ABAQUS经验总结
- 格式:doc
- 大小:128.00 KB
- 文档页数:15
ABAQUS常用技巧总结1.建模技巧-合理选择单元类型:ABAQUS提供了多种常用的单元类型,如线单元、面单元和体单元等。
根据具体的问题,选择合适的单元类型,以获得更精确的结果。
-使用多边形区域:当建模边界为复杂形状时,可以使用多边形区域功能,通过连接多个节点来创建所需的形状。
-利用参数化建模:利用工具栏上的参数化建模功能,可以通过调整参数来快速修改模型,提高建模效率。
2.材料建模技巧-选择适当的材料模型:ABAQUS提供了多种材料模型,如弹性模型、塑性模型和粘弹性模型等。
根据材料的实际性质,选择合适的材料模型,以准确描述材料的力学响应。
-自定义材料属性:当所需材料在ABAQUS中没有默认的材料属性时,可以使用自定义材料属性功能,在材料数据库中添加所需的属性。
-考虑温度和湿度效应:对于一些特殊情况下,材料的性质可能受到温度和湿度的影响。
在建模过程中,可以通过材料属性的温度和湿度依赖性来考虑这些效应。
3.网格划分技巧-合理选择单元大小:在进行网格划分时,应根据模型的特点和要求,合理选择单元的大小。
过大的单元会导致精度较低,而过小的单元会增加计算复杂度和运行时间。
-使用自适应网格划分:对于复杂的几何形状,可以使用自适应网格划分功能,根据需求自动地在关键区域进行细化,以获得更准确的结果。
-检查网格的质量:ABAQUS提供了检查网格的质量的工具,在网格划分结束后,应对网格进行质量检查,确保网格的质量符合要求。
4.加载和边界条件技巧-应用合适的加载:在模拟过程中,应根据具体的问题合理选择加载方式。
可以通过施加约束、边界力和位移等方式来模拟实际的加载情况。
-使用周期边界条件:对于周期性结构或周期性加载的问题,可以使用周期边界条件,通过定义周期边界,简化模型的计算。
-考虑非线性效应:非线性效应在一些工程问题中很常见,如大变形、接触和摩擦等。
在模拟过程中,应考虑这些非线性效应,以保证结果的准确性。
5.结果后处理技巧-分析应力和应变:ABAQUS提供了丰富的后处理功能,可以分析和可视化模型的应力和应变分布。
Abaqus操作技巧总结打开abaqus,然后点击file——set work directory,然后选择指定文件夹,开始建模,建模完成后及时保存,在进行运算以前对已经完成的工作保存,然后点击job,修改inp文件的名称进行运算。
切记切记!!!!!!1、如何显示梁截面(如何显示三维梁模型)显示梁截面:view->assembly display option->render beam profiles,自己调节系数。
2、建立几何模型草绘sketch的时候,发现画布尺寸太小了1)这个在create part的时候就有approximate size,你可以定义合适的(比你的定性尺寸大一倍);2)如果你已经在sketch了,可以在edit菜单--sketch option ——general--grid更改3、如何更改草图精度可以在edit菜单--sketch option ——dimensions--display——decimal更改如果想调整草图网格的疏密,可以在edit菜单--sketch option ——general——grid spacing中可以修改。
4、想输出几何模型part步,file,outport--part5、想导入几何模型part步,file,import--part6、如何定义局部坐标系Tool-Create Datum-CSYS--建立坐标系方式--选择直角坐标系or柱坐标系or球坐标7、如何在局部坐标系定义载荷laod--Edit load--CSYS-Edit(在BC中同理)选用你定义的局部坐标系8、怎么知道模型单元数目(一共有多少个单元)在mesh步,mesh verify可以查到单元类型,数目以及单元质量一目了然,可以在下面的命令行中查看单元数。
Query---element 也可以查询的。
9、想隐藏一些part以便更清楚的看见其他part,edge等view-Assembly Display Options——instance,打勾10、想打印或者保存图片File——print——file——TIFF——OK11、如何更改CAE界面默认颜色view->Grahphic options->viewport Background->Solid->choose the wite colour!然后在file->save options.12、如何施加静水压力hydrostaticload --> Pressure, 把默认的uniform 改为hydrostatic。
ABAQUS学习技巧总结1.学习软件基本操作:了解软件的界面布局和主要功能,掌握常用的菜单和工具栏命令。
可以通过阅读官方文档或者参考书籍,或者通过在线教程学习基础操作。
2.学习输入文件语法:ABAQUS是通过输入文件来定义模型和分析任务的,学习输入文件的语法和格式对于理解和修改模型是非常重要的。
可以通过查阅ABAQUS官方文档或者参考书籍来学习输入文件的语法规则。
3. 学习命令行操作:ABAQUS可以通过命令行进行一些常用操作,比如运行求解器、查看日志文件等。
掌握常用的命令行操作可以提高工作效率。
可以通过在命令提示符下输入“abaqus help”来查看命令行操作的帮助文档。
4.学习宏命令:宏命令是一种批处理脚本,可以自动化执行一系列操作。
学习宏命令可以提高工作效率,尤其是在进行重复性操作时。
可以通过学习宏命令的语法和编写技巧,自己编写一些常用的宏命令。
5. 学习Python脚本编程:ABAQUS支持Python脚本编程,可以通过编写Python脚本来扩展软件的功能。
学习Python脚本编程可以编写更复杂的宏命令,或者编写自己的特定功能的插件。
可以通过学习Python编程的相关书籍或者在线教程来学习Python编程技巧。
6.学习后处理技巧:ABAQUS提供了丰富的后处理功能,可以对分析结果进行可视化和分析。
学习后处理技巧可以帮助理解模型的行为,并对分析结果进行合理的解释和评估。
可以通过阅读ABAQUS官方文档或者参考书籍来学习后处理的相关知识。
7.学习错误处理技巧:在使用ABAQUS时,经常会遇到各种错误和警告信息。
学习错误处理技巧可以帮助快速定位和解决问题。
可以通过阅读ABAQUS官方文档或者参考书籍,或者在相关论坛上寻求帮助来学习错误处理技巧。
总之,学习ABAQUS需要不断实践和积累经验。
通过掌握基本操作、学习输入文件语法、掌握命令行操作、学习宏命令和Python脚本编程、学习后处理技巧和错误处理技巧等技能,可以提高对ABAQUS的理解和应用能力。
a b a q u s最新经验总结(总7页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除(共六页,每天看一遍,一周后会有全新的认识)一、认识总结1.快捷键:Ctrl+Alt+左键来缩放模型;Ctrl+Alt+中键来平移模型;Ctrl+Alt+右键来旋转模型。
2.A BAQUS/CAE 不会自动保存模型数据,用户应当每隔一段时间自己保存模型以避免意外丢失。
3.D ismiss 和Cancel 按钮的作用都是关闭当前对话框,其区别在于:前者出现在包含只读数据的对话框中;后者出现在允许作出修改的对话框中,点击Cancel 按钮可关闭对话框,而不保存所修改的内容。
二、建模总结1.A BAQUS/CAE 推荐的建模方法是把整个数值模型(如材料、边界条件、载荷等)都直接定义在几何模型上。
载荷类型Pressure 的含义是单位面积上的力,正值表示压力,负值表示拉力。
2.平面应力问题的截面属性类型是Solid(实心体)而不是Shell(壳)。
3.每个模型中只能有一个装配件,它是由一个或多个实体组成的,所谓的“实体”(instance)是部件(part)在装配件中的一种映射,一个部件可以对应多个实体。
材料和截面属性定义在部件上,相互作用(interaction)、边界条件、载荷等定义在实体上,网格可以定义在部件上或实体上,对求解过程和输出结果的控制参数定义在整个模型上。
4.A BAQUS/CAE 中的部件有两种:几何部件(native part)和网格部件(orphan mesh part)。
创建几何部件有两种方法:(1)使用Part 功能模块中的拉伸、旋转、扫掠、倒角和放样等特征来直接创建几何部件。
(2)导入已有的CAD 模型文件,方法是:点击主菜单File→Import→Part。
网格部件不包含特征,只包含节点、单元、面、集合的信息。
创建网格部件有三种方法:(1)导入ODB 文件中的网格。
1、abaqus中的力载荷集中力concentrated force、压强pressure(垂直于表面)、表面分布力surface traction (设定沿着某方向)pressure只能施加在面上(几何的面,单元的面),为垂直于表面的分布力;surface traction只能施加在面上(几何的面,单元的面),为沿着某一方向的分布力;concentrated force只能施加在点上(几何的点,节点),要使得集中力产生的效果等同于分布力,则需要将集中力施加在参考点上,然后将参考点与作用面上的节点进行耦合约束coupling(distributed coupling),而不要直接施加在节点上.一般,如果不要求等效均布力,则集中力最好施加在几何的点上。
确实需要施加节点力,则施加在节点上.对于有限元软件,所有的力载荷本质上都由程序处理成节点力。
2、abaqus计算热电耦合出现Too many attempts made for this increment(1)调整一下计算载荷施加的速度或者调整载荷大小,要么把计算步长设置的小一点,尝试次数设的多一点.这个提示是说计算的过程中直到设定的尝试次数极限仍然求解失败。
(2) 分析步主要有初始分析步和后续分析步,每个分析步可以用来描述一个分析过程,例如在后续分析步中施加不同荷载,在初始分析步中施加边界条件等。
增量步是在分析步里面根据模型计算收敛情况设置的,简单模型可以设置较少的增量步,并可使初始增量为1;复杂模型设置多一点增量步,并减少初始增量值。
超过设置的允许增量步数,则计算停止。
(3)检查模型,是否存在刚体位移,过约束,接触定义不当等问题(4)分别建立四个边界条件,BC—1,BC—2,BC-3,BC-4,每一个边界条件定义板的一边固结的支承条件就行了。
之前是建立了一个BC—1,四边的约束都定义在BC-1里面,就算不下去了,不清楚原因。
仅供参考学习。
(5)1。
ABAQUS常用技巧总结1.使用复杂几何体建模时,可以使用不同的划分方法来提高模型的建模效率。
例如,使用二维平面模型替代三维模型,或者使用多个简单几何体组合成一个复杂几何体。
2.使用合适的单元类型来模拟不同类型的物理问题。
ABAQUS提供了各种单元类型,包括线性单元、非线性单元和壳体单元等。
选择适当的单元类型可以提高求解的精度和效率。
3.使用合适的网格划分来提高模型的精度。
网格划分越细致,模型的精度就越高,但求解时间会增加。
因此,在进行网格划分时需要根据具体情况权衡模型的精度和求解效率。
4.使用合适的边界条件来约束模型。
边界条件定义了模型的边界行为,可以通过施加约束来模拟各种不同的边界条件。
正确地定义边界条件可以提高模型的精度,并且在求解过程中减少错误。
5.使用合适的材料参数来描述物质的本构行为。
ABAQUS提供了一系列的材料模型,可以用来描述各种不同类型的材料。
选择适当的材料模型可以更准确地模拟物质的本构行为。
6.在求解过程中使用适当的收敛准则。
ABAQUS提供了各种收敛准则来控制求解过程的收敛性。
正确地选择收敛准则可以提高求解的精度和效率。
7.在进行求解之前,进行预处理操作来优化模型。
预处理操作包括网格优化、减少刚度矩阵的条件数等,可以提高模型的求解效率。
8.使用ABAQUS提供的后处理功能来分析和可视化模型的结果。
ABAQUS提供了各种后处理工具,可以对模型的结果进行可视化、分析和导出等操作。
9. 尽量使用自动化脚本来进行模型构建和求解。
ABAQUS提供了Python接口,可以用来编写自动化脚本,实现模型的自动构建、求解和后处理。
使用自动化脚本可以提高工作效率,并减少人为错误。
10.在使用ABAQUS进行计算时,要时刻关注模型的收敛情况和结果的合理性。
如果模型的收敛性不好,可以尝试调整网格划分、边界条件或者其他模型参数来改善收敛性。
如果结果不合理,可以仔细检查模型的建模和求解过程,找出错误所在。
ABAQUS常用技巧归纳图文并茂ABAQUS常用技巧归纳一、背景介绍ABAQUS是一款广泛应用于工程领域的有限元分析软件,具备强大的功能和丰富的工具包,被工程师广泛使用。
然而,在使用ABAQUS的过程中,我们经常会遇到一些技巧和问题,本文将针对一些常见的ABAQUS技巧进行归纳总结,帮助读者更好地应用ABAQUS进行工程分析。
二、常用技巧1. 单元类型选择在使用ABAQUS进行有限元分析时,选择合适的单元类型是非常重要的。
根据具体的分析对象和问题类型,可以选择不同的单元类型,如线性单元、非线性单元或复合单元。
合理的单元选择可以提高计算效率和分析精度。
2. 网格划分优化合理的网格划分对计算结果的准确性和计算效率至关重要。
在ABAQUS中,提供了多个网格划分工具和算法,可以帮助用户进行网格优化。
例如,使用网格生成工具可以自动生成符合几何形状和尺寸要求的网格,使用网格划分工具可以调整网格的密度和精度。
3. 材料模型选择在ABAQUS中,提供了多种材料模型,用于描述材料的力学行为。
根据具体的分析对象和材料性质,可以选择合适的材料模型,如线性弹性模型、塑性模型或粘弹性模型。
合理的材料模型选择可以更好地模拟材料的本构行为。
4. 边界条件设置在有限元分析中,正确设置边界条件是保证结果准确性的关键。
在ABAQUS中,可以通过节点约束、荷载施加和接触定义等方式来设置边界条件。
应根据具体的分析问题和工况设置合理的边界条件,以确保计算结果的可靠性。
5. 后处理及结果分析ABAQUS提供了强大的后处理和结果分析功能,可以帮助用户深入理解计算结果。
通过后处理工具,可以对计算结果进行可视化分析、曲线绘制和云图展示等,帮助用户对结果进行全面的评估和解读。
6. 自定义脚本开发除了使用ABAQUS内置的工具和功能,用户还可以通过编写脚本来定制化分析过程。
ABAQUS支持Python脚本的开发和调用,用户可以利用脚本进行批处理、参数化分析和复杂算法实现等。
第二章 ABAQUS 基本使用方法[2](pp15)快捷键:Ctrl+Alt+左键来缩放模型;Ctrl+Alt+中键来平移模型;Ctrl+Alt+右键来旋转模型。
②(pp16)ABAQUS/CAE 不会自动保存模型数据,用户应当每隔一段时间自己保存模型以避免意外丢失。
[3](pp17)平面应力问题的截面属性类型是Solid(实心体)而不是Shell(壳)。
ABAQUS/CAE 推荐的建模方法是把整个数值模型(如材料、边界条件、载荷等)都直接定义在几何模型上。
载荷类型Pressure 的含义是单位面积上的力,正值表示压力,负值表示拉力。
[4](pp22)对于应力集中问题,使用二次单元可以提高应力结果的精度。
[5](pp23)Dismiss 和Cancel 按钮的作用都是关闭当前对话框,其区别在于:前者出现在包含只读数据的对话框中;后者出现在允许作出修改的对话框中,点击Cancel 按钮可关闭对话框,而不保存所修改的内容。
[6](pp26)每个模型中只能有一个装配件,它是由一个或多个实体组成的,所谓的“实体”(instance)是部件(part)在装配件中的一种映射,一个部件可以对应多个实体。
材料和截面属性定义在部件上,相互作用(interaction)、边界条件、载荷等定义在实体上,网格可以定义在部件上或实体上,对求解过程和输出结果的控制参数定义在整个模型上。
[7](pp26) ABAQUS/CAE 中的部件有两种:几何部件(native part)和网格部件(orphan mesh part)。
创建几何部件有两种方法:(1)使用Part 功能模块中的拉伸、旋转、扫掠、倒角和放样等特征来直接创建几何部件。
(2)导入已有的CAD 模型文件,方法是:点击主菜单File→Import→Part。
网格部件不包含特征,只包含节点、单元、面、集合的信息。
创建网格部件有三种方法:(1)导入ODB 文件中的网格。
例如要取缸套的主推力侧上一列节点的径向位移(缸套轴线平行于Z轴),然后按照Z坐标画出径向位移曲线。
总的方法是先选上要分析的节点,然后按空间位置顺序记录节点编号,根据编号生成一个Path,再以这个path为横坐标,以要分析的量(如径向位移)为纵坐标画X-Y图。
1. 选出要分析区域节点:这列节点共有几十个,一个一个选太慢,打开要分析的odb文件,选择Display Group中的【Replace Selected】按钮,在目标类型中选择【Nodes】,然后结合视图方向、框选方法(矩形、圆形、多边形框)和选择方式(individually或者by angle)选出需要的节点集合,例子中的一列节点只有Z坐标不同,因此把视图方向调整到Z轴垂直于屏幕,这时一列点在屏幕上变成了一个点,在这一个点的位置上框选就可以得到一列点了。
在individually 选择方式下,【shift+框选】是将选到的加入到已有选择中,【Ctrl+框选】是将选到的从已有选择中去除。
例如要在一个曲面上选一列节点,可以先用【by angle】方式将整个曲面选上,然后调整到合适的视图方向上切换到【individually】方式,用【Ctrl+框选】去掉多余的节点。
2. 按顺序记录节点编号:Path对顺序很敏感,节点号顺序的调整会改变最后plot的数据点顺序。
要按照Z坐标大小顺序画出径向位移曲线,就必须按顺序记录节点编号。
上一步选好节点按中键确定后,屏幕上是空白,因为ABAQUS 不会显示单独的节点,打开显示节点编号开关(在【Common Plot Options->Labels】中),这样屏幕上会显示出要选的那些节点的编号,按顺序记录下来。
号码之间用逗号分隔,冒号表示连续和间隔,例如:1.2(1号和2号节点),1:10(表示1,2,…,10),1:9:2(表示1,3,5,…,9)。
3. 生成目标表格和曲线,两种方法:a)用上面排好的节点序列生成一个Path,然后基于这个path生成一个X-Y图(Create X-Y data -> Path),在【X-Y Data Manager】中双击生成的图线可以得到相应的二维表格;b)菜单【Report->Field Output】,这种方法将二维表格数据写入一个文件,本身不能出图,但是可以对计算结果求和,因此可以用来求接触力、压力的合力(但要注意这里的求和是数值相加,不是矢量求和,因此只适用于各个力方向基本一致的情况下的合力估计)。
接触的分析步骤及注意事项:1.如何提取安装文件里的例子C:\SIMULIA\6.11-1\samples\job_archive在命令符中输入:abaqusfetchjob=ws_solver_seal.py然后将会出现解压出的seal的路径,找到路径将其复制到工作目录。
然后点击file—runscrip…..将文件打开即可2.模型导入之后,不同的部分显示不同颜色,点击右上侧况。
3.(1其中(2A 键4.双击其中body为整个实体,pin指的是销节点,tie指的是捆绑节点,analyticalsurface是解析面。
Referencepoint是刚体的参考点,可以点击后面的箭头在图中选择参考点,注意:如果将后面的adjustpointtocenterofmassatstartofanalysis选中则选择的是刚体质心位置!销节点与捆绑节点的区别:5.双击点击的如果事先没有定义接触属性的话,可以在该对话框的contactinteractionproperty属性。
选择在择6.右单击Santoprene,选择Evaluate,点击ok。
7.非对称矩阵8.施加对称约束9.结果中修改左侧或下侧字体颜色或大小Viewport——ViewportAnnotationOptions10.Solidworks建立的模型导入abaqus的方法solidworks以.x_t的格式保存模型,然后打开abaqus,点击import—assembly—选择.x_t—即可将各个part都导入。
11.Hypermesh划分好的网格导入abaqus的方法在hypermesh划分好网格后—另存为——手动输入.inp的格式文件,然后通过abaqus—file —import—model选择.inp格式,即可导入。
12.在abaqus中组装零件part与在solidworks中一样,点击最上面的constraint13.通用接触,在初始步定义14.确定某一点的坐标方法:点击得到下图:选中第一个Point/Node,然后再图中选择点,点击中间,在下面会显示坐标:15.在,,即可看到各阶的16.17.18.,点击下面的19.20.21.双击得到下面,选择如图所示22.在step中,点击MASSscaling—scalebyfactor中输入放大比例23.切向行为和方向行为24.层云图,多层视图,同时显示变形前后变形图点击右侧图标,得到下图,可以任意添加各步25.内摩擦角、黏聚力怎样定义的,在proporty中的塑性中定义。
例如要取缸套的主推力侧上一列节点的径向位移(缸套轴线平行于Z轴),然后按照Z坐标画出径向位移曲线。
总的方法是先选上要分析的节点,然后按空间位置顺序记录节点编号,根据编号生成一个Path,再以这个path为横坐标,以要分析的量(如径向位移)为纵坐标画X-Y图。
1. 选出要分析区域节点:这列节点共有几十个,一个一个选太慢,打开要分析的odb文件,选择Display Group中的【Replace Selected】按钮,在目标类型中选择【Nodes】,然后结合视图方向、框选方法(矩形、圆形、多边形框)和选择方式(individually或者by angle)选出需要的节点集合,例子中的一列节点只有Z坐标不同,因此把视图方向调整到Z轴垂直于屏幕,这时一列点在屏幕上变成了一个点,在这一个点的位置上框选就可以得到一列点了。
在individually 选择方式下,【shift+框选】是将选到的加入到已有选择中,【Ctrl+框选】是将选到的从已有选择中去除。
例如要在一个曲面上选一列节点,可以先用【by angle】方式将整个曲面选上,然后调整到合适的视图方向上切换到【individually】方式,用【Ctrl+框选】去掉多余的节点。
2. 按顺序记录节点编号:Path对顺序很敏感,节点号顺序的调整会改变最后plot的数据点顺序。
要按照Z坐标大小顺序画出径向位移曲线,就必须按顺序记录节点编号。
上一步选好节点按中键确定后,屏幕上是空白,因为ABAQUS 不会显示单独的节点,打开显示节点编号开关(在【Common Plot Options->Labels】中),这样屏幕上会显示出要选的那些节点的编号,按顺序记录下来。
号码之间用逗号分隔,冒号表示连续和间隔,例如:1.2(1号和2号节点),1:10(表示1,2,…,10),1:9:2(表示1,3,5,…,9)。
3. 生成目标表格和曲线,两种方法:a)用上面排好的节点序列生成一个Path,然后基于这个path生成一个X-Y图(Create X-Y data -> Path),在【X-Y Data Manager】中双击生成的图线可以得到相应的二维表格;b)菜单【Report->Field Output】,这种方法将二维表格数据写入一个文件,本身不能出图,但是可以对计算结果求和,因此可以用来求接触力、压力的合力(但要注意这里的求和是数值相加,不是矢量求和,因此只适用于各个力方向基本一致的情况下的合力估计)。
有时候历史变量输出的太多会出现“The number of history output requests (22466) in this analysis step has exceeded the maximum value of 10000 specified by the Abaqus environment variable'max_history_requests.'”错误,解决办法是:在abaqus_v6.env中加一句“max_history_requests=0”即可。
abaqus_v6.env文件在C:\ABAQUS\6.7-1\site\下。
比如两个接触面之间有0.1mm的缝隙,在压力作用下发生接触,只要将Contact Controls下的稳定因子设为1即可正常计算(Interaction模块,主菜单Interaction->Contact Controls->Create->Stabilization->AutomaticStabilization->factor设为1);对于缝隙不均匀的情况,比如一端宽0.1mm,一端宽0.2mm,减小网格尺寸和稳定因子对计算结果几乎没有影响;[04/08] 关于ABAQUS历史输出变量在帮助文档Analysis User’s Manual中4.2.2节Nodal variables部分定义了节点输出(用*Node Output关键字表示)可以包括的变量,从中可以看到应力(S)是不能作为节点计算结果输出的,只能作为单元积分点计算结果输出。
原因是节点应力是根据单元积分点应力计算结果外插得到的,因此节点应力只能在场变量(而且是节点所在单元有输出)的情况下才能输出。
如果在abaqus/cae中强行定义节点应力输出,INP文件中不会有相应的关键字,如果在INP文件中强行定义,求解时处理INP文件阶段会出错退出。
由于应力历史变量只能在单元积分点上输出,而在abaqus/cae中不能生成基于element型的set,除非直接使用网格模型做Part,但这样的模型往往不好操作,变通的方法是写由abaqus/cae生成INP文件,再手工修改这个INP文件,在其中添加一个element型的set,然后让其输出应力历史变量。
具体步骤:1.记住要输出的单元编号,例如为27,在INP文件的*Assembly部分定义一个element型的set:*Elset, elset=Set-Name, instance=Part-Name27,2.在*End Step前加上:*Output, history, frequency=10*Element Output, elset=Set-Elem-forMeshPartMISES,[03/29] ABAQUS子程序VDLOAD学习笔记[折叠]使用的INP文件(beam.inp):*Headingload was added in cae** Job name: Job-CAE Model name: Explicit-NoMove*Preprint, echo=NO, model=NO, history=NO, contact=NO**** PARTS***Part, name=beam*Node1, 0., 0.2, 50., 0.3, 100., 0.4, 150., 0.5, 200., 0.6, 250., 0.7, 300., 0.8, 350., 0.9, 400., 0.10, 450., 0.11, 500., 0.*Element, type=B211, 1, 22, 2, 33, 3, 44, 4, 55, 5, 66, 6, 77, 7, 88, 8, 99, 9, 1010, 10, 11*Elset, elset=_PickedSet2, internal, generate1, 10, 1*Elset, elset=_PickedSet3, internal, generate1, 10, 1** Section: Section-1 Profile: Profile-1*Beam Section, elset=_PickedSet2, material=Material-1, poisson = 0.3, temperature=GRADIENTS, section=RECT10., 5.0.,0.,-1.*End Part****** ASSEMBLY***Assembly, name=Assembly***Instance, name=beam-1, part=beam*End Instance***Elset, elset=forLoad, instance=beam-16, 7*Nset, nset=_PickedSet12, internal, instance=beam-11,*Nset, nset=_PickedSet13, internal, instance=beam-111,*Surface, type=ELEMENT, name=forLoadSPos, internalforLoad, SPOS*End Assembly**** MATERIALS***Material, name=Material-1*Damping, alpha=5.*Density7.8e-09,*Elastic210000., 0.3**** BOUNDARY CONDITIONS**** Name: BC-1 Type: Displacement/Rotation*Boundary_PickedSet12, 1, 1_PickedSet12, 2, 2** Name: BC-2 Type: Displacement/Rotation*Boundary_PickedSet13, 2, 2** ----------------------------------------------------------------**** STEP: Step-1***Step, name=Step-1*Dynamic, Explicit, 0.5*Bulk Viscosity0.06, 1.2**** LOADS**** Name: Load-1 Type: Concentrated force*DsloadforLoadSPos, PNU, 1.**** OUTPUT REQUESTS***Restart, write, number interval=1, time marks=NO**** FIELD OUTPUT: F-Output-1***Output, field, time interval=0.005*Node OutputU,*Element Output, directions=YESS,**** HISTORY OUTPUT: H-Output-1***Output, history, variable=PRESELECT*End Step使用的for文件(Gas.for):subroutine vdload (1 nblock, ndim, stepTime, totalTime,1 amplitude, curCoords, velocity, dirCos, jltyp, sname,value )Cinclude 'vaba_param.inc'Cdimension curCoords(nblock,ndim), velocity(nblock,ndim),1 dirCos(nblock,ndim,ndim), value(nblock)character*80 snameCopen(unit=17,file='e:\aa.txt',status='old',position='append')write(17,*)'stepTime= ',stepTimewrite(17,*)'ndim= ',ndimwrite(17,*)'curCoords= ',curCoordswrite(17,*)'jltyp= ',jltypvalue = 1write(17,*)'sname= ',snamewrite(17,*)'value= ',valuewrite(17,*)' 'close(17)returnend命令行:abaqus job=beam user=gas interactive分析:ABAQUS/Explicit每个增量步(Increment)都会调用用户子程序,这里就是gas.for,因此上面打开/关闭文件的动作会进行很多次,为避免后面打开文件将原有的内容删掉,就必须显式地指明打开的是一个已存在的文件(status='old'),写文件的位置在原文件末尾(position='append')。