流量计 一、基本结构 1 传感器 2 转换放大器 二、电磁流量计的原理应用 电磁流量计的工作原理时一法拉第电磁感应定律为基础的。该定律说:当一个导体在电磁场中运动,并且运动方向垂直于电磁场,那么,感应电动势垂直于导体运动方向和电磁场方向。电动势的值于导体的速度和磁通密度成正比。 当导电流体一平均流速V(m/s)通过一根内经为D(m)的管子时,在管子中存在一个均匀的磁通密度为B(T)的磁场,那么,就科感应到一个垂直于电磁场方向和流体方向的嗲电动势E(V) E=D*V*B(V) (1) 容积流量Q可以从以下方程得到 Q=π/4*D2*V(m3/s) (2) 从方程(1)和方程(2) Q=π/4*D/B*E(m3/s) (3) 由此,电动势科表示为: E=π/4*D/B*Q(v) (4) 如果B时各常数,那么从(3)中可以知道,,Q与E成正比。 电磁流量转换器,把这种电动势E放大兵转换成标准的4—20MA的信号

一、安装注意事项 1、必须有良好的接地; 2、留有必要的直管段; 3、所测介质必须充满管道; 4、远离大功率电器设备; 5、留有一定的维修空间; 6、保证管道的同心度。 二、常见的故障分析 1 无流量有信号 1)接地是否可靠 2)励磁线圈是否开路 Err—07 3)舱体是否残留导电液体或强温气体4)水平安装两电极是否同处于水平面5)电子转换放大器是否损坏 2 有流量无信号 1)供电电源是否符合要求 有功功率12.5W、AC220V 2)两极是否污染(同时污染) 3)接线是否正确 4)气体的电导率是否符合要求 AE>5VMS/cm 大口径≥20ns/cm

中国测井技术发展方向

中国测井技术的发展方向 测井新技术 国外裸眼井测井、随钻测井、油藏评价、在水平井、斜井、高产液井产出剖面测井技术方面发展迅速,仪器的耐温、耐压指标较高,可靠性高,技术的系列化、组合化、标准化和配套化水平较高。流体成像测井和传感器阵列设计是产出剖面测井新技术发展的主要趋势,永久监测技术是油田动态监测技术的非常重要的发展方向。在“十一五”863计划“先进测井技术与设备”重点项目实施方案论证会上,专家组一致认为“先进测井技术与设备”重点项目应瞄准世界测井技术发展方向研发的先进测井技术与装备,为解决我国复杂岩性、复杂储集空间的油气藏地质评价难题和油田中后期剩余油分析与油藏动态监测、油井技术状况监测提供先进有效的测量手段,满足我国石油天然气生产的需要和参与国际竞争的需求。 1 测井技术的发展趋势 井下集成化、系列化、组合测井仪器的研发成为测井技术发展的一大趋势。日本的Tohoku大学开发利用井眼雷达的直接耦合进行电磁波测井,新仪器可以获得雷达图像、电导率和相对介电常数。仪器的分辨率为1m,理想情况下探测深度为10m。Proneta开发了可以透过原油对目标进行高分辨率光成像的成像技术,已经申请并获得了专利。目前电缆测井占主要地位,随钻测井发展比较迅速,由于数据传输等技术不足,在相当一段时间内还是以电缆测井为主,套管钻井测井是未来测井发展的方向。套管钻井测井是在套管钻井技术诞生后出现的新的测井模式,用套管作为钻杆,井眼钻成功时,一口井的钻井和下套管同时完成。套管钻井测井有钻后测井模式或随钻测井模式。钻后测井模式是在完成套管钻井作业后,用电缆将测井仪器在套管内下到要测量的目的层段,进行测井;随钻测井模式是测井仪器安装在与最下面一根套管连接的底部钻具组合内,在套管钻井进行的过程中,在需要测井的层

贝克休斯随钻测井技术介绍

贝克休斯随钻测井技术介绍
贝克休斯随钻测井 技术介绍
1
随钻测量(MWD)
旋转倾斜角
– 旋转钻井过程中的井眼倾斜角
旋转方位角
– 旋转钻井过程中的井眼方位角
方向原始数据
– 用于对钻柱轴向磁场干扰进行修正
振动粘滑动态
– 轴向振动 – 横向振动 – 粘滑振动
2
3
2008年5月28日
1

贝克休斯随钻测井技术介绍
高速数据传输 (aXcelerate)
原始信号的形状清晰且容易 确定 泵噪音和反射作用导致到达 地表传感器的信号失真 对泵噪音的消除使得对井下 脉冲发生器信号的识别成为 可能 动态优先级提升(DPP)算 法可消除反射作用和表面噪 音 对信号进行最终过滤,并采 用自适应相关器恢复井下脉 冲发生器的原始信号
4
高速数据传输 (aXcelerate)
3比特/秒的实时数据 密度具有足够分辨率 能确保图像重要特征 的识别 增加至6比特/秒的数 据密度可产生清晰的 图像,可确保特征识 别以及实时倾角选择
5
伽马射线、电阻率和中子放射性测量(OnTrak, LithoTrak)
伽马射线
– 用于识别砂层或页岩 – 用于计算地层倾角
Gamma 伽马射线 Ray
6
2008年5月28日
2

贝克休斯随钻测井技术介绍
伽马射线、电阻率和中子放射性测量(OnTrak, LithoTrak)
伽马射线
– 用于识别砂层或页岩 – 用于计算地层倾角
电阻率 Resistivity
MPRTEQ
电阻率测量
– 对碳氢化合物或水进行识别 – 通过后处理(MPRTEQ)计算 含水饱和度 – 增强地层导向功能
7
伽马射线、电阻率和中子放射性测量(OnTrak, LithoTrak)
伽马射线
– 用于识别砂层或页岩 – 用于计算地层倾角
Density & 密度与孔 Porosity 隙度
电阻率测量
– 对碳氢化合物或水进行识别 – 通过后处理(MPRTEQ)计算 含水饱和度 – 增强地层导向功能
中子放射性测量
– 确定孔隙度和识别天然气 – 图像可用于构造解译 – 用于计算井径仪
8
伽马射线、电阻率和中子放射性测量(OnTrak, LithoTrak)
伽马射线
– 用于识别砂层或页岩 – 用于计算地层倾角
电阻率测量
– 对碳氢化合物或水进行识别 – 通过后处理(MPRTEQ)计算 含水饱和度 – 增强地层导向功能
中子放射性测量
– 确定孔隙度和识别天然气 – 图像可用于构造解译 – 用于计算井径仪
9
2008年5月28日
3

随钻测井技术

随钻测井技术发展水平 引言 据统计,近十年来,世界上有关随钻测井(LWD)技术和应用的文献呈现出迅速增多的趋势。这反映了西方国家开始越来越多地重视LWD/MWD。这是两个方面的原因产生的结果。一方面石油工业界强烈需要勘探和开发业降低成本,减少风险,增加投资回报率。另一方面,MWD/LWD有许多迎合石油工业需要的优势,如随钻测井时,钻机不必停钻就能获得大量地层评价信息,节省了宝贵的钻井时间,从而降低了钻井成本。MWD提供的实时信息可即时使用,如可用于预测钻头前方地层的超常压力、预测复杂危险的构造,给钻井工程师警报提示,迅速采取措施,减少事故发生率。近几年里,大斜度井和水平井迅速发展,海上石油的开发受到重视。在这样的井中测井,常规电缆测井难以进行,挠性管输送测井和钻杆传送测井成本十分高,现场操作困难。LWD是在这类井中获取地层评价测井资料的最佳方法,此外,LWD信息还能指导钻头钻进的方向,引导钻井井迹进入最佳的目标地层。 随钻测井(LWD)技术是在钻井的同时用安装在钻铤上的测井仪器测量地层电、声、核等物理性质,并将测量结果实时地传送到地面或部分存储在井下存储器中的一种技术。该技术要求测井仪器应能够安装在钻铤内较小的空间里,并能够承受高温高压和钻井震动;安装仪器的专用钻铤应具有同实际钻井所用的钻铤同样的强度;还应具有用于深井的足够功率和使用时间的电源。 LWD是随钻测量技术的重要组成部分。MWD除了提供LWD信息外,还提供井下方位信息(井斜、方位、仪器面方向)和钻井动态和钻头机械的监测信息。MWD探头组合了LWD探头、方位探头、电子/遥测探头,一般放在钻头后50-100英尺的范围内,一般来说,MWD探头越靠近钻头越好。LWD探头提供地层评价信息,用于识别层面、地层对比、评价地层岩石和流体性质,确实取心和下的点。方位数据用于精确引导井迹向最理想的储层目标。钻井效率和安全性通过连续监测钻井而达到最佳。 目前的随钻测井技术已达到比较成熟的阶段,能进行电、声、核随钻测量的探头系列十分丰富,各种型号的、适用于各种环境的随钻电阻率、密度、中子测井仪器进入MWD 市场。哈里伯顿的PathFinder随钻测井系统包括自然伽马、电磁波电阻率、密度、中子孔隙度、井径和声波等。斯仑贝谢公司的VISION475测井系统包括声波(SI)、电阻率(RAB)、阵列电磁波电阻率(ARC5)及密度中子(ADN)等。Sperry Sun公司的三组合测井系统包括SLIM PHASE4电阻率仪、SLIM稳定岩性密度仪及补偿热中子仪,还测量伽马射线。在地层评价的许多方面LWD已经可以取代常规电缆测井。世界各地的MWD作业实践已经表明,随钻测井对于经济有效的测井评价,相对于常规电缆地层评价有明显优势。 发展MWD/LWD技术,应用MWD/LWD成果已是西方钻井/测井相关公司的热点研究领域。必须承认我国自行研究和开发随钻测井技术是一片空白。本报告将深入地调查国外随钻测井技术的发展历程,技术水平现状,应用情况,预测发展趋势,分析LWD市场,分析LWD风险,供管理决策和研究人员参考。

电磁流量计说明书

电磁流量计说明书标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

电磁流量计使用说明书 一、产品特点、用途和适用范围 特点 ●LD系列电磁流量计,具有以下特点: ●不受流体密度、粘度、温度、压力和电率变化的影响,线性测量原理能实现高精确度测量; ●测量管内无阻流件,压损小,直管段要求低; ●公称通径DN6-DN2000覆盖范围宽,衬里和电极有多种选择,能满足测量多种导电流体的要求; ●转换器采用可编程频率低频矩形波励磁,提高了流量测量的稳定性,功率损耗小; ●转换器采用16位嵌入式微处理器,全数字处理,运算速度快,抗干扰能力强,测量可靠,精确度高,流量测量范围度可达1500:1; ●高清晰度背光LCD显示,全汉字菜单操作,使用方便,操作简单,易学易懂; ●具有RS485或RS232O数字通讯信号输出; ●具有电导率测量功能,可以判别传感器是否空管,具有自检与自诊断功能; ●采用SMD器件和表面安装(SMT)技术,电路可靠性高; ●可用于相应的防爆场合。 1.2主要用途 KDLD系列电磁流量计,可用来测量封闭管道中导电流体的体积流量。广泛应用于石油化工、钢铁冶金、给水排水、水利灌溉、水处理、环保污水测控、造纸、医药、食品等工农业生产工艺过程中的流量测量和控制。 1.3使用环境条件

环境温度: 传感器-25℃~+60℃ 转换器-10℃~+60℃ 相对温度: 5%-95% 1.4工作条件 流体最高温度: 一体型 70℃ 分离型: 聚四氟乙烯衬里 150℃ 氯丁橡胶衬里 80℃ 聚氨酯橡胶衬里 70℃ 流体电导率: ≥5uS/cm 二、工作原理 2.1数学物理模型 电磁流量计的工作原理基于法拉第电磁感应法律。当一个导体在磁场场内运动时,在与磁场方向、运动方向相互垂直方向的导体两端,会产生感应电动势。电动势的大小与导体运动速度和磁场的磁感应强度大小成正比。 如图一,当导电流体以平均流速V (m/s )通过装有一对测量电极的一根内径为D (m )的绝缘导管内流动时,该管道处于一个均匀的磁感应强度为B (T )的磁场中,那么在一对电极上就会产生感应电动势E (V ),它的方向垂直于磁场和流体的方向。 法拉第电磁感应定律为:E=B ·D ·V (1) 流量的体积流量为:)/(4 32 s m V D Q V π= (2) 由公式(1)和(2)可得到:(B E D Q V 4π= m 3 /h) (3) 因此电动势可表示为: )(4V Q D B E V π= (4)

贝克INTEQ随钻测井新技术介绍-CHN

INTEQ技术介绍
2009年7月2日

INTEQ –随钻测井、随钻解答的应用
? 钻井危险防范
–油气公司希望在最大限度提高钻完效率的同时,避免 各种安全隐患。实时随钻测井资料提供钻井危险的预 测以预防危险发生。
? 井眼布置
–更多(且更为准确)的测量数据减少了不确定性,确 保在储层的“甜区”内实现最佳的井眼布置。实时随 钻测井资料提供快速更改井眼轨迹的依据(包括钻井 与地质依据)以提高采收率。
? 综合地层评估
–对储层概况更为详尽的了解有利于更好地进行完井与 开采规划并更为准确地进行储量预测。

Answers While Drilling Applications
? 钻井危险防范 ? 井眼布置
? 综合地层评估

INTEQ – OnTrak/LithoTrak伽马射线、电阻率和中子放射性测量服务
? 伽马射线
–用于识别砂层或页岩 –用于计算地层倾角
Gamma 伽马射线 Ray

INTEQ – OnTrak/LithoTrak伽马射线、电阻率和中子放射性测
量服务
? 伽马射线
–用于识别砂层或页岩 –用于计算地层倾角
电阻率 Resistivity
MPRTEQ
? 电阻率测量
–对碳氢化合物或水进行 识别 –通过后处理(MPRTEQ) 计算含水饱和度 –增强地层导向功能

INTEQ – OnTrak/LithoTrak伽马射线、电阻率和中子放射性测
量服务
? 伽马射线
–用于识别砂层或页岩 –用于计算地层倾角
Density & 密度与孔 Porosity 隙度
? 电阻率测量
–对碳氢化合物或水进行 识别 –通过后处理(MPRTEQ) 计算含水饱和度 –增强地层导向功能
? 中子放射性测量
–确定孔隙度和识别天然 气

菲时博特DM DIM 电磁流量计 操作说明书

DM 高频励磁 智能型电磁流量计操作说明 High accuracy Broad range of applications Proven technology Easy to operate Designed to match your application instrumentation

目 录 1、DM概述 (1) 2、DM特点 (1) 3、工作原理 (1) 4、DIM概述 (2) 5、DIM技术参数 (2) 6、产品一览表 (3) 7、口径选择 (4) 8、仪表安装 (5) 9、外形尺寸 (7) 10、流量计技术参数 (10) 11、仪表接线 (14) 12、安装说明 (16) 13、型号说明 (19) 14、各操作功能说明 (21)

1. DM概述 菲时博特(FISCHER&PORTER)公司拥有世界最先进的电磁流量计生产技术,其产品已广泛用于污水、纸浆、泥浆、矿浆等行业的精确流量。 DM系列高频电磁流量计主要应用检测纸浆,泥浆,水泥浆 ( 含细微颗粒 ),砂浆等高粘度均匀介质和由于物理或电化学反应产生噪声的液体或周围有磁场影响的介质。 2. DM特点 ◆对于恶劣工况,如混有高浓度泥浆或低电导率的 流体,它可以实现高标准的稳定测量 ◆ 测量不受流体密度、粘度、温度、压力变化的 影响 ◆ 测量管内无阻流件,压损小,免维护,直管段 要求低 ◆ 传感器可带接地电极,实现仪表良好接地 ◆ 传感器采用先进加工工艺,使仪表具有良好的 抗负压能力 ◆ 全数字量处理,抗干扰力强,测量可靠,精度高 ◆ 具有双向流量测量、双向总量累积功能 ◆HART通迅功能 3. 工作原理 3.1 DM测量精度 ±0.5%测量值(标准),±0.2%测量值(高精度) 3.2 DM技术指标 介质温度-40℃ - +180℃ 环境温度: -20℃ - +60℃ 供电电源 铭牌标示额定电压 安装条件 上游直管段>5×DN 下游直管段>2×DN DN=流量计公称口径 预热时间30分钟 3.3 DM工作原理 电磁流量计所依据的基本原理是法拉第电磁感应定律,当导体在磁场中做切割磁力线运动时,导体内将产生感应电动势。将该原理应用于测量管内流动的导电流体,并且流体流动的方向与磁场方向垂直(见图2)。流体中产生的感应电动势被位于管子径向两端的一对电极检测到,该感应电动势(信号电压)U E与磁感应强度B、电极间距离D和平均流速V成正比。因磁感应强度B和电极距离D是常数,所以感应电动势(信号电压)U E与平均流速V成正比,而体积流量又与平均流速V成正比,所以体积流量与感应信号电压成正比。在信号转换器中,该感应信号电压被转换成体 积流量,同时转换成可编程的模拟和数字信号输出。

随钻测井

内容摘要 摘要:随钻测井是在钻开地层的同时实时测量地层信息的一种测井技术,自1989年成功投入商业应用以来得到了快速的发展,目前已具备了与电缆测井对应的所有技术,包括比较完善的电、声、核测井系列以及随钻核磁共振测井、随钻地层压力测量和随钻地震等技术,随钻测井已成为油田工程技术服务的主体技术之一。随钻测井(LWD)技术的萌芽只比电缆测井晚10年。由于基础工业整体水平的制约,随钻测井技术在前50多年发展缓慢。其业务收入和工作量快速增长。勘探开发生产的需要仍是随钻测井继续发展的强劲动力。作为一种较新的测井方法,随钻测井技术仍有许多有待发展和完善的方面,尤其是数据传输技术、探测器性能、资料解释和评价等。 关键词:随钻测井 LWD 研究进展

第一章随钻测井技术现状 迄今为止,随钻测井能提供地层评价需要的所有测量,如比较完整的随钻电、声、核测井系列,随钻地层压力、随钻核磁共振测井以及随钻地震等等。有些LWD 探头的测量质量已经达到或超过同类电缆测井仪器的水平。 1.1随钻测井数据传输技术 多年来,数据传输是制约随钻测井技术发展的“瓶颈”。泥浆脉冲遥测是当前随钻测量和随钻测井系统普遍使用的一种数据传输方式。泥浆脉冲遥测技术数据传输速率较低,为4~10 bit/s,远低于电缆测井的传输速率,这种方法不适合欠平衡水平井钻井。电磁波传输数据的方法也用于现场测井,但仅在较浅的井使用才有效。哈里伯顿公司的电磁波传输使用的频率为10Hz,在无中继器的情况下传输距离约10000 ft。此外,声波传输和光纤传输方法还处于研究和实验阶段。 1.2随钻电阻率测井 与电缆测井技术一样,随钻电阻率测井技术也分为侧向类和感应类2类。侧向类适合于在导电泥浆、高电阻率地层和高电阻率侵入的环境使用,目前的侧向类随钻电阻率测井仪器能商业化的只有斯伦贝谢公司的钻头电阻率仪RAB及新一代仪器GVR。GVR使用56个方位数据点进行成像,图像分辨率比RAB有较大提高。感应类在导电性地层测量效果好,适合于导电或非导电泥浆。新型随钻电磁波电阻率的仪器结构相似,使用多个发射器和多个接收器,测量2个接收器之间的相移和衰减,工作频率相近,只能使用有限的几种频率才能消除钻铤等背景影响而测量到地层信号,如低频20、250、400、500 kHz,高频一般都使用2 MHz。 通过比较随钻电阻率测井和电缆电阻率测井曲线之间的区别可知,在储层内部二者相差不大;在界面处由于受地层界面表面电荷、钻井液侵入等影响,随钻电阻率数值远大于电缆测井数值;在界面附近,二者电阻率数值还受地层界面表面电荷、钻井液侵入井眼轨迹与地层倾角之间的夹角大小影响。 井眼轨迹与地层倾角之间的关系对电阻率有较大的影响,有效地控制井眼轨迹能大大降低钻井成本和提高效益。同时根据电阻率响应特征和其他测井曲线正确地划分地层界面,能有效地提高测井解释精度及为工程施工提供更好地依据。 1.3随钻声波测井 现场服役的随钻声波测井仪器使用的声源有单极子、偶极子和四极子,如贝克休斯INTEQ公司的AP既使用单极子也使用四极子声源,斯伦贝谢公司的Son-icVision使用单极子声源,哈里伯顿Sperry公司的BAT是偶极子仪器。这些仪器可测量软/硬地层纵/横波速度和幅度,测量数据一般保存在井下存储器内,

电磁流量计操作规程

电磁流量计操作规程 一、概述 电磁流量计是利用法拉弟电磁感应定律制成的一种测量导电液体体积流量的仪表。 二、工作原理 电磁流量计的基本原理是法拉弟电磁感应定律,即导体在磁场中切割磁力运动时在其两端产生感应电动势。导电性液体在垂直于磁场的非磁性测量管内流动,与流动方向垂直的方向上产生与流量成比例的感应电势,电动势的方向按“弗来明右手规则”,其值如下式: - kBD E =V 式中 E——感应电动势,即流量信号,V; K——系数; B——磁感应强度,T; D——测量管内径,m - v——平均流速,m/s。 设液体的体积流量为q v(m3/s),q v=∏D2-V/4则 E=(4kB/∏D)q v=Kq v 式中K为仪表常数,K=4kB/∏D. 三、使用 使用时应注意的一般事项: ‘ 液体应具有测量所需的电导率,并要求电导率分布大体上均匀。

因此流量传感器安装要避开容易产生电导率不均匀场所。 使用时传感器测量管必须充满液体(非满管型例外)。 液体应与地同电位,必须接地。如工艺管道用塑料等绝缘材料时,输送液体产生摩擦静电等原因,造成液体与地间有电位差。 流量传感器安装: (1)安装场所 通常电磁流量传感器外壳防护等级为IP65(GB 4208规定的防尘防喷水级),对安装场所有以下要求。 1)测量混合相流体时,选择不会引起相分离的场所;测量双组分液体时,避免装在混合尚未均匀的下游;测量化学反应管道时,要装在反应充分完成段的下游 2)尽可能避免测量管内会变成负压; 3)选择振动小的场所,特别对一体型仪表; 4)避免附近有大电机、大变压器等,以免引起电磁场干扰: 5)易于实现传感器单独接地的场所; 6)尽可能避开周围环境有高浓度腐蚀性气体; 7)环境温度在一25/一l0—50/60。C范围内,一体形结构温度还受制于电子元器件,范围要窄些; 8)环境相对湿度在10%~90%范围内; 9)尽可能避免受阳光直照; 10)避免雨水浸淋,不会被水浸没。 (2)直管段长度要求

相关主题
文本预览
相关文档 最新文档