当前位置:文档之家› 制动器起动、制动间隙、静制动力矩的调整方法

制动器起动、制动间隙、静制动力矩的调整方法

制动器起动、制动间隙、静制动力矩的调整方法
制动器起动、制动间隙、静制动力矩的调整方法

上海浦东万能达电机有限公司

上海浦东新区宝达电机有限公司

制动器起动、制动间隙、静制动力矩的调整方法

1.电动机起动后制动轮与制动臂相擦

当电动机起动运行后,有异味和异声产生且电机发热。这是由于电动机制动臂与制动轮相擦,制动轮与制动臂之间的间隙过小,造成带制动运行;这时需要调整制动臂与制动轮之间的间隙。调整步骤如下:(如图)

将电动机断电后,制动器通电打开——用手转动电动机转轴,观察哪一边制动臂与制动轮相擦——旋松螺母②——逐渐向内旋紧螺栓③——直至排除相擦现象为止——固定螺栓③——拼紧螺母②。

通过这样的调整,增大了制动器与制动臂之间的间隙,不管哪一边,同样操作。但注意制动臂与制动轮之间间隙不能过大,否则会造成在制动状态时,没有制动力矩或制动器打不开的现象。

2.电动机停机后电动机没有制动力

当电动机断电停机后,制动臂不能有效地刹住制动轮。一般而言,这是因为制动间隙过大或制动臂磨擦材料磨损造成的制动间隙过大。这时也需要调整制动臂与制动轮之间的间隙。调整步骤如下:

将电动机断电后,制动器通电打开——旋松螺母②——逐渐向外旋紧螺栓③——直至制动臂与制动轮相接触,然后反方向(向内)旋动螺栓二分之一圈~四分之一圈——

固定螺栓③——拼紧螺母②。

通过这样的调整,减少了制动臂与制动轮之间的间隙。不管哪一边,同样操作。但注意此时应开机观察制动臂与制动轮之间有没有相擦现象。

3.制动器通电后不动作

(1)单边不动作

a、这一边的弹簧过紧,需要旋紧螺母①。方法见“4.静制动力矩的调整”。

b、制动臂与制动轮之间的间隙过大或过小,按上述1,2方法调整。

(2)两边均不动作

a、检查制动器接线电源,测试电压:N、L端为交流输入电源,若输入AC220V,

则单边励磁绕组端为DC100V;若输入AC110V,则单边励磁绕组端为DC50V。

b、检查制动器励磁线圈,测试室温下的对地绝缘电阻,应≥0.5MΩ。

c、检查制动器两边推杆伸缩是否有卡死现象。

4.静制动力矩的调整

要求增大静制动力矩时,只要旋紧螺母①,使弹簧压紧,直至达到规定需要的静制动力矩时为止(两边同步)。左右两边均按此方法同步调整(要求左右两边弹簧的压缩量尽量保持基本一致)。要求减小静制动力矩时,调整步骤与上述相同,不同之处就是将旋紧螺母①变成旋松螺母①。

如需测试静制动力矩时,只要在电动机上端轴伸处套上力矩扳手,按力矩扳手使用方法,就能测出此时的静制动力矩。

5.自动扶梯现场安装调试时制动力矩、制动间隙的调整

a、切断电动机电源。

b、检查制动器左右推杆与制动臂调整螺栓端面的间隙,保持在1.5±0.05毫米,锁紧调整螺栓。(注意:测量制动器间隙时,可用手将电磁铁推杆向内推入后测量)

c、接通制动器电源,使制动器打开,然后启动电动机,使电动机正常运行后,立即切断电动机与制动器电源,观察此时(即停车时)溜车距离,进行调整制动臂上两根压力弹簧,反复进行调整,直至符合要求时为止。

天车制动器调整方法及注意事项

天车制动器调整方法及注意事项: 1.制动器上共有可调整位置三处,示意图上对应符号位A、B、C。 2.A为顶杆;B为主弹簧;C为制动器架调节螺丝。 3.顶杆的作用是保证液力推动器活塞有足够的行程。 当制动器打开时,如闸瓦张开距离过小、液力推动器行程过小,则调整顶杆,同时观察液力推动器活塞杆的伸出量,一般为3mm左右即可。 4.主弹簧的作用是保证制动器工作时能够产生足够的制动力。 当制动器工作时,如发现制动力不足,要立即调整主弹簧的压缩力,以便产生足够的制动力。一般意义上的“调抱闸”,说的就是调整主弹簧,而不是调整顶杆。 5.制动器调节螺丝的作用是调节闸瓦与闸轮的间隙。 当更换制动器架、更换闸皮、更换闸轮时,如发现闸瓦与闸轮间隙过小,则要将盖螺丝退出几圈,同时要调整顶杆、主弹簧,保证闸瓦与闸轮有适当的间隙,一般为3mm。在保证闸瓦与闸轮间隙适当的前提下,保证液力推动器行程适当、制动力适当。 注意: 液力推动器必须保证有充足的油液

行车行走速度V 行车减速时间t 行车正常减速距离L=0.5*V*t 行车抱闸的安全滑行距离 行车动能W=0.5*m*V*V 行车抱闸后,在轨道上滑动,滑动摩擦力为F=m*g*μ 行车抱闸的安全滑行距离S=W/F (一)大车运行机构的传动形式及组成 大车运行机构的传动形式可分为两大类:一类为分别驱动形式(下图a),另一类为集中驱动形式(下图b)。分别驱动形式与集中驱动形式相比,其自重较轻,通用性好,便于安装和维修,运行性能不受吊重时桥架变形的影响,故目前在桥式起重机上获得广泛采用。集中驱动形式只用于小起重量和小跨度的桥式起重机。 大车运行机构构成如下图所示,是由电动机、齿轮联轴器及传动轴、减速器、车轮组、制动器等构成。由电动机经减速器传动所带动的车轮组称为主动车轮组,无电动机带动只起支承作用的独立车轮组称为从动车轮组。当电动机通电后,常闭

盘式制动器制动间隙调整测量方法

盘式制动器制动间隙调整测量方法 为确保前轴盘式制动器正确使用,现对前轴盘式制动器制动间隙的 制动间隙的测测量方法进一步明确规范,请认真参阅执行。测量制动间隙前,应首 应首先先 活塞总成)可以正常工作。本确认间隙自动调整机构((AZ9100443500 AZ9100443500 AZ9100443500活塞总成) 文首先表述如何判断活塞总成是否可靠工作,再进一步说明制动间 再进一步说明制动间隙隙的测量方法。

(盘式制动器外形)外形)/ /(各部件名称)判断活塞总成是否有效: 1、用SW10SW10扳手逆时针转动手调轴至极限位置(大体上逆时针旋转扳手逆时针转动手调轴至极限位置(大体上逆时针旋转扳手逆时针转动手调轴至极限位置(大体上逆时针旋转两两周),而后反向微调少许(以防螺纹发卡),而后反向微调少许(以防螺纹发卡); ;2、在气压足够大的情况下,原地连续踩刹车、在气压足够大的情况下,原地连续踩刹车101010次左右。注意:踩刹 次左右。注意:踩刹车时将扳手扣在手调轴上,以观察刹车时手调轴是否转动,正常现正常现象象应该是开始几次制动时扳手转动(顺时针)角度较大,越来越小,最后稳定到某个角度,此时即表明间隙已经调整到设计值。如果踩刹如果踩刹车车时手调轴不转动或者有逆时针转动状况,则该自动调整机构(活塞(活塞总总成)已不能正常工作,必须更换。 图一图一//图二图二/ /图三

制动间隙的测量: 盘式制动器从设计结构上已设定了制动间隙,并且制动间隙是自动并且制动间隙是自动调 调整的,不允许人为调整,制动间隙在0.80.8~ ~1.0mm 范围内是正常的。如果整车使用过程中出现左右制动力差值偏大、制动力不足或制动制动力不足或制动过过热等故障现象时,可按如下步骤检查制动间隙: 1、拆下压板(如塞尺插入方便可不拆压板),向箭头所指方向推动向箭头所指方向推动钳 钳体,使外侧制动块与制动盘紧密结合。(图一) 2、拨动内侧制动块使其靠近制动盘,测量间隙活塞总成整体推盘与制动块背板之间的间隙。(图二) 3、整体推盘与制动块背板之间的间隙应在、整体推盘与制动块背板之间的间隙应在0.80.80.8~ ~1.mm 之间,如小于0.8mm 0.8mm,应更换间隙自动调整机构(,应更换间隙自动调整机构(,应更换间隙自动调整机构(AZ9100443500AZ9100443500AZ9100443500活塞总成)(图三)活塞总成)注意事项: 盘式制动器从设计结构上已设定了制动间隙,并同时保证了制动间并同时保证了制动间隙 隙的自动调整。制动块和制动盘的间隙在制动块寿命期内是永远保持制动块和制动盘的间隙在制动块寿命期内是永远保持不不变的,只需按整车维修保养手册,定期检查制动块的磨损情况。因因此 此1.必须按上述正确方法测量制动间隙; 2.当制动块的摩擦材料的最小厚度小于2mm 时,必须更换制动块(此情况属于正常磨损,不属于三包范围)

PZD盘式制动器调整方法

制动系统调整方法 1 总则 制动器是安全部件!只允许专业的、受过培训的人员对制动器进行安装、 调试和维修工作。 制动力矩是基于闸片的摩擦系数为0.45,这些数据只使用于下列工作条件: 保护摩擦面,使之不受油污、雨水和冰雪的侵蚀。 保证闸片不接触任何溶剂。 制动盘两侧面跳动(包括形位公差)最大为0.1mm。 闸瓦施力所引起的制动轮的变形量最大为0.1mm。 制动盘表面粗糙度Ra低于3.2。 最大制动时间为0.8s。 制动盘稳态温度:≤180℃。 2 制动器调整 1.导向套 2.调整螺栓M6X50 3.锁紧螺母M6 4.螺杆 5.基座 6.动铁芯盘 7.线圈骨架部件 8.手动松闸手柄 9.螺钉10.螺栓M12 11.弹簧座12.小弹簧13.闸片14.调整垫片15.螺钉16.螺钉17.限位销18.微动开关

通常情况下,制动器出厂已经调整好,无需再进行调整(闭闸情况下,B=0.5-0.6mm,开闸情况下,A=15.5-15.6mm,制动盘两侧间隙分别为0.25-0.3mm)。 当曳引机运行出现制动器闸片与制动盘侧面相摩擦、制动噪音大的情况时,要对盘 式制动器进行调整,调整方法如下: 断电抱闸,用塞尺检查盘式制动器的基座1与调整螺栓2之间的间隙(要求为0.2mm),

若不符合要求,进行调整:松开锁紧螺母3,用开口扳手(规格为10mm)逆时针(曳引轮侧方向看)转动调整螺栓,使调整螺栓与基座的间隙减小(两件调整螺栓与基座的间隙应相同);反之,使间隙增大,调整至符合要求,紧固锁紧螺母。 3 刹车状态的监控 通过微动开关可以监控刹车的制动状态。微动开关的触点有常开和常闭两种,可由客 户按需要连接。开关的界线方式详见后面的接线示 意图。 C尺寸为调整螺栓端部到微动开关触点的距离,通常闭闸状态下调整为0.15mm。 我公司选用的微动开关的最大容量为:250V AC/5A 4 启动 在进行功能测试时,要保证电机静止和未接通电源,并且加以固定,以防止意外重新启动。 制动系统的电气连接完成后,要求进行功能测试,通过转动电机轴检查制动盘的空运转(进行测试时,制动系统通电,而电机不通电)。 刹车的表面温度有可能超过100℃。因此,不要让温度敏感器件、如一般电缆或电子部件、经过或固定在刹车装置上。如有必要、要采取适当的防护措施,以防意外接触。如果在调试过程中要转动电机轴(电机未接通电源),可电气释放刹车装置。如有必要也可通过手动释放。

LEHYIII曳引机制动器间隙检查及均匀性调整

3.3.3.检查制动器间隙 制动器间隙要求: 松闸时,确认制动盘的摩擦片与制动盘不发生摩擦; 抱闸时,制动器间隙(制动器电枢与衔铁之间的间隙)为0.4mm~0.55mm。制动器间隙检查位置: 如图3- 6所示,制动器间隙为制动器电枢与衔铁之间的间隙; 如图3- 7所示,用塞尺分别在制动器圆周三个不同的位置进行间隙检查。 图3- 6 制动器间隙位置 图3- 7 制动器间隙检查示意图

3.3. 4. 检查制动器摩擦片磨损量 若制动器摩擦片与沉头螺钉的间隙≤0.8mm 时或制动器间隙大于0.8mm 时,需要更换制动器摩擦片组件或更换制动器。沉头螺钉位置参照图3- 6所示。 3.3.5. 检查与调整制动器间隙均与性 (1) 松闸状态下,间隙均匀性调节螺栓头部应接触定子机座安装面, 图3- 8 间隙均匀性调节螺栓位置照片 (2) 单个制动器松闸状态下,用塞尺检查每个制动器两侧摩擦片分别与制动盘表面的间 隙A 与B (精确到0.01mm ), (3) 确保0.05A B mm ?≤, (4) 若A >B ,则逆时针旋出间隙均匀性调节螺栓;若A <B ,则顺时针旋入间隙均匀 性调节螺栓, (5) 锁紧间隙均匀性调节螺母,固定间隙均匀性调节螺栓,并用记号笔在螺栓上做记号。 注意: 每个制动器配置有左右两处间隙均匀性调节螺栓,操作时应同时拧紧。 间隙均匀性 调节螺栓

图3- 9 制动器间隙均匀性调节示意图 3.3.6.检查制动器吸合时动作声音 制动器内部设有用于吸收制动器吸合时动作声音的缓冲橡胶。 在制动器间隙满足要求的前提下,若制动器吸合时动作声音明显变大,应及时调整或更换制动器缓冲橡胶。参照3.3.7进行制动器缓冲橡胶调整。 注意: 出厂时制动器动作噪音要求小于60dB(A),经过较长时间动作,制动器噪音会相应增加,尤其是摩擦片磨损后,噪音增加会更明显。制动器动作噪音不应超过70dB(A)。 3.3.7.调整制动器缓冲橡胶 制动器缓冲橡胶调整参照如下步骤,如图3- 10所示: (1)擦除六角螺母和内六角平端紧定螺钉处(共4处)的标记线; (2)使制动器处于断电抱闸状态,松开六角螺母(注意操作时应防止螺钉随螺母跟转), 顺时针拧紧内六角平端紧定螺钉10°; (3)拧紧六角螺母(注意操作时应防止螺钉随螺母跟转),锁紧内六角平端紧定螺钉;

轻型货车鼓式制动器设计

轻型货车鼓式制动器设计 制动系统在汽车中有着极为重要的作用,如果失效将会造成灾严重的后果。制动系统的主要部件就是制动器,在现代汽车上仍然广泛使用的是具有较高制动效能的蹄—鼓式制动器。 鼓式制动也叫块式制动,现在鼓式制动器的主流是内张式,它的制动鼓位于制动轮内侧,刹车时制动块向外张开,摩擦制动鼓的内侧,达到刹车的目的。本设计就摩擦式鼓式制动器进行了相关的设计和计算。在设计过程中,以实际产品为基础,根据我国工厂目前进行制动器新产品开发的一般程序,并结合理论设计的要求进行设计。首先根据给定车型的整车参数和技术要求,确定制动器的结构形式、驱动形式及制动器主要参数,然后计算制动器的制动力矩、制动效能因数、制动减速度、制动温升等,并在此基础上进行制动器主要零部件的结构设计,如制动鼓、制动蹄、制动底板等。最后,完成装配图和零件图的绘制。 1.1选题背景与意义 随着汽车性能的提高,对汽车安全性能的要求也越来越高。制动器是汽车制动系统中最重要的安全部件,对汽车的安全性有着重要的作用,因此对制动器的设计进行分析研究有着重要的意义。鼓式制动器作为现代汽车广泛使用的具有较高制动效能的制动器,尽管对其的设计研究取得了一定的成绩,但是对传统鼓式制动器的设计仍然有着不可替代的基础性和研发性作用,也可以为后续设计提供理论参考。这样,在以后的设计研究当中,不仅可以延续鼓式制动器的优点,还能在此基础上设计出制动性能更好的制动器,满足汽车的安全性和乘员舒适性,提高汽车的整体性能。 1.2研究现状 长期以来,为了充分发挥鼓式制动器的重要优势,旨在克服其主要缺点的研究工作和技术改进一直在进行中,尤其是对鼓式制动器工作过程和性能计算分析方法的研究受到高度重视。这些研究工作的重点在于制动器结构和实际使用因素等对制动器的效能及其稳定性等的影响,取得了一些重要的研究成果,得到了一些比较可行、有效的改进措施,制动器的性能也有了一定程度的提高。 如以某汽车前轮鼓式双领蹄式制动器的制动蹄为研究对象,进行了受力分析并建立了力学模型,使用Pro/E建立了CAD模型,运用ANSYS进行了有限元

提升机制动系统计算

提升机制动系统计算 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

提升机制动系统的验算 一、副井最大静张力、静张力差的验算: 副井技术参数: 绞车型号:2JK —20 罐笼自重:3450kg 一次提物载重量:6332kg 提人重量:1275kg 提升高度:540m 每米绳重m 最大静张力:17000kg 最大静张力差:11500kg 变位质量:64228(kg s2/m ) 楔形连接器:227 kg 盘形制动器型号:TS-215(闸瓦面积749cm 2,摩擦半径1.7m ,油缸作用面积138cm 2,液压缸直径15.4cm,活塞杆直径7.0cm ,一个油缸产生的最大正压力6300kg )。 液压站型号:GE131B 型(制动油最大压力,最大输油量:9L/min,油箱储油量:500L ,允许最高油温:65℃)。 1、最大静张力的验算: PH Q Q Q F Z j +++=21m ax = 718+2448+3450+227+3569 =10413kg<18000kg 式中: Q 1—矿车重量 Q 2—碴重量 Q Z —罐笼自重(包括楔形连接器) P — 钢丝绳自重 H — 提升高度

通过计算,提升机最大静张力10413kg 小于提升机允许的最大静张力18000kg ,符合《煤矿安全规程规程》第382条规定要求。 2、最大静张力差的验算: PH Q Q F c ++=21m ax =3166+3443 =6609kg 〈12500kg 式中:Q 1—矿车重量, kg Q 2—碴重量, kg 通过计算,提升机最大静张力差6609kg ,小于提升机允许的12500kg ,符合《煤矿安全规程》第382条规定要求。 二、安全制动力矩的验算: 1、安全制动力矩: 式中: M Z —安全制动力矩 μ — 闸瓦与制动盘摩擦系数, R m — 摩擦半径,1.7m n — 制动闸副数,8副 N — 制动盘正压力 N=)/(C K F n l +?- K — 碟形弹簧刚度,4100kg/mm ?— 闸瓦最大间隙,2mm n l — 一组碟形弹簧片数,8片 C — 制动器各运动部分的阻力,

如何调整气压制动和制动器间隙

如何调整制动间隙 现在很多车主对自己爱车的制动性能都特别关心,城市用车刹车制动的情况太多,会不会时间久了刹车就越来越差?制动距离会不会越来越长?制动失效怎么办?现在我们围绕着汽车制动系统聊一聊。 首先,我们先聊下什么是制动蹄片? 制动蹄片这个词可能很多人不太清楚,那它的另一个名称估计就都知道了,制动蹄片也就是我们俗称的刹车片,刹车片是受到刹车凸轮或推杆的作用而被推向外展开压制刹车鼓,进而起到制动作用的配件。 其次,平时车辆制动系统都易出哪些方面的问题呢? 制动磨损这个是避免不了的,伴随着磨损,制动间隙也会随之增大。磨损易导致制动器间隙不一致,并容易产生制动工作时间延长,车辆跑偏、车辆甩尾等问题。第三,为解决这些问题,制动系统相关养护工作要做好。 1.车辆正常行驶5000公里必须检查刹车片,包括刹车片剩余厚度、刹车片磨损状态、两边磨损程度等。 2.不要让刹车片磨没了再更换,即便看着还能用一段时间,也会大大降低制动效果,影响驾车安全。 3.刹车片更换最好选择原厂提供的备件,目的是制动效果最好,磨损最小。 4.更换完后踩几下刹车踏板,消除刹车片与制动盘之间非固定间隙。 5.新的刹车片更换好后,要谨慎制动,适应新的刹车状态。 最后,刹车片间隙调整 刹车片与制动鼓之间必须留有一定的间隙。刹车片间隙不符合要求,将直接影响汽车的制动性能。

1.顶起车轮并确认轮毂无摇动,拆下调整孔的防尘塞,检查刹车片状况,若磨损到使用极限标记时,及时更换蹄片。 2.检查车轮制动器蹄片与制动鼓间隙时,将制动踏板踩到底,测量制动踏板外边缘至驾驶室前围板的距离应不小于规定值。若小于规定值,说明制动摩擦片磨损,间隙增大,应进行调整。 3.调整时,由调整孔插入螺丝刀,向箭头所示方向拨动调整齿轮,直到车轮不能转动为止。踩下数次制动踏板,再次确认车轮不能转后,倒拨4~5齿。此时,将选择好的厚度合适的塞尺插入到制动鼓,拔出塞尺,若感到有一定的阻力为合适。如不合要求,可拨动调整齿轮进行调整。用同样的方法调整另一侧蹄片间隙。 4.用手转动车轮,车轮应能圆滑转动,没有滞磨现象。如感到有滞磨现象,可将调整齿轮再松回1~2齿。装上调整孔防尘塞,然后起动汽车,以30km/h的速度试验制动器的制动效果,检查有无偏刹或其他异常现象。如有偏刹或其他异常现象,应重新调整制动器。 5.部分新车的鼓式制动器装有蹄片间隙自调装置。自调装置在倒车时起作用,因此要在慢慢倒车时,踩下制动踏板。有的车自调装置是通过手制动作用的。在这种情况下,要拉起手制动杆,就可以达到调整车轮蹄片间隙的目的。 车辆制动系统间隙的调整,这些工作由专业维修技师来完成,车主只要注意爱车的使用情况,平时注意感知车辆的行车状态,按照正常的制动系统养护周期,到有车辆维修及保养资质的单位,给爱车做好保养服务就可以了。

《气压盘式制动器制动力矩的计算》

T= 气压盘式制动器制动力矩的计算 1.制动力矩 在气压盘式制、动器中,制动力矩T f 主要来源于压力臂(增力杠杆元件)对气室推力Q 的放大,我们将其称之为传动比K ,经过增力机构放大的正推力为W p ,则W p =KQ 。 ηηe e p f KQfR fR W T 22== Tf=2W P fRe η Q ——气室推力; f ——摩擦块的摩擦系数; R e ——制动半径; η——机械传动效率。 2.制动半径 根据右图,在任一单 元面积RdR ?d 上的摩擦力 对制动盘中心的力矩为 ?dRd fqR 2,式中q 为衬块与 制动盘之间的单位面积 上的压力,则单侧制动块作用于制动盘上的

制动力矩为: θ?θθ)(322313222 1R R fq dRd fqR T R R f -==??- 单侧衬块给予制动盘的总摩擦力为: θ?θθ)(21 222 1R R fq dRd fqR fW R R p -==??- 得有效半径为: )2]()(1[34322212212121223132R R R R R R R R R R fW T R P f e ++-=--?== 式中R 1=134,R 2=214(考虑到制动盘的倒角) 计算得:R e =177。 3.压力臂力臂 下图为装配状态压力臂的工作范围图: 由上图简化成下列坐标关系:

坐标原点为气室推杆的安装基点; 压力臂工作圆心的坐标点为(67.57,38.84),极坐标为(77.94,29.892°); 工作半径R =67.65; 工作范围:α=74°~90°~85.83°; 气室推杆端部球头圆心的运动轨迹方程: 220002)cos(2R =+--ρααρρρ (1) 其中94.770=ρ;?=892.290α;65.67=R 代入(1)式得:012.1498)892.29cos(88.1552 =+?--αρρ (2) 设气室推出长度为H ,10-=ρH 。 制动力臂的长度为L ,由坐标关系图可以得到下式: ααsin )84.3857.67(ctg L -= (3) 因此,测出气室的推出长度,就可以求出压力臂的力臂长度。

调整制动间隙

调整制动间隙 车轮制动器制动间隙的调整分局部调整和全面调整两种。局部调整只需调整制动蹄的张开端,通常用于车辆在运行过程中因蹄鼓的间隙变大而进行的调整。全调整需同时调整制动蹄片两端的位置,通常用于更换制动蹄衬片或镗削制动鼓后为保证制动蹄与制动鼓的正确接触而进行的调整。对于不设置固定端的自动增力式车轮制动器而言,没有全面调整和局部调整之分。 (1)液压制动系鼓式车轮制动器 其局部调整的步骤如下: 1)顶起车轮,一边转动车轮,一边向外转动调整凸轮螺栓,直至制动蹄压紧制动鼓为止。转动车轮时,应有一定的方向,即调整前轮两蹄和后轮的前制动蹄时向前转动车轮;调整后轮后制动蹄时向后转动车轮。 2)向内转动调整凸轮螺栓,直至车轮能自由转动而制动蹄与制动鼓不碰擦。 3)用同样的方法调整其他调整凸轮螺栓。 4)用塞尺检查蹄鼓间隙应符合规定。 全面调整的方法如下: 1)按局部调整的方法转动调整凸轮螺栓至制动鼓不能转动为止 2)向能够转动支承销的方向转动支承销。 3)重复上述的1)、2)两步,直至调整凸轮螺栓与支承销均不能转动为止。 4)锁紧支销后,向内转动偏心轮螺栓,直至车轮能自由转动且制动筛与制动鼓不碰擦。 5)在检视孔用塞尺测量蹄鼓间隙。支承轴端为0.15m.张开端为0.3mm。 (2)气压制动系鼓式车轮制动器 局部调整的步骤如下: 1)支起车桥,使车轮能够自由转动。 2)推进调整臂的锁止套. 用扳手转动蜗杆轴使制动路压紧制动鼓(搬动蜗杆轴时应注意观察凸轮轴的转动方向应为其工作方向),至蜗杆轴不能再转动为止。 3)以反方向退回蜗杆轴至车轮自由转动且石碰擦制动鼓。 4)用塞尺检查制动器蹄鼓间隙,靠近凸轮端为0.4~0.7mm,靠近支承销端为0.22~0.5mm。5)用锁止套锁紧蜗杆轴。局部调整时应注意不允许用改变制动气室推杆总长度的方法来 调整制动间隙,因为这样会减小使蹄片张开的推动力。 全面调整的步骤如下: 1)松开凸轮轴支架的固定螺栓,使凸轮获得一定的自由度,以便其自动找正中心。 2)转动调整臂的蜗杆轴使制动蹄压向制动鼓,至蜗杆轴不能再转动为止。晃动凸轮轴支架,使凸轮位置居中。 3)向可以转动的方向转动两支承销,直至制动蹄片固定端抵住制动鼓,支承销不能再转动力止: 4)重复②、③两步,直至制动蹄片的两端均抵住制动鼓,蜗杆轴和支承销不能再转动为止。在此位置上,先将凸轮轴支架固定和支承销固定,然后转动调整臂的螺杆袖,使制动肺片退回,两端出现间隙。 5)用厚薄规检查制动蹄鼓的间隙应符合要求。

鼓式制动器 设计说明书

车辆工程专业课程设计题目:鼓式制动器设计 学院机械与能源工程学院专业车辆工程 年级车辆10级班级车辆1012 姓名李开航学号 2010715040 成绩指导老师赖祥生

精品文档 目录 第1章绪论....................................................... 1.1制动系统设计的目的 (1) 1.2制动系统设计的要求 (1) 第2章鼓式制动器的设计计算及相关说明 (2) 2.1鼓式制动器有关计算 (2) 2.1.1基本参数 (2) 2.1.2确定前后轴制动力矩分配系数β (2) 2.1.3鼓式制动器制动力矩的确定 (3) 2.2鼓式制动器的结构参数与摩擦系数的选取 (4) 2.2.1制动鼓半径 (4) 2.2.2制动鼓摩擦衬片的包角、宽度、和起始角 (4) 2.2.3张开力作用线至制动器中心的距离 (4) 2.2.4制动蹄支销中心的坐标位置 (5) 2.2.5摩擦片的摩擦系数 (5) 2.3后轮制动轮缸直径与工作容积的设计计算 (5) 2.4摩擦衬片的磨损特性计算 (6) 2.5驻车计算 (8) 第3章鼓式制动器主要零件的结构设计 (10) 3.1制动鼓 (10) 3.2制动蹄 (11) 3.3制动底板 (12) 3.4支承 (12) 3.5制动轮缸 (13) 3.6摩擦材料 (13) 3.7制动器间隙 (13) 第4章鼓式制动器的三维建模 (14) 第5章结论 (15) 参考文献 (16)

第1章绪论 1.1制动系统设计的目的 汽车是现代交通工具中用得最多,最普遍,也是最方便的交通运输工具。汽车制动系是汽车底盘上的一个重要系统,它是制约汽车运动的装置。而制动器又是制动系中直接制约汽车运动的一个关键装置,是汽车上最重要的安全件。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性要求越来越高,为保证人身和车辆的安全,必须为汽车配备十分可靠的制动系统。 1.2制动系统设计的要求 本次的课程设计选择了鼓式制动器,制定出制动系统的结构方案,确定计算制动系统的主要设计参数制动器主要参数设计和液压驱动系统的参数计算。利用CATIA绘制装配图,布置图和零件图。最终进行制动力分配编程,对设计出的制动系统的各项指标进行评价分析。 第2章鼓式制动器的设计计算及相关说明 2.1鼓式制动器有关计算

制动器的设计计算

§3 制动器的设计计算 3.1制动蹄摩擦面的压力分布规律 从前面的分析可知,制动器摩擦材料的摩擦系数及所产生的摩擦力对制动器因数有很大影响。掌握制动蹄摩擦面上的压力分布规律,有助于正确分析制动器因数。在理论上对制动蹄摩擦面的压力分布规律作研究时,通常作如下一些假定: (1)制动鼓、蹄为绝对刚性; (2)在外力作用下,变形仅发生在摩擦衬片上; (3)压力与变形符合虎克定律。 1.对于绕支承销转动的制动蹄 如图29所示,制动蹄在张开力P 作用下绕 支承销O ′点转动张开,设其转角为θΔ,则蹄片 上某任意点A 的位移AB 为 AB =A O ′·θΔ 由于制动鼓刚性对制动蹄运动的限制,则其径向位移分量将受压缩,径向压缩为AC AC =AB COS β 即 AC =A O ′θΔCOS β 从图29中的几何关系可看到 A O ′COS β=D O ′=O O ′Sin ? AC =O O ′Sin ?θΔ? 因为θΔ?′O O 为常量,单位压力和变形成正比,所以蹄片上任意一点压力可写成 q=q 0Sin ? (36) 亦即,制动器蹄片上压力呈正弦分布,其最大压力作用在与O O ′连线呈90°的径向线上。 2.浮式蹄 在一般情况下,若浮式蹄的端部支承在斜支座面 上,如图30所示,则由于蹄片端部将沿支承面作滚动 或滑动,它具有两个自由度运动,而绕支承销转动的 蹄片只有一个自由度的运动,因此,其压力分布状况 和绕支承销转动的情况有所区别。 现分析浮式蹄上任意一点A 的运动情况。今设定蹄片和支座面之间摩擦足够大,制动蹄在张开力作用

下,蹄片将沿斜支座面上作滚动,设Q 为其蹄片端部圆弧面之圆心,则蹄片上任意一点A 的运动可以看成绕Q 作相对转动和跟随Q 作移动。这样A 点位移由两部分合成:相对运动位移和牵连运动位移BC ,它们各自径向位移分量之和为 (见图 30)。 AD =AB COS β+BC COS(?-α) 根据几何关系可得出 AD =(θΔ·OQ +BC Sin α) Sin ?+BC COS αCOS ? 式中θΔ为蹄片端部圆弧面绕其圆心的相对转角。 令 θΔ·OQ +BC Sin ?=C 1 BC COS α=C 2 在一定转角θΔ时,1C 和2C 都是常量。同样,认为A 点的径向变形量AD 和压力成正比。这样,蹄片上任意点A 处的压力可写成 q=q 1Sin ?+q 2COS ? 或 q=q 0Sin(?+?0) 也就是说,浮式蹄支承在任意斜支座面上时,其理论压力分布规律仍为正弦分布,但其最大压力点在何处,难以判断。 上述分析对于新的摩擦衬片是合理的,但制动器在使用过程中摩擦衬片有磨损,摩擦衬片在磨损的状况下,压力分布又应如何呢?按照理论分析,如果知道摩擦衬片的磨损特性,也可确定摩擦衬片磨损后的压力分布规律。根据国外资料,对于摩擦片 磨损具有如下关系式 fqv K W 11= 式中 W 1——磨损量; K 1——磨损常数; f ——摩擦系数; q——单位压力; v ——磨擦衬片与制动鼓之间的相对滑 动速度。 通过分析计算所得压力分布规律如图31所 示。图中表明在第11次制动后形成的单位 面积压力仍为正弦分布αsin 132=q 。如果摩 擦衬片磨损有如下关系: 2222v fq K W = 式中 2K ——磨损常数。 则其磨损后的压力分布规律为αsin C q =(C

提升绞车的常用闸和保险闸制动计算

提升绞车的常用闸和保险闸制动计算 提升绞车的常用闸和保险闸制动时,每个闸所产生的制动力矩与实际提升最大静荷重旋转力矩之比K值都不得小于3。 当常用闸或保险闸制动轮与滚筒同轴时,由于制动轮直径和滚简直径不同,制动安全系数不能直接用制动力与最大静张力之比,必须用制动力矩与最大静荷重旋转力矩之比,即: K=F z R z /F r R r 式中 F z ——制动力; R z ——制动轮半径; F r ——钢丝绳最大静张力; R r ——钢丝绳提升中心到滚筒轴中心的旋转半径。 当常用闸或保险闸制动轮与滚筒不同轴时,还应将减速比和传动效率计算 在内,即K=(F z R z /F r R r )×i·η 式中 i——减速比; η——减速器传动效率。 常用闹和保险闸的作用是在需要时,能可靠地使提升系统停止运行。要使提升系统可靠地停止运行,每个闸的制动力矩只比最大静荷重旋转力矩大是不够的,还必须克服系统的转动惯量才能停住车。在充分考虑了重物下放时,制动力矩要克服最大静荷重和较大的系统转动惯量再有一定的安全系数后,确定K不得小于3。由于保险闸是在紧急情况下自动施闸的,如果系统转动惯量小,会使制动减速度大于提升容器的自然减速度,导致松绳,提升容器反向冲击,易断绳跑车。可使K≥2,因为上提重物停车时,钢丝绳承受的最小冲击张力是最大静张力的2倍。当K<2时,停车会不可靠,所以保险闸的K值不得小于2。 工作闸由于是人工控制施闸,不能造成施闸太急松绳跑车,必须K不得小于3。 保险制动的K值不小于2的第2个原因是,当前主井提升还没有全部达到定重装载,或定重装置失效时,提升容器将被装满为止,而货载在矸石多、水大(尤其是综合采煤放顶时,有时肝石很多)时,一台9t箕斗容积,可能装载达到×=17t,一台12t箕斗容积为,装载量可以达到22t。如果是等重平衡绳提升,最大静张力将达到额定值的~倍,如果保险制动K值达到2,就会因过载提升中过流保护动作停电制动不住而坠斗。 保险制动K值不得小于2的第3个原因是,一般提升机电机的过载能力为左右,绞车正常时在额定静张力(差)状态下工作,当箕斗里装满了矸石或矿车载重增加,挂车超多时,如果载重达到正常值的2倍以上,绞车提不动还可以,一旦没有超过电机的最大负载转矩,将重物提升中途,因过流保护动作而停电紧急制动时,也会因保险制动K值小于2而造成坠斗、跑车。例如某年7月,某矿一台回绳摩擦轮提升绞车,就是因为定重装置故障没有及时修复,将载重为12t的箕斗,装满了矸石,在提升未到终点时过流保护动作,保险制动后未闸住而高速坠斗,造成了全矿停产18天的重大提升事故。由此吸取的教训是,定重装载、保险制动K值不小于2非常重要。同时提升绞车的过电流整定,在不影响电机安全和寿命前提下,适当放宽反时限过流保护的时间是有好处的,而保护短路和严重卡斗的瞬动电流整定还是越小越好。 保险制动力是否越大越好呢,不是,保险制动的"保险",体现在特殊情况下需要紧急制动时,保险制动会自动、快速进行制动,因此要采用配重或弹簧

制动器间隙调整

制动器 适用于安装在旋转的制动盘上,用于停机制动、工作制动和紧急制动 制动器安装在齿轮箱的高速轴侧。该制动器是一个液压动作的盘式制动器,为常闭式,具有刹车间隙自动补偿功能。 主动式与被动式制动器 ?主动式:加压制动、泄压打开(SL3000) ?被动式:加压打开、泄压制动(SL1500) ?在首次安装制动器时,必 须检查主动制动器刹车片保 持架与制动盘之间的距离。 该距离必须大于1mm,小 于3mm。 刹车片更换: 取下制动器尾帽上的两个传感器; 手动打开制动器; 在尾帽中间传感器的安装孔内安装 气隙螺栓和垫圈,并手动拧紧 ①刹车片磨损传感器 ②制动器打开与未调整传感器 ③气隙螺栓和垫片

制动器最小打开压力、泵启动压力、停止压力、溢流压力、系统最大可承受压力 制动器最小打开压力:125bar 液压泵站启动压力:130bar 液压泵站停止压力:160bar 溢流压力:190bar 系统最大可承受压力:210bar

1:AWA定位装置的位置 主定位系统 辅助定位系统 2:制动间隙调整 2.1:制动器的安装,见下图 2.2制动间隙的调整 1)制动间隙调整前的制动钳相对于制动盘的位置。(见图2-1) O型圈 图2-1 图2-2 2)调试前先拆除制动器上的O型圈,位置在制动钳与基座之间。(见图2-2)3)松开主定位系统、辅助定位系统的螺栓、螺母。

图2-3 图2-4 完全拧松 4)检查滑动轴是否滑动顺畅。应能够用手指推动滑动轴上下运动。 若滑动不畅则可以松开顶部的螺栓进行微调。(产生原因为:拧紧安装螺栓(或螺母)时液压扳手有可能会带动AWA的安装基板产生位移。)同时检查滑动轴与定位轴之间的平面的间隙。 图2-5 图2-6 在滑动轴滑动不畅时此U型孔可进行微调。此时滑动轴应可以轻易滑动。 5)手动加压8~10次,注意:任何情况下手动加压的次数不应少于8次,目的是为了将制动器的制动间隙调整为2mm。间隙全部位于被动钳一侧 图2-7 图2-8 主动钳被动钳制动间隙2mm 6)泄压后使制动器进入闭闸状态。

《气压盘式制动器制动力矩的计算》

气压盘式制动器制动力矩的计算 (Calculation on braking torque of air disc brake ) 勇波 摘要: 气压盘式制动器ADB (air disc brake )制动力矩的大小,从一开始使用就是争论的焦点。本文试图从实证研究入手,建立制动力矩的数学模型。 关键词: 气压盘式制动器ADB (air disc brake ); 制动力矩——使汽车运动减速或停止的力矩; 压力臂——气压盘式制动器中产生增力的杠杆元件; 传动比——ADB 增力机构对输入力的放大比例。 参考书目: 《最新汽车设计实用手册》 林秉华 正文: 20世纪90年代,气压盘式制动器ADB (air disc brake )开始被广泛应用于商用车辆,近几年在国内发展迅速,城市公交客车、中高档客车已经普遍采用ADB 配置。但各种各样的仿制产品在行业内落地生根的同时,理论上的研究显得比较冷清。在此,我抛砖引玉,对ADB 产品的传动比和制动力矩的计算方法作一番探讨和归纳。 1.制动力矩 在气压盘式制动器中,制动力矩T f 主要来源于压力臂(增力杠杆元件)对气室推力Q 的放大,我们将其称之为传动比K ,经过增力机构放大的正推力为W p ,则W p =KQ 。 ηηe e p f KQfR fR W T 22== Q ——气室推力; f ——摩擦块的摩擦系数; R e ——制动半径; η——机械传动效率。 2.制动半径 根据右图,在任一单元面积RdR ?d 上的摩擦力 对制动盘中心的力矩为?dRd fqR 2,式中q 为衬块 与制动盘之间的单位面积上的压力,则单侧制动块 作用于制动盘上的制动力矩为: θ?θ θ)(3 223132221R R fq dRd fqR T R R f -==??- 单侧衬块给予制动盘的总摩擦力为: θ?θ θ)(212221R R fq dRd fqR fW R R p -==??- 得有效半径为:

制动力矩计算

鼓式制动器制动力矩的计算 1、制动器效能因数计算 根据制动器结构参数可知: A 、 B 、 C 、r 、φ、(结构参数意义见附图二) 其中θ为最大压力线和水平线的夹角。 由以下公式计算μ=0.35时(μ为摩擦片与制动鼓间摩擦系数),制动器领蹄和从蹄的制动效能因数。 θ=)tan(B C ar μγt a n ar = )t a n s i n s i n t a n (θφφφφθ+-=ar e θθγλ-+=e θθγλ+-=e ' φφφρsin 2sin 4+= r B A +=ξ r C B k 22+= 领蹄制动效能因数: 1sin cos cos 1-=?γ θρλξ?e k K

从蹄制动效能因数: 1 sin cos 'cos 2+=?γθρλξ ?e k K 制动器的总效能因数,可由领、从蹄的效能因数按如下公式计算: 2 11 24??φ?????+?=K K K K K 2、制动器制动力矩计算 单个制动器的制动力矩M 为: R P K M ??= 其中:K 为制动器效能因数 P 为制动器输入力,加于两制动蹄的张开力的平均值; R 制动鼓的作用半径,即制动器的工作半径r 制动器输入力η??=i F P /2 其中:F 为气室推杆推力,由配置的气室确定 i 为凸轮传动比,e L i /= (L 为调整臂臂长,e 为凸轮力臂,即凸轮基圆半径) η为传动效率,一般区0.63 例:某Φ400X180制动器,A=150 B=150 C=30 r=0.2 Φ=115° μ=0.35 η=0.63 通过上公式计算得1??K =1.530 2??K =0.543 2 11 24??φ?????+?K K K K K ==1.603 取F=9900N(0.6MPa 气压下气室输出力) L=125 e=12 R P K M ??==R L F K ????η/2e=1.603*9900*125*0.63*0.2/(2*12)

浅析鼓式制动器制动性能优化

浅析鼓式制动器制动性能优化 摘要随着汽车行业的快速发展,对其制动性能提出了较高的要求,而鼓式制动器属于柔性多体系统,在汽车领域得到了广泛的应用。然而,鼓式制动器在制动过程中,各个零件的受力情况和运动规律比较复杂,导致其性能无法得到有效的发挥。本文将借助刚柔耦合模型来对鼓式制动器进行仿真制动模拟,这样不仅可以获得相对比较准确的动力学分析结果,而且还可以优化鼓式制动器制动性能,提高鼓式制动器研发效率,更好地推动鼓式制动器在汽车领域的发展。 关键词鼓式制动器;制动性能;优化 1 鼓式制动器概述 鼓式制动器又被称之为块式制动器,其一般是通过制动块在制动轮上压紧以达到刹车的效果。实际上,鼓式制动器主流是内张式,在制动轮内侧分布有制动块(刹车蹄),在刹车过程中制动块向外张开,并对制动轮的内侧进行摩擦,从而实现刹车目的。 在鼓式制动器制动过程中,所存在的优点是:鼓式制动器符合传统设计,而且造价便宜。在制动过程中,四轮轿车由于惯性的影响,致使前轮制动力要比后轮大,而且在前轮的负荷占据了汽车总负荷的70%-80%,在该过程中后轮起辅助制动作用。对于重型车来说,车速一般比较低,与盘式制动器相比,刹车蹄的耐用程度高,因此至今大多数的重型车还在采用四轮鼓式的设计。 2 鼓式制动器制动性能优化 本文根据“试验设计一样本点获取一优化数学模型构建一优化算法的选择一优化设计一优化结果验证”的流程来对鼓式制动器制动性能优化进行研究[1]。首先根据鼓式制动器的实际情况来构建性能优化的数学模型,优化算法选择了多岛遗传算法,以制动力矩最大为目标对滚轮中心坐标A、内盖板宽度的一半、滚轮中心坐标P、滚轮半径、摩擦片起始角、摩擦片包角等六个参数进行优化,根据优化所得结果来构建汽车鼓式制动器刚柔耦合模型与仿真平台,实施动力学仿真验证,所得到目标函数优化前后及设计变量的变化情况如表1所示。 通过对表1中的数据进行分析可以发现,在整个性能优化实验中,只有滚轮中心坐标位置所发生的变化比较小,其余变量所出现的变化均比较大,反映出设计变量的改变情况对制动力矩所产生的影响,从中获得最佳搭配的参数,以更好地提高鼓式制动器制动性能。从本次研究结果中可以发现,在保持凸轮促动力固定不变的情况下,制动力矩提高了25.60%,但是优化后制动器的质量却降低了,从而反映出制动力矩的提升主要是结构优化的结果,通过对结构进行有效的优化能够使整个制动器的受力情况变得更加科学、更加合理,从而有效提高其制动力矩。

盘式制动器使用说明书

盘式制动器使用说明书 盘式制动器使用说明书盘式制动器使用说明书目录一、性能与用途.1二、结构特征与工作原理..1三、安装与调整..4四、使用与维护..9五、润滑...12六、特别警示...13七、故障原因及处理方法...12附图1:盘式制动器结构图...15附图2:盘形闸结 盘式制动器使用说明书 目录 一、性能与用途 (1) 二、结构特征与工作原理 (1) 三、安装与调整 (4) 四、使用与维护 (9) 五、润滑 (12) 六、特别警示 (13) 七、故障原因及处理方法 (12) 附图1:盘式制动器结构图 (15) 附图2:盘形闸结构图 (16) 附图3: 制动器限位开关结构图 (17) 附图4: 盘式制动器的工作原理图 (18) 附图5: 盘式制动器安装示意图 (19) 附图6: 制动器信号装置安装示意图 (20) 一、性能与用途 盘式制动器是靠碟形弹簧产生制动力,用油压解除制动,制动力沿轴向作用的制动器。 盘式制动器和液压站、管路系统配套组成一套完整的制动系统。适用于码头缆车、矿井提升机及其它提升设备,作工作制动和安全制动之用。 其制动力大小、使用维护、制动力调整对整个提升系统安全运行都具有重大的影响,安装、使用单位必须予以重视,确保运行安全。 盘式制动器具有以下特点: 1、制动力矩具有良好的可调性; 2、惯性小,动作快,灵敏度高; 3、可靠性高; 4、通用性好,盘式制动器有很多零件是通用的,并且不同的矿井提升机可配不同数量相同型号的盘式制动器; 5、结构简单、维修调整方便。

二、结构特征与工作原理 1、盘式制动器结构(图1) 盘式制动器是由盘形闸(7)、支架(10)、油管(3)、(4)制动器信号装置(8)、螺栓(9)、配油接头(11)等组成。盘形闸(7)由螺栓(9)成对地把紧在支架(10)上,每个支架上可以同时安装1、2、3、4对甚至更多对盘形闸,盘形闸的规格和对数根据提升机对制动力矩的大小需求来 确定。 2、盘形闸结构(图2) 盘形闸由制动块(1)、压板(2)、螺钉(3)、弹簧垫圈(4)、滑套(5)、碟形弹簧(6)、接头(7)、组合密封垫(8)、支架(9)、调节套(10)、油缸(11)、油缸盖(12)、盖(13)、放气螺栓(17)、放 气螺钉(19)、O形密封圈(20)、Yx密封圈(21)、螺塞(22)、Yx密封圈(23)、压环(24)、活塞(25)、套筒(26)、联接螺钉(27)、键(28)及其它副件、标件等组成。 3、制动器限位开关结构(图3) 制动器限位开关由弹簧座(1)、弹簧(2)、滑动轴(3)、压板(6)、开关盒(7)、螺栓M4x45(9)、轴套(11)、盒盖(14)、螺钉M4X10(17)、微动开关JW-11(20)、支座板(23)、导线 BVR(24)、装配板(29)及其它副件、标件等组成。 4、盘式制动器的工作原理(图4) 盘式制动器是靠碟形弹簧预压力制动,油压解除制动,制动力沿轴向作用的制动器。提升机制动时,图2中碟形弹簧(6)的预压力迫使活塞(25)向制动盘移动,通过联接螺钉(27),将滑套(5)连同其上的制动块(又名闸瓦)推出,使制动块(1)与卷筒的制动盘接触,并产生正压力,形成摩擦力而产生制动。提升机松闸运行时,油缸(11)A腔中充入压力油,活塞(25)再次压缩碟形弹簧(6),并通过联接螺钉(27)带动滑套(5)向后移动(离开制动盘),从而使制动 块(1)离开制动盘,解除制动力(即松闸)。 滑套(5)是由钢套和拉杆组成的装配件,其拉杆承受制动时的切向力。制动块(1)嵌合在滑套(5)的燕尾槽中,并用压板(2)、螺钉(3)将其固定。键(28)防止滑套(5)转动。转动放气螺钉(19),可排出油缸中的存留气体,以保证盘形闸能灵活地工作。盘形闸在密封件允许泄漏范围内,可能有微量的内泄,虽内泄油可起润滑滑套(5)与支架(9)的作用,但时间较长时,内泄油可能存留过多,因此应定期从螺塞(22)处排放内泄油液。 如上所述,盘式制动器的工作原理是油压松闸,弹簧力制动。如(图4)所示:当油腔Y 通入压力油时,碟形弹簧组(3)被压缩,随着油压P的升高,碟形弹簧组(3)被压缩并贮存弹簧力F,且弹簧力F越来越大,制动块离开闸盘的间隙随之增大,此时盘形制动器处于松闸状态,调整闸瓦间隙△为1mm (注:调整方法见后);当油压P降低时,弹簧力释放,推动活塞、滑套连同其上的制动块(又名闸瓦),使制动块向制动盘方向移动,当闸瓦间隙△为零后,弹簧力F作用在闸盘上并产生正压力,随着油压P的降低正压力加大,当油压P=0时,正压力N=Nmax,在N力的作用下闸瓦与闸盘间产生摩擦力即制动力最大(全制动状态);当P=Pmax时,N=0,△=△max,即全松闸。 由上可以看出盘形制动器的摩擦力决定于弹簧力F和油压力F1,当闸瓦间隙为零后:

相关主题
文本预览
相关文档 最新文档