当前位置:文档之家› Inflation in AdSCFT

Inflation in AdSCFT

Inflation in AdSCFT
Inflation in AdSCFT

最新英语语言学树型图详细讲解

树形图详细讲解 1. Indicate the category of each word in the following sentences. a) The old lady suddenly left. Det A N Qual V b) The car stopped at the end of the road. Det N V P Det N P Det N c) The snow might have blocked the road. Det N Aux Aux V Det N d) He never appears quite mature. N Qual V Deg A 2. The following phrases include a head, a complement, and a specifier. Draw the appropriate tree structure for each. a) full of people AP A P N full of people b) a story about a sentimental girl NP NP PP Det N P NP Det A N a story about a sentimental girl c) often read detective stories VP Qual V NP A N often read detective stories

d) the argument against the proposals NP NP PP Det N P NP Det N the argument against the proposals e) move towards the window VP V PP P Det N move towards the window 3. Draw phrase structure trees for each of the following sentences. a) The jet landed. InflP(=S) NP Infl VP Det N Pst V The jet landed b) Mary became very ill. InflP(=S) NP Infl VP N Pst V AP Deg A Mary became very ill

语言学树形图课后问题详解Word版

树形图详细讲解 网上的相对理想的树形图答案,注意正两 点: 1. 短语和中心词在一竖线上 2. 含有形容词修饰语的名词短语的画法 NP Det N A N a little boy 1. Indicate the category of each word in the following sentences. a) The old lady suddenly left. Det A N Qual V b) The car stopped at the end of the road. Det N V P Det N P Det N c) The snow might have blocked the road. Det N Aux Aux V Det N d) He never appears quite mature. N Qual V Deg A 2. The following phrases include a head, a complement, and a specifier. Draw the appropriate tree structure for each. a) full of people AP A P N

full of people b) a story about a sentimental girl NP NP PP Det N P NP Det A N a story about a sentimental girl c) often read detective stories VP Qual V NP A N often read detective stories

高等数学应用案例讲解

高等数学应用案例案例1、如何调整工人的人数而保证产量不变 一工厂有x名技术工人和y名非技术工人,每天可生产的产品产量为 , (=(件) f2 ) x x y y 现有16名技术工人和32名非技术工人,如何调整非技术工人的人数,可保持产品产量不变? 解:现在产品产量为(16,32)8192 f=件,保持这种产量的函数曲线为y (= x f。对于任一给定值x,每增加一名技术工人时y的变化量即为, 8192 ) dy。而由隐函数存在定理,可得 这函数曲线切线的斜率 dx 所以,当增加一名技术工人时,非技术工人的变化量为 dy。 当16,32 ==时,可得4-= x y dx 因此,要增加一个技术工人并要使产量不变,就要相应地减少约4名非技术工人。 下面给出一个初等数学解法。令 c:每天可生产的产品产量; x;技术工人数; y;非技术工人数; x?;技术工人增加人数; y?;在保持每天产品产量不变情况下,当技术工人由16名增加到17名时,非技术人员要增加(或减少)的人数。 由已知列方程:

(1)当技术工人为16名,非技术工人为32名时,每天的产品产量为c ,则有方程: c y x =?020 (1) (2)当技术工人增加了1名时,非技术工人应为(y y ?+0)名,且每 天的产品产量为c ,则有方程: c y y x x =?+??+)()(020 (2) 联立方程组(1)、(2),消去c 得: 即 [] 002020)/(y y x x x y -??+=????????+--=20200)(1x x x y 代入x y x ?,,00,得:46.3-≈-≈?y 名,即减少4名非技术工人。 比较这两种解法我们可以发现,用初等数学方法计算此题的工作量很大,究其原因,我们注意到下面之展开式: 从此展开式我们可以看到,初等数学方法不能忽略掉高阶无穷小: 0)x ( )1(31 04120→????? ???-+???? ???--∞=-∑n n n x x n x x (3) 而高等数学方法却利用了隐函数求导,忽略掉高阶无穷小(3),所以计算较容易。

高等数学同济大学版课程讲解函数的极限

高等数学同济大学版课程讲解函数的极限 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

课 时 授 课 计 划 课次序号:03 一、课 题:§函数的极限 二、课 型:新授课 三、目的要求:1.理解自变量各种变化趋势下函数极限的概念; 2.了解函数极限的性质. 四、教学重点:自变量各种变化趋势下函数极限的概念. 教学难点:函数极限的精确定义的理解与运用. 五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合. 六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编, 高等教育出版社; 2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社. 七、作业:习题1–31(2),2(3),3,6 八、授课记录: 九、 授课 效果分析: 第三节函数的极限 复习 1.数列极限的定义:lim 0,N,N n n n x a n x a εε→∞ =??>?>-<当时, ; 2.收敛数列的性质:唯一性、有界性、保号性、收敛数列与其子列的关系. 在此基础上,今天我们学习应用上更为广泛的函数的极限.与数列极限不同的是,对 于函数极限来说,其自变量的变化趋势要复杂的多. 一、x →∞时函数的极限 对一般函数yf (x )而言,自变量无限增大时,函数值无限地接近一个常数的情形与数列极限类似,所不同的是,自变量的变化可以是连续的. 定义1若?ε>0,?X >0,当x >X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )A |<ε),则称x →∞时,f (x )以A 为极限,记为lim x →+∞ f (x )A . 若?ε>0,?X >0,当x <X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )A |<ε),则称

教你如何画语言学树型图

树形图详细讲解 1、 Indicate the category of each word in the following sentences、 a) The old lady suddenly left、 Det A N Qual V b) The car stopped at the end of the road、 Det N V P Det N P Det N c) The snow might have blocked the road、 Det N Aux Aux V Det N d) He never appears quite mature、 N Qual V Deg A 2、 The following phrases include a head, a plement, and a specifier、 Draw the appropriate tree structure for each、 a) full of people AP A P N full of people b) a story about a sentimental girl NP NP PP Det N P NP Det A N a story about a sentimental girl c) often read detective stories VP Qual V NP A N often read detective stories d) the argument against the proposals NP NP PP Det N P NP Det N the argument against the proposals e) move towards the window VP

高等数学基础例题讲解

第1章 函数的极限与连续 例1.求 lim x x x →. 解:当0>x 时,0 00lim lim lim 11x x x x x x x + ++ →→→===, 当0

最新高等数学(上)重要知识点归纳讲解学习

高等数学(上)重要知识点归纳 第一章 函数、极限与连续 一、极限的定义与性质 1、定义(以数列为例) ,,0lim N a x n n ?>??=∞ →ε当N n >时,ε<-||a x n 2、性质 (1) )()()(lim 0 x A x f A x f x x α+=?=→,其中)(x α为某一个无穷小。 (2)(保号性)若0)(lim 0 >=→A x f x x ,则,0>?δ当),(0δx U x o ∈时,0)(>x f 。 (3)*无穷小乘以有界函数仍为无穷小。 二、求极限的主要方法与工具 1、*两个重要极限公式 (1)1sin lim =??→? (2)e =? +? ∞ →?)11(lim 2、两个准则 (1) *夹逼准则 (2)单调有界准则 3、*等价无穷小替换法 常用替换:当0→?时 (1)??~sin (2)??~tan (3)??~arcsin (4)??~arctan (5)??+~)1ln( (6)?-?~1e (7)221 ~cos 1??- (8)n n ?-?+~11

4、分子或分母有理化法 5、分解因式法 6用定积分定义 三、无穷小阶的比较* 高阶、同阶、等价 四、连续与间断点的分类 1、连续的定义* )(x f 在a 点连续 )()()()()(lim 0lim 0 a f a f a f a f x f y a x x ==?=?=??-+→→? 2、间断点的分类?? ?? ? ? ?????????? ?其他震荡型(来回波动) ) 无穷型(极限为无穷大第二类但不相等)跳跃型(左右极限存在可去型(极限存在) 第一类 3、曲线的渐近线* a x x f A y A x f a x x =∞===→∞ →则存在渐近线:铅直渐近线:若则存在渐近线:水平渐近线:若,)(lim )2(,)(lim )1( 五、闭区间连续函数性质 1、最大值与最小值定理 2、介值定理和零点定理

高等数学试题及答案讲解

《高等数学》 一.选择题 1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( ) A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y 2. 函数f(x)在点x 0极限存在是函数在该点连续的( ) A )、必要条件 B )、充分条件 C )、充要条件 D )、无关条件 3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、(( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4. 下列各式正确的是( ) A )、2ln 2x x x dx C =+? B )、sin cos tdt t C =-+? C )、 2arctan 1dx dx x x =+? D )、2 11 ()dx C x x -=-+? 5. 下列等式不正确的是( ). A )、 ()()x f dx x f dx d b a =??????? B )、()()()[]()x b x b f dt x f dx d x b a '=???? ??? C )、()()x f dx x f dx d x a =??????? D )、()()x F dt t F dx d x a '=???? ??'? 6. 0 ln(1)lim x x t dt x →+=?( ) A )、0 B )、1 C )、2 D )、4 7. 设bx x f sin )(=,则=''?dx x f x )(( ) A )、 C bx bx b x +-sin cos B ) 、C bx bx b x +-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin

高等数学知识点归纳知识讲解

第一讲: 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=? >?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () () x x t y y t =?? =? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→ 1(0)x x →→∞, 0lim 1x x x +→=, lim 0n x x x e →+∞=, ln lim 0n x x x →+∞=, 0 lim ln 0n x x x + →=, 0, x x e x →-∞ ?→?+∞→+∞ ?

高等数学求极限的常用方法(附例题和详细讲解)

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii )A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 ) (lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L’ho spital )法则(大题目有时候会有暗示要你使用这个方法) 洛必达法则(定理) 设函数f(x )和F(x )满足下列条件: ⑴x→a 时,lim f(x)=0,lim F(x)=0; ⑵在点a 的某去心邻域内f(x )与F(x )都可导,且F(x )的导数不等于0; ⑶x→a 时,lim(f'(x)/F'(x))存在或为无穷大 则 x→a 时,lim(f(x)/F(x))=lim(f'(x)/F'(x)) 注: 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x

高等数学应用案例讲解.

高等数学应用案例 案例1、如何调整工人的人数而保证产量不变 一工厂有x 名技术工人和y 名非技术工人,每天可生产的产品产量为 y x y x f 2),(= (件) 现有16名技术工人和32名非技术工人,如何调整非技术工人的人数,可保持产品产量不变? 解:现在产品产量为(16,32)8192f =件,保持这种产量的函数曲线为8192),(=y x f 。对于任一给定值x ,每增加一名技术工人时y 的变化量即为这函数曲线切线的斜率dx dy 。而由隐函数存在定理,可得 y f x f dx dy ????= 所以,当增加一名技术工人时,非技术工人的变化量为 x y y f x f dx dy 2-=????= 当16,32x y ==时,可得4-=dx dy 。 因此,要增加一个技术工人并要使产量不变,就要相应地减少约4名非技术工人。 下面给出一个初等数学解法。令 c :每天可生产的产品产量; 0x ;技术工人数; 0y ;非技术工人数;

x ?;技术工人增加人数; y ?;在保持每天产品产量不变情况下,当技术工人由16名增加到17名时,非技术人员要增加(或减少)的人数。 由已知列方程: (1)当技术工人为16名,非技术工人为32名时,每天的产品产量为c ,则有方程: c y x =?020 (1) (2)当技术工人增加了1名时,非技术工人应为(y y ?+0)名, 且每天的产品产量为c ,则有方程: c y y x x =?+??+)()(020 (2) 联立方程组(1)、(2),消去c 得: )(020020y y x x y x ?+??+=?)( 即 [] 002020)/(y y x x x y -??+=????????+--=20200)(1x x x y ????????????? ????? ???+--=200111x x y 代入x y x ?,,00,得:46.3-≈-≈?y 名,即减少4名非技术工人。 比较这两种解法我们可以发现,用初等数学方法计算此题的工作量很大,究其原因,我们注意到下面之展开式: ∑∞=--???? ???-+???? ???-?=???? ???+-110120020)1(32111n n n x x n x x x x x x 从此展开式我们可以看到,初等数学方法不能忽略掉高阶无穷

高等数学例题讲解(提高篇)

第1章 函数的极限与连续 例1.求下列极限: 1))1ln(1 2 )(cos lim x x x +→ 2)βαβ αβα--→e e lim 解:1)原式 2 201 ln cos ln cos lim ln(1) ln(1) lim x x x x x x e e →++→==,而 21)2(lim 22sin 2lim )1ln()2sin 21ln(lim )1ln(cos ln lim 22 02 2022020-=-=-=+-=+→→→→x x x x x x x x x x x x 所以, e e x x x 1) (cos lim 2 1 ) 1ln(1 2= =- +→ 2)原式11 lim lim e e e e αβαββ βαβαβαβαβ--→→--==-- 令t =-βα,当βα→时,0→t ,所以, 1lim 1lim 1lim 00==-=--→→-→t t t e e t t t βαβαβα. 从而,ββ αβαβαe e e =--→lim . 例2.求 lim(1) p x x mx →-,其中 m 、p 是正整数. 解:因为 mp mx mp mx x p mx mx mx ]) 1[(1) 1()1(1)(1 --- -= -=-, 令mx u -=,当0→x 时,0→u 1 1 111lim(1)lim lim [(1) ] [(1)] p mp x mp x x u mp mp mx u mx e e mx u -→→→--=== =-+. 例3.若()0f x >,0 lim ()(0)x x f x A A →=> 且0 lim x x → lim x x → 解:设 lim x x a →= a β=+,β是0x x →时的无穷小量, 22()2f x a a ββ=++ 222 lim ()lim(2)x x x x f x a a a ββ→→=++= 由题应有:2 A a = ,a = a = x x →= 例4.证明:半径为R 的圆面积2 R S π= 证:做圆的内接正n (3≥n )边形,如图1-13所示,记AOP n ∠=α其面积为 n R n R n R R n OP AB n S n n n n π ααα2sin 22sin 2cos sin 22222==?=?= 当边数n 取3,4, ,5,对应的面积3S ,4S , ,5S 构成了一数列}{n S ,图1-13

大学高等数学知识点知识讲解

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

2020年中考数学专题复习:树状图(含解析)

例谈画树状图 一、显性放回 例1 现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”、“2”、“3”.第一次从这三张卡片中随机抽取一张,记下数字后放回;第二次再从这三张卡片中随机 抽取一张并记下数字.请用画树状图的方法表示出上述试验所有可能的结果,并求第二 次抽取的数字大于第一次抽取的数字的概率. 分析从题中文字“记下数字后放回”知本题属于“显性放回”.本题中的事件是摸 两次卡片,看卡片的数字,由此可以确定事件包括两个环节.摸第一张卡片,放回去,再摸第二张卡片,所以树状图应该画两层.第一张卡片的数字可能是1,2,3等3个中的一个,所以第一层应画3个分叉;再看第二层,由于放回,第二个乒乓球的数字可能是3个中的一个,所以第二层应接在第一层的3个分叉上,每个小分支上,再有3个分叉.画出树状图,这样共得到3x3=9种情况,从中找出第二次抽取的数字大于第一次抽取的数字的情况,再求出概率. 解根据题意画树状图如图1. 所有可能的结果为: (1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3). ∵有9种等可能的结果,第二次抽取的数字大于第一次抽取的数字的只有3种, ∴P(第二次抽取的数字大于第一次抽取的数字)=1 3 . 二、显性不放回 例2 一个不透明的布袋里装有4个大小、质地都相同的乒乓球,球面上分别标有数字1,-2,3,-4.小明先从布袋中随机摸出一个球(不放回去),再从剩下的3个球中随机摸出第二个乒乓球. (1)共有_______种可能的结果; (2)请用画树状图的方法求两次摸出的乒乓球的数字之积为偶数的概率. 分析从文字条件“不放回去”知,本题属于“显性不放回”.本题中的事件是摸两个乒乓球,看乒乓球的数字,由此可以确定事件包括两个环节,所以树状图应该画两层.第一个乒乓球的数字可能是1,-2,3,-4等4个中的一个,所以第一层应画4个分叉;由于不放回,第二个乒乓球的数字可能是剩下的3个中的一个,所以第二层应接在第一层的4个分叉上,每个小分支上,再有3个分叉,画出树状图. 解根据题意画树状图如图2. (1)由图2可知,共有12种可能结果,分别为: (1,-2),(1,3).(1,-4),(-2,1),(-2,3),(-2.-4),(3,1),(3,-2),(3,-4),(-4,1),(-4,-2),(-4,3). 故答案为12.

高等数学(专升本)学习指南讲解

高等数学(专升本)学习指南 一、判断题 1.2(ln log )'x x += 11 ln 2 x x + ,是否正确( 对 ) 解:对原式直接求导即可得到。 ()2ln 11(ln log )'ln ln 2ln 2 x x x x x x '??'+=+=+ ? ?? 2. 函数sin y x x =-在区间[0,2]π上是单调减少,是否正确( 错 ) 解:函数y 的导数 1cos 0y x '=-≥ 其中,[]0,2x π∈ 所以函数y 在该区间是个递增函数。 3.22 32sin lim 12cos x x x x x x x →∞-+=--,是否正确( 对 ) 解:原式:2232sin lim 2cos x x x x x x x →∞-+-- 原式分子sin x 有界,分母cos x 有界,其余项均随着x 趋于无穷而趋于无穷。 这样,原式的极限取决于分子、分母高阶项的同阶系数之比。 得到:22 2 232sin lim lim 12cos x x x x x x x x x x →∞→∞-+?=-- 4.设2tan y x =,则22tan sec dy x xdx =,是否正确( 对 ) 解:对原式关于x 求导,并用导数乘以dx 项即可,注意三角函数求导规则。

()() 22'tan tan 2tan 2tan sec y x d x x dx x x '=== 所以, 22tan sec dy x x dx =,即22tan sec dy x xdx = 5. 221 2 x x e dx e c --=-+?,是否正确( 对 ) 解:()22211222 x x x e dx e d x e C ---=- -=-+?? 6.(sin cos )'cos sin x x x x +=-,是否正确(对 ) 解:(sin cos )'sin cos cos sin x x x x x x ''+=+=- 7.函数2(2)y x =-在区间[0,4]上极小值是1,是否正确(错 ) 解:对y 关于x 求一阶导,并令其为0,得到()220x -=; 解得x 有驻点:x=2,代入原方程验证此为其极小值点。 8. sin lim x x x →∞=1,是否正确( 错 ) 解:因为 1sin 1x -≤≤有界, 所以 sin lim 0x x x →∞= 9.设1arctan y x =,则2 1 1dy dx x =+,是否正确(错) 解:222 11 11arctan 111dy y x x x dx x '? ??? '== ?-=-= ? ?+? ?? ???+ ??? 所以,2 1 1dy dx x =-+ 10.2 21x dx x =+? c x ++)1ln(2 ,是否正确( 对 )

最全最实用的高等数学公式大全讲解

高数工本阶段公司 空间解析几何和向量代数: 。 代表平行六面体的体积为锐角时, 向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。 与是向量在轴上的投影:点的距离:空间ααθθθ??,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(22 2 2 2 2 2 212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a k j i b a c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u AB AB AB j z z y y x x M M d z y x z y x z y x z y x z y x z y x z y x z z y y x x z z y y x x u u ??==??=?=?==?=++?++++=++=?=?+=+?=-+-+-==

(马鞍面)双叶双曲面:单叶双曲面:、双曲面: 同号) (、抛物面:、椭球面:二次曲面: 参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程: 1 1 3,,2221 1};,,{,1 302),,(},,,{0)()()(122 222222 22222 222 22220000002 220000000000=+-=-+=+=++??? ??+=+=+===-=-=-+++++= =++=+++==-+-+-c z b y a x c z b y a x q p z q y p x c z b y a x pt z z nt y y mt x x p n m s t p z z n y y m x x C B A D Cz By Ax d c z b y a x D Cz By Ax z y x M C B A n z z C y y B x x A 多元函数微分法及应用 z y z x y x y x y x y x F F y z F F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u x v v z x u u z x z y x v y x u f z t v v z t u u z dt dz t v t u f z y y x f x y x f dz z dz z u dy y u dx x u du dy y z dx x z dz - =??-=??=? -?? -??=-==??+??=??+??===??? ??+?????=??=?????+?????==?+?=≈???+??+??=??+??= , , 隐函数+, , 隐函数隐函数的求导公式:   时, ,当 : 多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22

高等数学(同济大学版) 课程讲解 1.3函数的极限

课时授课计划 课次序号:03 一、课题:§1.3 函数的极限 二、课型:新授课 三、目的要求:1.理解自变量各种变化趋势下函数极限的概念; 2.了解函数极限的性质. 四、教学重点:自变量各种变化趋势下函数极限的概念. 教学难点:函数极限的精确定义的理解与运用. 五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合. 六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编, 高等教育出版社; 2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社. 七、作业:习题1–3 1(2),2(3),3,6 八、授课记录: 九、授课效果分析:

第三节 函数的极限 复习 1.数列极限的定义:lim 0,N,N n n n x a n x a εε→∞ =??>?>-<当时, ; 2.收敛数列的性质:唯一性、有界性、保号性、收敛数列与其子列的关系. 在此基础上,今天我们学习应用上更为广泛的函数的极限. 与数列极限不同的是,对 于函数极限来说,其自变量的变化趋势要复杂的多. 一、x →∞时函数的极限 对一般函数y =f (x )而言,自变量无限增大时,函数值无限地接近一个常数的情形与数列极限类似,所不同的是,自变量的变化可以是连续的. 定义1 若?ε>0,?X >0,当x >X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )-A |<ε),则称x →+∞时,f (x )以A 为极限,记为lim x →+∞ f (x )=A . 若?ε>0,?X >0,当x <-X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )-A |<ε),则称x →-∞时,f (x )以A 为极限,记为lim x →-∞ f (x )=A . 例1 证明lim x =0. 证 0 -?ε>00-<εε, 即x > 2 1 ε.因此,?ε>0,可取X = 2 1 ε,则当x >X 0-<ε,故由定义1得 lim x =0. 例2 证明lim 100x x →-∞ =. 证 ?ε>0,要使100x -=10x <ε,只要x <l gε.因此可取X =|l gε|+1,当x <-X 时, 即有|10x -0|<ε,故由定义1得lim x →+∞ 10x =0. 定义2 若?ε>0,?X >0,当|x |>X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )-A |<ε),则称x →∞时,f (x )以A 为极限,记为lim x →∞ f (x )=A . 为方便起见,有时也用下列记号来表示上述极限: f (x )→A (x →+∞);f (x )→A (x →-∞);f (x )→A (x →∞).

《高等数学》课程规划详解

《高等数学》课程规划 第一章函数 基本要求:熟悉函数的基本性质、反函数、基本初等函数;掌握函数的性质、复合函数、初等函数。 重点:函数的性质、反函数。 难点:初等函数

第二章极限与连续 基本要求:了解复合函数的连续性、初等函数的连续性;熟悉极限的基本理论及定义,极限存在准则,闭区间上连续函数的性质;掌握两个重要极限、无穷小的比较、等价无穷小代换、连续函数的定义及运算、函数间断点的类型。 重点:函数的性质;极限的性质、四则运算法则;无穷小阶的比较;两个重要极限。 难点:函数在某点处的左、右极限;利用等价无穷小代换求极限;用两个重要极限求极限。

第三章导数与微分 基本要求:了解导数的概念及意义,微分形式的不变性;熟悉微分的定义,导数概念与微分概念的联系与区别;掌握复合函数、隐函数及含参数方程所确定函数的求导运算。 重点:导数概念、函数的可导性与连续性的关系;复合函数求导的链式法则;隐函数求导;由参数方程所确定的函数的导数;函数可微性与可导性的关系。 难点:导数与微分在几何和物理上的应用。

第四章中值定理与导数的应用 基本要求:熟悉微分中值定理;掌握洛必达法则、函数的单调性与曲线的凹凸性、函数极值、最值的求法;了解函数图形的描绘。 重点:洛比达法则;函数单调性、凹凸性的判定;函数极值、最值的求法。 难点:微分中值定理及其应用;描绘函数的图形(包括渐近线)。

第五章不定积分 基本要求:了解积分表的使用;熟悉不定积分的概念;掌握不定积分的运算。重点:不定积分的基本性质、基本积分公式;两类换元积分法和分部积分法。难点:原函数和不定积分的概念;有理函数的不定积分。

《高等数学》不定积分课后习题详细讲解

不定积分容概要

课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1) 思路: 被积函数52x- =,由积分表中的公式(2)可解。 解:5 3 22 2 3 x dx x C -- ==-+ ? ★ (2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:114 111 333 222 3 ()2 4 dx x x dx x dx x dx x x C -- -=-=-=-+ ???? ★(3)2 2x x dx + ?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:223 2 1 22 ln23 x x x x dx dx x dx x C += +=++ ??? () ★(4)3) x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:3153 2222 2 3)32 5 x dx x dx x dx x x C -=-=-+ ??

★★(5)4223311 x x dx x +++? 思路:观察到422223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项, 分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ?34134(-+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-?? ???34134(-+-)2 223134ln ||.423 x x x x C --=--++ ★(8) 23(1dx x -+? 思路:分项积分。 解: 2231(323arctan 2arcsin .11dx dx x x C x x -=-=-+++?? ★★(9) 思路=11172488x x ++==,直接积分。 解:715888.15 x dx x C ==+? ★★(10)221(1)dx x x +? 思路:裂项分项积分。

相关主题
文本预览
相关文档 最新文档