当前位置:文档之家› 轴电流

轴电流

轴电流
轴电流

轴电流是共模EMI在转子轴承上感应产生的,所以办法只能是消除或提供共模电流通路;轴承绝缘了,共模电流还是要找地方跑,比如跑到轴上,烧毁轴表面...

楼上提供的三个办法都可以用,屏蔽线可靠接地,选择粗一点有好处,我碰到过屏蔽线烧断的情况...

轴电流”的说法不太多,一般关心的是“轴电压”在高压电机里普遍存在。一般有几伏到几十伏。它的危害在于:当电机基座的绝缘不好时,会导致放电。造成电机的轴上出现坑坑凹凹。轴电压和轴电流的产生

轴电压是电动机两轴承端或电机转轴与轴承间所产生的电压,其产生原因一般有以下几种:

(1) 磁不平衡产生轴电压

电动机由于扇形冲片、硅钢片等叠装因素,再加上铁芯槽、通风孔等的存在,造成在磁路中存在不平衡的磁阻,并且在转轴的周围有交变磁通切割转轴,在轴的两端感应出轴电压。

(2) 逆变供电产生轴电压

电动机采用逆变供电运行时,由于电源电压含有较高次的谐波分量,在电压脉冲分量的作用下,定子绕组线圈端部、接线部分、转轴之间产生电磁感应,使转轴的电位发生变化,从而产生轴电压。

(3) 静电感应产生轴电压

在电动机运行的现场周围有较多的高压设备,在强电场的作用下,在转轴的两端感应出轴电压。

(4) 外部电源的介入产生轴电压由于运行现场接线比较繁杂,尤其大电机保

护、测量元件接线较多,哪一根带电线头搭接在转轴上,便会产生轴电压。

(5) 其他原因

如静电荷的积累、测温元件绝缘破损等因素都有可能导致轴电压的产生。轴电压建立起来后,一旦在转轴及机座、壳体间形成通路,就产生轴电流。

针对轴电流形成的根本原因,一般在现场采用如下防范措施:

(1) 在轴端安装接地碳刷,以降低轴电位,使接地碳刷可靠接地,并且与转轴可靠接触,保证转轴电位为零电位,以此消除轴电流。

(2) 为防止磁不平衡等原因产生轴电流,往往在非轴伸端的轴承座和轴承支架处加绝缘隔板,以切断轴电流的回路。

(3) 为了避免其他电动机附件导线绝缘破损造成的轴电流,往往要求检修运行人员细致检查并加强导线或垫片绝缘,以消除不必要的轴电流隐患。

一般通过以上处理,大多电动机的轴电流微乎其微,已对电动机构不成实质上危害。轴承电流产生的原因

即使是正弦波电源供电,也有不大的轴电压产生,这是由于电机磁轭的不齐整性而在定子园形铁芯内(从端面看铁芯是一个园环)产生磁通,轴电压主要是工频,若轴电压不超过500mv,通常不需要采取措施。轴电流沿着轴、轴承、电机外壳,另一端轴承再返回到轴形成闭合回路。

变频调速产生的轴电流是另一种机制,它是由电压源型变频器产生的所谓共模电压引起的,此共模电压是变频器所固有的,缘于它的电路结构和控制策略,其峰值约为交一直一交电路中间直流电压的50%,可以认为是三相系统的零序电压分量,特别包含了变频器输出电压中的谐波成分,共模模型的等值电路图如图1所示,轴电流最后返回到变频器的中性点。

变频电机轴电压与轴电流产生机理分析

变频电机轴电压与轴电流产生机理分析(一) 1 引言 当电动机在正弦波电源驱动下运行时,通过电机轴的交变磁链产生轴电压。这些磁链是由转子和定子槽、分离铁心片之间的连接部分、磁性材料的定向属性和供电电源不平衡等因素引起磁通不平衡而产生的[1]。到90年代,以IGBT为功率器件的PWM逆变器作为电机驱动电源时,电机轴电流问题更加严重,且其产生机理与正弦波电源驱动时完全不同。文献[1]指出,具有高载波频率(例如10kHz以上)的IGBT逆变器导致电动机的轴承比低载波频率的逆变器驱动时损坏更快。Busse较为详细地分析了轴承电流的产生及轴承电流密度与轴承损坏之间的关系[2],并建立了PWM驱动下的轴承电流电路模型,但该模型未能体现出轴承电流与逆变器开关频率之间的关系。为讨论高频PWM脉冲电压驱动时电机轴电压与轴电流的产生机理,本文在建立轴电压与轴电流电路模型的基础上,分析轴电流产生的条件及形式,并针对逆变器输出电压的特性变化以及电机端有无过电压等情况,通过仿真分析得到不同情况下的轴电压与轴承电流波形。 在抑制轴承电流方面,文献[1]给出的办法用正弦波滤波器将PWM电压转换成正弦波电压,使电机工作在正弦波供电状态下,但该方法所串电感大,系统动态响应慢,同时电感上的压降和功耗增大。本文在逆变器输出端串小电感并辅以RC吸收网络,可有效抑制PWM 逆变器驱动下出现的轴电流。 2 共模电压与轴电压 一般认为,磁路不均衡、单极效应和电容电流是电机中产生轴电压的主要原因[3]。在电网供电的普通电机中,人们一般比较重视磁路不平衡的影响。但在逆变器供电的电机中轴电压主要由电压不平衡,即电源电压的零序分量产生。由于电路、元器件、连接和回路阻抗的不平衡,电源电压将不可避免地产生零点漂移,该电压将在系统中产生零序电流,轴承则是电机零序回路的一部分。 正弦波电源驱动时,通过计算可知=0。在PWM逆变器驱动下,的值取决于逆变器开关状态,且变化周期与逆变器载波频率一致。事实上,只是共模电压的一种表现形式,由于静电耦合,电机各部分间存在着大小不等的分布电容,因此构成电机的零序回路。根据传输线理论,一个分布参数电路可用等效的具有相同输入输出关系的集总参数π网络模型代替。 因此,电机分布参数电路可用集总参数电路来等效,形成轴电压的绕组--转子耦合部分电路如图2a)所示,其中Vbrg为轴电压,Ibrg为轴承电流,Va,Vb和Vc为电机输入电压。尽管Iws不流过轴承,但它与轴承电流在定子绕组上有相同的路径,势必对轴承电流有所影响。为便于分析,绕组中心点到定子的耦合部分将不予考虑。为计算方便,将图2 a)简化为图2 b)所示等效单相驱动电路模型。图中Z1为电源中点对地阻抗,Z2为旁路阻抗,表征驱动回路中的共模电抗线圈、线路电抗器和长电缆等;R0和L0为定子的零序电阻和电感;Csf、Csr和Crf分别为电机定子对地、定子对转子和转子对地电容;Rb为轴承回路电阻;Cb 和R1为轴承油膜的电容和非线性阻抗;Usg和Urg分别为定子绕组与转子中性点对地电压。 对于采用逆变器供电的电机,当轴承油膜未被击穿时,由于载波频率高,电容的容抗大大减小,与Xcb相比,Rb很小而R1很大,由于PWM驱动电压为非正弦电压,计算时先将其分解,然后分别求取,轴电压有效值为: 3 轴承模型与轴承电流的产生 由于分布电容的存在和高频脉冲输入电压的激励作用,电机轴上形成耦合共模电压。事实上,轴电压的出现不仅与上面两个因素有关,且和轴承结构有着直接关系。转子前后端均

电机轴电流的分析

电机轴电流的分析 电 机 轴 电 流 的 分 析轴电流的存在对电动机轴承的使用寿命具有极大的破坏性, 根据现场实际运 行情况,分析其产生的原因,采取装设转轴接地碳刷、加强非轴伸端轴承座与支 架的绝缘等有效措施,从而从根本上解决轴电流危害的问题。 1 轴电流的危害 在电动机运行过程中,如果在两轴承端或电机转轴与轴承间有轴电流的存 在,那么对于电机轴承的使用寿命将会大大缩短。轻微的可运行上千小时,严重 的甚至只能运行几小时,给现场安全生产带来极大的影响。同时由于轴承损坏及 更换带来的直接和间接经济损失也不可小计。 2 轴电压和轴电流的产生 (1) 磁不平衡产生轴电压 电动机由于扇形冲片、 硅钢片等叠装因素, 再加上铁芯槽、 通风孔等的存在, 造成在磁路中存在不平衡的磁阻,并且在转轴的周围有交变磁通切割转轴,在轴 的两端感应出轴电压。 (2) 逆变供电产生轴电压 电动机采用逆变供电运行时,由于电源电压含有较高次的谐波分量,在电压 脉冲分量的作用下,定子绕组线圈端部、接线部分、转轴之间产生电磁感应,使转轴的电位发生变化,从而产生轴电压。 (3) 静电感应产生轴电压 在电动机运行的现场周围有较多的高压设备,在强电场的作用下,在转轴的 两端感应出轴电压。 (4) 外部电源的介入产生轴电压由于运行现场接线比较繁杂,尤其大电机保护、 测量元件接线较多,哪一根带电线头搭接在转轴上,便会产生轴电压。 (5) 其他原因 如静电荷的积累、测温元件绝缘破损等因素都有可能导致轴电压的产生。 轴电压建立起来后,一旦在转轴及机座、壳体间形成通路,就产生轴电流。 3 轴电流对轴承的破坏 正常情况下,转轴与轴承间有润滑油膜的存在,起到绝缘的作用。对于较低 的轴电压,这层润滑油膜仍能保护其绝缘性能,不会产生轴电流。但是当轴电压 增加到一定数值时,尤其在电动机启动时,轴承内的润滑油膜还未稳定形成,轴 电压将击穿油膜而放电,构成回路,轴电流将从轴承和转轴的金属接触点通过, 由于该金属接触点很小,所以这些点的电流密度大,在瞬间产生高温,使轴承局 部烧熔,被烧熔的轴承合金在碾压力的作用下飞溅,于是在轴承内表面上烧出小 凹坑。一般由于转轴硬度及机械强度比轴承烧熔合金的高,通常表现出来的症状 是轴承内表面被压出条状电弧伤痕。 4 轴电流的防范 针对轴电流形成的根本原因,一般在现场采用如下防范措施: (1) 在轴端安装接地碳刷,以降低轴电位,使接地碳刷可靠接地,并且与 转轴可靠接触,保证转轴电位为零电位,以此消除轴电

电流对人体的危害

电流对人体的危害 1 电流对人体的伤害电流通过人体时,对人体伤害的严重程度与通过人体的电流的大小、电流通过人体的持续时间、电流通过人体的途径、电流的频率以及人体状况等多种因素有关。而且各种因素之间,有着十分密切的关系。1.1 伤害程度与电流大小的关系电流通过人体,人体会有麻、痛等感觉,更严重者会引起颤抖、痉挛、心脏停止跳动及至死亡。通过人体的电流越大,人体的生理反应越明显,人的感觉越强烈。对于工频交流电,按照通过人体电流大小的不同,以及人体所呈现的不同状态,可将电流划分为以下三级:1.1.1 感知电流感知电流是人能感觉到的最小电流。实验资料表明,对不同的人,感知电流也不相同:成年男性平均感知电流约为1.1mA;成年女性约为0.7mA。1.1. 2 摆脱电流摆脱电流是人触电以后能自主摆脱电流的最大电流。实验资料表明,对于不同的人,摆脱电流也不相同:成年男性的平均摆脱电流约为16mA;成年女性约为10.5mA。成年男性的最小摆脱电流约为9mA;成年女性的最小摆脱电流约为6mA。1.1. 3 致命电流致命电流是指在较短时间内危及生命的最小电流。在电流不超过数百毫安的情况下,电击致死的主要原因是电流引起心室颤动或窒息造成的。因此,可以认为引起心室颤动的电流即是致命电流。心室颤动电流与通过时间有关,如通电时间超过心脏搏动周期时,心室颤动电流仅数十毫安。如通电时间小于心脏搏动周期,但超过10ms,并发生在心脏搏动周期的特定时刻时,心室颤动电流在数百毫安以上。工频电流经由手一躯干一手的途径,对人体产生作用时,成年男性的感觉情况,见表1。表1 工频电流对人体作用的实验资料 感觉情况被试者百分数5%50%95%手表面有感觉0.71.21.7手表面有麻痹似的连续针刺感1.02.03.0手关节有连续针刺感1.52.53.5手有轻度颤动,关节有压迫感2.03.24.4前肢部有强力压迫的轻度痉挛2.54.05.5上肢部有轻度痉挛3.25.27.2手硬直有痉挛,但能伸开,已感到有轻度疼痛4.26.28.2上肢部、手有剧烈痉挛,失去感觉,手的前表面有连续针刺感4.36.68.9手的肌肉直到肩部全面痉挛,但还可能摆脱带电体7.011.015.0

浅谈发电机轴电流的危害及其预防

浅谈发电机轴电流的危害及其预防 发表时间:2010-04-02T22:49:12.043Z 来源:《价值工程》2010年第1月上旬供稿作者:孙勇;吴全军[导读] 黑龙江省逊克县库尔滨河流域先后建起了四座水电站,属于典型的梯级开发方式孙勇Sun Yong;吴全军Wu Quanjun(黑龙江省逊克县库尔滨流域水电有限公司,逊克 164400)摘要:发电机产生轴电流会使发电机机组产生强烈振动,使轴承及镜板受损,瓦温升高,将严重影响发电机的安全运行。轴电流产生的主 要原因是轴绝缘被破坏,另外同步交流发电机的轴电流大小与负载的性质有关,发电机的无功功率增大,其轴电流也增大,相反有功功率越大,则轴电流反而越小。 关键词:轴电流;预防;瓦温升高;同心度;机械磨损;振动;绝缘破坏;有功功率;无功功率;满载;试验;气隙磁场;励磁磁场;电枢磁场;磁轭 中图分类号:TV74 文献标识码:A 文章编号:1006-4311(2010)01-0058-01 黑龙江省逊克县库尔滨河流域先后建起了四座水电站,属于典型的梯级开发方式。其中库尔滨水电建成已经25年,装有三台完全相同的1600千瓦的发电机,近来发现三号机组强烈振动,瓦温升高,经过多次更换轴承这种现象仍重复出现。但重新调整水平和同心度后仍然没有解决问题。后经详细观察轴承和镜板的损坏情况,发现并非是一般的机械磨损,而是接触面形成了波纹引起发电机振动。我们想到了可能是受轴电流的影响所致。经过细致检查,发现推力头与镜板及导瓦之间的绝缘为零,使轴电流流经轴承及镜板,造成轴承和镜板被腐蚀。经处理以后已经运行二年没有发生类似现象。 事实说明以上分析和处理方法是正确的。 为了进一步掌握发电机轴电流的形成及规律,我们作了如下观察及试验:(1)推力头对导瓦及镜板绝缘破坏是形成轴电流通路的主要原因,这些部位原设计为绝缘隔离,轴电流是无法形成的。但在运行实践中,由于润滑油油质变坏,这其中主要有两方面因素,第一,油中含有轴瓦研磨带来的金属粉沫。第二,北方地区室内外温差可达50℃这样冷却水进入冷却装置后由于温差过大造成冷却器出汗,久而久之使润滑油中含水量过大。以上两种原因使其绝缘水平急聚降低。另外由于种种原因轴承密封端盖碰轴都会使绝缘下降,轴电流直接流通。(2)为了了解轴电流大小与发电机有功、无功之间的关系,我们作了四个实验: ①使发电机的有功功率为零,改变其无功功率,在不同的无功条件下测量发电机的轴电流变化情况,测量结果见表1和曲线1。 ②使发电机的无功功率为零,改变其有功功率,在不同的有功条件下测量发电机的轴电流变化情况,其测量结果见表2及曲线2。 ③使发电机的无功功率固定在1000千瓦,改变其有功功率,在不同的有功条件下测量发电机的轴电流变化情况,其结果见表3和曲线3。 ④使发电机的有功功率满载(1600千瓦)不变,在不同的无功条件下测量发电机的轴电流变化情况,其结果见表4和曲线4。从以上的试验我们可以知道:同步交流发电机的轴电流大小与其负载的性质有关,发电机的无功功率增大,其轴电流也增大,相反有功功率越大,则轴电电流反面越小。根据电磁学理论可知,发电机的气隙磁场∮t 是电枢磁场∮l和电枢磁场∮d组成的,产生轴电流主要是电构磁场:根据发电机的负载性质,电枢磁场又可分解为纵坐标轴磁场和横坐标磁场。当发电机的负载为纯电感时,即其无功电流增大,此时电枢磁场为纵轴磁场,纵坐标磁场与转子(磁轭)是垂直交的,所以在转子轴上感应电势也大,这就是无功增在使轴电流增加的原因。当负载为纯电阻时,即有功电流增大,电枢磁场为横坐标磁场,横坐标磁场与转子(磁轭)是平行的所以在轴电势也小,这就是有功越大轴电流反而越小的原因。 所以我们可以得出以下结论: (1)要预防发电机的轴电流产生,就要避免轴绝缘被破坏。 (2)如果轴绝缘被破坏,在一定负荷条件下尽可能减小无功功率。

高压电动机的轴电压是怎样产生的

高压电动机的轴电压是怎样产生的? 电动机的轴电压、轴电流是由于环绕电动机轴的磁路不对称、转子运转不同心、感生脉动磁通等原因所产生的,它会使轴—轴承—机座的回路有轴电流流通,在电动机转子轴两端、轴与轴承之间、轴与轴承对地形成称为轴电压。 高压电动机轴电流产生的原因? 原因:由于定子铁芯组合缝、定子硅钢片接缝,定子与转子空气间隙不均匀,轴中心与磁场中心不一致等,机组的主轴不可避免地要在一个不完全对称的磁场中旋转。这样,在轴两端就会产生一个交流电压。正常情况下要求机组转动部分对地绝缘电阻大于一定阻值(比如:0.5MΩ),如果在大轴两端同时接地就可能产生轴电流。 预防:通过更换受油器油管连接处的绝缘垫,以保证大轴不发生两点接地,进而避免轴电流的产生。另外,在平时检修和巡检时,注意监督电机运行状况。 电机产生轴电压的原因是什么?防止电机产生轴电流应采取什么措施? 产生轴电压的原因如下: 3p W ]!F0C-s y u ①、由于发电机的定子磁场不平衡,在发电机的转轴上产生了感应电势。磁场不平衡的原因一般是因为定子铁芯的局部磁组较大(例如定子铁芯锈蚀),以及定、转子之间的气隙不均匀所致。②、由于汽轮发电机的轴封不好,沿轴有高速蒸汽泄漏或蒸气缸内的高速喷射等原因而使转轴本身带静电荷。这种轴电压有时很高,可以使人感到麻电。但在运行时已通过炭刷接地,所以实际上已被消除。轴电压一般不高,通常不超过2~3 伏,为了消除轴电压经过轴承、机座与基础等处形成的电流回路,可以在励磁机侧轴承座下加垫绝缘板。使电路断开,但当绝缘垫因油污、损坏或老化等原因失去作用时,则轴电压足以击穿轴与轴承间的油膜而发生放电,久而久之,就会使润滑和冷却的油质逐渐劣化,严重者会使转轴和轴瓦烧坏,造成停机事故。 发电机磁场非常强大,发电机的主轴穿过磁场中心,可是一旦有微小偏差,在发电机轴两端就有感应电压,如果发电机轴两端经轴承和机座成为闭合环路,就会产生巨大的短路电流,为了切断这个环路,发电机轴承的一端必须加绝缘垫片的

电流的形成

第六讲 电流的形成 【知识回顾】 2、以下说法中正确的是() A.只有固体与固体之河相互摩擦,才会摩擦起电 B.把A物体和B物体摩擦,结果A物体带负电,B物体带正电.由此可以断定它们的原子核束缚电子的本领一定是A的强 C.分别用丝线吊起甲、乙两通草小球,互相靠近时若互相吸引,则它们一定带有异种电荷 D用丝绸摩擦过的玻璃棒靠近一个用细线吊起的塑料小球,小球被排开.小球一定带负电 3.一个物体不带电时,是因为物体内部( )- A.没有电子 B.没有正电 C.有多余电子 D.既不多电子也不缺电子 【新知讲解】 1、电流形成的原因 (1)电流是电荷的定向移动形成的。 在导体中,大量的自由电荷通常情况下做无规则运动,此时不会形成电流,只有当这些自由电荷发生了定向移动才能形成电流。 (2)形成电流的电荷有:正电荷、负电荷,酸、碱、盐的水溶液中是正、负离子,金属导体中是自由电子,球面显示器中电子枪的电子流等。 2、电源 (1)能够提供持续电流的装置叫电源。如:干电池、蓄电池和发电机等。 (2)电源的作用:在电源内部不断地正极聚集正电荷,负极聚集负电荷,以持续对外供电。 (3)能量转化:电源是把其它形式的能量张化为电能的装置。在供电时,干电池、蓄电池将_______转化为______能,发电机将________能转化为电能。 注意.蓄电池在充电时,将电能转化为________,而不是内能.。3、电流的形成和方向 电荷的定向移动形成电流。 物质中的电荷在不停息的运动着的,当它们一旦朝着一定方向移动时,就会形成电流。电荷有两种,形成电流的可能是正电荷,也可能是负电荷,还可能是两种电荷同时向相反的方向移动而形成的。如果不给予规定,对于我们认识描述电流就会产生很大的麻烦,因此人们对电流

风力发电机轴电压轴电流的研究。

风力发电机轴电压轴电流对轴承影响及防范措施 摘要:风力发电机轴承失效频繁发生,在研究应用条件和调查轴承失效的基础上,基本确认了造成轴承失效的根本原因:双馈感应发电机变频驱动所导致的轴承过电流和相应的电腐蚀及润滑、磨损等。本文概述分析了轴电压轴电流产生的原理和造成的危害,详述了对轴电压的抑制措施,并在风电场推广应用,实践验证了轴电流抑制技术的有效性。 关键词:风力发电;轴承;轴电流;解决方案 Wind turbine generator shaft voltage and shaft current on the bearing and preventive measures CHEN Guo-qiang,CHEN Guo-zhong,XXX Shen Hua Ji Tuan Guo Hu(TongLiao)Wind power Abstract:Bearing failures of windturbine generator are occurring frequently. Based on application studies and bearing investigations main root causes have been identified: electrical current passage, electrical erosion respectively, due to frequency converter supply of doubly-fedinduction generator sand lubrication and wear related problems.This paper analyzed the cause of shaft voltage and shaft current and its related harm in doubly-fed wind turbine architecture. Measures to suppress the shaft voltage and shaft current are detailed and put into practice in pilot wind farms. The effectiveness of the measures are approved by field data. Key words:wind power generation;Bearing;Shaft current;The solution 一、研究背景 xx风电场,装有56台华锐SL1500机组,于2015年1月并网发电,在运行的2年中由于发电机轴承的损坏给机组正常运行产生了严重的影响,造成一定的经济损失。经统计2013年共计更换发电机驱动侧轴承19次,年损坏率达28%,更换非驱动侧轴承22次,年损坏率达33%,造成直接和间接经济损失近百万元,因此,研究发电机轴承的损坏原因并提出改进措施显得尤为重要。 二、研究目的

2020版大型交流异步电动机轴电流的危害与防治

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2020版大型交流异步电动机轴 电流的危害与防治 Safety management is an important part of production management. Safety and production are in the implementation process

2020版大型交流异步电动机轴电流的危害 与防治 大同二电厂装机容量为6×200MW,其中5,6号机为国内首批空冷式机组,与之相配套的循环泵电动机为匈牙利生产的立式电机,型号为FVKO906M16,额定功率为1200kW。与1~4号机湿冷机组循环泵电动机不同之处是电机采用滚动轴承,每台电动机有2盘导向轴承(型号为NU238)和1盘推力轴承(型号为29340E),导向轴承润滑脂原为二硫化钼现为XO(倍力)润滑脂,推力轴承润滑油为20号透平油。电动机转子轴上部安装一个巨大的风扇,静子圆周设有通风散热管。 1存在问题 5,6号机循环泵共配5台电动机,每机2台,1台备用。从1989年投产到1999年电动机运行基本良好。但此后运行状况逐步变差,

如检修后的电动机,在运行一段时间后出现异常声音,且声音逐步增大,不得不换用备用电动机。据统计,5,6号机循环泵电动机1998年检修2次,1999年4次,2000年7次,2001年9次,2002年8次,2003年10次。电动机运行周期越来越短,造成检修工作量剧增,材料消耗增大。特别是电动机每次检修需更换3盘SKF进口轴承,价值近2万元,占用日常维护费用的很大一部分。更为严重的是循环泵电动机运行不稳定,已经影响到5,6号机组的安全、稳定长周期运行。 2原因分析 经分析研究,认为循环泵电动机运行周期缩短是由于轴承受损所致,而造成循环泵电动机轴承受损的主要原因为,磁通脉动造成的轴电压累积,使油膜击穿形成轴电流,轴电流持续不断地对轴承内圈放电,导致轴承滚道产生麻点,这种损害不断扩大,在滚道上形成搓板状的伤痕。此时,电动机的异常声音非常明显,只得换用备用电动机。此外由于电动机的多次检修,风扇互换及紧力面的磨损等原因造成风扇动平衡不好,从而加剧了轴承的损坏。另外,如

产生地环路电流的原因

今天让电路板打样厂家带大家一起来学习一下产生地环路电流的原因吧! 产生地环路电流的原因有很多,如两个接地点的地电位不同、电路的地线上流过电流、电容耦合形成接地电流、金属导体的天线效应形成地电流、静电放电流流过地线、浪涌泄放电流流过地线等。 ①当两个电路的接地点不同时,由于两个接地点的地电位不同,就会形成地电压,在这个电压的驱动下,电路1和电路2之间用导线和地线连接形成的环路之间会有电流流动。由于电路的不平衡性,每根导线上的电流不同(如图5-10中的 I1和i2,则会产生差模电压,进而对电路造成干扰。 ②电路的地线电流。如图5-11所示,电路采用两点接地或多点接地时,会形成一个接地回路,这样电路电流将流过接地回路,从而产生地电压。 ③电容耦合形成接地电流。由于电路的元器件、构件与接地平面之间存在杂散电容(分布电容),而通过杂散电容可以形成接地回路,则电路中的电流总会有部分电流泄露到接地回路中。图5-12(a)表示导电耦合形成的接地回路,此时电流会通过接地回路流动。图5-12(b)表示在阻焊元件的高电位和低电位两点上的分布电容形成的接地回路,当然接地回路处于谐振状态时,回路中的电流非常大。 ④金属导体的天线效应形成地电流。当互连的电路处在一个较强的电磁场中时,由于金属导体的接收天线效应,根据电磁感应定律,电磁场会在电路1和电路2之间用导线和地线连接形成的环路中产生感应环路电流。 如图5-13所示,当采用传输线连接的电路置于接地平面附近时,外界电磁场作用于传输线,使传输线上形成共模干扰电压源,进一步在公共地阻抗上形成

干扰电压。通过传输线与接地平面形成的导电回路中的电磁场的变化,也会在传输线上形成干扰。 ⑤当产生静电放电时,放电电流会流过地线。由于静电放电电流具有很高的频率,地线呈现较大的阻抗,所以会产生一个很高的地线电压。 ⑥当浪涌泄放电流流过地线时,会产生一个很高的电压,进而对电路产生干扰。 由上述分析可以看出,由于接地公共阻抗、传输线或金属机壳的天线效应等因素,均会使地环路中产生共模干扰电压,该共模干扰电压通过地环路作用到敏感电路的输入端,从而形成了地环路干扰。 怎么样?经过电路板打样厂家带大家一起学习之后,你是不是对电路板打样厂家之产生地环路电路的原因有了一定的了解了呢!点滴学习汇聚成海哦!

电流对人体有两种类型的伤害

电流对人体有两种类型的伤害,即电击和电伤。 电击是指电流通过人体内部,破坏人的心脏、肺部及神经系统的正常工作,及致使人处于假死或丧失生命。在低压系统,在通电电流较小,通电时间不长的情况下,电流引起人的心室颤动是电击致死的主要原因; 在通电电流更小,通电时间较长的情况下,窒息必会成为电击致死的原因。 绝大部分触电死亡事故是电击造成的,通常所说的触电事故基本上都是指电击而言的。分:单相触电、两相触电、跨步电压触电(人在接地点周围,两脚之间出现的电压称为跨步电压,由此引起的触电叫跨步电 压触电)。 电伤是指电流的热效应、化学效应或机械效应对人体造成的伤害。电伤多见于机体外部而且往往在机体上 留下伤痕。 电弧伤最常见,也是最严重的电伤。电烙印也是电伤的一种 电流对人体的伤害 人由于不慎触及带电体,将产生触电事故。根据触电事故对人体伤害程度的不同,可分为电击和电伤两种: 电击是指电流通过人体,使内部器官组织受到伤害。如果触电者不能迅速脱离带电体,则最后会造成死亡事故。 电伤是指在电弧作用下或熔断器熔丝熔断时,对人体外部的伤害,如灼伤,金属溅伤等 。防止触电的技术措施 为了达到安全用电的目的,必须采用可靠的技术措施,防止触电事故发生。绝缘、安全间距、漏电保护、安全电压、遮栏及阻挡物等都是防止直接触电的防护措施。保护接地、保护接零是间接触电防护措施中最基本的措施。所谓间接触电防护措施是指防止人体各个部位触及正常情况下不带电,而在故障情况下才变为带电的电器金属部分的技术措施。 专业电工人员在全部停电或部分停电的电气设备上工作时,在技术措施上,必须完成停电、验电、装设接地线、悬挂标示牌和装设遮栏后,才能开始工作。 一、绝缘 1.绝缘的作用 绝缘是用绝缘材料把带电体隔离起来,实现带电体之间、带电体与其他物体之间的电气隔离,使设备能长期安全、正常地工作,同时可以防止人体触及带电

物理:教科版九年级上 第四章 2.电压电流产生的原因(同步练习)

[第四章 2.电压:电流产生的原因第1课时电压及电压表的使用] 一、选择题 1.关于电压,下列说法正确的是() A.电路两端有电压,电路中一定有电流 B.电压使自由电荷定向移动形成电流 C.电压只能使自由电子定向移动形成电流 D.经验证明,对人体安全的电压是不高于220 V 2.如图甲所示的电池盒,盒外有三个接线柱A、B、C,盒内有三个5号电池插槽,还有a、b、c、d、e、f六个与电池的触点;若这个电池盒内部的实际连接情况如图乙所示,则下列关于选择盒外不同接线柱所获得的电压的说法正确的是() A.选择A、C两接线柱时获得的电压为3 V B.选择B、C两接线柱时获得的电压为1.5 V C.选择A、B两接线柱时获得的电压为4.5 V D.使用该电池盒能获得1.5 V、3 V及4.5 V的电压 3.关于如图所示电表,下列说法中不正确的是() A.它是一个电压表 B.它的示数一定是1.7 V C.它的示数可能是8.5 V D.它有一个负接线柱和两个正接线柱

4.如图所示,小壮同学将两个规格不同的灯泡L1、L2串联接在电源上。当开关S闭合后,电压表V所测的电压是 () A.电源电压 B.L1两端电压 C.L2两端电压 D.L1和L2两端总电压 5.如图所示,闭合开关后能测出小灯泡L1两端电压的电路是() 6.如图所示是小壮同学在某次测量中连接的实物电路,根据实物电路画出的电路图如图所示,其中正确的是() 7.小壮同学在练习使用电压表时,把电压表接成了如图所示的电路。当闭合开关时所发生的现象是()

A.灯泡会发光、电压表有示数 B.灯泡会发光、电压表无示数 C.灯泡不会发光、电压表有示数 D.灯泡不会发光、电压表无示数 二、填空题 8.某电压表有0~3 V和0~15 V两个量程,现在用它去测量某灯泡两端的电压,若估计灯泡两端的电压是2 V,则应选择_________V量程;若不能预先估计电压值,则应先用_________V量程进行试触,若电压表示数小于3 V,再换用_________V 量程。 9.如图所示,甲、乙两个电压表的示数分别为_________V和_________V。 10.如图所示,①②是测量电压或电流的仪表;当开关S闭合后,为了使小灯泡L1、L2都能发光,则①是_________表,②是_________表。 11.如图所示,在烧杯中加入盐水,然后将连在电压表上的铜片和锌片插入盐水中,这样就制成了一个盐水电池。观察电压表的接线和指针偏转情况可知:锌片是盐水电池的_________极,电池的电压为_________V。 12.如图所示,闭合开关后,图甲中电压表测________ 电压,图乙中电压表测_________ 电压,图丙中电压表测________电压。

电动机轴电流引起的轴承烧损及防止措施

电动机轴电流引起的轴承烧损及防止措施 摘要:文章介绍了采用滚动轴承的大中型电动机轴电流产生的原因及其对电动机轴瓦造成的损害,并结合实践经验介绍了轴电流烧伤轴瓦的特征及处理方法。 关键词:轴承烧损;电动机;分析;轴电流;措施 某电厂一台新电机为沈阳电机股份有限公司生产,型号为YKK500-4,额定容量为800 kW,额定电压6 kV,额定转速1 490 r/min,额定电流94 A,F级绝缘,其电机轴承为滚动轴承,安装在某炉的二次风机上。自2002年8月24曰首次投运后,电机驱动端轴承温度出现异常,至9月1曰,温度达到86 ℃ ,电机6个测温点报警,同时驱动端振动增大,用远红外测温装置测量电机本体温度为60 ℃,国产黄油润滑脂大量以液体形式流出。因特殊原因,当时该炉不能停运,故只能采取紧急措施,用轴流风机对电机通风降温,电机驱动端轴承温度有所下降。 1检修及试运情况 2002年9月9曰,停炉后对电机进行解体检查,发现转子驱动端NU228E、6228E 2套轴承严重过热、变黑,轴承及轴承盒内已无润滑油脂,轴承盒内套磨出0.5 mm左右的沟槽,轴承盒外盖止口磨掉1 mm 左右,轴承盒内分布着大量黑色铁末;同时,轴承内套轨道存在大量麻坑,电机本体内外存有大量溢出的黄油,非驱动端NU228E轴承内套轨道上磨出多道划痕。电机轴承小盖及轴承盒磨损严重。 由于电机有振动现象,轴承小盖及轴承盒磨损也非常严重,当时检修人员认为是转子轴承机械配合不好。检修中更换了转子驱动端NU228E、6228E 2套轴承,非驱动端NU228轴承;更换了与轴承配套的耐高温润滑脂,重新制作了轴承盒并加装新内套。检查电机通风道未发现问题。检修完毕,电机通电运行30 min后,发现驱动端轴承温度已达86 ℃,决定立即停运。解体后发现轴承内套轨道有大量麻点,已不能使用。 2电机轴承烧损原因分析 从2次损坏的轴承内套看,其轨道上都存在大量麻点。仔细观察,发现这些麻点都是由放电产生。引起放电的原因是电机转子存在较大轴电压,在此电压下电机产生严重的轴电流,电流通过转子和轴承时发生放电现象,使轴承内套产生麻点。麻点又使轴承与转子间的摩擦阻力加大,轴承温度迅速上升。在电机首次投运后,曾出现轴承温度异常现象,此温度异常与轴电流引起的麻点有关,温度升高造成了轴承盒与轴承外套配合出现问题,引起轴承与轴承外套相对运动并磨损轴承盒外盖和内套;同时也使得轴承温度继续升高,黄油受热熔化溢出。由于磨损严重,电机驱动端轴承出现位移,造成转子驱动端与非驱动端不同心,轴承径向受力不均,致使轴承滚柱与内套磨出划痕。在第一次检修时,由于轴承小盖及轴承盒磨损非常严重,电机振动明显,机械划伤的痕迹掩盖了大部分放电麻点,再加上轴电流在电机轴承上引起的烧损事故较少,从而使检修人员忽略了轴电流的存在。 由于滚动轴承维护方便、运行可靠,因此在中小型电机中得到广泛应用。但随着滚动轴承制造技术的发展,现代中型、大型电机在制造时也多采用滚动轴承。实际上,采用此种轴承的大、中型电机,只要有轴电流存在,滚动轴承的使用寿命就极其短暂。有的运行1~2月,有的运行几d甚至几h便出现轴承温度高、振动或噪音。因此,必须高度重视此类新投入运行的大、中型电机的轴电流。

浅谈发电机轴电流的危害及其预防

浅谈发电机轴电流的危害及其预防 摘要:发电机产生轴电流会使发电机机组产生强烈振动,使轴承及镜板受损, 瓦温升高,将严重影响发电机的安全运行。轴电流产生的主要原因是轴绝缘被破坏,另外同步交流发电机的轴电流大小与负载的性质有关,发电机的无功功率增大,其轴电流也增大,相反有功功率越大,则轴电流反而越小。 关键词:轴电流;预防;瓦温升高;同心度;机械磨损;振动;绝缘破坏;有功 功率;无功功率;满载;试验;气隙磁场;励磁磁场;电枢磁场;磁轭 中图分类号:TV74 文献标识码:A 文章编号:1006-4311(2010)01-0058-01 黑龙江省逊克县库尔滨河流域先后建起了四座水电站,属于典型的梯级开发 方式。其中库尔滨水电建成已经25年,装有三台完全相同的1600千瓦的发电机,近来发现三号机组强烈振动,瓦温升高,经过多次更换轴承这种现象仍重复出现。但重新调整水平和同心度后仍然没有解决问题。后经详细观察轴承和镜板的损坏 情况,发现并非是一般的机械磨损,而是接触面形成了波纹引起发电机振动。我 们想到了可能是受轴电流的影响所致。经过细致检查,发现推力头与镜板及导瓦 之间的绝缘为零,使轴电流流经轴承及镜板,造成轴承和镜板被腐蚀。经处理以 后已经运行二年没有发生类似现象。 事实说明以上分析和处理方法是正确的。 为了进一步掌握发电机轴电流的形成及规律,我们作了如下观察及试验: (1)推力头对导瓦及镜板绝缘破坏是形成轴电流通路的主要原因,这些部位原设计为绝缘隔离,轴电流是无法形成的。但在运行实践中,由于润滑油油质变坏,这其中主要有两方面因素,第一,油中含有轴瓦研磨带来的金属粉沫。第二,北方地区室内外温差可达50℃这样冷却水进入冷却装置后由于温差过大造成冷却 器出汗,久而久之使润滑油中含水量过大。以上两种原因使其绝缘水平急聚降低。另外由于种种原因轴承密封端盖碰轴都会使绝缘下降,轴电流直接流通。 (2)为了了解轴电流大小与发电机有功、无功之间的关系,我们作了四个实验: ①使发电机的有功功率为零,改变其无功功率,在不同的无功条件下测量发 电机的轴电流变化情况,测量结果见表1和曲线1。 ②使发电机的无功功率为零,改变其有功功率,在不同的有功条件下测量发 电机的轴电流变化情况,其测量结果见表2及曲线2。 ③使发电机的无功功率固定在1000千瓦,改变其有功功率,在不同的有功 条件下测量发电机的轴电流变化情况,其结果见表3和曲线3。 ④使发电机的有功功率满载(1600千瓦)不变,在不同的无功条件下测量发电机的轴电流变化情况,其结果见表4和曲线4。 从以上的试验我们可以知道:同步交流发电机的轴电流大小与其负载的性质 有关,发电机的无功功率增大,其轴电流也增大,相反有功功率越大,则轴电电 流反面越小。根据电磁学理论可知,发电机的气隙磁场∮t 是电枢磁场∮l和电枢 磁场∮d组成的,产生轴电流主要是电构磁场:根据发电机的负载性质,电枢磁 场又可分解为纵坐标轴磁场和横坐标磁场。当发电机的负载为纯电感时,即其无 功电流增大,此时电枢磁场为纵轴磁场,纵坐标磁场与转子(磁轭)是垂直交的,所以在转子轴上感应电势也大,这就是无功增在使轴电流增加的原因。当负载为 纯电阻时,即有功电流增大,电枢磁场为横坐标磁场,横坐标磁场与转子(磁轭)

发电机轴电压产生的原因、危害及处理措施

随着电源建设的迅猛发展, 单机容量的逐渐增大, 轴电压成为大型发电机采用静止自并励磁系统后的一个严重问题。研究轴电压、轴电流有着很重要的意义。轴电压的波形具有复杂的谐波脉冲分量, 对油膜绝缘特别有害当轴电压未超过油膜的破坏值时, 轴电流非常小。若轴电压超过轴承油层击穿电压, 则在轴承上形成很大的轴电流, 即所谓电火花加工电流, 将烧蚀轴承部件, 造成很大危害。磁路不对称、单极效应、电容电流、静电效应、静态励磁系统、外壳、轴等的永久性磁化均有可能引起轴电压。【文献2】 轴电压是指在电机运行时,电机两轴承端或电机转轴与轴承间所产生的电压。在正常情况下,轴电压较低时,燃气发电机转轴与轴承间存在的润滑油膜能起到较好的绝缘作用。但是,如果由于某些原因使得轴电压升高到一定数值时,就会击穿油膜放电,构成轴电流产生的回路。轴电流不但会破坏油膜的稳定性,使润滑冷却的油质逐渐劣化,同时,由于轴电流从轴承和转轴的金属接触点通过,金属接触点很小,电流密度很大,在瞬间会产生高温,使轴承局部烧熔。被烧熔的轴承合金在碾压力的作用下飞溅,将在轴承内表面烧出小凹坑。最终,轴承会因机械磨损加速而破损,严重时会烧坏轴瓦,造成事故被迫停机。【文献12】 发电机轴电压一直是存在的,但一般不高,通常不超过几V~十几V,但当绝缘垫因油污、损坏或老化等原因失去作用时,则轴电压足以击穿轴与轴承间的油膜而发生放电,久而久之,就会使润滑和冷却的油质逐渐劣化,严重者会使转轴和轴瓦烧坏,造成停机事故。 1、发电机轴电压产生的原因 (1)、磁不对称引起的轴电压它是存在于汽轮发电机轴两端的交流型电压。由于定子铁芯采用扇形冲压片、转子偏心率、扇形片的导磁率不同,以及冷却和夹紧用的轴向导槽等发电机制造和运行原因引起的磁不对称,结果产生包括轴、轴承和

初中物理 例析电流的形成与方向专题辅导

初中物理例析电流的形成与方向专题辅导 张友金 一. 电流的形成 在理解电流形成的原因时,应注意以下几点: 1. 电流可能只是由正电荷的定向移动形成的。 2. 电流可能只是由负电荷的定向移动形成的。 3. 电流可能是由正、负电荷同时向相反的方向定向移动形成的。 二. 电流的方向 电荷有正电荷与负电荷两种,科学实验证明在电路中正电荷、负电荷都可以定向移动,有时还会同时移动,但物理学刚开始研究电流时,并不清楚在不同情况下究竟是什么电荷在移动,当时就规定正电荷定向移动的方向为电流的方向,而负电荷定向移动方向则与电流方向相反。在以后研究和利用电流的过程中并未发现这一规定有什么影响,所以这一规定一直沿用至今。 在电源的外部,电流的方向是从电源正极流向负极;在电源的内部,电流的方向是从电源负极流向正极。 例1. 如图1所示,当开关闭合时,请在电路中标明电流方向。 图1 解析:当开关闭合时,电流的方向是从电源的正极经导线、开关、导线、小灯泡、导线回到电源的负极。如图1中的箭头所示。 例 2. 电荷的___________形成电流,在电源外部,电流方向是___________→用电器→___________。 解析:本题涉及电流的形成及电流方向。大家知道,金属导体中有大量的自由电荷,平时它们运动的方向杂乱无章,接上电源后,出现了大量电荷的定向移动,于是形成了电流。电流和水流类似,也有方向,当把用电器接在电源的正、负极上时,电流沿着“正极→用电器→负极”的方向流动。 例3.在图2所示的电路中,当开关闭合时,通过小灯泡的电流方向是从___________到

___________。 图2 解析:本题着重考查电流方向的规定和干电池正负极的识别。通过观察可知,干电池上端是正极,小灯泡在电源外部。由电源外部的电流方向是从电源的正极流向负极可得出结论。通过小灯泡中的电流方向是从B到A。抓住电荷的定向移动形成电流及电流方向的规定是求解本题的关键。

对电动机轴电流的分析及防范

对电动机轴电流的分析及防范 〔摘要〕轴电流的存在对电动机轴承的使用寿命具有极大的破坏性,根据现场实际运行情况,分析其产生的原因,采取装设转轴接地碳刷、加强非轴伸端轴承座与支架的绝缘等有效措施,从而从根本上解决轴电流危害的问题. 〔关键词〕电动机轴电流轴电压 1轴电流的危害 在电动机运行过程中,如果在两轴承端或电机转轴与轴承间有轴电流的存在,那么对于电机轴承的使用寿命将会大大缩短。轻微的可运行上千小时,严重的甚至只能运行几小时,给现场安全生产带来极大的影响。同时由于轴承损坏及更换带来的直接和间接经济损失也不可小计。 2轴电压和轴电流的产生 轴电压是电动机两轴承端或电机转轴与轴承间所产生的电压,其产生原因一般有以下几种: (1) 磁不平衡产生轴电压 电动机由于扇形冲片、硅钢片等叠装因素,再加上铁芯槽、通风孔等的存在,造成在磁路中存在不平衡的磁阻,并且在转轴的周围有交变磁通切割转轴,在轴的两端感应出轴电压。 (2) 逆变供电产生轴电压 电动机采用逆变供电运行时,由于电源电压含有较高次的谐波分量,在电压脉冲分量的作用下,定子绕组线圈端部、接线部分、转轴之间产生电磁感应,使转轴的电位发生变化,从而产生轴电压。 (3) 静电感应产生轴电压 在电动机运行的现场周围有较多的高压设备,在强电场的作用下,在转轴的两端感应出轴电压。 (4) 外部电源的介入产生轴电压由于运行现场接线比较繁杂,尤其大电机保

护、测量元件接线较多,哪一根带电线头搭接在转轴上,便会产生轴电压。 (5) 其他原因如静电荷的积累、测温元件绝缘破损等因素都有可能导致轴电压的产生。轴电压建立起来后,一旦在转轴及机座、壳体间形成通路,就产生轴电流。 3轴电流对轴承的破坏 正常情况下,转轴与轴承间有润滑油膜的存在,起到绝缘的作用。对于较低的轴电压,这层润滑油膜仍能保护其绝缘性能,不会产生轴电流。但是当轴电压增加到一定数值时,尤其在电动机启动时,轴承内的润滑油膜还未稳定形成,轴电压将击穿油膜而放电,构成回路,轴电流将从轴承和转轴的金属接触点通过,由于该金属接触点很小,所以这些点的电流密度大,在瞬间产生高温,使轴承局部烧熔,被烧熔的轴承合金在碾压力的作用下飞溅,于是在轴承内表面上烧出小凹坑。一般由于转轴硬度及机械强度比轴承烧熔合金的高,通常表现出来的症状是轴承内表面被压出条状电弧伤痕。 4轴电流的防范 针对轴电流形成的根本原因,一般在现场采用如下防范措施: (1) 在轴端安装接地碳刷,以降低轴电位,使接地碳刷可靠接地,并且与转轴可靠接触,保证转轴电位为零电位,以此消除轴电流。 (2) 为防止磁不平衡等原因产生轴电流,往往在非轴伸端的轴承座和轴承支架处加绝缘隔板,以切断轴电流的回路。 (3) 为了避免其他电动机附件导线绝缘破损造成的轴电流,往往要求检修运行人员细致检查并加强导线或垫片绝缘,以消除不必要的轴电流隐患。 一般通过以上处理,大多电动机的轴电流微乎其微,已对电动机构不成实质上危害。现场实践证明,经上述方式处理后实际使用寿命可由原几十个小时提高到上万小时,效果比较明显,尤其对高压电动机轴电流的防范效果好,对安全生产具有积极作用。

产生轴电压的原因如下

产生轴电压的原因如下: 3p W ]!F0C-s y u ①、由于发电机的定子磁场不平衡,在发电机的转轴上产生了感应电势。磁场不平衡的原因一般是因为定子铁芯的局部磁组较大(例如定子铁芯锈蚀),以及定、转子之间的气隙不均匀所致。②、由于汽轮发电机的轴封不好,沿轴有高速蒸汽泄漏或蒸气缸内的高速喷射等原因而使转轴本身带静电荷。这种轴电压有时很高,可以使人感到麻电。但在运行时已通过炭刷接地,所以实际上已被消除。轴电压一般不高,通常不超过2~3 伏,为了消除轴电压经过轴承、机座与基础等处形成的电流回路,可以在励磁机侧轴承座下加垫绝缘板。使电路断开,但当绝缘垫因油污、损坏或老化等原因失去作用时,则轴电压足以击穿轴与轴承间的油膜而发生放电,久而久之,就会使润滑和冷却的油质逐渐劣化,严重者会使转轴和轴瓦烧坏,造成停机事故。 发电机磁场非常强大,发电机的主轴穿过磁场中心,可是一旦有微小偏差,在发电机轴两端就有感应电压,如果发电机轴两端经轴承和机座成为闭合环路,就会产生巨大的短路电流,为了切断这个环路,发电机轴承的一端必须加绝缘垫片的 轴电流是由于发电机磁场不对称,发电机大轴被磁化,静电充电等原因在发电机轴上感应出轴电压,引起的从发电机组轴的一端经过油膜绝缘破坏了的轴承、轴承座及机座底板,流向轴的另一端的电流

逆变器供电的电机轴电流及其防治 1 引言 感应电动机的轴电压和轴电流现象并不是什么新的问题,alger在1920年就阐述了引起这些电流的原因,即磁通在电机内的不对称分布。而c.u.t.pearce在1927年也说到:只要有可能设计出一个完美平衡或是对称的电机,轴承电流在理论上和实际上都是不存在的。而事实上,感应电机在正弦波电源的驱动下,就会因电机内部的因素产生轴电流,这些因素可以分为两点:一是同极的磁通,例如通过电机轴中央的磁通;二是通过电机轴的交变磁链。其中第二种情况更普遍一些。而这些磁链主要是由转子和定子槽机械尺寸的偏差、磁性材料的定向属性的改变以及供电电源不平衡等因素引起的磁通不平衡所产生的。 近年来,以绝缘栅双极晶体管(igbt)为功率器件的脉宽调制(pwm)逆变器作为感应电机的驱动电源时,轴电流的问题变得日趋严重,这也使得轴承出现问题和损坏的机率增加、损坏的速度加快。而且具有高载波频率(大于12khz)的igbt逆变器导致电机轴承的损害比低载波频率的逆变器更快。此时产生的轴电流的主要原因就是pwm逆变器的输出在电气上的瞬时不平衡。 过大的轴电流将造成轴承的损坏,从而使得电机不能正常运行。通过电机可靠性研究表明电机轴承的损坏占电机损坏总数的40%,而轴承制造商反映几乎在所有损坏的轴承中有25%是由于逆变器输出电压的dv/dt过大,损坏的数字还在飞速地增长。 本文通过电机模型的建立,分析了电机在正弦波供电和pwm逆变器供电时的轴电压、轴电流产生的机理,由此重视起对电机轴承的研究;所阐述的几种不同的轴承电流的流向,为的

相关主题
文本预览
相关文档 最新文档