当前位置:文档之家› 信号峰值检测研究及设计

信号峰值检测研究及设计

信号峰值检测研究及设计
信号峰值检测研究及设计

目录

绪论 (1)

一峰值检测基本原理 (2)

二系统方案设计 (2)

2.1 系统总体框图设计 (2)

2.2 峰值检测方案设计和论证 (3)

三硬件设计 (4)

3.1 单片机A/D转换电路和LCD接口电路 (4)

3.1.1 ATMEGA16简介 (4)

3.1.2 ATMEGA16的管脚分布及功能 (5)

3.1.3 LCD1602的接口电路 (5)

3.2 小信号放大电路 (6)

3.3 电源电路 (7)

四软件设计 (8)

4.1 ATMEGA16单片机的模数转换器ADC介绍 (8)

4.2 ATMEGA16单片机的模数转换器ADC相关的I/O寄存器 (9)

4.2.1 ADC多路复用器选择寄存器—ADMUX (9)

4.2.2 ADC控制和状态寄存器A—ADCSRA (10)

4.2.3 ADC数据寄存器—ADCL和ADCH (11)

4.3 系统软件框图设计 (12)

五系统仿真调试与结果分析 (13)

5.1 系统仿真调试 (13)

5.2 结果分析 (14)

六总结 (15)

七参考文献 (16)

附录 (17)

附录A 系统总体电路图 (17)

附录B 主程序代码 (18)

附录C 头文件LCD1602.h (20)

附录D 实物图 (22)

致谢 (23)

信号峰值检测研究与设计

摘要

本设计介绍了峰值检测系统的设计原理、软硬件设计方法及系统性能指标调试方法。被测信号经传感器转化为电信号,再经运放AD620和OP07放大、LF398采样/保持后进行A/D转化和信号处理后数字显示输出。研究的主要内容有:方案论证、硬件设计、软件设计、系统实物调试。硬件设计主要有小信号放大电路、峰值采样/保持电路、AD转换电路、LCD显示电路、电源电路及单片机最小系统。系统以ATMEGA16单片机作为控制核心,以LF398芯片为峰值采样/保持电路核心,实现了输入信号的峰值提取和数字输出,并给出了具体方案和实验样本。

【关键词】峰值采样/保持电路 ATMEGA16单片机 LF398

Abstract

This design introduced the design principle of the peak detection system、the design method and system performance testing method. The sensor signal is transformed into electrical signals, then the amplifier AD620 and OP07 amplifier、LF398 sampling/keep on the A/D transformation after and signal processing after digital display output. The main contents include: project argumetntation, hardware design, software design and debug. Physical system, The hardware design mainly small signal amplifier circuit, peak sampling/keep circuit, AD transform circuit, LCD display circuit, the power circuit chip and minimum system. As the control system with ATMEGA16 microcontroller core, with LF398 chip for peak sampling/keep circuit, realize the core of the input signal peak extraction and digital outputs, and presents a scheme and test sample.

【Keywords】peak sampling/keep circuit ATMEGA16 LF398

绪论

峰值检测是电子测量、自动化仪表以及其它相关技术领域常会遇到的问题。峰值反映了信号极为重要的方面,尤其是小信号[1]。设计完善的峰值检测系统,不仅可以用于对微弱信号进行检测 ,还可以通过传感器对其它非电信号如微弱的机械振动实现自动检测和控制 ,从而构成完整的测控系统 ,因此峰值检测具有广泛的实用价值。

峰值检测技术是数字存储示波器及数据采集卡中的重要技术之一, 用来实现波形的峰值捕捉[2]。在科研、生产的许多领域都需要用到峰值检测设备,比如检测某建筑物中梁的最大承受力 ,检测一根钢丝绳的最大允许拉力等,这就需要用到相应的检测设备。

目前常用的方法是先求得检测信号的平均值,但使用平均值掩盖了被检测信号的突然脉冲,从而可能引起系统的失灵及不稳定[3]。若用由二极管和电阻电容构成的普通峰值检波电路来检波 ,效果会很差 ,主要表现在两个方面: 第一 ,若选择 RC电路时间常数大一些 ,则输出信号的波形会好一些 ,但检波输出之后的信号幅值和检波之前的信号幅值有明显的差距 ,输出信号幅值明显降低 ,峰值检波效率变差 ,同时 ,信号快变部分的丢失变得严重。

第二 ,若选择 RC电路时间常数小一些 ,则会发现检波前后的信号幅值的差异变小 ,信号之中的快变分量明显变好 ,但输出信号的波形明显变差 ,不利于对信号的A/ D变换。

为了得到良好的输出波形,同时峰值检波前后的信号幅值差异小 ,信号快变部分丢失小 ,检波效率高 ,以利于 A/ D 变换的需要 ,一种较好的方法就是采用基于单片机(MCU)和LF398的峰值检波电路,本文分析设计了一台基于AVR单片机(MCU)和LF398的信号峰值检测仪 ,测量精度为0.005V,采用LCD1602液晶显示峰值。

一峰值检测基本原理

峰值检测电路(PKD,Peak Detector)的作用就是对输入信号的峰值进行提取,产生输出Vo = Vpeak,为了实现这样的目标,电路输出值需一直保持,直到一个新的更大的峰值出现或电路复位。其效果原理如图1所示:

图1 峰值检测基本原理

二系统方案设计

2.1 系统总体框图设计

本系统的关键任务是检测出峰值并使之保持稳定和数字显示,其总体结构框图如图2所示。它由传感器、放大器、采样/保持电路、采样/保持控制电路、A/D 转换电路、峰值显示电路组成。由传感器测量得到一定的输入信号,该输入信号一般较小,需经放大器放大,放大后的信号送入峰值采样/保持电路,单片机将得到的峰值模拟信号进行A/D转换后数字输出并显示。

图2 峰值检测系统设计总体结构框图

2.2 峰值检测方案设计和论证

方案1:如图3所示即为一般正峰值检测电路,其工作原理为:初始状态电容电压 Uc等于零时,当输入电压Ui ≥0 的时候,由于运放 U3 充当跟随器,故Ui= Uo ,二极管 D2 导通 ,电压 Ui 对电容 C2充电 ,直至电容 C2上的电压 Uc 等于输入电压 Ui 的峰值,只要输入电压 Ui ≤Uc ,二极管 D2 就截止,电容电压 Uc 保持不变,即电容电压 Uc 保持先前检测到的输入电压 Ui 的峰值,只有输入电压 Ui ≥Uc时,二极管 VD才导通 ,电容 C 进行充电。总之 ,电容电压Uc 始终保持输入电压 Ui 的峰值。

但此电路存在缺陷 ,当输入小信号波形的正向峰值小于二极管 D2 的正向导通电压时 ,二极管将截止 ,此峰值检测电路便不能工作。可见 ,此电路不能用于检测小信号波形的峰值。

图3 一般峰值信号检测原理图

方案2:如图4所示为小信号峰值检测电路,此电路是由一级运放构成 ,二极管VD置于反馈回路之中。运放 U1 与电容 C1一道构成峰值检测电路;运放 U2 构成跟随器 ,使峰值检测电路与后面的电路隔离。当小信号输入时 ,即使输入信号的正半周很小 ,由于运放 U1的 Av ( Av为运放环路电压增益) 很大,而 U1 的输出电压等于Uin· Av ,所以 U1 的输出电压也足以使二极管导通,迫使运放U1 处于跟随状态,从而能实现对输入小信号的峰值进行检测。虽避免了方案1的不足之处,但是该方案对各个元件的参数要求较高,而且容易受干扰。

图4 小信号峰值检测原理图

方案3 :如图5所示,采用LF398作为峰值采样/保持电路的核心,LF398是一种反馈型采样/保持放大器,它的第8个引脚为采样保持器的控制脚 ,输人高电平时 ,芯片工作在采样状态,输入低电平时 ,芯片工作在保持状态。由于回路阻抗很大 ,所以保持功能很强 ,电路的保持功能是依靠C1对 Vi的充电实现的 ,因而对C1的要求较高 ,一般选用有机薄膜介质电容。UA741构成比较器电路,将被测信号与保持信号Vo进行比较,若Vi>Vo,比较器输出高电平 ,开启LF398进人采样状态,若Vi

图5 LF398采样电路

通过实验发现,方案3不仅避免了前两种方案的缺陷,而且相比于前两个方案,其峰值保持效果有极大的提升,简化了硬件电路,在一定程度上减少了元件参数的影响,因此本系统采用了方案3。

三硬件设计

3.1 单片机A/D转换电路和LCD接口电路

3.1.1 ATMEGA16简介

ATMEGA16单片机是1997年由ATMEL公司研发出的增强型内置Flash的RISC(Reduced Instruction Set CPU) 精简指令集高速8位单片机。与其它单片机相比,AVR 单片机具有如下优点:

●哈佛结构,具备1MIPS / MHz的高速运行处理能力;

●超功能精简指令集(RISC),具有32个通用工作寄存器,克服了如8051

MCU采用单一ACC进行处理造成的瓶颈现象;

●快速的存取寄存器组、单周期指令系统,大大优化了目标代码的大小、

执行效率,部分型号FLASH非常大,特别适用于使用高级语言进行开发;

●大部分AVR片上资源丰富:带E2PROM,PWM,SPI,UART,TWI,ISP,AD,

Analog Comparator,WDT等;

●片内集成多种频率的RC振荡器、上电自动复位、看门狗、启动延时等功

能,外围电路更加简单,系统更加稳定可靠;

3.1.2 ATMEGA16的管脚分布及功能

如图6所示为ATMEGA16的管脚图。

VCC(10):数字电路的电源。

GND(11、31):地。

XTAL1(13):反向振荡放大器与片内时钟电路输入端。

XTAL2(12):反向振荡放大器输出端。

AVCC(30):端口A与A/D转换器电源。

AREF(32):A/D模拟基准电压输入引脚。图6 ATMEGA16L管脚图RESET(9):复位输入脚,持续时间超过最小门限时间的低电平将引起系统复位。端口A(PA0-PA7):端口A为8位双向I/O口,具有可编程的内部上拉电阻。

端口B(PB0-PB7): 端口B为8位双向I/O口,具有可编程的内部上拉电阻。端口C(PC0-PC7): 端口C为8位双向I/O口,具有可编程的内部上拉电阻。端口D(PD0-PD7): 端口D为8位双向I/O口,具有可编程的内部上拉电阻。

3.1.3 LCD1602的接口电路

LCD1602引脚分布及功能与ATMEGA16L单片机的接口电路如图7所示。

图7 A/D转换电路和LCD显示电路

第1脚:VSS 为地电源。 第2脚:VDD 接5V 正电源。

第3脚:V0为液晶显示器对比度调整端,接正电源时对比度最弱,接地电源时对比度最高,对比度过高时会产生“鬼影”,使用时可以通过一个10K 的电位器调整对比度。

第4脚:RS 为寄存器选择,高电平选择数据寄存器、低电平时选择指令寄存器。 第5脚:RW 为读写信号线,高电平时进行读操作,低电平时进行写操作。当RS 和RW 共同为低电平时可以写入指令或者显示地址,当RS 为低电平RW 为高电平时可以读忙信号,当RS 为高电平RW 为低电平时可以写入数据。

第6脚:E 为使能端,当E 端由高电平跳变成低电平时,液晶模块执行命令。 第7~14脚:D0~D7为8位双向数据线。 第15~16脚:背光电源。 3.2 小信号放大电路

在一般的信号放大应用中通常只要经过差动放大电路即可满足要求,然而基本的差动放大电路精密度较差,而且差动放大电路上改变放大增益时,必须调整两个电阻,影响整个放大精确度的因素就更加复杂。而仪表放大器AD620增益范围宽(增益为1-1000),电源供电范围宽(+2.3V-+18V ),功耗低,精确度高,电路简单,只需外接一个电阻就可改变放大倍数[4]

,图8为AD620的管脚图,其中1、8脚需跨接一电阻来调整放大倍率,4、7脚需提供正负相等的工作电压,2、3脚接入输入信号即可从6脚得到放大后的信号,5脚为参考基准电压输入,如果接地则6脚的输出即为与地之间的相对电压,AD620的放大增益关系式如式

(1)和式(2)所示,由此2式我们即可推出各种增益所需要的电阻Rg.

G = 49.4K Rg

+1 (1)

Rg = 49.4K G-1

(2)

图8 AD620管脚图 基于上述有利条件,我们以AD620为核心,OP07(扩大增益范围)为辅构成系统的放大电路,电路如图9所示:信号经过前级电压跟随器器后送入AD620进行第一级放大,AD620输出信号送至OP07进行第二级放大后输出。

图9 信号放大电路

3.3 电源电路

电源是整个系统的能量来源,它直接关系到系统能否运行。在本系统中单片机、液晶显示电路需要5V的电源,因此电路中选用稳压芯片7805;峰值采样/保持芯片LF398,AD620,OP07等芯片需要+12V和-12V的双电源,因此电路中采用了稳压芯片7812和7912,其最大输出电流为1.5A,能够满足系统的要求,其电路如图10所示。

图10 电源电路

四软件设计

4.1 ATmega16单片机的模数转换器ADC介绍

A VR的模数转换器ADC具有下列特点:

●10位精度;

●0.5LSB积分非线形误差

●±2LSB的绝对精度;

●13μs~260μs的转换时间;

●在最大精度下可达到每秒15kSPS的采样速率;

●8路可选的单端输入通道;

●7路差分输入通道;

●2路差分输入通道带有可选的10×和200×增益;

●ADC转换结果的读取可设置为左端对齐(LEFT ADJUSTMENT);

●ADC的电压输入范围0~Vcc;

●可选择的内部2.56V的ADC参考电压源;

●自由连续转换模式和单次转换模式;

●ADC自动转换触发模式选择;

●ADC转换完成中断;

●休眠模式下的噪声抑制器(NOISE CANCELER);

由于单片机只能处理数字信号,所以外部的模拟信号量需要转变成数字量才能进一步的由单片机进行处理。ATmega16内部集成有一个10位逐次比较(successive approximation)ADC电路。因此使用A VR可以非常方便的处理输入的模拟信号量。

ATmega16的ADC与一个8通道的模拟多路选择器连接,能够对以PORTA作为ADC输入引脚的8路单端模拟输入电压进行采样,单端电压输入以0V(GND)为参考。另外还支持16种差分电压输入组合,其中2种差分输入方式(ADC1,ADC0和ACD3,ADC2)带有可编程增益放大器,能在A/D转换前对差分输入电压进行0dB(1×),20dB(10×)或46dB(200×)的放大。还有七种差分输入方式的模拟输入通道共用一个负极(ADC1),此时其它任意一个ADC引脚都可作为相应的正极。若增益为1×或10×,则可获得8位的精度,如果增益为200×,那么转换精度为7位。

AVR的ADC功能单元由独立的专用模拟电源引脚AVcc供电。AVcc和Vcc的电压差别不能大于±0.3V。ADC转换的参考电源可采用芯片内部的2.56V参考电源,或采用AVcc,也可使用外部参考电源。使用外部参考电源时,外部参考电源由引脚ARFE接入。使用内部电压参考源时,可以通过在AREF引脚外部并接一

个电容来提高ADC的抗噪性能。

ADC功能单元包括采样保持电路,以确保输入电压在ADC转换过程中保持恒定。ADC通过逐次比较(successive approximation)方式,将输入端的模拟电压转换成10位的数字量。最小值代表地,最大值为AREF引脚上的电压值减1个LSB。可以通过ADMUX寄存器中REFSn位的设置,选择将芯片内部参考电源(2.56V)或AVcc连接到AREF,作为A/D转换的参考电压。这时,内部电压参考源可以通过外接于AREF引脚的电容来稳定,以改进抗噪特性。

模拟输入通道和差分增益的选择是通过ADMUX寄存器中的MUX位设定的。任何一个ADC的输入引脚,包括地(GND)以及内部的恒定能隙(fixed bandgap)电压参考源,都可以被选择用来作为ADC的单端输入信号。而ADC的某些输入引脚则可选择作为差分增益放大器的正、负极输入端。当选定了差分输入通道后,差分增益放大器将两输入通道上的电压差按选定增益系数放大,然后输入到ADC 中。若选定使用单端输入通道,则增益放大器无效。

通过设置ADCSRA寄存器中的ADC使能位ADEN来使能ADC。在ADEN没有置“1”前,参考电压源和输入通道的选定将不起作用。当ADEN位清“0”后,ADC 将不消耗能量,因此建议在进入节电休眠模式前将ADC关掉。

ADC将10位的转换结果放在ADC数据寄存器中(ADCH和ADCL)。默认情况下,转换结果为右端对齐(RIGHT ADJUSTED)的。但可以通过设置ADMUX寄存器中ADLAR位,调整为左端对齐(LEFT ADJUSTED)。如果转换结果是左端对齐,并且只需要8位的精度,那么只需读取ADCH寄存器的数据作为转换结果就达到要求了。否则,必须先读取ADCL寄存器,然后再读取ADCH寄存器,以保证数据寄存器中的内容是同一次转换的结果。因为一旦ADCL寄存器被读取,就阻断了ADC 对ADC数据寄存器的操作。这就意味着,一旦指令读取了ADCL,那么必须紧接着读取一次ADCH;如果在读取ADCL和读取ADCH的过程中正好有一次ADC转换完成,ADC的2个数据寄存器的内容是不会被更新的,该次转换的结果将丢失。只有当ADCH寄存器被读取后,ADC才可以继续对ADCL和ADCH寄存器操作更新。

ADC有自己的中断,当转换完成时中断将被触发。尽管在顺序读取ADCL和ADCH寄存器过程中,ADC对ADC数据寄存器的更新被禁止,转换的结果丢失,但仍会触发ADC中断。

4.2 ATmega16单片机的模数转换器ADC相关的I/O寄存器

4.2.1 ADC多路复用器选择寄存器—ADMUX:如图11所示

1、位7,6—REFS[1:0]:ADC参考电源选择:REFS1、REFS2用于选择ADC的参考电压源,见表1。如果这些位在ADC转换过程中被改变,新的选择将在该次ADC 转换完成后(ADCSRA中的ADIF被置位)才生效。一旦选择内部参考源(AVcc、

2.56V)为ADC的参考电压后,AREF引脚上不得施加外部的参考电源,只能与GND 之间并接抗干扰电容。

2、位5—ADLAR:ADC结果左对齐选择:ADLAR位决定转换结果在ADC数据寄存器中的存放形式。写“1”到ADLAR位,将使转换结果左对齐(LEFT ADJUST);否则,转换结果为右对齐(RIGHT ADJUST)。无论ADC是否正在进行转换,改变ADLAR位都将会立即影响ADC数据寄存器。

图11 寄存器ADMUX

3、位4.0—MUX4:0:模拟通道和增益选择:这5个位用于对连接到ADC的输入通道和差分通道的增益进行选择设置,只有转换结束后(ADCSRA的ADIF是“1”),改变这些位才会有效。

表1 ADC参考电源选择

4.2.2 ADC控制和状态寄存器A—ADCSRA:如图12所示。

1、位7—ADEN:ADC使能:该位写入“1”时使能ADC,写入“0”关闭ADC。如在ADC转换过程中将ADC关闭,该次转换随即停止。

2、位6—ADSC:ADC转换开始:在单次转换模式下,置该位为“1”,将启动一次转换。在自由连续转换模式下,该位写入“1”将启动第一次转换。先置位ADEN

位使能ADC,再置位ADSC;或置位ADSC的同时使能ADC,都会使能ADC开始进行第一次转换。

3、位5—ADATE:ADC自动转换触发允许:当该位被置为“1”时,允许ADC工作在自动转换触发工作模式下。在该模式下,在触发信号的上升沿时ADC将自动开始一次ADC转换过程。ADC的自动转换触发信号源由SFIOR寄存器中的ADTS位选择确定。

4、位4—ADIF:ADC中断标志位:当ADC转换完成并且ADC数据寄存器被更新后该位被置位。如果ADIE位(ADC转换结束中断允许)和SREG寄存器中的I位被置“1”,ADC中断服务程序将被执行。ADIF在执行相应的中断处理向量时被硬件自动清零。此外,ADIF位可以通过写入逻辑“1”来清零。

5、位3—ADIE:ADC中断允许:当该位和SREG寄存器中的I位同时被置位时,允许ADC转换完成中断。

6、位2,0—ADPS[2:0]:ADC预分频选择:这些位决定了XTAL时钟与输入到ADC 的ADC时钟之间的分频数,见表2。

表2 ADC预分频选择

4.2.3 ADC数据寄存器—ADCL和ADCH :如图13所示

1、当ADLAR = 0时,ADC转换结果右对齐,ADC结果的保存方式如图(a)。

2、当ADLAR = 1时,ADC转换结果左对齐,ADC结果的保存方式如图(b)。

当ADC转换完成后,可以读取ADC寄存器的ADC0-ADC9得到ADC的转换的结果。如果是差分输入,转换值为二进制的补码形式。一旦开始读取ADCL后,ADC 数据寄存器就不能被ADC更新,直到ADCH寄存器被读取为止。因此,如果结果是左对齐(ADLAR=1),且不需要大于8位的精度的话,仅仅读取ADCH寄存器就

足够了。否则,必须先读取ADCL寄存器,再读取ADCH寄存器。ADMUX寄存器中的ADLAR位决定了从ADC数据寄存器中读取结果的格式。如果ADLAR位为“1”,结果将是左对齐;如果ADLAR位为“0”(默认情况),结果将是右对齐。

图13 数据寄存器ADCL和ADCH

4.3 系统软件框图设计

软件设计是整个系统的灵魂,也是系统一个重要的调试部分。如图14所示为整个系统的软件框图,主程序先对系统资源进行初始化,然后完成峰值的采样/保持控制、A/D转换控制和峰值LCD显示控制。系统中的比较器电路,将被测信号与保持信号Vo进行比较,若Vi>Vo,比较器输出高电平 ,系统开启 LF398进人采样状态,若Vi

图14 系统软件框图

五系统仿真调试与结果分析

5.1 系统仿真调试

在实验过程中,根据电路原理图,分三个个模块(电源模块、峰值采样/保持模块和单片机LCD显示模块)分别进行测试。使用的测试工具主要有:万用表,示波器和函数信号发生器等。

首先将A/D转化程序下载到单片机,验证A/D转化程序和LCD1602的显示程序,使用Proteus仿真效果如图15所示,随后对实物进行同样测试,但LCD显示白屏,考虑到可能是液晶对比对的问题,于是调节RV1变阻器后,显示正常。

图15 A/D转换程序和LCD显示程序测试结果

接着调试峰值采样/保持模块,将峰值采样模块中的放大倍数调节到50(其中AD620的增益为25,OP07的增益为2),根据公式(1)和公式(2)可得Rg=2.058K,用函数发生器实验仪器产生输入信号,但示波器在信号放大输出端采集不到模拟信号,考虑到可能是小信号功率不够,输入阻抗等问题,查阅资料和请教指导老师后,在前面加了一级跟随器,问题果然得到解决。

最后将已调试好的单片机模块、峰值采样/保持模块和电源组成整个系统,通过不断改变输入信号的峰值,用示波器测量放大后的信号峰值,由示波器测得输入信号峰值和LCD显示结果,见表3所示。

表3 实验测量数据

5.2 结果分析

从实验测量结果分析可得,本系统基本实现了输入信号的峰值提取和数字输出,随着放大倍数的不同其测量范围也不同,误差范围小于等于0.005v, 可广泛用于数据采集等方面。但对于微小信号,由于电源的纹波电压比较大,对测量结果的精度影响较大,误差很明显,因此电源部分是有待改进。

六总结

本系统使用内部自带10位A/D转换器的ATMEGA16单片机控制峰值采样/保持模块、A/D转换模块的和显示模块。关键是对各单元电路的设计,包括小信号放大电路、峰值采样/保持电路、AD转换电路、LCD显示电路、电源电路、单片机最小系统以及各单元电路与单片机的外围接口设计。系统通过比较器电路,将被测信号Vi与保持信号Vo进行比较,若Vi>Vo,比较器输出高电平 ,MCU检测到高低平后,系统将LF398的第8个管脚拉高,开启 LF398进人采样状态,若Vi

经过这次毕业设计,我学会了不少的知识,学会了怎样查阅资料和利用工具书,以及熟练地使用PROTEUS仿真软件和相关开发工具。通过这次毕业设计,我更加深刻地认识到只有将书本与具体的实践相结合,才会有真正的收获,才能巩固自已的所学,认识到自己的不足。尤其是在调试过程中我遇到了模拟电路设计中的常见问题,通过对这些问题的探讨和解决,我也学会了模拟电路设计的一些基本原则和考虑因素。更重要的是使用这种峰值检测技术可以让我们实现在全国电子设计大赛中没能完成的部分任务(声音检测),让我在全国电子设计大赛中跌倒后又重新站起来了,找回了昔日的信心和兴趣,给我的大学四年画下了完美的句号。

七参考文献

[1] 李凌, 虞礼贞电压幅值可达毫伏数量级的小信号峰值检测电路的设计[J]. 南昌大学学报(理科版), 2003,04.

[2] 曹吉花、王洪艳信号峰值检测仪的设计与应用电子设计工程期刊,2003年.

[3] 刘海成《AVR单片机原理及测控工程》北京航天航空大学出版社,2000年.

[4] 曹茂永,王霞,孙农亮.仪用放大器 AD620及其应用 [J].电测与仪表, 2000.

[5] 陈宪洲,赵晓玲,韩小河.低功耗仪用放大器 AD620及其应用 [J].今日电子, 1996,08.

[6] 阎石《数字电子技术基础》高等教育出版社,1998年.

[7] 华成英、童诗白《模拟电子技术基础》高等教育出版社,2001年.

[8] 邵贝贝《单片机嵌入式应用的在线开发方法》,北京清华大学出版社,2004.

[9] 谭浩强《C程序设计》北京清华大学出版社,1999.12.

[10] 戴伏生《基础电子电路设计与实践》国防工业出版社,2002年.

附录

附录A 系统总体电路图

基于运算放大器的峰值检测电路

燕 山 大 学 课程设计 说明书 题目:基于运算放大器的峰值检 测电路设计 学院(系):电气 工程学院年级专业: 08级检测1学号: 080103020042 学生姓名:井涛 指导教师:温江涛 教师职称:讲师

燕山大学课程设计(论 文)任务书 院(系):电气工程学院基层教学单位:仪 器科学与工程系 学号080103020042学生姓名井涛专业(班级)08检测1 班设计题目基于运算放大器的峰值检测电路设计 设 计技术参数输入信号是由 10-100Hz 的正弦波和三角波叠加而成。测量电路每隔0.2 秒采集一次输入信号的峰值。 设计要求1:完成题目的理论设计模型;2:完成电路的m ultisim 仿真; 工作量1:完成一份设计说明书(其中包括理论设计的相关参数及仿真结果);2:提交一份电路原理图; 工 作计划周一,查阅资料; 周二到周四,理论设计及计算机仿真;周五,撰写设计说明书; 参考资料1:基于运算放大器和模拟集成电路的电路设计;2:模拟电子技术; 3:数字电子技术; 4:电路理论 指导教师签字基层教学单位主任签字 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2011年 6 月 25 日

燕山大学课程设计评审意见表指导教师评语: 成绩: 指导教师: 年月日答辩小组评语: 成绩: 组长: 年月日课程设计总成绩: 答辩小组成员签字: 年月日 3

基于运算放大器的峰值检测电路设计 目录 第一章引言 (2) 第二章基本原理 (2) 2.1原理分析及原理框图............................ ...................... ... .. (2) 2.2 电路功能分析 (3) 2.2 电路分块设计 (4) 第三章电路具体设计....... .. .. .. (7) 3.1 峰值检测电路元件参数选取 (7) 3.2 采样信号发生器........................................................... (8) 3.3 总体电路图...................................................... .... . (9) 第四章电路仿真测试 (10) 4.1 输出波形multisim仿真 (10) 4.2对于微小输入信号的分析 (14) 第五章误差分析 (17) 5.1 复位误差.......................................... ....... . (17) 5.2 保持误差........ .... ........................................ .......... . (21) 第六章整体电路图 .................... .. (22) 第七章结论 (23) 第八章心得体会..................... ..................... .. 24 参考文献.. (25) 4

微弱信号检测装置(实验报告)剖析

2012年TI杯四川省大学生电子设计竞赛 微弱信号检测装置(A题) 【本科组】

微弱信号检测装置(A题) 【本科组】 摘要:本设计是在强噪声背景下已知频率的微弱正弦波信号的幅度值,采用TI公司提供的LaunchPad MSP430G2553作为系统的数据采集芯片,实现微弱信号的检测并显示正弦信号的幅度值的功能。电路分为加法器、纯电阻分压网络、微弱信号检测电路、以及数码管显示电路组成。当所要检测到的微弱信号在强噪音环境下,系统同时接收到函数信号发生器产生的正弦信号模拟微弱信号和PC机音频播放器模拟的强噪声,送到音频放大器INA2134,让两个信号相加。再通过由电位器与固定电阻构成的纯电阻分压网络使其衰减系数可调(100倍以上),将衰减后的微弱信号通过微弱信号检测电路,检测电路能实现高输入阻抗、放大、带通滤波以及小信号峰值检测,检测到的电压峰值模拟信号送到MSP430G2553内部的10位AD 转换处理后在数码管上显示出来。本设计的优点在于超低功耗 关键词:微弱信号MSP430G2553 INA2134 一系统方案设计、比较与论证 根据本设计的要求,要完成微弱正弦信号的检测并显示幅度值,输入阻抗达到1MΩ以上,通频带在500Hz~2KHz。为实现此功能,本设计提出的方案如下图所示。其中图1是系统设计总流程图,图2是微弱信号检测电路子流程图。 图1系统设计总流程图 图2微弱信号检测电路子流程图

1 加法器设计的选择 方案一:采用通用的同相/反相加法器。通用的加法器外接较多的电阻,运算繁琐复杂,并且不一定能达到带宽大于1MHz,所以放弃此种方案。 方案二:采用TI公司的提供的INA2134音频放大器。音频放大器内部集成有电阻,可以直接利用,非常方便,并且带宽能够达到本设计要求,因此采用此方案。 2 纯电阻分压网络的方案论证 方案一:由两个固定阻值的电阻按100:1的比例实现分压,通过仿真效果非常好,理论上可以实现,但是用于实际电路中不能达到预想的衰减系数。分析:电阻的标称值与实际值有一定的误差,因此考虑其他的方案。 方案二:由一个电位器和一个固定的电阻组成的分压网络,通过改变电位器的阻值就可以改变其衰减系数。这样就可以避免衰减系数达不到或者更换元器件的情况,因此采用此方案。 3 微弱信号检测电路的方案论证 方案一:将纯电阻分压网络输出的电压通过反相比例放大电路。放大后的信号通过中心频率为1kHz的带通滤波器滤除噪声。再经过小信号峰值电路,检测出正弦信号的峰值。将输出的电压信号送给单片机进行A/D转换。此方案的电路结构相对简单。但是,输入阻抗不能满足大于等于1MΩ的条件,并且被测信号的频率只能限定在1kHz,不能实现500Hz~2KHz 可变的被测信号的检测。故根据题目的要求不采用此方案。 方案二:检测电路可以由电压跟随器、同相比例放大器、带通滤波电路以及小信号峰值检测电路组成。电压跟随器可以提高输入阻抗,输入电阻可以达到1MΩ以上,满足设计所需;采用同相比例放大器是为了放大在分压网络所衰减的放大倍数;带通滤波器为了选择500Hz~2KHz的微弱信号;最后通过小信号峰值检测电路把正弦信号的幅度值检测出来。这种方案满足本设计的要求切实可行,故采用此方案。 4 峰值数据采集芯片的方案论证 方案一:选用宏晶公司的STC89C52单片机作为。优点在于价格便宜,但是对于本设计而言,必须外接AD才能实现,电路复杂。

故障自动检测系统设计方案.

10KV 母线回路故障检测控制器软硬件设计方案 徐源 南阳理工学院电子与电气工程系 一、系统功能架构设计 根据附件一的要求,设计故障检测与控制系统架构如下: 高压支线电压送入电压互感器后获得合适的 AC 电压, 经感应电压调整器调整成两路电压,一路作为电压采集信号,一路为驱动电路和执行电路供电,为保证系统整体的稳定性和可靠性,在电压调整器上增加一个抑制峰值电压和反向电涌的抗干扰模块,采集到的电平信号经 A/D数模转换以后,送入 CPU 进行处理,当检测到电平信号的异常后,触发 CPU 的中断系统,在小于 0.1us 时间里对事件反应,先由 CPU 软件进行去抖动处理,滤除干扰信号, 然后判断出故障类型, 由 CPU 发出指令, 由调节执行电路完成高压线回路继电器的通断闭合,从而排除或正确判断故障类型。

系统信息适时通过 LED 屏幕或者 LCD 屏幕进行指示,并且延时参数等信息都可以通过面板的控制键盘进行设置,必要时可以用红外遥控器进行设置。 为保障系统的稳定运行,防止 CPU 死机,采用“看门狗”来防止软件意外的发生;为获得系统的适时故障检测信息, 采用 RTC 时钟并对系统进行适时监控, 并把故障信息存储在 8K 的 EERPOM 中去,防止掉电信息丢失,并可以适时对系统历史信息进行查询;数据通信采用 485总线和综自计算机进行通信。 此系统的自动化程度相对来说很高,功能更强大,稳定性也比较高,可以实现时时故 障显示和判断,甚至是简单故障的排除,人员的劳动强度和安全性得到有效保障,因为系统在很短时间内就可以排除故障或显示故障类型,对电力设备的安全有更大的保障。 二、故障检测控制器走线图

微弱信号检测装置(实验报告)

微弱信号检测装置 摘要:本设计是在强噪声背景下已知频率的微弱正弦波信号的幅度值,采用TI公司提供的LaunchPad MSP430G2553作为系统的数据采集芯片,实现微弱信号的检测并显示正弦信号的幅度值的功能。电路分为加法器、纯电阻分压网络、微弱信号检测电路、以及数码管显示电路组成。当所要检测到的微弱信号在强噪音环境下,系统同时接收到函数信号发生器产生的正弦信号模拟微弱信号和PC机音频播放器模拟的强噪声,送到音频放大器INA2134,让两个信号相加。再通过由电位器与固定电阻构成的纯电阻分压网络使其衰减系数可调(100倍以上),将衰减后的微弱信号通过微弱信号检测电路,检测电路能实现高输入阻抗、放大、带通滤波以及小信号峰值检测,检测到的电压峰值模拟信号送到MSP430G2553内部的10位AD 转换处理后在数码管上显示出来。本设计的优点在于超低功耗 关键词:微弱信号MSP430G2553 INA2134 一系统方案设计、比较与论证 根据本设计的要求,要完成微弱正弦信号的检测并显示幅度值,输入阻抗达到1MΩ以上,通频带在500Hz~2KHz。为实现此功能,本设计提出的方案如下图所示。其中图1是系统设计总流程图,图2是微弱信号检测电路子流程图。 图1系统设计总流程图 图2微弱信号检测电路子流程图 1 加法器设计的选择 方案一:采用通用的同相/反相加法器。通用的加法器外接较多的电阻,运算繁琐复杂,并且不一定能达到带宽大于1MHz,所以放弃此种方案。

方案二:采用TI公司的提供的INA2134音频放大器。音频放大器内部集成有电阻,可以直接利用,非常方便,并且带宽能够达到本设计要求,因此采用此方案。 2 纯电阻分压网络的方案论证 方案一:由两个固定阻值的电阻按100:1的比例实现分压,通过仿真效果非常好,理论上可以实现,但是用于实际电路中不能达到预想的衰减系数。分析:电阻的标称值与实际值有一定的误差,因此考虑其他的方案。 方案二:由一个电位器和一个固定的电阻组成的分压网络,通过改变电位器的阻值就可以改变其衰减系数。这样就可以避免衰减系数达不到或者更换元器件的情况,因此采用此方案。 3 微弱信号检测电路的方案论证 方案一:将纯电阻分压网络输出的电压通过反相比例放大电路。放大后的信号通过中心频率为1kHz的带通滤波器滤除噪声。再经过小信号峰值电路,检测出正弦信号的峰值。将输出的电压信号送给单片机进行A/D转换。此方案的电路结构相对简单。但是,输入阻抗不能满足大于等于1MΩ的条件,并且被测信号的频率只能限定在1kHz,不能实现500Hz~2KHz 可变的被测信号的检测。故根据题目的要求不采用此方案。 方案二:检测电路可以由电压跟随器、同相比例放大器、带通滤波电路以及小信号峰值检测电路组成。电压跟随器可以提高输入阻抗,输入电阻可以达到1MΩ以上,满足设计所需;采用同相比例放大器是为了放大在分压网络所衰减的放大倍数;带通滤波器为了选择500Hz~2KHz的微弱信号;最后通过小信号峰值检测电路把正弦信号的幅度值检测出来。这种方案满足本设计的要求切实可行,故采用此方案。 4 峰值数据采集芯片的方案论证 方案一:选用宏晶公司的STC89C52单片机作为。优点在于价格便宜,但是对于本设计而言,必须外接AD才能实现,电路复杂。 方案二:采用TI公司提供的MSP430G2553作为控制芯片。由于MSP430G2553资源配置丰富,内部集成了10位AD,可以直接使用,简化电路,程序实现简单。此外还有低功耗,以及性价比高等优点,所以采用该方案。 5 显示电路的方案设计 方案一:采用液晶显示器作为显示电路,液晶显示器显示内容较丰富,可以显示字母数

微弱信号检测装置(国科大电子电路大作业)要点

目录 摘要 (1) Abstract (1) 第一章绪论 (2) 1.1 微弱信号检测技术概述 (2) 1.2 信号检测的方法及微弱信号的特点 (2) 1.2.1 常规小信号的检测方法 (2) 1.2.2 微弱信号的检测方法 (4) 1.2.3 微弱信号的特点 (4) 1.3 本文的主要工作 (5) 第二章微弱信号检测装置设计方案选择与论证 (6) 2.1 方案选择与论证 (6) 2.1.1 系统方案的确定 (6) 2.1.2移相网络设计 (9) 2.2总体方案论述 (9) 第三章基于锁相放大的微弱信号检测装置设计 (10) 3.1 锁相放大器原理 (10) 3.2 移相网络 (10) 3.3 相敏检波器原理分析 (11) 3.4 电路设计 (12) 3.4.1加法器 (12) 3.4.2纯电阻分压网络 (12) 3.4.3前级放大电路模块 (13) 3.4.4带通滤波器 (13) 3.4.5相敏检波器 (13) 第四章仿真分析与程序设计 (16) 4.1 仿真分析 (16) 4.1.1 输入信号波形(前置两级放大电路输入波形) (16) 4.1.2 经过前置放大电路和带通滤波器后输出波形 (16) 4.1.3 参考信号输入输出波形 (17) 4.1.4 LM311过零比较器输出波形 (18) 4.1.5 开关乘法器输出波形 (18) 4.1.6 低通滤波输出波形 (19) 4.2 程序设计 (20) 第五章实物展示与测试方案及结果 (21) 5.1 实物展示 (21) 5.2 测试方案与测试结果 (21) 5.2.1 测试仪器 (21) 5.2.2 测试方案 (21) 5.3测试结果及分析 (23) 5.4 总结 (23)

振动信号检测系统的设计1

信号检测综合训练 说明书 题目:振动信号检测系统设计 学院:电气工程与信息工程学院 班级:电子(2)班 姓名: 钱鹏鹏 学号:11260224 指导老师:缑新科 2014.12.07

摘要 机械在运动时,由于旋转体的不平衡、负载的不均匀、结构刚度的各向异性、间隙、润滑不良、支撑松动等因素,总是伴随着各种振动。机械振动在大多情况下是有害的,振动往往会降低机器性能,破坏其正常工作,缩短使用寿命,甚至导致事故。机械振动还伴随着同频率的噪声,恶化环境,危害健康。另一方面,振动也被利用来完成有用工作,如运输、夯实、清洗、粉碎、脱水等。这时必须正确选择振动参数,充分发挥振动机械的性能。在现代企业管理制度中,除了对各种机械设备提出低振动和低噪声要求外,还需随时对机器的运行状况进行监测、分析、诊断,对工作环境进行控制。为了提高机械结构的抗振性能,有必要进行机械机构振动分析和振动设计,这些都离不开振动测试。 本文在此基础上设计了一种专用的振动信号检测系统,具有功耗低、体积小、精度高等优点。 信号检测的内容要求: 通过MCS-51系列单片机设计振动信号检测系统。要求如下: 1 振动信号的特点,选择合适的传感器,并设计相应的检测电路; 2 将设计完成的检测电路,通过软件防真验证; 3 主要设计指标:可测最大加速度:-5m/s~+5m/s;可测最大速度:-0.16m/s~+0.16m/s;可测最大位移:-5mm~+5mm;通频带:0.05Hz~35Hz;转换精度:8bit;采样频率:128Hz 4 利用LCD显示振动信号,有必要的键盘控制。

总体设计方案介绍: 本系统由发射电路和接收电路组成。发射电路主要由加速度传感器构成。接收电路由单片机最小系统和外部串口以及显示部分模块三部分组成。。 硬件电路设计: (1)使用MMA8452加速度传感器和STC89C52单片机来实现。 一.设计目的:了解加速度传感器的工作机理,以及单片机的各种性能; 二.设计器材:电源、proteus7.7软件、89C52,MMA8452加速度传感器,导线若干。 三.设计方案介:该系统目的是便于对一些物理量进行监视、控制。本设计以加速度传感器显示出加速度信号即振动信号,再通过单片机将信号从串口接入电脑显示出来,即完成振动信号的检测功能。 (2)振动传感器的分类 1、相对式电动传感器 电动式传感器基于电磁感应原理,即当运动的导体在固定的磁场里切割磁力线时,导体两端就感生出电动势,因此利用这一原理而生产的传感器称为电动式传感器。 相对式电动传感器从机械接收原理来说,是一个位移传感器,由于在机电变换原理中应用的是电磁感应电律,其产生的电动势同被测振动速度成正比,所以它实际上是一个速度传感器。 2、电涡流式传感器 电涡流传感器是一种相对式非接触式传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体的振动位移或幅值的。电涡流传感器具有频率范围宽(0~10 kHZ),线性工作范围大、灵敏度高以及非接触式测量等优点,主要应用于静位移的测量、振动位移的测量、旋转机械中监测转轴的振动测量。 3、电感式传感器 依据传感器的相对式机械接收原理,电感式传感器能把被测的机械振动参数的变化转换成为电参量信号的变化。因此,电感传感器有二种形式,一是可变间隙,二是可变导磁面积。 4、电容式传感器 电容式传感器一般分为两种类型。即可变间隙式和可变公共面积式。可变间隙式可以测量直线振动的位移。可变面积式可以测量扭转振动的角位移。 5、惯性式电动传感器 惯性式电动传感器由固定部分、可动部分以及支承弹簧部分所组成。为了使传感器工作在位移传感器状态,其可动部分的质量应该足够的大,而支承弹簧的刚度应该足够的小,也就是让传感器具有足够低的固有频率。根据电磁感应定律,感应电动势为:u=Blx&r 。式中B为磁通密度,l为线圈在磁场内的有效长度,r x&为线圈在磁场中的相对速度。 从传感器的结构上来说,惯性式电动传感器是一个位移传感器。然而由于其输出的电信号是由电磁感应产生,根据电磁感应电律,当线圈在磁场中作相对运动

1222222222222光照强度自动检测显示系统设计.

设计题目:光照强度自动检测显示系统设计一、题目的认识理解 本次设计题目是光照强度自动检测显示系统设计,既然是系统设计,我们可以将其分解为模块,把复杂问题简单化。 数据采集模块,可用光敏电阻将光照强度信号转换为电阻信号从而进行测量计算。 测量电路模块,设置分压电路和比较电路,将电阻信号转换为电压信号分档输出,用于显示和报警。 显示报警模块,用发光二极管进行显示,同时设置光照过强时蜂鸣器报警。 二、设计任务要求: 设计一个光照强度自动检测、显示、(报警)系统,实现对外界三种不同条件下光强的分档指示和报警(弱、适宜、强) 1、方案的设计 根据题目选定光照强度自动检测所用的光电传感器类型; 1)自己设计至少三种以上不同光照条件,测定不同光照条件下光电传感器的输出; 2)传感器测量电路采用集成运算放大器构成的比较器完成,完成至少三种以上不同光照条件下显示报警系统方案的论证和设计;

3)完成自然光光照强度自动检测显示报警系统电路方框图、电路原理图的设计; 4)完成自然光光照强度自动检测显示报警系统中核心芯片的选型、系统中各个参数的计算(备注:1. 含各种元件参数的计算过程或依据2. 选定最接近计算结果的元件规格); 5)设计结束后,进行仿真调试。 2、仿真调试方案 利用:Multisim等软件仿真,得出主要信号输入输出点的波形,根据仿真结果验证设计功能的可行性、参数设计的合理性; 给出系统整机电路图(利用PROTEL软件做出原理图SCH文件和PCB文件)。 3、完成课程设计报告。 三、设计所需基础知识及工具 1、基础知识 电路理论中电阻电路的分析、模拟电子线路中运算放大器、 比较器、功率放大器等知识,数字电子线路中开关特性及数 字信号等知识,传感器技术中的光电传感器原理及应用、测 量电路等部分知识。 2、设计工具 电子电路EDA仿真软件:Multisim 电子线路设计软件:Protel99SE。

峰值检测系统

沈阳航空航天大学 课程设计 (说明书) 峰值检测系统的设计 班级24060403 学号2012040604107 学生姓名郭宁 指导教师于春和

沈阳航空航天大学 课程设计任务书 课程名称模拟与数字电子技术课程设计 课程设计题目峰值检测系统的设计 课程设计的内容及要求: 一、设计说明与技术指标 在科研、生产各个领域都会用到峰值检测设备:例如检测建筑物的最大承受力、检测钢丝绳允许的最大拉力等。本设计的任务是设计一个峰值检测系统,其关键任务是检测峰值并保持稳定。系统可采用如图1所示框图结构:它由传感器、放大器、采样/保持、采样/保持控制电路、A/D(模数转换)、译码显示、数字锁存控制电路组成。各部分的作用如下:传感器:把被测信号量转换成电压量;放大器:将传感器输出的小信号放大,放大器的输出结果满足模数转换器的转换范围;采样/保持:对放大后的被测模拟量进行采样,并保持峰值;采样/保持控制电路:该电路通过控制信号实现对峰值采样,小于原峰值时,保持原峰值,大于原峰值时保持新的峰值;A/D转换:将模拟量转换成数字量;译码显示:完成峰值数字量的译码显示;数字锁存控制电路:对模数转换的峰值数字量进行锁存,小于峰值的数字量不锁存。 图1 峰值检测系统示例方案原理框图 技术指标 1. 放大器输入阻抗:R i>1MΩ;频带宽度:0Hz~1kHz;共模抑制比:K CMRR>70dB。 2. 测量值用数字显示,显示范围为:0 000~1 999;

二、设计要求 1. 传感器输出信号为0~5mV,1mV等效于400kg; 2. 根据技术指标通过分析计算确定电路形式和元器件参数; 3. 画出电路原理图(元器件标准化,电路图规范化)。 三、实验要求 1.根据技术指标制定实验方案;验证所设计的电路,用软件仿真。 2.进行实验数据处理和分析。 四、推荐参考资料 1. 童诗白,华成英主编.模拟电子技术基础.[M]北京:高等教育出版社,2006年 2. 李万臣,谢红编著. 模拟电子技术基础实验与课程设计.哈尔滨:哈尔滨工程大学出 版社,2001 3. 张福学编著. 传感器应用及其电路精选. 北京:电子工业出版社,1992. 五、按照要求撰写课程设计报告 成绩评定表: 指导教师签字: 2014 年12 月26日

基于单片机的振动信号峰值参数检测器的设计

沈阳航空航天大学北方科技学院 课程设计说明书 课设题目基于单片机的振动信号峰值参数检测器的设计 专业测控技术与仪器 班级 学号 学生姓名 指导教师 日期 2015年1月16日

沈阳航空航天大学北方科技学院 课程设计任务书 课程设计题目基于单片机的振动信号峰值参数检测器的设计 教研室工学一部专业测控技术与仪器 班级 课程设计时间: 2014 年12 月29 日至2015 年 1 月16 日 课程设计的内容及要求: 1. 内容 采用单片机系统设计振动传感器输出波动电压强度——峰值参数检测器,利用振动传感器、单片机设计一个能用LED实时显示振动信号峰值参数的测量系统。 2. 要求 (1)制定设计方案,并绘制出系统工作框图。 (2)绘制电路原理图,设计振动传感器输出信号模拟调理电路,实现交流信号的峰值检测,设计模数转换电路、LED显示电路及单片机系统电路。 (3)绘制软件流程图,软件编程实现单片机数据采集和北被测峰值的LED 显示。 (4)用单片机实验箱进行程序设计与调试。 (5)振幅显示为X.Xmm。 (6)撰写一篇6000字到8000字的课程设计报告。 指导教师刘利秋2014 年12 月28 日

目录 0 前言 (1) 1 总体方案设计 (1) 2 硬件电路设计. (2) 2.1振动传感器 (3) 2.2 控制信号放大电路 (3) 2.3 TLC549A/D转换 (4) 2.3.1 TLC549 引脚图及各引脚功能 (4) 2.3.2 TLC549 器件工作时 (4) 2.4 单片机系统 (5) 2.5 LED显示 (5) 3 软件设计 (6) 3.1显示程序设计 (8) 3.2峰值测量........................................... 错误!未定义书签。 4 调试分析 (9) 5 结论及进一步设想 (9) 参考文献 (9) 课设体会 (11) 附录1 电路原理图 (12) 附录2 程序清单 (13)

峰值检测电路说明书

燕山大学课程设计说明书 燕山大学 课程设计说明书 题目:基于运算放大器的峰值检测电路设计 学院:电气工程学院 年级专业: 10级检测2班 学号: 学生姓名: 指导教师:温江涛 教师职称:讲师

燕山大学课程设计说明书 燕山大学课程设计(论文)任务书仪器科学与工程系基层教学单位:院(系):电气工程学院 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。

2013年6月28日 燕山大学课程设计说明书 目录 摘要 (2) 第一章设计要求及意义 (3) 1.1 设计要求 (3) 1.2 设计意义 (3) 第二章峰值检测电路的设计原理 (4) 2.1 峰值的跟踪与保持 (5) 2.2 复位开关 (7) 2.3 元件选取及参数计算 (10) 第三章 Multisim 仿真原理图及结果分析 (11) 3.1 Multisim 仿真原理图 (11) 3.2仿真结果分析 (12) 第四章总结与体会 (16) 参考文献····················································· 页17 共页1 第 说明书燕山大学课程设计

要摘软件进行Multisim本次课设要求基于运算放大器设计峰值电路,并按要求利用仿真结果演示。)的作用是对输入信号的峰值进行提取,峰值检测电路(PKD,Peak Detector,为了实现这样的目标,电路输出值会一直保持,直到一个新产生输出Vo = Vpeak(自动增益控制)电路和传感的更大的峰值出现或电路复位。峰值检测电路在AGC器最值求取电路中广泛应用。这种电路结构简单,性能稳定,易于实现,在工业仪表控制的采样电路中具有相当高工程实用价值。Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。 关键字:运算放大器峰值检测 555定时器 Multisim 页17 共页2 第 燕山大学课程设计说明书 第一章设计要求及意义 1.1 设计要求 本设计要求设计一个基于运算放大器的峰值检测电路(PKD,Peak Detector),对输入信号的峰值进行跟踪,保持,并输出,Vo = Vpeak,直到遇到更大峰值出现或电路复位。 根据任务书要求,总结设计要求如下: (1)输入信号是由10-100Hz的正弦波和三角波叠加而成。 (2)复位开关的周期为0.2s,即跟踪电容每0.2s放电一次。 (3)要求对输入信号的正相反相峰值同时进行跟踪。 1.2 设计意义 峰值检测是示波器中数据采集方式之一(另外有取样方式和平均方式),这种技术起源于存

微弱信号检测学习总结分析方案

微弱信号检测学习总结报告 1本课程的基本构成 本课程目录: 第1章微弱信号检测与随机噪声 第2章放大器的噪声源和噪声特性 第3章干扰噪声及其抑制 第4章锁定放大 第5章取样积分与数字式平均 第6章相关检测 第7章自适应噪声抵消 本课程分为七章: 第一章主要介绍随机噪声的统计特性,是后续各章的理论基础。 第二章主要介绍电路内部固有噪声源及其特性,对各种有源器件的噪声性能进行分析,并阐述低噪声放大器设计中需要考虑的几个问题。 第三章介绍干扰噪声的来源、特点及各种耦合途径,并详细介绍屏蔽和接地对于各种干扰噪声的抑制作用,以及其他一些常用的抗干扰措施和微弱信号检测电路设计原则。 第四~七章分别为锁定放大、取样积分与数字式平均、相关检测、自适应噪声抵消,分别介绍这几种方法的理论基础、设计实现以及一些应用实例。 因此本课程<微弱信号检测)基本构成:微弱信号检测与随机噪声,放大器的噪声源和噪声特性、干扰噪声及其抑制、锁定放大、取样积分与数字式平均、相关检测、自适应噪声抵消。 2本课程研究的基本问题 微弱信号是相对背景噪声而言的,其信号幅度的绝对值很小、信噪比很低<远小于1)的一类信号。如果采用一般的信号检测技术,那么会产生很大的测量误差,甚至完全不能检测。微弱信号检测的主要目的是提高信噪比。微弱信号检测是测量技术中的一个综合性的技术分支,它利用电子学、信息论和物理学的方法,分析噪声产生的原因和规律,研究被测信号的特征和相关性,检出并恢复被背景噪声掩盖的微弱信号。微弱信号检测技术研究的重点是:如

何从强噪声中提取有用信号,探索采用新技术和新方法来提高检测系统输出信号的信噪比。 本课程<微弱信号检测)研究噪声的来源和统计特性,分析噪声产生的原因和规律,运用电子学和信号处理方法检测被噪声覆盖的微弱信号,并介绍几种行之有效的微弱信号检测方法和技术。 3学习本课程<微弱信号检测)后了解、掌握了哪些内容 通过对微弱信号这门课程的学习,我掌握的内容主要有以下几个方面: <1)了解了常规小信号检测的手段和方法,即滤波、调制放大与解调、零位法、反馈补偿法。 <2)掌握了随机噪声及其统计特征。 ①随机信号的概率密度函数 对于连续取值的随机噪声,概率密度函数(PDF>P(x>表示的是噪声电压x

光照强度自动检测显示报警控制系统设计

传感器原理及应用课程 设计说明书 设计题目:光照强度自动检测显示报警控制 系统设计 学号: 姓名: 完成时间:2010、12、13至2010、12、19 总评成绩: 指导教师签章:

设计题目:光照强度自动检测显示系统设计 一、题目的认识理解 本次设计题目是光照强度自动检测显示报警控制系统设计,完成光照强度自动检测、显示、报警、控制系统。采用电路、数电、模电知识柔和一块设计电路,将系统分为四个模块设计电路:检测、显示、报警、控制,把复杂问题简单化。 数据采集模块,可用光敏电阻将光照强度信号转换为电阻信号从而进行测量计算。 测量电路模块,设置分压电路和比较电路,将电阻信号转换为电压信号分档输出,用于显示和报警。 显示报警模块,用发光二极管进行显示,同时设置光照过强时蜂鸣器报警。 自动控制模块,用或非门实现暗光控制,同时继电器闭合,打开日光灯,当在外界中、强光条件下继电器掉电日光灯熄灭。 一、设计任务要求: 设计一个光照强度自动检测、显示、报警、控制系统,实现对外界三种不同条件下光强的分档指示和报警(弱、适宜、强) 1、方案的设计 根据题目选定光照强度自动检测所用的光电传感器类型; 1)自己设计至少三种以上不同光照条件,测定不同光照条件下光电传感器的输出;2)传感器测量电路采用集成运算放大器构成的比较器完成,完成至少三种以上不同光照条件下显示报警系统方案的论证和设计; 3)完成自然光光照强度自动检测显示报警系统电路方框图、电路原理图的设计; 4)完成自然光光照强度自动检测显示报警系统中核心芯片的选型、系统中各个参数的计算(备注:1. 含各种元件参数的计算过程或依据2. 选定最接近计算结果的元件规格); 5)设计结束后,进行仿真调试。 2、仿真调试方案 利用:Multisim等软件仿真,得出主要信号输入输出点的波形,根据仿真结果验证设计功能的可行性、参数设计的合理性; 给出系统整机电路图(利用PROTEL软件做出原理图SCH文件和PCB文件)。 3、完成课程设计报告。

峰值检测系统的设计

南通大学电工电子实验中心 电子系统综合设计实验报告 课题名称:峰值检测系统的设计 姓名:沈益 学号:07 指导教师:陈娟 实验时间:2011年1月3日至14日

峰值检测系统主要由传感器、放大器、采样/保持、采样/保持控制电路、A/D转换电路、数码显示、数字锁存控制电路组成。其关键任务是检测峰值并使之保持稳定,且用数字显示峰值。 一、设计目的 1、掌握峰值检测系统的原理; 2、掌握峰值检测系统的设计方法; 3、掌握峰值检测系统的性能指标和调试方法。 二、设计任务及要求 1、任务:设计一个峰值检测系统; 2、要求:(1)传感器输出0~5mV,对应承受力0~2000kg; (2)测量值要用数字显示,显示范围是0~1999; (3)测量的峰值的电压要稳定。 三、设计原理 1、设计总体方案 据分析,可确定需设计系统的电路原理框图如图1所示: 图1 峰值检测系统原理框图 2、各部分功能 传感器:将被测信号量转换成电量; 放大器:将传感器输出的小信号放大,放大器的输出结果满足模

数转换器的转换范围; 采样/保持:对放大后的被测模拟量进行采样,并保持峰值; 采样/保持控制电路:该电路通过控制信号实现对峰值采样,小于峰值时,保持原峰值,大于原峰值时保持新的峰值; A/D 转换:将模拟量转换成数字量; 译码显示:完成峰值数字量的译码显示; 数字锁存控制电路:对模数转换的峰值数字量进行锁存,小于峰值的数字量不锁存。 三、电路设计 1、传感器:本文不予考虑; 2、放大器:由于输出信号为0~5mV ,1mV 对应400kg ,因此选用电压增益为400的差动放大电路(该电路精度高),如图2所示。 u 1 u 2 u o1 图2 差动放大电路 根据公式 400R ) /R 2R (1R u u A 3 124i o1U =+-== ,分配第一级放大器放大倍数为8/R 2R 112=+,分配第二级放大器放大倍数为 508 400 R R 34==,则选取电阻值分别为 1.6K R 1=, 5.6K R 2=,2K R 3=,K 001R 4=,四只

信号峰值检测仪课程设计报告.

东北石油大学课程设计 2017年7月10日

目录 第1章概述 (1) 1.1 引言 (1) 第2章总体设计方案 (3) 2.1 系统设计方案................................................. 错误!未定义书签。 2.2 系统设计框图 (4) 第3章单元电路的设计 (5) 3.1 总电路的设计 (5) 3.2 待测电信号放大电路模块的设计 (6) 3.3 信号峰值检测电路模块的设计 (8) 3.4 NE555芯片25khz时钟信号产生电路模块的设计 (9) 3.5模数转换模块的设计 (11) 3.6 锁存器锁存数字信号连接数码管显示模块的设计 (12) 第4章电路的仿真 (14) 结论 (17) 参考文献 (18) 附录元器件清单 (19)

第1章概述 1.1 引言 峰值检测是电子测量自动化仪表以及其它相关技术领域常会遇到的问题。峰值反映了信号极为重要的方面,尤其是小信号。设计完善的峰值检测系统,不仅可以用于对微弱信号进行检测,还可以通过传感器对其他非电信号如微弱的机械振动实现自动检测和控制,从而构成完整的检测系统,因此峰值检测具有广泛的使用价值。 峰值检测通过对输入信号的峰值进行提取,产生输出,从而实现对信号的监控,保证系统中其他结构工作的稳定性,避免了过大输入对系统造成的损伤,延长了设备的使用寿命。峰值检测是电子测量、自动化仪表以及其它相关技术领域常会遇到的问题。峰值反映了信号极为重要的方面。尤其是小信号。设计完善的峰值检测系统,不仅可以用于对微弱信号进行检测,还可以通过传感器对其它非电信号如微弱的机械振动实现自动检测和控制,从而构成完整的测控系统,因此峰值检测具有广泛的实用价值。 峰值检测技术是数字存储示波器及数据采集卡中的重要技术之一,用来实现波形的峰值捕捉。在科研、生产的许多领域都需要用到峰值检测设备,比如检测某建筑物中梁的最大承受力,检测一根钢丝绳的最大允许拉力等,这就需要用到相应的检测设备。目前常用的方法是先求得检测信号的平均值,但使用平均值掩盖了被检测信号的突然脉冲,从而可能引起系统的失灵及不稳定。若用由二极管和电阻电容构成的普通峰值检波电路来检波,效果会很差,主要表现在两个方面:第一,若选择RC电路时间常数大一些,则输出信号的波形会好一些。但检波输出之后的信号幅值和检波之前的信号幅值有明显的差距,输出信号幅值明显降低,峰值检波效率变差,同时,信号快变部分的丢失变得严重。第二,若选择RC电路时间常数小一些。则会发现检波前后的信号幅值的差异变小。信号之中的快变分量明显变好,但输出信号的波形明显变差。不利于对信号的A/D变换。 峰值检测电路是将某一段时间内信号的最值反映出来,遇到信号峰值就跟着,若没有更大的就保持,其工作状态主要包括跟踪、保持和复位,可以广泛应用于信号采集和处理、仪器仪表、自动控制等众多领域。如用来实现波形的毛刺捕捉、冲刺信号峰值检测等。因此峰值检测器有广泛的市场应用,且随着电子产

微弱信号检测

微弱信号检测电路实验报告 课程名称:微弱信号检测电路 专业名称:电子与通信工程___年级:_______ 学生姓名:______ 学号:_____ 任课教师:_______

微弱信号检测装置 摘要:本系统是基于锁相放大器的微弱信号检测装置,用来检测在强噪声背景下,识别出已知频率的微弱正弦波信号,并将其放大。该系统由加法器、纯电阻分压网络、微弱信号检测电路组成。其中加法器和纯电阻分压网络生成微小信号,微弱信号检测电路完成微小信号的检测。本系统是以相敏检波器为核心,将参考信号经过移相器后,接着通过比较器产生方波去驱动开关乘法器CD4066,最后通过低通滤波器输出直流信号检测出微弱信号。经最终的测试,本系统能较好地完成微小信号的检测。 关键词:微弱信号检测锁相放大器相敏检测强噪声

1系统设计 1.1设计要求 设计并制作一套微弱信号检测装置,用以检测在强噪声背景下已知频率的微弱正弦波信号的幅度值。整个系统的示意图如图1所示。正弦波信号源可以由函数信号发生器来代替。噪声源采用给定的标准噪声(wav文件)来产生,通过PC 机的音频播放器或MP3播放噪声文件,从音频输出端口获得噪声源,噪声幅度通过调节播放器的音量来进行控制。图中A、B、C、D和E分别为五个测试端点。 图1 微弱信号检测装置示意 (1)基本要求 ①噪声源输出V N的均方根电压值固定为1V±0.1V;加法器的输出V C =V S+V N,带宽大于1MHz;纯电阻分压网络的衰减系数不低于100。 ②微弱信号检测电路的输入阻抗R i≥1 MΩ。 ③当输入正弦波信号V S 的频率为1 kHz、幅度峰峰值在200mV ~ 2V范围内时,检测并显示正弦波信号的幅度值,要求误差不超过5%。 (2)发挥部分 ①当输入正弦波信号V S 的幅度峰峰值在20mV ~ 2V范围内时,检测并显示正弦波信号的幅度值,要求误差不超过5%。 ②扩展被测信号V S的频率范围,当信号的频率在500Hz ~ 2kHz范围内,检测并显示正弦波信号的幅度值,要求误差不超过5%。 ③进一步提高检测精度,使检测误差不超过2%。 ④其它(例如,进一步降低V S 的幅度等)。

基于DSP的微弱信号检测采集系统设计

基于DSP的微弱信号检测采集系统设计 通常所用的数据采集系统,其采样对象都为大信号,即有用信号幅值大于噪声信号。但在一些特殊的场合,采集的信号很微弱,其幅值只有几个μV,并且淹没在大量的随机噪声中。此种情况下,一般的采集系统和测量方法无法检测该信号。本采集系统硬件电路针对微弱小信号,优化设计前端调理电路,利用测量放大器有效抑制共模信号(包括直流信号和交流信号),保证采集数据的精度要求。针对被背景噪声覆盖的微弱小信号特性,采用简单的时域信号的取样积累平均方法,有利于减少算法实现难度。 DSP芯片因其具有哈佛结构、流水线操作、专用的硬件乘法器、特殊的DSP指令、快速的指令周期等特点,使其适合复杂的数字信号处理算法。本系统采用TI公司的TMS320C542作为处理器,通过外部中断读取ADC数据,并实现取样累加平均算法。 1. 取样积累平均理论 微弱信号检测(Weak Signal Detection)是研究从微弱信号中提取有用信息的方法。通过分析噪声产生的原因和规律,利用被测信号的特点和相干性,检测被背景噪声覆盖的有用信号。常用的微弱信号检测方法有频域信号的相干检测、时域信号的积累平均、离散信号的计数技术、并行检测方法。其中时域信号积累平均是常用的一种小信号检测方法。 取样是一种频率压缩技术,将一个高重复频率信号通过逐点取样将随时间变化的模拟量,转变成对时间变化的离散量的集合,从而可以测量低频信号的幅值、相位或波形。时域信号的取样积累方法是在信号周期内将时间分成若干间隔,在这些时间间隔内对信号进行多次测量累加。时间间隔的大小取决于要求恢复信号的精度。某一点的取样值都是信号和噪声

高频信号测量仪

本系统是高频信号的幅度和频率的测量装置。由锁相分频电路,峰值检波电路,信号放大电路,输出显示部分组成。测频部分,高频信号通过锁相分频电路,使信号降低到单片机能够测量的频率范围。然后通过放大电路后送入STM32进行频率测量;测幅部分,高频信号通过基于AD8318的对数检波器电路,使信号检波输出直流电压,由STM32进行测量显示。经测试,本系统在幅度100uV~1V,频率在1M~200M的高频信号下,能够较准确测量出幅值和频率。基本完成了题目要求。本系统测频部分采用了微波分频器MB506,最高分频频率达到2.4GHz,测幅部分采用了1 MHz 至8 GHz对数检波芯片AD8318。能很好的高频信号检波输出。电路简单,精度高。检测显示模块利用高性能STM32单片机和高精度模数转换器ADS1118进行采样并经12864显示,美观大方。 关键词:锁相环峰值检波器STM32

1. 设计任务 (3) 1.1任务 (3) 1.2基本要求 (3) 2. 方案论证 (3) 2.1频率测量仪 (3) 2.2幅度测量仪 (3) 2.3软件方案 (3) 2.4系统整体方案 (4) 2.5系统整体框图 (4) 3. 理论分析计算 (4) 3.1测频电路设计 (4) 3.1.1微波分频电路 (4) 3.1.2信号放大电路 (5) 3.2测幅电路设计 (5) 3.3单片机控制与系统任务的选取 (6) 4. 测试结果与误差分析 (7) 4.1测试仪器: (7) 4.2测试分析 (7) 4.2.1 频率测量 (7) 4.2.2 幅度测量 (7) 4.3结论与误差分析 (7) 5. 结论、心得体会 (7) 6.参考文献 (8)

微弱信号检测装置

微弱信号检测装置(B题) 2014年520电子设计大赛 参赛选手:朱志炜,周杨灿,朱杏伟 指导老师:姜乃卓 摘要:本微弱信号检测装置信号通道由OPA228为前置放大器,AD707和OP27为主放大器,将微弱小信号放大,然后经过后级的带通滤波器以及GIC滤波器对放大后信号进行滤波,进一步减小噪声的影响;参考通道以LM353为方波发生器,将正弦波化为同频率相位可调的方波,接以CD4046锁相环和D触发器,输出0-270°四个不同相位的方波;信号通道和参考通道的信号会在相关器器中相乘,并把得到的半波积分为直流电平,最终通过ICL7107接数码管显示电平值,并可以调为显示微小信号的值。测试数据表明本设计具有非常高的准确度和极其强大的噪声抑制能力,工作性能稳定,成本低廉,控制方便,是一个优越而实用的设计方案。 关键字:微弱信号;相关检测;噪声抑制;锁相放大器 目录 一、设计目标 1、基本要求 2、发挥部分 二、系统方案 方案一 方案二 三、系统总体框图 四、理论分析与计算 1、前置放大器的噪声分析 2、信号通道的增益计算 3、相关器的理论分析及计算 4、锁相环路的分析计算 5、移相电路的分析计算

五、电路设计 1、信号通道设计 2、参考通道设计 3、相关器设计 4、显示电路设计 六、测试情况 1、测试仪器 2、衰减电路测试数据 3、放大器测试数据 4、带通滤波器及GIC滤波器测试结果 七、总结 八、参考文献 一、设计目标 设计一个微弱信号的检测装置 1、基本要求:

(1)设计和制作两个电压衰减器,要求衰减量分别为20dB和40dB。要求:衰减器的输入阻抗为50,衰减器的输出阻抗为 100。衰减器的输入信号频率范围为100Hz-10KHz。(2)实现对已知频率的微弱正弦输入信号幅度检测,要求:微弱正弦信号输入频率范围为100Hz-10KHz,幅度有效值范围为100uV-500uV,微弱正弦信号幅度有效值检测误差不超过10%。 (3)检测的幅度有效值显示在数码管或者液晶显示屏上,要求显示精度达到小数点后面1位,显示时间不超过1分钟。 (4)设计一个白噪声和衰减后的输入正弦信号相叠加的加法电路,输入信号叠加白噪声后的信噪比在-20dB-0dB范围内连续可调。

相关主题
文本预览
相关文档 最新文档