当前位置:文档之家› 4-1Matlab_曲面插值和拟合

4-1Matlab_曲面插值和拟合

4-1Matlab_曲面插值和拟合
4-1Matlab_曲面插值和拟合

得用拟合或插值。

常用的拟合有多项式拟合POLYFIT

插值有INTERP1,SPLINE,LAGR1等。。。

在Matlab中,用于曲线和曲面平滑的方法与函数很多,曲线平滑可用smooth和smoothts 等,三维数据可用smooth3,另外样条工具箱中也有不少可用于平滑数据的函数,如三次样条csaps和B样条spaps等。

matlab中三维作图功能总结2007-12-09 11:29plot3 画三维坐标中的点,连线,但只能顺序连接。

surf(X,Y,Z) 用X和Y定义x-y坐标网格,Z定义网格上每一点的高度,来生成三维曲面。如:[X,Y,Z] = peaks(30);surf(X,Y,Z)

mesh,和surf一样,只不过生成的是网格。

surface 用法也一样。

fill3 只能生成平面。重点在色彩。

[X,Y,Z]=meshgrid(1:3,1:3,1:5) 生成3*3*5的三维网格,X,Y,Z都是3*3*5三维矩阵。

这只是生成坐标网格,还需要一个V(X,Y,Z)定义图形。

ndgrid 生成三维以上网格时用。

smooth3 作用于体数据,使光滑

isosurface

X,Y,Z如meshgrid的定义。

V中元素为1则表示存在,即要显示。但要连成片的1才会显示。

V中元素如a>1时,表示要显示的这个点离上方的网格距离是单位距离的1/a

圆滑程度由isovalue决定,0.9999是最硬,越接近0越圆滑。可同时配合isocaps. isocaps 生成并显示图形与坐标系交界处的平面。

patch 接收isosuface返回的参数,生成图形。

Matlab 曲面插值和拟合

附录:

Matlab 样条工具箱(Spline ToolBox)【信息来源教师博客】

Matlab样条工具箱中的函数提供了样条的建立,操作,绘制等功能;

一. 样条函数的建立

第一步是建立一个样条函数,曲线或者曲面。这里的样条函数,根据前缀,分为4类: cs* 三次样条

pp* 分段多项式样条,系数为t^n的系数

sp* B样条, 系数为基函数B_n^i(t)的系数

rp* 有理B样条

二. 样条操作

样条操作包括:函数操作:求值,算术运算,求导求积分等等

节点操作:主要是节点重数的调节,设定,修改等等

附:样条工具箱函数

1. 三次样条函数

csapi 插值生成三次样条函数

csape 生成给定约束条件下的三次样条函数

csaps 平滑生成三次样条函数

cscvn 生成一条内插参数的三次样条曲线

getcurve 动态生成三次样条曲线

2. 分段多项式样条函数

ppmak 生成分段多项式样条函数

ppual 计算在给定点处的分段多项式样条函数值

3. B样条函数

spmak 生成B样条函数

spcrv 生成均匀划分的B样条函数

spapi 插值生成B样条函数

spap2 用最小二乘法拟合生成B样条函数

spaps 对生成的B样条曲线进行光滑处理

spcol 生成B样条函数的配置矩阵

4. 有理样条函数

rpmak 生成有理样条函数

rsmak 生成有理样条函数

5. 样条操作函数

fnval 计算在给定点处的样条函数值

fmbrk 返回样条函数的某一部分(如断点或系数等) fncmb 对样条函数进行算术运算

fn2fm 把一种形式的样条函数转化成另一种形式的样条函数 fnder 求样条函数的微分(即求导数)

fndir 求样条函数的方向导数

fnint 求样条函数的积分

fnjmp 在间断点处求函数值

fnplt 画样条曲线图

fnrfn 在样条曲线中插入断点。

fntlr 生成tarylor系数或taylor多项式

6. 样条曲线端点和节点处理函数

augknt 在已知节点数组中添加一个或多个节点

aveknt 求出节点数组元素的平均值

brk2knt 增加节点数组中节点的重次

knt2brk 从节点数组中求得节点及其重次

knt2mlt 从节点数组中求得节点及其重次

sorted 求出节点数组的元素在另一节点数组中属于第几个分量

aptknt 求出用于生成样条曲线的节点数组

newknt 对分段多项式样条函数进行重分布

optknt 求出用于内插的最优节点数组

chbpnt 求出用于生成样条曲线的合适节点数组

(No Ratings Yet)

Loading ...

2 Responses to “Matlab 曲面插值和拟合”

1.#waiting on 14 Nov 2007 at 2:22 pm

非常之高手,想请教一下,如果我只有三,四个已知三维坐标的点,能不能做到拟合呢?

我用你上面的方法,用surf画了一下,

t=csvread(’c:/www/dat/1chang.csv’);

x=[t(1,1,1),t(1,4,1),t(1,7,1),t(1,10,1)];

y=[t(1,2,1),t(1,5,1),t(1,8,1),t(1,11,1)];

z=[t(1,3,1),t(1,6,1),t(1,9,1),t(1,12,1)];

surf(x,y,z)

title(’Original data Plot’);

xlabel(’X’), ylabel(’Y’), zlabel(’Z’),

colormap, colorbar;

axis equal

结果只出来坐标轴,没有任何关于我的点的东西,不知道为什么,希望给与指点

2.#yang on 14 Nov 2007 at 3:46 pm

并不是数据太少,理论上3点就可以确定一个面,所以不是数据多少的问题,而是数据格式不对,你的坐标可能只是离散的坐标,这样子只能够画三维曲线出来,而不能画面。你可以试试用plot3应该可以画出你的数据来。

如果你想画曲面,要把数据整理成固定的格式,下面一个简单的例子,希望对你有帮助,你可以看出来,只有四个点也是可以画出曲面来的。

x=[1:1:2]

y=[1:1:2]

[xx,yy]=meshgrid(x,y)

z=[4.1,4.2;4.3,4.4]

surf(x,y,z)

我看到"Matlab 曲面插值和拟合"很受启发,我有一个问题,你可以帮我吗:

x = 0:4; y=-2:2; s2 = 1/sqrt(2);

clear v

v(3,:,:) = [0 1 s2 0 -s2 -1 0].'*[1 1 1 1 1];

v(2,:,:) = [1 0 s2 1 s2 0 -1].'*[0 1 0 -1 0];

v(1,:,:) = [1 0 s2 1 s2 0 -1].'*[1 0 -1 0 1];

sph = csape({x,y},v,{'clamped','periodic'});

values = fnval(sph,{0:.1:4,-2:.1:2});

sphere=surf(squeeze(values(1,:,:)),squeeze(values(2,:,:)),squeeze(values(3,:,:)));

axis equal, axis off

[xx,yy]=ndgrid(-1:.5:1,-1:.5:1);

请教:如何求拟合球面sph(图形sphere)上对应点[xx,yy]的z坐标?

十分感谢,如果可以,请把你的思路给我发email: zpshh@https://www.doczj.com/doc/cf6093306.html,

插值和拟合都是数据优化的一种方法,当实验数据不够多时经常需要用到这种方法来画图。在matlab中都有特定的函数来完成这些功能。这两种方法的确别在于:

当测量值是准确的,没有误差时,一般用插值;

当测量值与真实值有误差时,一般用数据拟合。

插值:

对于一维曲线的插值,一般用到的函数yi=interp1(X,Y,xi,method) ,其中method包括nearst,linear,spline,cubic。

对于二维曲面的插值,一般用到的函数zi=interp2(X,Y,Z,xi,yi,method),其中method也和上面一样,常用的是cubic。

拟合:

对于一维曲线的拟合,一般用到的函数p=polyfit(x,y,n)和yi=polyval(p,xi),这个是最常用的最小二乘法的拟合方法。

对于二维曲面的拟合,有很多方法可以实现,但是我这里自己用的是Spline Toolbox里面的函数功能。具体使用方法可以看后面的例子。

对于一维曲线的插值和拟合相对比较简单,这里就不多说了,对于二维曲面的插值和拟合还是比较有意思的,而且正好胖子有些数据想让我帮忙处理一下,就这个机会好好把二维曲面的插值和拟合总结归纳一下,下面给出实例和讲解。

原始数据

x=[1:1:15];

y=[1:1:5];

z=[0.2 0.24 0.25 0.26 0.25 0.25 0.25 0.26 0.26 0.29 0.25 0.29;

0.27 0.31 0.3 0.3 0.26 0.28 0.29 0.26 0.26 0.26 0.26 0.29;

0.41 0.41 0.37 0.37 0.38 0.35 0.34 0.35 0.35 0.34 0.35 0.35;

0.41 0.42 0.42 0.41 0.4 0.39 0.39 0.38 0.36 0.36 0.36 0.36;

0.3 0.36 0.4 0.43 0.45 0.45 0.51 0.42 0.4 0.37 0.37 0.37]; z是一个5乘12的矩阵。

直接用原始数据画图如下:

surf(x,y,z)

title(’Original data Plot’);

xlabel(’X'), ylabel(’Y'), zlabel(’Z'),

colormap, colorbar;

axis([0 15 0 6 0.15 0.55])

先考虑插值,需要用到的函数interp2

x1=1:0.2:12;

y1=1:0.2:5;

[x2,y2]=meshgrid(x1,y1);

t11=interp2(x,y,z,x2,y2,’cubic’);

surf(x1,y1,t11)

title(’After Fit data Plot’);

xlabel(’X'), ylabel(’Y'), zlabel(’Z'), colormap, colorbar;

axis([0 15 0 6 0.2 0.55])

然后考虑拟合,这个稍微复杂一点:

ky = 3; knotsy = augknt([0:2.5:13],ky); sp = spap2(knotsy,ky,y,z);

yy = 0:.5:12; vals = fnval(sp,yy);

coefsy = fnbrk(sp,’c');

kx = 5; knotsx = augknt([1:4:5],kx);

sp2 = spap2(knotsx,kx,x,coefsy.’);

coefs = fnbrk(sp2,’c').’;

xv = 1:.25:5; yv = 1:.5:12;

values = spcol(knotsx,kx,xv)*coefs*spcol(knotsy,ky,yv).’;

surf(yv,xv,values)

title(’After Polynal data Plot’);

xlabel(’X'), ylabel(’Y'), zlabel(’Z');

colormap, colorbar;

axis([0 15 0 6 0.2 0.55])

图上面的小圆点使用plot3画出来的原始数据点,具体怎么添加的方法我就不多说了。需要把不等边矩阵转换成等边矩阵然后再画图。

效果从上面三个图上面已经看出来了。基本上满足了现在画图的要求,如果测量值比较精确,我们选择第二种方法插值法来画图,如果觉得测量值不是很精确需要用拟合的方法的话,那当然用第三种方法了。关

于Spline Toolbox当然还有更多应用,还有就是里面参数设置为什么要这样设,该怎样设要写下来估计再写一整页都写不完,所以还是大家感兴趣的自己去看帮助文档好了,里面有详细介绍。

这里只是告诉大家一种可行的办法,而且经过我自己的测试也确实得到了想要达到的结果。Matlab是个很强的数学工具,前一段时间我也提到了它在Texture里面做图的应用。以后会有更多地方用到Matlab,感兴趣的朋友可以和我交流。^_^

3.3.5曲面图

曲面图,除了各线条之间的空档(称作补片)用颜色填充以外,和网格图看起来是一样的。这种图一般使用函数surf来绘制。自然,函数surf使用和函数mesh相同的调用语法。比如:

[X,Y,Z]=peaks(30);

surf(X,Y,Z)

grid,xlabel( ‘ x-axis ‘ ),ylabel( ‘ y-axis ‘ ),zlabel( ‘ z-axis ‘ )

title( ‘ SURF of PEAKS ‘ )

输出见下图

函数PEAKS的曲面图

曲面图的一些特性正好和网格图相反:它的线条是黑色的,线条之间的补片有颜色;而在网格图里,补片是黑色的而线条有颜色。对函数mesh,颜色沿着z 轴按每一补片变化,而线条颜色不变。

在曲面图里,人们不必考虑象网格图一样隐蔽线条,但要考虑用不同的方法对表面加色彩。在前面的曲面图的例子中,就是分割成块,每块就象一块染色玻璃窗口或物体,黑线便是各单色染色玻璃块之间的连接。除此以外,MATLAB还提供了平滑加颜色和插值加颜色功能。这可以通过调用函数shading来实现。

[X,Y,Z]=peaks(30);

surf(X,Y,Z) % same plot as above

grid,xlabel( ‘ x-axis ‘ ),ylabel( ‘ y-axis ‘ ),zlabel( ‘ z-axis ‘ )

title( ‘ SURF of PEAKS ‘ )

shading flat

输出见下图

函数PEAKS的平滑加彩色曲面图

如上所示平滑加色彩的例子中,每一补片仍保存着单一的颜色,但各块连接处的黑线已去掉。

shading interp

输出见下图

函数PEAKS的插值加彩色曲面图

如上所示内插加色彩的例子中,同样去掉了线条,但各补片以插值加颜色,即各补片的颜色根据赋予顶点的色值,对其区间进行了插值计算。很明显,插值色彩需要比分块和平滑更多的计算量。在一些计算机系统中,插值色彩会产生非常长的打印延时或打印错误。这问题不在于PostScript文件太大,而是由于在打印机上产生沿图形曲面连续变化的阴影所需的巨大计算量。通常对这个问题最简单的解决方法是使用平滑加色彩法来打印。

色彩对surf作图的视觉效果有着巨大的影响。对网格图也是如此,尽管由于只有线条有颜色,对视觉效果的影响相对要小一些。

因为曲面图不能作成透明,但在一些情况下可以很方便地移走一部分表面以便看到表面以下部分,在MATLAB中,这是通过在所期望的洞孔的所在位置,将数据置为特定的NaN来实现。由于NaN没有任何值,所有的MATLAB作图函数都忽略NaN的数据点,在该点出现的地方留下一个洞孔。例子如下:

[X,Y,Z]=peaks(30);

x=X(1,:); % vector of x axis

y=Y(:,1); % vector of y axis

i=find(y>.8 & y<1.2); % find x-axis indices of hole

j=find(x>-.6 & x<.5); % find x-axis indices of hole

Z(i,j)=nan*Z(i,j); % set values at hole indices to NaNs

surf(X,Y,Z)

grid,xlabel( ‘ x-axis ‘ ),ylabel( ‘ y-axis ‘ ),zlabel( ‘ z-axis ‘ )

title( ‘ SURF of PEAKS with a Hole ‘ )

输出见下图

函数PEAKS的带洞孔曲面图

MATLAB的surf也有两个同种函数:surfc,它画出具有基本等值线的曲面图;surfl,它画出一个有亮度的曲面图。例如:

[X,Y,Z]=peaks(30);

surfc(X,Y,Z) % surf plot with contour plot

grid,xlabel( ‘ x-axis ‘ ),ylabel( ‘ y-axis ‘ ),zlabel( ‘ z-axis ‘ )

title( ‘ SURFC of PEAKS ‘ )

输出见下图

函数PEAKS的曲面图和基本等值线图

[X,Y,Z]=peaks(30);

surfl (X,Y,Z) % surf plot with lighting

shading interp % surfl plots look best with interp shading

colormap pink % they also look better with shades of a single color grid,xlabel( ‘ X-axis ‘ ),ylabel( ‘ Y-axis ‘ ),zlabel( ‘ Z-axis ‘ ) title( ‘ SURFL OF PEAKS ‘ )

输出见下图

图18.16 函数PEAKS的带光线照明曲面图

关于加到曲面的亮度,函数surfl作了许多假设。有关设置亮度属性的详细信息请使用在线帮助。

3.3.6 等值线图

MATLAB提供了另一种基本的三维图形,即三维等值线图。这种图形通过函数contour3来绘制。

[x,y,z]=peaks(30);

contour3(X,Y,Z,16); %用16种颜色

grid,xlabel( ‘ x-axis ‘ ),ylabel( ‘ y-axis ‘ ),zlabel( ‘ z-axis ‘ );

title( ‘ CONTOUR3 of PEAKS ‘ )

输出见下图

函数PEAKS的三维等值线图

可以看到,图形中每一条线的颜色遵循了与二维函数plot一样的次序。这种颜色次序可以表现出明显的对比,但经常模糊了所代表的数据的一些重要特性。如果能使每一条线遵循在网格图和曲面图里所用的加色方法,那么效果会好得多。也许在MATLAB的下一个版本中,这种颜色设置会成为缺省设置,但使用在下一章要讨论的MATLAB图形处理能力,也能解决这个问题。

[X,Y,Z]=peaks(30);

N=16; % 等值线的数目和颜色

clf %清除当前颜色

view(3) % 设置视角

hold on % 保持背景

set(gca, ‘ ColorOrder ‘ ,hsv(N)) % 从 default hsv colormap获得颜色

contour3(X,Y,Z,N) % 作出 N条等值线

grid,xlabel( ‘ X-axis ‘ ),ylabel( ‘ Y-axis ‘ ),zlabel( ‘ Z-axis ‘ )

title( ‘ CONTOUR3 of PEAKS ‘ )

hold off

输出见下图

函数PEAKS的三维等值线图

现在,各条等值线的颜色沿着z轴的变化和网格图和曲面图一样。为方便起见,这种策略已体现在精通MATLAB工具箱的函数mmcont3中。mmcont3具有和函数contour3相同的调用语法的变化,并允许选择可用的颜色映象。例如,mmcont3(X,Y,Z,N,‘hsv’)复制上面的图形。mmcont3的在线帮助如下:

帮助信息:

MMCONT3(X,Y,Z,N,C)用由C指定的颜色在三维空间内画N条Z方向的等值线图。C可以是在plot中使用的线形 和颜色,例如 ‘ r- ‘ ;或者C可以是一个颜色映象的字符串名。X和Y指定了坐标轴的范围。如果 未指定参数,缺省的参数值是:N=10,C= ‘ hot ‘ ,X和Y分别是Z的行和列的下标。举例:

MMCONT3(Z) 用暖色映象画10条等值线

MMCONT3(Z,20) 用暖色映象画20条等值线

MMCONT3(Z, ‘ copper ‘ ) 用铜黄色映象画10条等值线

MMCONT3(Z,20, ‘ gray ‘ ) 用灰色映象画20条等值线

MMCONT3(X,Y,Z, ‘ jet ‘ ) 用**‘jet’暖色映象画10条等值线

MMCONT3(Z, ‘ c-- ‘ ) 画10条青蓝色的虚划线等值线

MMCONT3(X,Y,Z,25, ‘ pink ‘ ) 用粉红色映象画25条等值线

CS=MMCONT3(…) 如在CONTOURC中描述,返回等值线矩阵CS。

[CS,H]=MMCONT3(…) 把句柄的列向量H返回到线条对象。

等值线也可由一种颜色给出:

[x,y,z]=peaks(30);

contour3(X,Y,Z,16, ‘ y ‘ ) % draw sixteen contour lines in yellow

grid,xlabel( ‘ x-axis ‘ ),ylabel( ‘ y-axis ‘ ),zlabel( ‘ z-axis ‘ )

title( ‘ CONTOUR3 of PEAKS ‘ )

输出见下图

函数PEAKS的黄色三维等值线图

以上函数使用的详细信息请使用在线帮助。

3.3.7 三维数据的二维表示

有些情况下,希望得到三维数据的二维表示。在MATLAB里这一点是通过用函数view设置视角使其中一维不出现来实现的。另外,MATLAB还提供了两个函数,将contour3和surf向下正视到x-y平面。例如,函数contour3的二维图就等价于contour。

[X,Y,Z]=peaks(30);

contour(X,Y,Z,16) % 作16条等值线

xlabel( ‘ X-axis ‘ ),ylabel( ‘ Y-axis ‘ )

插值法和拟合实验报告(数值计算)

插值法和拟合实验报告 一、 实验目的 1.通过进行不同类型的插值,比较各种插值的效果,明确各种插值的优越性; 2.通过比较不同次数的多项式拟合效果,了解多项式拟合的原理; 3.利用matlab 编程,学会matlab 命令; 4.掌握拉格朗日插值法; 5.掌握多项式拟合的特点和方法。 二、 实验题目 1.、插值法实验 将区间[-5,5]10等分,对下列函数分别计算插值节点 k x 的值,进行不同类型 的插值,作出插值函数的图形并与)(x f y =的图形进行比较: ;11)(2x x f += ;a r c t a n )(x x f = .1)(42 x x x f += (1) 做拉格朗日插值; (2) 做分段线性插值; (3) 做三次样条插值. 2、拟合实验 给定数据点如下表所示: 分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数 ),(i i y x 和拟合函数的图形。 三、 实验原理 1.、插值法实验

∏∑∏∏∏∑∑≠==≠=≠=≠=+-==--= =-= ==-=-=----==++==j i j j i i i i i n i i n n j i j j n j i j j i i n j i j j n i i i n i i n n n o i n i i n x x x x x y x l x L x x c n i x x c x x x c x x x x x x x x c y x l x L y x l y x l y x l x L ,00 ,0,0,01100 00 )(l )()() (1 ,1,0, 1)()(l ) ()())(()()()()()()()(, 故, 得 再由,设 2、拟合实验

插值与数据拟合模型

第二讲 插值与数据拟合模型 函数插值与曲线拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者的数学方法上是完全不同的。而面对一个实际问题,究竟用插值还是拟合,有时容易确定,有时则并不明显。 在数学建模过程中,常常需要确定一个变量依存于另一个或更多的变量的关系,即函数。但实际上确定函数的形式(线性形式、乘法形式、幂指形式或其它形式)时往往没有先验的依据。只能在收集的实际数据的基础上对若干合乎理论的形式进行试验,从中选择一个最能拟合有关数据,即最有可能反映实际问题的函数形式,这就是数据拟合问题。 一、插值方法简介 插值问题的提法是,已知1+n 个节点n j y x j j ,,2,1,0),,( =,其中j x 互不相同,不妨设b x x x a n =<<<= 10,求任一插值点)(*j x x ≠处的插值*y 。),(j j y x 可以看成是由某个函数)(x g y =产生的,g 的解析表达式可能十分复杂,或不存在封闭形式。也可以未知。 求解的基本思路是,构造一个相对简单的函数)(x f y =,使f 通过全部节点,即),,2,1,0()(n j y x f j j ==,再由)(x f 计算插值,即*)(*x f y =。 1.拉格朗日多项式插值 插值多项式 从理论和计算的角度看,多项式是最简单的函数,设)(x f 是n 次多项式,记作 0111)(a x a x a x a x L n n n n n ++++=-- (1) 对于节点),(j j y x 应有 n j y x L j j n ,,2,1,0,)( == (2) 为了确定插值多项式)(x L n 中的系数011,,,,a a a a n n -,将(1)代入(2),有 ???????=++++=++++=++++---n n n n n n n n n n n n n n n n y a x a x a x a y a x a x a x a y a x a x a x a 01110111110001010 (3) 记 T n T n n n n n n n n n n y y y Y a a a A x x x x x x X ),,,(,),,,(,11110011111 100 ==?????? ? ??=---- 方程组(3)简写成 Y XA = (4) 注意X det 是Vandermonde 行列式,利用行列式性质可得 ∏≤<≤-= n k j j k x x X 0)(det 因j x 互不相同,故0det ≠X ,于是方程(4)中A 有唯一解,即根据1+n 个节点可以确定唯一的n 次插值多项式。 拉格朗日插值多项式 实际上比较方便的做法不是解方程(4)求A ,而是先构造一组基函数: n i x x x x x x x x x x x x x x x x x l n i i i i i i n i i i ,,2,1,0,) ())(()()())(()()(110110 =--------=+-+- (5) )(x l i 是n 次多项式,满足

第五章插值与拟合答案—牟善军

习题5.1: Matlab程序如下: clc,clear x=1:0.5:10; y=x.^3-6*x.^2+5*x-3; y0=y+rand; f1=polyfit(x,y0,1) y1=polyval(f1,x); plot(x,y,'+',x,y1); grid on title('一次拟合曲线'); figure(2); f2=polyfit(x,y0,2) y2=polyval(f2,x); plot(x,y,'+',x,y2); grid on title('二次拟合曲线'); figure(3); f4=polyfit(x,y0,4) y3=polyval(f4,x); plot(x,y,'+',x,y3); grid on title('四次拟合曲线'); figure(4); f6=polyfit(x,y0,6) y4=polyval(f6,x); plot(x,y,'+',x,y4); grid on title('六次拟合曲线'); 计算结果及图如下 f1 = 43.2000 -148.8307 f2 = 10.5000 -72.3000 90.0443

f4 = 0.0000 1.0000 -6.0000 5.0000 -2.3557 f6 = -0.0000 0.0000 -0.0000 1.0000 -6.0000 5.0000 -2.3557 5.2高程数据问题解答如下:matlab程序: clc,clear x0=0:400:5600 y0=0:400:4800 z0=[1350 1370 1390 1400 1410 960 940 880 800 690 570 430 290 210 150 1370 1390 1410 1430 1440 1140 1110 1050 950 820 690 540 380 300 210 1380 1410 1430 1450 1470 1320 1280 1200 1080 940 780 620 460 370 350 1420 1430 1450 1480 1500 1550 1510 1430 1300 1200 980 850 750 550 500

matlab中插值拟合与查表

MATLAB中的插值、拟合与查表 插值法是实用的数值方法,是函数逼近的重要方法。在生产和科学实验中,自变量x与因变量y的函数y = f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。当要求知道观测点之外的函数值时,需要估计函数值在该点的值。 如何根据观测点的值,构造一个比较简单的函数y=φ(x),使函数在观测点的值等于已知的数值或导数值。用简单函数y=φ(x)在点x处的值来估计未知函数y=f(x)在x点的值。寻找这样的函数φ(x),办法是很多的。φ(x)可以是一个代数多项式,或是三角多项式,也可以是有理分式;φ(x)可以是任意光滑(任意阶导数连续)的函数或是分段函数。函数类的不同,自然地有不同的逼近效果。在许多应用中,通常要用一个解析函数(一、二元函数)来描述观测数据。 根据测量数据的类型: 1.测量值是准确的,没有误差。 2.测量值与真实值有误差。 这时对应地有两种处理观测数据方法: 1.插值或曲线拟合。 2.回归分析(假定数据测量是精确时,一般用插值法,否则用曲线拟合)。 MATLAB中提供了众多的数据处理命令。有插值命令,有拟合命令,有查表命令。 2.2.1 插值命令 命令1 interp1 功能一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。各个参量之间的关系示意图为图2-14。 格式 yi = interp1(x,Y,xi) %返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y的内插值决定。参量x指定数据Y的点。若Y为一矩阵,则按Y的每列计算。yi是阶数为length(xi)*size(Y,2)的输出矩阵。 yi = interp1(Y,xi) %假定x=1:N,其中N为向量Y的长度,或者为矩阵Y的行数。 yi = interp1(x,Y,xi,method) %用指定的算法计算插值: ’nearest’:最近邻点插值,直接完成计算;

插值和拟合

插值和拟合的定义 1.定义:若x为自变量,y为因变量,则x与y之间有一个确定的函数表达式f(x),现实中,这个函数关系式很难确定,运用逼近的方法处理:取得一组数据点(xi,yi,i=1,2,3...n),构造一个简单函数p(x)作为f(x)的近似表达式,且p(x)满足: p(xi)=f(xi)=yi i=1,2,3,4...n 这就是插值问题。 若不要求p(x)通过所有数据点,而是要求曲线在某种准则下整体与数据点接近,例如运用最小二乘法得到p(x),这种问题称为拟合。 2插值类型:一维插值是指对一维函数y=f(x)进行插值,二维插值就是对二维函数y=f(x,y)进行插值. 3.插值的matlab函数及其应用 (1).一维插值:yi=interp1(x,Y,xi,’method’),对一组节点(x,Y)进行插值,计算插值点xi 的函数值。method包括了一下几种类型: Nearest:线性最邻近插值(速度最快,平滑性最差) Linear:线性插值(默认项)(生成效果连续,但是顶点处有坡度变化) Spline:三次样条插值(运行时间较长,插值数据和导数均连续) Pchip:分段三次艾米尔特(hermite)插值 Cubic:双三次插值(较高版本的matlab不能运用,v5cubic能够运行) 运行的代码及插值效果: clear; clc; x=0:0.2:2; y=(x.^2-3*x+5).*exp(-3*x).*sin(x); xi=0:0.03:2; yi_nearest=interp1(x,y,xi,'nearest'); yi_linear=interp1(x,y,xi,'linear'); yi_spline=interp1(x,y,xi,'spline'); yi_pchip=interp1(x,y,xi,'pchip'); yi_cubic=interp1(x,y,xi,'v5cubic'); figure; hold on; subplot(2 ,3, 1); plot(x,y,'r*'); title('已知数据值'); subplot(2, 3 ,2); plot(x,y,'r*',xi,yi_nearest,'b-'); title('最邻近插值');

(完整版)Matlab学习系列13.数据插值与拟合

13. 数据插值与拟合 实际中,通常需要处理实验或测量得到的离散数据(点)。插值与拟合方法就是要通过离散数据去确定一个近似函数(曲线或曲面),使其与已知数据有较高的拟合精度。 1.如果要求近似函数经过所已知的所有数据点,此时称为插值问 题(不需要函数表达式)。 2.如果不要求近似函数经过所有数据点,而是要求它能较好地反 映数据变化规律,称为数据拟合(必须有函数表达式)。 插值与拟合都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数。区别是:【插值】不一定得到近似函数的表达形式,仅通过插值方法找到未知点对应的值。【拟合】要求得到一个具体的近似函数的表达式。 因此,当数据量不够,但已知已有数据可信,需要补充数据,此时用【插值】。当数据基本够用,需要寻找因果变量之间的数量关系(推断出表达式),进而对未知的情形作预测,此时用【拟合】。

一、数据插值 根据选用不同类型的插值函数,逼近的效果就不同,一般有:(1)拉格朗日插值(lagrange插值) (2)分段线性插值 (3)Hermite (4)三次样条插值 Matlab 插值函数实现: (1)interp1( ) 一维插值 (2)intep2( ) 二维插值 (3)interp3( ) 三维插值 (4)intern( ) n维插值 1.一维插值(自变量是1维数据) 语法:yi = interp1(x0, y0, xi, ‘method’) 其中,x0, y0为原离散数据(x0为自变量,y0为因变量);xi为需要插值的节点,method为插值方法。 注:(1)要求x0是单调的,xi不超过x0的范围; (2)插值方法有‘nearest’——最邻近插值;‘linear’——线性插值;‘spline’——三次样条插值;‘cubic’——三次插值;

曲线拟合与插值理论与实例

第11章曲线拟合与插值 在大量的应用领域中,人们经常面临用一个解析函数描述数据(通常是测量值)的任务。对这个问题有两种方法。在插值法里,数据假定是正确的,要求以某种方法描述数据点之间所发生的情况。这种方法在下一节讨论。这里讨论的方法是曲线拟合或回归。人们设法找出某条光滑曲线,它最佳地拟合数据,但不必要经过任何数据点。图11.1说明了这两种方法。标有'o'的是数据点;连接数据点的实线描绘了线性内插,虚线是数据的最佳拟合。 11.1 曲线拟合 曲线拟合涉及回答两个基本问题:最佳拟合意味着什么?应该用什么样的曲线?可用许多不同的方法定义最佳拟合,并存在无穷数目的曲线。所以,从这里开始,我们走向何方?正如它证实的那样,当最佳拟合被解释为在数据点的最小误差平方和,且所用的曲线限定为多项式时,那么曲线拟合是相当简捷的。数学上,称为多项式的最小二乘曲线拟合。如果这种描述使你混淆,再研究图11.1。虚线和标志的数据点之间的垂直距离是在该点的误差。对各数据点距离求平方,并把平方距离全加起来,就是误差平方和。这条虚线是使误差平方和尽可能小的曲线,即是最佳拟合。最小二乘这个术语仅仅是使误差平方和最小的省略说法。

图11.1 2阶曲线拟合 在MATLAB中,函数polyfit求解最小二乘曲线拟合问题。为了阐述这个函数的用法,让我们以上面图11.1中的数据开始。 ? x=[0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1]; ? y=[-.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]; 为了用polyfit,我们必须给函数赋予上面的数据和我们希望最佳拟合数据的多项式的阶次或度。如果我们选择n=1作为阶次,得到最简单的线性近似。通常称为线性回归。相反,如果我们选择n=2作为阶次,得到一个2阶多项式。现在,我们选择一个2阶多项式。 ? n=2; % polynomial order ? p=polyfit(x, y, n) p = -9.8108 20.1293 -0.0317 polyfit的输出是一个多项式系数的行向量。其解是y = -9.8108x2+20.1293x-0.0317。为了将曲线拟合解与数据点比较,让我们把二者都绘成图。

第四章曲线拟合和多项式插值 - Hujiawei Bujidao

数值计算之美SHU ZHI JI SUAN ZHI MEI 胡家威 http://hujiaweibujidao.github.io/ 清华大学逸夫图书馆·北京

内容简介 本书是我对数值计算中的若干常见的重要算法及其应用的总结,内容还算比较完整。 本人才疏学浅,再加上时间和精力有限,所以本书不会详细介绍很多的概念,需要读者有一定的基础或者有其他的参考书籍,这里推荐参考文献中的几本关于数值计算的教材。 本书只会简单介绍下算法的原理,对于每个算法都会附上我阅读过的较好的参考资料以及算法的实现(Matlab或者其他语言),大部分代码是来源于参考文献[1]或者是经过我改编而成的,肯定都是可以直接使用的,需要注意的是由于Latex对代码的排版问题,导致中文注释中的英文字符经常出现错位,对于这种情况请读者自行分析,不便之处还望谅解。写下这些内容的目的是让自己理解地更加深刻些,顺便能够作为自己的HandBook,如有错误之处,还请您指正,本人邮箱地址是:hujiawei090807@https://www.doczj.com/doc/cf6093306.html,。

目录 第四章曲线拟合和多项式插值1 4.1曲线拟合 (1) 4.1.1使用线性方程进行曲线拟合 (1) 4.1.2非线性方程进行曲线拟合 (2) 4.1.3使用二次或者高次多项式进行曲线拟合[最小二乘问题].3 4.2多项式插值 (4) 4.2.1拉格朗日插值多项式 (4) 4.2.2牛顿插值多项式 (5) 4.2.3分段线性插值 (7) 4.2.4保形分段三次插值 (8) 4.2.5三次样条插值 (10) 4.3Matlab函数解析 (13) 参考文献14

插值算法与matlab代码

Matlab中插值函数汇总和使用说明 MATLAB中的插值函数为interp1,其调用格式为: yi= interp1(x,y,xi,'method') 其中x,y为插值点,yi为在被插值点xi处的插值结果;x,y为向量,'method'表示采用的插值方法,MA TLAB提供的插值方法有几种:'method'是最邻近插值,'linear'线性插值;'spline'三次样条插值;'cubic'立方插值.缺省时表示线性插值 注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。 例如:在一天24小时内,从零点开始每间隔2小时测得的环境温度数据分别为12,9,9,10,18 ,24,28,27,25,20,18,15,13, 推测中午12点(即13点)时的温度. x=0:2:24; y=[12 9 9 10 18 24 28 27 25 20 18 15 13]; a=13; y1=interp1(x,y,a,'spline') 结果为:27.8725 若要得到一天24小时的温度曲线,则: xi=0:1/3600:24; yi=interp1(x,y,xi, 'spline'); plot(x,y,'o' ,xi,yi) 命令1 interp1 功能一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。 x:原始数据点 Y:原始数据点

xi:插值点 Yi:插值点 格式 (1)yi = interp1(x,Y,xi) 返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。参量x 指定数据Y 的点。 若Y 为一矩阵,则按Y 的每列计算。yi 是阶数为length(xi)*size(Y,2)的输出矩阵。 (2)yi = interp1(Y,xi) 假定x=1:N,其中N 为向量Y 的长度,或者为矩阵Y 的行数。 (3)yi = interp1(x,Y,xi,method) 用指定的算法计算插值: ’nearest’:最近邻点插值,直接完成计算; ’linear’:线性插值(缺省方式),直接完成计算; ’spline’:三次样条函数插值。对于该方法,命令interp1 调用函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函数。命令spline 用它们执行三次样条函数插值; ’pchip’:分段三次Hermite 插值。对于该方法,命令interp1 调用函数pchip,用于对向量x 与y 执行分段三次内插值。该方法保留单调性与数据的外形; ’cubic’:与’pchip’操作相同; ’v5cubic’:在MATLAB 5.0 中的三次插值。 对于超出x 范围的xi 的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。对其他的方法,interp1 将对超出的分量执行外插值算法。 (4)yi = interp1(x,Y,xi,method,'extrap') 对于超出x 范围的xi 中的分量将执行特殊的外插值法extrap。 (5)yi = interp1(x,Y,xi,method,extrapval) 确定超出x 范围的xi 中的分量的外插值extrapval,其值通常取NaN 或0。 例1 1. 2.>>x = 0:10; y = x.*sin(x); 3.>>xx = 0:.25:10; yy = interp1(x,y,xx); 4.>>plot(x,y,'kd',xx,yy) 复制代码 例2 1. 2.>> year = 1900:10:2010; 3.>> product = [75.995 91.972 105.711 123.203 131.669 150.697 179.323 203.212 226.505 4.249.633 256.344 267.893 ]; 5.>>p1995 = interp1(year,product,1995) 6.>>x = 1900:1:2010; 7.>>y = interp1(year,product,x,'pchip'); 8.>>plot(year,product,'o',x,y) 复制代码 插值结果为: 1.

插值与拟合(使用插值还是拟合)

利用matlab实现插值与拟合实验 张体强1026222 张影 晁亚敏 [摘要]:在测绘学中,无论是图形处理,还是地形图处理等,大多离不开插值与拟合的应用,根据插值与拟合原理,构造出插值和拟合函数,理解其原理,并在matlab平台下,实现一维插值,二维插值运算,实现多项式拟合,非线性拟合等,并在此基础上,联系自己所学专业,分析其生活中特殊例子,提出问题,建立模型,编写程序,以至于深刻理解插值与拟合的作用。 [关键字]: 测绘学插值多项式拟合非线性拟合 [ Abstract]: in surveying and mapping, whether the graphics processing, or topographic map processing and so on, are inseparable from the interpolation and fitting application, according to the interpolation and fitting theory, construct the fitting and interpolation function, understanding its principle, and MATLAB platform, achieve one-dimensional interpolation, two-dimensional interpolation, polynomial fitting, non-linear fitting, and on this basis, to contact their studies, analysis of their living in a special example, put forward the question, modeling, programming, so that a deep understanding of interpolation and fitting function. [ Key words]: Surveying and mapping interpolation polynomial fitting nonlinear

matlab 软件拟合与插值运算实验报告

实验6 数据拟合&插值 一.实验目的 学会MATLAB软件中软件拟合与插值运算的方法。 二.实验内容与要求 在生产和科学实验中,自变量x与因变量y=f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。当要求知道观测点之外的函数值时,需要估计函数值在该点的值。 要根据观测点的值,构造一个比较简单的函数y=t (x),使函数在观测点的值等于已知的数值或导数值,寻找这样的函数t(x),办法是很多的。 根据测量数据的类型有如下两种处理观测数据的方法。 (1)测量值是准确的,没有误差,一般用插值。 (2)测量值与真实值有误差,一般用曲线拟合。 MATLAB中提供了众多的数据处理命令,有插值命令,拟合命令。 1.曲线拟合 >> x=[0.5,1.0,1.5,2.0,2.5,3.0]; >> y=[1.75,2.45,3.81,4.80,7.00,8.60]; >> p=polyfit (x,y,2); >> x1=0.5:0.05:3.0; >> y1=polyval(p,x1 ); >> plot(x,y,'*r',x1,y1,'-b')

2.一维插值 >> year=[1900,1910,1920,1930,1940,1990,2000,2010]; >> product = [75.995,91.972,105.711,123.203,131.669,249.633,256.344,267.893 ]; >> p2005=interp1(year,product,2005) p2005 = 262.1185 >> y= interp1(year,product,x, 'cubic'); >> plot(year,product,'o',x,y)

回归、插值、逼近、拟合的区别

回归、插值、逼近、拟合的区别 1、回归:一般指线性回归,是求最小二乘解的过程。在求回归前,已经假设所有型值点同时满足某一曲线方程,计算只要求出该方程的系数 2、多项式插值:用一个多项式来近似代替数据列表函数,并要求多项式通过列表函数中给定的数据点。(插值曲线要经过型值点。)离散的点 3、多项式逼近:为复杂函数寻找近似替代多项式函数,其误差在某种度量意义下最小。(逼近只要求曲线接近型值点,符合型值点趋势。)连续的函数 4、多项式拟合:在插值问题中考虑给定数据点的误差,只要求在用多项式近似代替列表函数时,其误差在某种度量意义下最小。离散的点 注意: 表列函数:给定n+1个不同的数据点(x0,y0),(x1,y1)...,(xn,yn),称由这组数据表示的函数为表列函数。 逼近函数:求一函数,使得按某一标准,这一函数y=f(x)能最好地反映这一组数据即逼近这一表列函数,这一函数y=f(x)称为逼近函数 插值函数:根据不同的标准,可以给出各种各样的函数,如使要求的函数y=f(x)在以上的n+1个数据点出的函数值与相应数据点的纵坐标相等,即yi=f(x1)(i=0,1,2....n)这种函数逼近问题称为插值问题,称函数y=f(x)为数据点的插值函数,xi称为插值点。 插值和拟合都是函数逼近或者数值逼近的重要组成部分 他们的共同点都是通过已知一些离散点集M上的约束,求取一个定义在连续集合S(M包含于S)的未知连续函数,从而达到获取整体规律的 目的,即通过"窥几斑"来达到"知全豹"。 简单的讲,所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn},通过调整该函数中若干待定系数f(λ1, λ2,…,λ3), 使得该函数与已知点集的差别(最小二乘意义)最小。如果待定函数是线性,就叫线性拟合或者线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。表达式也可以是分段函数,这种情况下叫作样条拟合。 而插值是指已知某函数的在若干离散点上的函数值或者导数信息,通过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给定离散点上满足约束。插值函数又叫作基函数,如果该基函数定义在整个定义域上,叫作全域基,否则叫作分域基。如果约束条件中只有函数值的约束,叫作Lagrange插值,否则叫作Hermite插值。 从几何意义上将,拟合是给定了空间中的一些点,找到一个已知形式未知参数的连续曲面来最大限度地逼近这些点;而插值是找到一个(或几个分片光滑的)连续曲面来穿过这些点。

实验四 插值法与曲线拟合

计算方法实验报告 专业班级:医学信息工程一班姓名:陈小芳学号:201612203501002 实验成绩: 1.【实验题目】 插值法与曲线拟合 2.【实验目的】 3.【实验内容】 4. 【实验要求】

5. 【源程序(带注释)】 (1)拉格朗日插值 #include #include #include #include #include #define n 4 //插值节点的最大下标 main() { double x1[n+1]={0.4,0.55,0.65,0.8,0.9}; double y1[n+1]={0.4175,0.57815,0.69657,0.88811,1.02652}; double Lagrange(double x1[n+1],double y1[n+1],float t); int m,k;float x,y;float X;double z; printf("\n The number of the interpolation points is m ="); //输入插值点的个数 while(!scanf("%d",&m)) { fflush(stdin); printf("\n输入错误,请重新输入:\n"); printf("\n The number of the interpolation points is m ="); } for(k=1;k<=m;k++) { printf("\ninput X%d=",k); while(!scanf("%f",&X)) { fflush(stdin); printf("\n输入错误,请重新输入:\n"); printf("\ninput X%d=",k); } z=Lagrange(x1,y1,X); printf("P(%f)=%f\n",X,z); } getch(); return (0); } double Lagrange(double x[n+1],double y[n+1],float X) { int i,j;

计算方法--插值法与拟合实验

实验三 插值法与拟合实验 一、实验目的 1. 通过本实验学会利用程序画出插值函数,并和原图形相比较 2. 通过本实验学会拟合函数图形的画法,并会求平方误差 二、实验题目 1. 插值效果的比较 实验题目:区间[]5,5-10等分,对下列函数分别计算插值节点k x 的值,进行不同类型的插值,作出插值函数的图形并与)(x f y =的图形进行比较: 2 11)(x x f +=; x x f arctan )(=; 4 41)(x x x f += (1) 做拉格朗日插值; (2) 做三次样条插值. 2. 拟合多项式实验 实验题目:给定数据点如下表所示: 分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数),(i i y x 和拟合函数的图形. 三、实验原理 本实验应用了拉格朗日插值程序、三次样条插值程序、多项式拟合程序等实验原理. 四、实验内容 1(1) figure x=-5:0.2:5; y=1./(1+x.^2); plot(x,y,'r'); hold on %拉格朗日插值 x1=-5:1:5; y1=1./(1+x1.^2); xx=-4.5:0.5:4.5; yy=malagr(x1,y1,xx); plot(xx,yy,'+') %三次样条插值 dy0=1./(1+25); dyn=1./(1+25);

m=maspline(x1,y1,dy0,dyn,xx); plot(xx,m,'ok') 1(2) x=-5:0.2:5; y=atan(x); plot(x,y,'r'); hold on %拉格朗日插值 x1=-5:1:5; y1=atan(x1); xx=-4.5:0.5:4.5; yy=malagr(x1,y1,xx); plot(xx,yy,'+') %三次样条插值 dy0=1./(1+25); dyn=1./(1+25); m=maspline(x1,y1,dy0,dyn,xx); plot(xx,m,'ok') 1(3) x=-5:0.2:5; y=x.^2./(1+x.^4); plot(x,y,'r'); hold on %拉格朗日插值 x1=-5:1:5; y1=x1.^2./(1+x1.^4); xx=-4.5:0.5:4.5; yy=malagr(x1,y1,xx); plot(xx,yy,'+') %三次样条插值 dy0=1./(1+25); dyn=1./(1+25); m=maspline(x1,y1,dy0,dyn,xx); plot(xx,m,'ok') 2. x=[-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5]'; y=[-4.45 -0.45 0.55 0.05 -0.44 0.54 4.55]'; plot(x,y,'or'); hold on %三次多项式拟合 p1=mafit(x,y,3);

Matlab插值与拟合教程

MATLAB插值与拟合 §1曲线拟合 实例:温度曲线问题 曲线拟合就是计算出两组数据之间的一种函数关系,由此可描绘其变化曲线及估计非采集数据对应的变量信息。 曲线拟合有多种方式,下面是一元函数采用最小二乘法对给定数据进行多项式曲线拟合,最后给出拟合的多项式系数。 1. 1.线性拟合函数:regress() 调用格式:b=regress(y,X) [b,bint,r,rint,stats]= regress(y,X) [b,bint,r,rint,stats]= regress(y,X,alpha) 说明:b=regress(y,X)返回X处y的最小二乘拟合值。该函数求解线性模型: y=Xβ+ε β是p?1的参数向量;ε是服从标准正态分布的随机干扰的n?1的向量;y为n?1的向量;X为n?p矩阵。 bint返回β的95%的置信区间。r中为形状残差,rint中返回每一个残差的95%置信区间。Stats向量包含R2统计量、回归的F值和p值。 例1:设y的值为给定的x的线性函数加服从标准正态分布的随机干扰值得到。即y=10+x+ε;求线性拟合方程系数。 程序:x=[ones(10,1) (1:10)’] y=x*[10;1]+normrnd(0,0.1,10,1) [b,bint]=regress(y,x,0.05) 结果:x = 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 y = 10.9567 11.8334

13.0125 14.0288 14.8854 16.1191 17.1189 17.9962 19.0327 20.0175 b = 9.9213 1.0143 bint = 9.7889 10.0537 0.9930 1.0357 即回归方程为:y=9.9213+1.0143x 2. 2.多项式曲线拟合函数:polyfit( ) 调用格式:p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) 说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。矩阵s用于生成预测值的误差估计。(见下一函数polyval) 程序: x=0:.1:1; y=[.3 .5 1 1.4 1.6 1.9 .6 .4 .8 1.5 2] n=3; p=polyfit(x,y,n) xi=linspace(0,1,100); z=polyval(p,xi); %多项式求值 plot(x,y,’o’,xi,z,’k:’,x,y,’b’) legend(‘原始数据’,’3阶曲线’) 结果: p = 16.7832 -25.7459 10.9802 -0.0035 多项式为:16.7832x3-25.7459x2+10.9802x-0.0035 曲线拟合图形:

插值和拟合区别

插值和拟合区别 运输1203黎文皓通过这个学期的《科学计算与数学建模》课程的学习,使我掌握了不少数学模型解决实际问题的方法,其中我对于插值与拟合算法这一章,谈一谈自己的看法可能不是很到位,讲得不好的地方也请老师见谅。 首先,举一个简单的例子说明一下这个问题。 如果有100个平面点,要求一条曲线近似经过这些点,可有两种方法:插值和拟合。 我们可能倾向于用一条(或者分段的多条)2次、3次或者说“低次”的多项式曲线而不是99次的曲线去做插值。也就是说这条插值曲线只经过其中的3个、4个(或者一组稀疏的数据点)点,这就涉及到“滤波”或者其他数学方法,也就是把不需要90多个点筛选掉。如果用拟合,以最小二乘拟合为例,可以求出一条(或者分段的多条)低次的曲线(次数自己规定),逼近这些数据点。具体方法参见《数值分析》中的“线性方程组的解法”中的“超定方程的求解法”。经过上面例子的分析,我们可以大致的得到这样一个结论。插值就是精确经过,拟合就是逼近。 插值和拟合都是函数逼近或者数值逼近的重要组成部分。他们的共同点都是通过已知一些离散点集M上的约束,求取一个定义在连续集合S(M包含于S)的未知连续函数,从而达到获取整体规律目的,即通过"窥几斑"来达到"知全豹"。 所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn},通过调

整该函数中若干待定系数f(λ1, λ2,…,λ3), 使得该函数与已知点集的差别(最小二乘意义)最小。如果待定函数是线性,就叫线性拟合或者线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。表达式也可以是分段函数,这种情况下叫作样条拟合。 而插值是指已知某函数的在若干离散点上的函数值或者导数信息,通过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给定离散点上满足约束。 从几何意义上将,拟合是给定了空间中的一些点,找到一个已知形式未知参数的连续曲面来最大限度地逼近这些点;而插值是找到一个(或几个分片光滑的)连续曲面来穿过这些点。 不过是插值还是拟合都是建立在一定的数学模型的基础上进行的。多项式插值虽然在一定程度上解决了由函数表求函数的近似表达式的问题,但是在逼近曲线上有明显的缺陷,很可能不能很好的表示函数的走向,存在偏差,在实际问题中我们往往通过函数近似表达式的拟合法来得到一个较为准却的表达式。

第4、5讲 插值与拟合 作业参考答案

第四、五讲作业题参考答案 一、填空题 1、拉格朗日插值基函数在节点上的取值是( 0或1 )。 2、当1,1,2x =-,时()034f x =-, ,,则()f x 的二次插值多项式为 ( 2527 633 x x +- )。 3、由下列数据 所确定的唯一插值多项式的次数为( 2次 )。 4、根据插值的定义,函数()x f x e -=在[0,1]上的近似一次多项式1()P x = ( 1(1)1e x --+ ),误差估计为( 18 )。 5、在做曲线拟合时,对于拟合函数x y ax b = +,引入变量变换y =( 1 y ),x =( 1 x )来线性化数据点后,做线性拟合y a bx =+。 6、在做曲线拟合时,对于拟合函数Ax y Ce =,引入变量变换( ln()Y y = )、 X x =和B C e =来线性化数据点后,做线性拟合Y AX B =+。 7、设3()1f x x x =+-,则差商[0,1,2,3]f =( 1 )。 8、在做曲线拟合时,对于拟合函数()A f x Cx =,可使用变量变换(ln Y y =)(ln X x = )和B C e =来线性化数据点后,做线性拟合Y AX B =+。 9、设(1)1,(0)0,(1)1,(2)5,()f f f f f x -====则的三次牛顿插值多项式为 ( 3211 66x x x +-),其误差估计式为( 4()(1)(1)(2),(1,2)24f x x x x ξξ+--∈-) 10、三次样条插值函数()S x 满足:()S x 在区间[,]a b 内二阶连续可导, (),,0,1,2,,,k k k k S x y x y k n ==(已知)且满足()S x 在每一个子区间1[,] k k x x +上是( 三次多项式 )。

数学建模案例分析插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分 段多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。

matlab实现插值法和曲线拟合电子教案

m a t l a b实现插值法和 曲线拟合

插值法和曲线拟合 电子科技大学 摘要:理解拉格朗日多项式插值、分段线性插值、牛顿前插,曲线拟合,用matlab编程求解函数,用插值法和分段线性插值求解同一函数,比较插值余项;用牛顿前插公式计算函数,计算函数值;对于曲线拟 合,用不同曲线拟合数据。 关键字:拉格朗日插值多项式;分段线性插值;牛顿前插;曲线拟合 引言: 在数学物理方程中,当给定数据是不同散点时,无法确定函数表达式,求解函数就需要很大的计算量,我们有多种方法对给定的表格函数进行求解,我们这里,利用插值法和曲线拟合对函数进行求解,进一步了解函数性质,两种方法各有利弊,适合我们进行不同的散点函数求解。 正文: 一、插值法和分段线性插值 1拉格朗日多项式原理 对某个多项式函数,已知有给定的k + 1个取值点: 其中对应着自变量的位置,而对应着函数在这个位置的取值。 假设任意两个不同的x j都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为: 其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为: [3] 拉格朗日基本多项式的特点是在上取值为1,在其它的点 上取值为0。 2分段线性插值原理 给定区间[a,b], 将其分割成a=x 0

相关主题
文本预览
相关文档 最新文档