当前位置:文档之家› 图像增强技术综述

图像增强技术综述

图像增强技术综述
图像增强技术综述

本科毕业论文(设计)

题目图像增强技术综述

学院机械与电子工程学院

专业电子信息工程

学生姓名王林林

学号 11028065

指导教师申海洋、李素平职称助教、讲师

论文字数 8735字

完成日期:2015年5月31日

图像增强技术综述

巢湖学院本科毕业论文(设计)诚信承诺书

本人郑重声明:所呈交的本科毕业论文(设计),是本人在导师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。

本人签名:日期:

巢湖学院本科毕业论文 (设计)使用授权说明

本人完全了解巢湖学院有关收集、保留和使用毕业论文 (设计)的规定,即:本科生在校期间进行毕业论文(设计)工作的知识产权单位属巢湖学院。学校根据需要,有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许毕业论文 (设计)被查阅和借阅;学校可以将毕业论文(设计)的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编毕业,并且本人电子文档和纸质论文的内容相一致。

保密的毕业论文(设计)在解密后遵守此规定。

本人签名:日期:

导师签名:日期:

巢湖学院2015届本科毕业论文(设计)

图像增强技术综述

摘要

数字图像处理技术现在已普遍应用于各种行业,而图像增强处理技术就是其主要组成部分之一。所谓的图像增强处理,抑制原始图像上的干扰因素,从而改善原画面的质量。换句话说,就是对重要内容进行增强,以及对不重要内容进行抑制,然后获得清晰的图像显示效果。有时由于场景条件的影响导致图像拍摄出来的视觉效果不好,这就需要利用图像增强技术来改善人们看到的视觉效果。例如突出图像中目标物的一些特点、从数字图像中提取目标的特征参数等,这些都有利于对于图像中目标物的识别、跟踪和理解。本文研究图像增强的原理概念和数字图像的一些基础定义,并根据图像增强的方法分类,对直方图增强技术、对比度增强技术、平滑和锐化这几种经常用到的增强方法的进行系统的分析,最后利用Matlab进行实验仿真对数字图像增强技术的图像效果进行探讨和对比,并总结图像增强技术的优点和缺点。

关键词:数字图像;图像增强;直方图增强;对比度增强;平滑;锐化。

图像增强技术综述

Graphic Enhancement Technique Were Reviewed

Abstract

Digital image processing technology is now widely used in various industries, and image enhancement processing technology is one of the main components. The so-called image enhancement processing, restrain the interference factors in the original image, so as to improve the quality on the surface of the original painting. In other words, is the important content of strengthening and inhibition of not important content, and then get a clear image display effect. Sometimes because of the influence of the scene condition, leading to the visual effect of image taken out is not good, this would require the use of image enhancement technique to improve the visual effect of people to see. Some characteristics such as highlighted in the image of target, from digital image to extract target feature parameters, and so on, these are beneficial for the target in the image recognition, tracking and understanding. Concept in this paper, we study the principle of image enhancement and digital images of some basic definitions, and according to the classification of image enhancement methods, the histogram enhancement, contrast enhancement, smoothing and sharpening the enhanced several frequently used methods for the analysis of the system, the use of Matlab simulation experiment on the image effect of digital image enhancement techniques were discussed and compared, and summarize the advantages and disadvantages of image enhancement technology.

Keywords:digital image, image enhancement, histogram enhancement, contrast enhancement, smoothing, sharpening .

巢湖学院2015届本科毕业论文(设计)

目录

摘要......................................................................................................................... I Abstract ......................................................................................................................... II 1. 图像增强的概述.. (1)

1.1 图像增强研究背景及意义 (1)

1.2 图像增强的应用 (1)

2.图像增强的基本理论 (2)

2.1 图像增强的定义 (2)

2.2 图像增强的分类及方法 (3)

2.3 常用的图像增强方法 (3)

2.3.1 直方图均衡化 (3)

2.3.2 对比度增强法 (4)

2.3.3 平滑噪声 (4)

2.3.4 锐化 (4)

3.数字图像的概念 (5)

3.1 数字图像的基本定义 (5)

3.2 数字图像的数值描述 (5)

3.3 数字图像的分类 (5)

3.3.1 二值图像 (6)

3.3.2 灰度图像 (6)

3.3.3 彩色图像 (7)

4.图像增强方法分类概述 (8)

4.1 直方图增强 (8)

4.1.1 灰度直方图 (8)

4.1.2 直方图均衡化与规定化 (9)

4.2 对比度增强 (10)

4.3 平滑 (12)

4.4 锐化 (13)

4.5 真彩色增强 (16)

5. 总结 (17)

参考文献 (18)

致谢 (19)

巢湖学院2015届本科毕业论文(设计)

1. 图像增强的概述

1.1图像增强研究背景及意义

一般在主观存在的环境中获取实物图像,又或是图像在两物理介质中传递,有可能使所得图像与原始图像存在差异,即图像失真。而发生图像失真的原因也是难以确定的,人们往往由于环境或是仪器的局限性很难分析和掌握这一现象的数学模型和物理过程。虽然无法了解具体原因,但通过分析却能猜测出导致图像质量降低的可能原因,通过所掌握的应用目的,讨论并实施一些简单有效的技术方法,尽可能的减小图像失真。其实很多东西都需要相辅相成,图像增强技术也一样,没有和实际应用结合的图像增强技术是毫无任何意义的,所以它不能作为独立者存在。由于设定的应用不同,实施的图像增强处理技术中的方法及目标肯定是不同的,方法是对应图像降质不同情况产生和使用的。例如,如果图像失真是由于图像信号变弱产生的,所得图像变得模糊,增强图像对比度就能使清晰度增强;如果图像失真是由于噪声干扰产生,消减噪声可采用平滑技术;如果图像信号在经过一些需要模型化为一积分过程的机器和系统后发生模糊,采用微分运算的方法就能加深图像边界和任何发生变化的区域。有时,获取的图像与实物图像或者是原始图像存在的差异极小,这样的差异几乎无非识别或者是在可接受范围之内的,但突出所得图像的某些特征能够使人或机器更好的对所得图像的进行研究及掌握,例如利用微分技术突出边界区域和利用伪彩色技术加大分辨度等。图像增强技术的产生就是为了完善人类或机器接受的各种图像的视觉效果以及有效的分析理解图像,尽量减少图像失真的方法。

1.2图像增强的应用

现在的医学类、航天事业、军事勘察、指纹识别、卫星图像处理等等都用到了图像增强技术。例如,在医学上,医生会对CT影像、x射线的图片、内窥镜的图片进行图像增强,从而发现病人的发病区域,能从很细小的部分更准确的找到问题;再有,在军事上有相同地点但不同时刻拍下的遥感图片,如果我们对这些图片使用

图像增强技术综述

增强处理的方法,就能够勘测敌人的军事调动方向,还可以判断军事装备及建筑的动向;还有一些企业在员工签到系统里运用指纹识别,通过对指纹图像的增强,可以准确快速的完成对提供指纹的人员的正确识别。现在越来越多的行业需要运用到图像增强的技术,由于它的实用性和社会科技的不断进步,我们相信图像增强将会越来越多的渗入到我们的生活中。

2.图像增强的基本理论

2.1图像增强的定义

图像增强是一类基本和典型的图像处理技术和过程,它指以最初采集到的原始图像为出发点,再采用各种加工技术使得原始图像展现处理的视觉效果更加完美和有用,对图像加工的这一技术和过程被称为图像增强。例如,在平常观看电视节目是,常通过调整遥控器上的各个按钮将画面调得更亮些或对比度更大些,这就是通过对图像的增强来获得更清晰更好看的视觉效果的常见应用。需要注意,由于视觉效果有一定的主观性,也由于具体应用目的和要求的不同,因而并没有图像增强的通用标准。换句话说,由于视觉评判是相当主观的过程,所以所谓“好”和“有用”常因人而异。实际中,用户会根据具体节目的具体情况进行调整以满足自身的要求,所以说,观察者是某种增强技术的最终判断者。

一般来说,图像增强是根据所需来突显我们图像中的一些信息,并且会去除一部分我们不要的信息内容的使用方法,这就会提高我们图像的质量。它的目的是让一些图像的特性更加的突出,使用图像增强技术处理后的图像会更符合人类的视觉效果,或使机器的图像分辨更准确,从而使得图像的分析更全面与清晰。有时候,图像增强会存在很矛盾的地方:它想要不仅能够去除噪声,同时又增强边缘。但如果要增强边缘,那么噪声也会增强。如果选择滤去噪声,边缘便会存在一定程度上模糊,所以在进行图像增强时,便会将这两者对半考虑分析,寻求一个更好的函数来达到我们想要的增强效果。

巢湖学院2015届本科毕业论文(设计)

2.2图像增强的分类及方法

图像增强技术一般分两类,即基于变换域和基于图像域。顾名思义,前一类方法是在图像域中直接对图像进行增强操作的,一般也称为空域方法,这里空域是指由像素组成的空间。后一类方法不直接在图像域中对图像进行增强操作,而是先将图像进行变换,将图像转换到变换域后再进行增强。由于有许多种图像变换,所以变换域图像增强也可根据变换分成许多类。最常用的变换是傅里叶变换,所以最常见变换域是傅里叶域,一般也称为频域。

空域里的增强技术也可以分成不同类别。如果考虑增强操作的作用点,常将空域增强方法分成两类。一类是根据每个像素点的特性进行操作,此时称为点操作。点操作实际中可以原地完成,由于对一副图像的点操作仅利用每个像素一次,利用过后该像素位置就可赋新值,所以对一副图像点操作的结果就可直接存储在这幅图像中。另一类是要考虑像素邻近像素特性,即邻域操作。

改变原始图像中的不同频率分量实现的增强即为在频域空间的增强。空域增强在处理时是相对比较直接的,频域增强在另一些方面来说是有区别于空域增强的,由于图像频谱会展现整个图像的局面,所以频域增强的处理不是针对图像的每一个像素。频域增强的缺点是比较客观,但空域增强技术却经常使用频谱。

基于空域的算法可分为两类。一类是点运算算法,包含灰度变换、灰度级校正等,点运算算法的优点在于它能让图像成像均匀以及扩大其动态范围。还有一个算法是领域增强,它主要分为锐化和平滑。平滑常使图像噪声得以消减,缺点是会造成边缘的模糊,均值滤波和中值滤波是它常用的算法。而锐化一般是用来物体的边缘轮廓凸显出来,达到准确的识别我们所要的目标。它比较常见的算法是梯度法、算子和高通滤波等。

2.3常用的图像增强方法

2.3.1直方图均衡化

由于一些图像处于低值灰度区间上的频率比较大,导致在图像相对比较暗的区域内的一些细节呈现模糊的现象。这时我们就需要分解该图像的灰度范围,同时使得灰度频率相对小的灰度级变得大些,这即为直方图均衡化。这个方法是利用对图像灰度值的动态范围的调整,使得图像自动地增大对比度,这样图像就会具有相对

图像增强技术综述

大的反差,使我们看到的图像的细节更加清晰。

2.3.2对比度增强法

现实中,我们看到的一些图像的对比度有点低,导致整个图像看不清楚。那么就需要修改这个原图像的灰度,但要按照一定的规律去修改每一个像素,达到改变图像灰度的动态范围的目的。

2.3.3平滑噪声

实际上有些图像发生图像失真是由于噪声干扰的缘故,但噪声的产生又是随机不定向的,加上原图像的信号是结合空间和时间,导致噪声对任何一像素点的干扰都对所需图像有一定的影响,这影响包括使两相邻点的灰度或帧间两相邻像素的灰度产生明显的差异。那么平滑技术就是根据这一情况产生的,它针对于噪声的随机不定向性。

平滑噪声一般是采用均值滤波和中值滤波的方法:均值滤波是空间域平滑噪声技术,也称为邻域平均法。算术平均算法是最简单的邻域平均法,该算法也称为线性滤波,在采用领域平均技术处理后把一像素领域内像素的灰度平均值作为所得图像像点的灰度值;而中值滤波是非线性处理方法,中值滤波的优点是运算简单且方便实现,不仅如此,它还能更好的保护边界,它的缺点在于经过中值滤波技术得到的图像会丢失一些目标区域以及细线。

2.3.4锐化

经过很多的实践研究我们发现一个现象,在各种变模糊的图像中,它们的物理过程和数学模型都运用到了积分、平均或者求和这一类运算。而在一些特定的应用环境中,对于图像之所以变模糊的物理过程或数学模型可以选择忽略,但对于在图像变模糊这一过程中运用到了积分、平均和求和这一共同之处,基本的二分法是原图像加一个对其微商后的图像。即使图像无模糊失真,在分析图像时也要突出某些边界或灰度细节。锐化即为减弱图像模糊、突出图像边界与细节的增强性方法。

巢湖学院2015届本科毕业论文(设计)

3.数字图像的概念

3.1数字图像的基本定义

通常把一副图像定义为平面上的位置点与其对应的某种属性的关系。用数学的方法可以通过函数f(x,y)来表示,其中x和y是平面上的位置点坐标,而f(x,y)表示这一点的图像的灰度或强度。以这种数学描述为基础来定义数字图像的概念是非常容易的,即当平面上的位置点与其对应的灰度或强度的关系满足函数f(x,y),且x,y与f(x,y)同时为有限的、离散的数值时,该图像就称为数字图像。作为以数字形式进行存储和处理的图像,数字图像的优点在于,通过计算机就能加工和处理任何图像以及在网络上将图像进行传输浏览,并且将图像进行无数次的复制后仍然保持图像不失真。相比之下,模拟图像则以一个连续的形式存储数据。

3.2数字图像的数值描述

我们生存的世界是三维立体的,但我们在这个三维世界里拍摄的任何图像皆以二维形式存在。为了更好的表现一个图像,我们通常用二次函数来简单表示任一图像,即为f(x,y)。在二次函数中,表达式为f(x,y),x和y都为其坐标,x、y为横纵坐标,而函数f(x,y)所表达的函数值即为像素值。但我们在研究一副图像时,利用二维函数f(x,y)所得的坐标和像素值都是有限的,而且这些点的分布还是随机的,所以就会呈现点数值的离散,没有规律。

我们还可以用矩阵来表示一副图像,作为二维结构的数据,矩阵能量化值取整数。一个矩阵可以用f(i,j)来表示,其中(i,j)就是数字图像的一个像素点,矩阵值f(x,y)就可以对应表示该像素点的像素值。这样一个用整数矩阵表示的数字图像更容易实现。

3.3数字图像的分类

数字图像分成三类:

(1)二值图像

图像增强技术综述

(2)灰度图像

(3)彩色图像

3.3.1二值图像

二值图像是一种简单描述的图像,它的灰度值只分两级,不存在过渡,因此二值图像中的任一像素只存在黑或白。二值图像的缺点很明确,就是它比较适用于对文字类信息的图像的描述,对于图像的细节描述很难掌握。虽然如此,但对于一副一般的场景画面,我们已经可以了解其画面的基本内容。

图3-3-1 二值图像

3.3.2灰度图像

一数字图像中的每一个像素信息都是用量化后的灰度级来表现,这个数字图像即为灰度图像,它不含有任何的彩色内容。一般标准化的灰度图像的每一个像素的灰度都是用一个字节代表,灰度级数有256级,图像的每一个像素值都是其中任一值,灰度级数中0到255即是颜色中从黑到白。

巢湖学院2015届本科毕业论文(设计)

图3-3-2 灰度图像

3.3.3彩色图像

自然界中有很多种颜色,而所有的颜色都是由红、绿、蓝这三种颜色组合形成的,因此这三种颜色被称为三基色。而彩色图像就是利用三基色组合原理来描述所以的色彩,我们一般用一个字节来分别表示三基色的灰度,如果将三基色的灰度进行各种组合,就会形成各种颜色。

图3-3-3 彩色图像

图像增强技术综述

4.图像增强方法分类概述

4.1直方图增强

4.1.1灰度直方图

一.灰度直方图的概念:

在数学模型中,直方图是很直观的,易于观察和分析。灰度直方图就是将图像灰度级的分布呈现在直方图上,是一个关于统计图像灰度级分布的函数。先将数字图像里的全部像素的灰度值按照从大到小分布在直方图里,然后统计所有灰度值的频率,从而形成这一数字图像的灰度直方图。从数学的角度来说,灰度直方图是关于图像灰度值与图像灰度值频率的函数。从图形的角度来说,灰度直方图是坐标轴上的一条曲线,横坐标是像素的灰度值,纵坐标表示分布在每个灰度值里的像素点的个数,它能表现该图像的最基本特性。

二.灰度直方图的性质:

(1)灰度直方图表征图像的一维信息

直方图一般来说只能大概表现出分布,一些细节信息无法显示。灰度直方图也是如此,它统计的是一图像里的所有像素的灰度值出现的次数,不能呈现出任何一个像素的所处位置。简单的说,就是灰度直方图只反映了一图像任一像素点出现的频率,却不知道该像素点的位置信息。

(2)灰度直方图与图像是多对一的映射关系

因为直方图的表现很单一,所以我们会发现不同的图像它们对应的灰度直方图有可能是一模一样的,但对于一个图像来说,它所能对应的灰度直方图是唯一的。通过这一关系我们通常会用来定性分析图像。例如,在一个处于相同场景中的很多视频帧中,虽然运动的目标物所在位置不同,但相邻的一些图像所对应的灰度直方图却一样的,我们就能利用这一依据对视频帧进行镜头分割。

(3)子图直方图之和为整图的直方图

一图像的灰度直方图是统计具有相同的灰度值的像素点概率,所以对于得到一副图像所有的子图的灰度直方图,把它们总和在一起就是这一整图像的灰度直方图。

巢湖学院2015届本科毕业论文(设计)

4.1.2直方图均衡化与规定化

一.直方图均衡方法的基本原理:

在灰度直方图的分布中,有该图像像素点出现频率多的灰度值,这一类灰度值一般是对图像的画面起主要的作用,还有一些灰度值对画面不起主要作用,即图像像素出现频率小的灰度值,我们将起主要作用的灰度值展宽,以及将不起主要作用的归并,这样就能使一副图像变清晰。

二.直方图均衡化方法的基本步骤:

(1)求原图的灰度直方图;

(2)求原图的灰度分布概率;

(3)求图像各个灰度值的累计分布概率;

(4)计算直方图均衡化,得处理后图像的像素值。

三.直方图规定化的基本原理:

在直方图均衡化的原理上形成了直方图规定化,它主要是建立起原始图像和期望图像两者的关系,然后选择性的对灰度直方图进行控制,目的是让原始图像的直方图能形成规定中的形状,它的优点在于将直方图均衡化中不能交互的特点进行补消。

四.直方图规定化方法的基本步骤:

(1)将原图像的直方图进行灰度均衡化;

(2)规定需要的直方图,并将其直方图均衡化;

(3)将得到的变换反转过来,即将原始直方图对应反射到规定的直方图。

五.举例:

(1)程序:

图像增强技术综述

(2)图像:

图4-1-2a直方图均衡化图像

图4-1-2b直方图规定化图像

4.2对比度增强

一.对比度增强的概述:

对比度增强是相对简单且重要。它的特点在于它是按照一定的规律改变目标物的各个像素点的灰度值,从而大动作的改变一图像灰度的动态分布。对比度增强主

巢湖学院2015届本科毕业论文(设计)

要是扩展或压缩整个图像灰度的动态范围,又或者是在一部分动态范围内扩展,而在另一部分内压缩,这些可以根据图像的特点和需求进行扩展或压缩。根据选取这一类规则,能使图像中我们喜欢的部分的对比度提高。

二.实现对比度增强的内容

(1)在使用Matlab软件处理中,函数imadjust能够把图像的像素灰度值调整到目标范围内,即这一特殊函数就是将图像的像素范围规定化。

(2)gamma能形象的描述出图像在输入与输出之间对应曲线的形状:gamma<1,表示曲线中图像像素值大的更重要;gamma>1,表示曲线中图像像素小的更重要;gamma=1,表示图像在输入与输出之间呈现的是一条直线。

三.举例:

(1)程序:

(2)图像:

图4-2 对比度增强图像

图像增强技术综述

4.3平滑

一.平滑滤波的概述:

平滑技术主要是对于图像中的噪声进行消减,平滑噪声能够实现于空间域中,它的基本实现方法是求取图像像素的灰度中值或均值。

二.平滑滤波的分类:

(1)图像的简单平滑:图像的简单平滑主要是利用领域平均法,目的是将图像平滑处理,它的作用还体现在能部分的消减原图像的噪声干扰以及减少其对比度的作用。

(2)图像的高斯平滑:和图像的简单平滑一样,图像的高斯平滑也是使用领域平均法。不同之处在于图像的高斯平滑在利用领域平均法的同时,赋以不同的权值给不同位置上的像素。

(3)图像的中值滤波:它利用的是函数中的中值思想,即先对图像领域中像素的灰度值按从小到大排序,再选择中心像素灰度值。所以它是非线性的方法。

三.举例:

(1)程序:

(2)图像:

巢湖学院2015届本科毕业论文(设计)

图4-3 平滑处理后图像

四.优缺点对比:

图像的中值滤波在少量离散噪声点的消除方面效果显著,而图像的简单平滑和高斯平滑采取的都是将噪声的干扰分布在图像领域里的各个像素上,目的是降低噪声点,可是同时也降低了图像的清晰度,所以它是优缺点并存的。

4.4锐化

一.锐化的概念:

锐化的目的就是强化原始图像的边界和细节。它在空间域中一般是对图像采取微商处理的方法,再将处理后的图像与原始图像进行叠加;高频提升滤波技术一般应用于频域中。

二.锐化的目的:

在前面我们了解到图像的平滑处理目的是让图像变模糊,而图像的锐化处理则是让图像变得清晰,所以我们可以在平滑处理的原理基础上反向思考锐化处理的实施方法。图像的平滑处理利用的是缩小领域内像素之间的灰度值差,所以相反的锐化处理的方法就是增大领域内像素之间的灰度值差,从而达到提高图像对比度的目的。

三.图像锐化的处理方法:Robert算法、拉普拉斯算法、梯度法,以及采用微分运算求取信号变化率,目的是提高图像的清晰度。

比较常见的微分滤波器算子:Sobel 梯度算子、Prewitt 梯度算子和log算子。

图像增强技术综述四.举例:

(1)Robert算法程序:

Robert算法图像:

图4-4a Robert算法图像(2)Rrewitt算子程序:

Rrewitt算子图像:

图像识别技术的研究现状论文

图像识别技术研究现状综述 简介: 图像识别是指图形刺激作用于感觉器官,人们辨认出它是经验过的某一图形的过程,也叫图像再认。在图像识别中,既要有当时进入感官的信息,也要有记忆中存储的信息。只有通过存储的信息与当前的信息进行比较的加工过程,才能实现对图像的再认。图像识别技术是以图像的主要特征为基础的,在图像识别过程中,知觉机制必须排除输入的多余信息,抽出关键的信息。在人类图像识别系统中,对复杂图像的识别往往要通过不同层次的信息加工才能实现。对于熟悉的图形,由于掌握了它的主要特征,就会把它当作一个单元来识别,而不再注意它的细节了。这种由孤立的单元材料组成的整体单位叫做组块,每一个组块是同时被感知的。图像在人类的感知中扮演着非常重要的角色,人类随时随处都要接触图像。随着数字图像技术的发展和实际应用的需要,出现了另一类问题,就是不要求其结果输出是一幅完整的图像,而是将经过图像处理后的图像,再经过分割和描述提取有效的特征,进而加以判决分类,这就是近20年来发展起来的一门新兴技术科学一图像识别。它以研究某些对象或过程的分类与描述为主要内容,以研制能够自动处理某些信息的机器视觉系统,代替传统的人工完成分类和辨识的任务为目的。 图像识别的发展大致经历了三个阶段:文字识别、图像处理和识别及物体识别:文字识别的研究是从1950年开始的,一般是识别字母、数字和符号,并从印刷文字识别到手写文字识别,应用非常广泛,并且已经研制了许多专用设备。图像处理和识别的研究,是从1965年开始的。过去人们主要是对照相技术、光学技术的研究,而现在则是利用计算技术、通过计算机来完成。计算机图像处理不但可以消除图像的失真、噪声,同时还可以进行图像的增强与复原,然后进行图像的判读、解析与识别,如航空照片的解析、遥感图像的处理与识别等,其用途之广,不胜枚举。物体识别也就是对三维世界的认识,它是和机器人研究有着密切关系的一个领域,在图像处理上没有特殊的难点,但必须知道距离信息,并且必须将环境模型化。在自动化技术已从体力劳动向部分智力劳动自动化发展的今天,尽管机器人的研究非常盛行,还只限于视觉能够观察到的场景。进入80年代,随着计算机和信息科学的发展,计算机视觉、人工智能的研究已成为新的动向 图像识别与图像处理的关系: 在研究图像时,首先要对获得的图像信息进行预处理(前处理)以滤去干扰、噪声,作几何、彩色校正等,以提供一个满足要求的图像。图像处理包括图像编码,图像增强、图像压缩、图像复原、图像分割等。对于图像处理来说,输入是图像,输出(即经过处理后的结果)也是图像。图像处理主要用来解决两个问题:一是判断图像中有无需要的信息;二是确定这些信息是什么。图像识别是指对上述处理后的图像进行分类,确定类别名称,它可以在分割的基础上选择需要提取的特征,并对某些参数进行测量,再提取这些特征,然后根据测量结果做出分类。为了更好地识别图像,还要对整个图像做结构上的分析,对图像进行描述,以便对图像的主要信息做一个好的解释,并通过许多对象相互间的结构关系对图像加深理解,以便更好帮助和识别。故图像识别是在上述分割后的每个部分中,找出它的形状及纹理特征,以便对图像进行分类,并对整个图像做结构上的分析。因而对图像识别环节来说,输入是图像(经过上述处理后的图像),输出是类别和图像的结构分析,而结构分析的结果则

红外图像增强算法研究

红外图像增强算法研究 安阳,胡耀祖 武汉理工大学信息学院,武汉 (430070) E-mail:alen1983@https://www.doczj.com/doc/c518484675.html, 摘要:本文根据红外图像的特点介绍了几种经典的图像增强算法,讨论算法的效果,提出对算法的一些改进,给出了一些改进后的效果。 关键词:红外图像,直方图,锐化 1.引言 红外技术是二战后兴起的一项红外信息转换与处理技术。它研究红外辐射的发射、传输和接收的规律及其应用原理,而红外成像技术是其应用最广泛的方面。随着科技的不断发展,红外热成像技术在军事、科研、工农业生产、医疗卫生等领域的应用越来越广泛,与此同时图像实时处理的研究也得到了迅速发展[1]。 随着红外成像技术的广泛应用,人们对红外图像成像质量的要求越来越高,要提高红外图像的质量可以有两种途径:一是不断研究更高性能的红外探测器;另一个就是要进行红外图像的预处理,从而改善图像质量。 目前随着材料技术的突破,美国,西欧等发达国家在红外成像阵列的研制取得了巨大的发展,高密度,高灵敏度,快响应的红外焦平面阵列在军事上已经得到了应用,非制冷焦平面阵列也得到了快速的发展。 但是由于材料器件的限制,仅仅依靠红外探测器的提高不能完全达到我们所期望的图像质量,而且高精度的探测器件的研制所花费的人力物力是十分巨大的。而解决这个问题的一个有效的手段就是对红外图像进行实时图像预处理。实时图像处理技术能在现有的条件下不仅能提高红外图像质量,而且在较短的时间内迅速改善和提高红外热像仪的各项性能指标。 2.红外图像对比度增强算法 2.1 红外图像的特点 红外成像的目标和背景的红外辐射需经过大气传输、光学成像、光电转换和电子处理等过程,才被转换成为红外图像。所以从红外图像的产生过程分析,红外图像主要有以下特点:1)空间相关性强,对比度低;2)表征对象的温度分布,是灰度图像,分辨率较低,图像比较模糊;3)噪声干扰较大,噪声比较复杂,信噪比低;4)存在器件性的非均匀性等。 我们可以看出红外图像存在很多缺陷,对人眼来说其最显著的特点就是对比度很低,图像很模糊,所以本文主要从对比度提升和图像锐化两个方面进行增强算法的研究。 2.2 红外图像的直方图均衡化及改进 红外图像直方图的特点是像素相对比较集中,灰度值变化不大,使得图像的对比度很低,视觉效果很差。直方图均衡的作用是改变图像中灰度概率分布,使其均匀化。使图像中灰度概率密度较大的像素向附近灰度级扩展,因而灰度层次拉开,而概率密度较小的像素的灰度级收缩,从而让出原来占有的部分灰度级,这样的处理使图像充分有效地利用各个灰度级,因而增强了图像对比度。

增强现实技术综述

增强现实技术综述 摘要:增强现实技术,它是一种将真实世界信息和虚拟世界信息“无缝”集成的新技术,是把原本在现实世界的一定时间空间范围内很难体验到的实体信息(视觉信息,声音,味道,触觉等),通过电脑等科学技术,模拟仿真后再叠加,将虚拟的信息应用到真实世界,被人类感官所感知,从而达到超越现实的感官体验。本文先介绍了增强现实技术的概念,进而描述其未来发展趋势以及应用场景 关键词:增强现实技术投影技术3D技术跟踪注册技术前景展望 一、增强现实技术简介 增强现实(Augmented Reality,简称 AR),是一种实时地计算摄影机影像的位置及角度并加上相应图像的技术,这种技术的目标是在屏幕上把虚拟世界 套在现实世界并进行互动。 AR是一种将真实世界信息和虚拟世界信息无缝集成的新技术,是把原本在现实世界的一定时间空间范围内很难体验到的实体信息,通过计算机视觉等科 学技术,应用到真实世界,被人类感官所感知,从而达到超越现实的感官体验。通 过AR技术,真实的环境和虚拟环境叠加到同一画面或空间。 这种技术最早于1990年提出。随着随身电子产品运算能力的提升,增强现实的用途越来越广。 二、增强现实技术的基本原理及特征 (一)工作原理简介 移动式增强现实系统的早期原型增强现实的基本理念是将图像、声音和其他感官增强功能实时添加到真实世界的环境中。听起来十分简单。而且,电视 网络通过使用图像实现上述目的不是已经有数十年的历史了吗?的确是这样, 但是电视网络所做的只是显示不能随着摄像机移动而进行调整的静态图像。增 强现实远比您在电视广播中见到的任何技术都要先进,尽管增强现实的早期版 本一开始是出现在通过电视播放的比赛和橄榄球比赛中,例如Racef/x和添加 的第一次进攻线,它们都是由SporTVision创造的。这些系统只能显示从一个 视角所能看到的图像。下一代增强现实系统将显示能从所有观看者的视角看到 的图像。 在各类大学和高新技术企业中,增强现实还处于研发的初级阶段。最终,可能到这个十年结束的时候,我们将看到第一批大量投放市场的增强现实系统。

医学图像分割综述

医学图像分割综述郭爱心安徽大学摘要:图像分割是图像处理和分析的关键。随着影像医学的发展,图像分割在医学应用中具有重要意义。本文从医学应用的角度出发,对医学图像分割的意义、方法、评估标准和发展前景做出了简单综述。关键字:医学图像分割意义方法评估标准发展前景AReviewofMedicalImageSegmentation Ai- XinGuoAnhuiUniversityAbstract:Imagesegmentationisthekeyofimageprocessingandanalysis.Withthede velopmentofmedicalimage,imagesegmentationisofgreatsignificanceinmedicalapplications.Fromtheper spectiveofmedicalapplications,thispapermadeasimplereviewofthemedicalimagesegmentationonit’ssig nificance、methods、evaluationstandardsanddevelopmentprospects.words:Keymedical image,segmentation,sig nificance,methods,evaluation standards,developmentprospects1.医学图像分割的意义图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。医学图像包括CT、正电子放射层析成像技术(PET)、单光子辐射断层摄像(SPECT)、MRI(磁共振成像技术)、Ultrasound(超[2]声)及其它医学影像设备所获得的图像。医学图像分割是将原始的2D或3D图像划分成[1]不同性质(如灰度、纹理等)的区域,从而把感兴趣的区域提取出来。医学图像分割是一个非常有研究价值和研究意义的领域,对疾病诊断、图像引导手术以及医学数据可视化等有重要作用,为临床诊疗和病理学研究提供可靠的依据。医学图像处理有其复杂性和多样性。由于医学图像的成像原理和组织本身的特性差异,图像的形成受到诸如噪音、场偏移效应、局部体效应和组织运动等的影响,医学图像与普通图像相比较,不可

图像增强算法综述

图像增强算法研究综述 刘璐璐 宁波工程学院电子与信息工程学院计算机科学与技术071班,邮编:(315100) E-mail:375212239@https://www.doczj.com/doc/c518484675.html, 摘要:本文简要介绍图像增强的概念和图像增强算法的分类,从图像的直方图均衡化处理方法,直方图规定化处理方法和图像平滑处理方法三方面对图像增强算法进行讨论和研究,并说明了图像增强技术的应用和前景展望。 关键词:图像增强直方图均衡化直方图规定化平滑处理 近年来,随着电子计算机技术的进步,计算机图像处理得到了飞跃的发展,己经成功的应用于几乎所有与成像有关的领域,并正发挥着相当重要的作用。它利用计算机对数字图像进行系列操作,从而获得某种预期的结果。对图像进行处理时,经常运用图像增强技术以改善图像的质量增强对某种信息的辨识能力,以更好的应用于现代各种科技领域,图像增强技术的快速发展同它的广泛应用是分不开的,发展的动力来自稳定涌现的新的应用,我们可以预料,在未来社会中图像增强技术将会发挥更为重要的作用。在图像处理过程中,图像增强是十分重要的一个环节。 1.图像增强概念及现实应用 1.1 图像增强技术 图像增强是数字图像处理的基本内容之一。图像增强是指按特定的需要突出一幅图像中的某些信息,同时,削弱或去除某些不需要的信息。这类处理是为了某种应用目的去改善图像质量,处理的结果更适合于人的视觉特性或机器识别系统,图像增强处理并不能增加原始图像的信息,而只能增强对某种信息的辨识能力,使处理后的图像对某些特定的应用比原来的图像更加有效。 1.2图像增强技术的现实应用 目前,图像增强处理技术的应用己经渗透到医学诊断、航空航天、军事侦察、纹识别、无损探伤、卫星图片的处理等领域,在国民经济中发挥越来越大的作用。其中最典型的应用主要体现以下方面。 1

手势识别技术综述

手势识别技术综述 作者单位:河北工业大学计算机科学与软件学院 内容摘要: 手势识别是属于计算机科学与语言学的一个将人类手势通过数学算法针对人们所要表达的意思进行分析、判断并整合的交互技术。一般来说,手势识别技术并非针对单纯的手势,还可以对其他肢体动作进行识别,比如头部、胳臂等。

但是这其中手势占大多数。本文通过对手势识别的发展过程、使用工具、目的与市场等进行综述,梳理出手势识别发展的思路,让读者对手势识别有一个总体上的认识,同时也可以让读者在此基础上进行合理想象,对手势识别的未来有一个大体印象。 Abstract: Gesture recognition is an interactive technology using mathematical arithmetic to the analysis,judge and assembly meaning that people want to convey which belongs to computer science and Linguistics.In general, gesture recognition technology is not for simple gestures expressed by hands ,it can also aim to other body movement recognition, such as the head, arm and so on. But the gesture accounted for most of the analysis. In this paper, by describing the development process, tools used , objective and market of gesture recognition , we can sort out the ideas of the development of gesture recognition, and let readers have an overall understanding of gesture recognition. At the same time, it can let the reader imagine that on hand gesture recognition based on reason ,and have a general impression of its future. 1.定义 说到手势识别,首先要对手势识别中的手势有一个清晰的认知。手势在不同的学科中有不同含义,而在交互设计方面,手势与依赖鼠标、键盘等进行操控的区别是显而易见的,那就是手势是人们更乐意接受的、舒适而受交互设备限制小的方式,而且手势可供挖掘的信息远比依赖键盘鼠标的交互模式多。在学术界,人们试图对手势定义一个抽象、明确而简洁的概念以为手势及其应用的研究提供依据。1990年Eric Hulteen和Gord Kurtenbach曾发表的题为“Gestures in Human-Computer Communication”中定义:“手势为身体运动的一部分,它包括一部分信息,而且是一种能被观察到的有意义的运动。挥手道别是一种手势,而敲击键盘不是一种手势,因为手指的运动没有被观察,也不重要,它只表示键盘

图像识别技术发展状况及前景

医学图像配准技术 罗述谦综述 首都医科大学生物医学工程系(100054) 吕维雪审 浙江大学生物医学工程研究所(310027) 摘要医学图像配准是医学图像分析的基本课题,具有重要理论研究和临床应用价 值。本文较全面地介绍了医学图像配准的概念、分类、配准原理、主要的配准技术及评 估方法。 关键词医学图像配准多模 1 医学图像配准的概念 在做医学图像分析时,经常要将同一患者的几幅图像放在一起分析,从而得到该患者的多方面的综合信息,提高医学诊断和治疗的水平。对几幅不同的图像作定量分析,首先要解决这几幅图像的严格对齐问题,这就是我们所说的图像的配准。 医学图像配准是指对于一幅医学图像寻求一种(或一系列)空间变换,使它与另一幅医学图像上的对应点达到空间上的一致。这种一致是指人体上的同一解剖点在两张匹配图像上有相的空间位置。配准的结果应使两幅图像上所有的解剖点,或至少是所有具有诊断意义的点及手术感兴趣的点都达到匹配。 医学图像配准技术是90年代才发展起来的医学图像处理的一个重要分支。涉及“配准”的技术名词除registration外,mapping、matching、co-registration、integration、align-ment和fusion 等说法也经常使用。从多数文章的内容看,mapping偏重于空间映射;fu-sion指图像融合,即不仅包括配准,而且包括数据集成后的图像显示。虽然在成像过程之前也可以采取一些措施减小由身体移动等因素引起的空间位置误差,提高配准精度(称作数据获取前的配准preacquisition),但医学图像配准技术主要讨论的是数据获取后的(post-acquisition)配准,也称作回顾式配准(retrospective registration)。当前,国际上关于医学图像配准的研究集中在断层扫描图像( tomographic images,例如CT、MRI、SPECT、PET等)及时序图像(time seriesimages,例如fMRI及4D心动图像)的配准问题。 2 医学图像基本变换 对于在不同时间或/和不同条件下获取的两幅图像I1(x1,y1,z1)和I2(x2,y2,z2)配准,就是寻找一个映射关系P:(x1,y1,z1) (x2,y2,z2),使I1的每一个点在I2上都有唯一的点与之相对应。并且这两点应对应同一解剖位置。映射关系P表现为一组连续的空间变换。常用的空间几何变换有刚体变换(Rigid body transformation)、仿射变换(Affine transformation)、投影变换(Projec-tive transformation)和非线性变换(Nonlin-ear transformation)。 (1)刚体变换: 所谓刚体,是指物体内部任意两点间的距离保持不变。例如,可将人脑看作是一个刚体。 处理人脑图像,对不同方向成像的图像配准常使用刚体变换。刚体变换可以分解为旋转和平移:P(x)=Ax+b(1) x=(x,y,z)是像素的空间位置;A是3×3的旋转矩阵,b是3×1的平移向量。

增强现实技术及相关问题研究

增强现实技术及相关问题研究 摘要:为了实现虚拟技术的不断发展,对增强现实 技术进行研究已经逐渐成为最为重要的内容。文章围绕增强现实技术中存在的相关问题,对技术在安卓系统以及其他相关系统中的运用展开了探讨,从而进一步实现增强现实技术的有效应用。 关键词:增强现实;技术;智能手机 所谓增强现实技术,即应用于虚拟世界中的一种研究技术,现阶段,受信息技术、传感技术等影音图形处理技术发展的影响,在移动端中逐渐实现了GPS定位、重力感应等智能功能,在此基础上,增强现实技术的应用也逐渐得到了重视。在移动端中,增强现实技术的应用也可以被叫做移动增强现实技术,较之传统的增强现实技术,在移动端应用的增强现实更具移动性,客户在使用的同时更加便捷,并且在其具体应用中范围更广,以此实现了增强现实技术的不断提升。为此,文章中笔者针对增强现实技术,对其应用进行了分析。 一、增强现实技术基本内涵 现阶段对于增强现实技术的定义不同的学者具有不同 的认识,在相关的国际大会中,一些学者对其展开了讨论,目前,能够达成一致的部分主要在于增强现实技术的元素构

成,然而在其定义方面仍然存在一些出入。现阶段,在虚拟行业中,对于增强现实技术定义的限定,主要以Azuma的 定义为准,即在信息技术的基础上,将虚拟与现实世界结合,并为进行实施互动。 增强现实技术也就是在移动终端对于增强显示技术的 使用,是脱离实验室等指定条件下的增强现实体系。一般情况下,增强现实技术所涉及到的相关技术形式主要包含以下几种:即全球跟踪定位系统、在位置的基础上实行的计算服务以及无线通信等几种技术。 二、增强现实技术的应用策略 1.应用于数字营销中 在数字营销中应用增强现实技术,不仅对技术的应用范围进行了拓展,同时也为数字营销提供了更加新颖的形式,在其应用的同时,客户可以发现更加新鲜的视角对产品进行体验,例如,在安卓的移动设备中,我们可以利用移动终端屏幕将产品的虚拟信息投放于周边的物体表面,更显高科技,同时也能够起到激发客户积极性的作用,让客户通过增强现实技术更加了解该产品,从而实现产品销售量提升的基础目标。另外,在进行产品外观展示时,也可以利用增强现实技术,结合3D模型通过展示台的形式将产品的外观、性能等 进行展示,让客户全面位立体的了解产品功能,提高客户体验率。针对现阶段一些能够人体识别的高科技产品,我们可

图像处理论文

图像处理技术近期发展及应用 摘要:图像处理技术的研究和应用越来越收到社会发展的影响,并以自身的技术特点反过来影响整个社会技术的进步。本文主要简单概括了数字图像处理技术近期的发展及应用现状,列举了数字图像处理技术的主要优点和制约其发展的因素,同时设想了图像处理技术在未来的应用和发展。 关键字:图像处理发展技术应用 1.概述 1.1图像的概念 图像包含了它所表达的物体的描述信息。我们生活在一个信息时代,科学研究和统计表明,人类从外界获得的信息约有百分之七十来自视觉系统,也就是从图像中获得,即我们平常所熟知的照片,绘画,动画。视像等。 1.2图像处理技术 图像处理技术着重强调在图像之间进行的变换,主要目标是要对图像进行各种加工以改善图像的视觉效果并为其后的目标自动识别打基础,或对图像进行压缩编码以减少图像存储所需要的空间或图像传输所需的时间。图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。 1.3优点分析 1.再现性好。数字图像处理与模拟图像处理的根本不同在于,它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。 2.处理精度高。按目前的技术,几乎可将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高,这意味着图像的数字化精度可以达到满足任一应用需求。 3.适用面宽。图像可以来自多种信息源,它们可以是可见光图像,也可以是不可见的波谱图像(例如X射线图像、射线图像、超声波图像或红外图像等)。从图像反映的客观实体尺度看,可以小到电子显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。即只要针对不同的图像信息源,采取相应的图像信息采集措施,图像的数字处理方法适用于任何一种图像。 4.灵活性高。图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分,每一部分均包含丰富的内容。而数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 2.近期发展及应用领域

基于matlab的图像预处理技术研究文献综述

毕业设计文献综述 题目:基于matlab的图像预处理技术研究 专业:电子信息工程 1前言部分 众所周知,MATLAB在数值计算、数据处理、自动控制、图像、信号处理、神经网络、优化计算、模糊逻辑、小波分析等众多领域有着广泛的用途,特别是MATLAB的图像处理和分析工具箱支持索引图像、RGB 图像、灰度图像、二进制图像,并能操作*.bmp、*.jpg、*.tif等多种图像格式文件如。果能灵活地运用MATLAB提供的图像处理分析函数及工具箱,会大大简化具体的编程工作,充分体现在图像处理和分析中的优越性。 图像就是用各种观测系统观测客观世界获得的且可以直接或间接作用与人眼而产生视觉的实体。视觉是人类从大自然中获取信息的最主要的手段。拒统计,在人类获取的信息中,视觉信息约占60%,听觉信息约占20%,其他方式加起来才约占20%。由此可见,视觉信息对人类非常重要。同时,图像又是人类获取视觉信息的主要途径,是人类能体验的最重要、最丰富、信息量最大的信息源。通常,客观事物在空间上都是三维的(3D)的,但是从客观景物获得的图像却是属于二维(2D)平面的。 图像存在方式多种多样,可以是可视的或者非可视的,抽象的或者实际的,适于计算机处理的和不适于计算机处理的。 图像处理它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在 1964 年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动

基于手势识别的智能电视交互专利技术综述

基于手势识别的智能电视交互专利技术综述 智能电视具有操作系统,支持第三方应用资源实现功能扩展,支持多网络接入功能,具备人机交互、与其他智能设备进行交互等。随着计算机视觉的发展和人机交互的需要,手势识别研究取得了蓬勃的发展,通过手势识别对智能电视进行控制和操作,能够更轻松、高效地使用电视设备。文章利用专利数据库对智能电视手势识别技术进行了数据统计和分析,对该领域的专利申请趋势等情况做了归纳总结。 标签:智能电视;手势识别;发展状况;专利 Abstract:Intelligent TV has the operating system,which supports the third party application resources to realize the function expansion,supports the multi-network access function,has the man-machine interaction,and carries on the interaction with other intelligent devices. With the development of computer vision and the need of human-computer interaction,the research of gesture recognition has made great progress. By controlling and operating intelligent TV through gesture recognition,one can more easily and more efficiently use TV equipment. This paper makes use of patent database to analyze the data of intelligent TV gesture recognition technology,and summarizes the trend of patent application in this field. Keywords:intelligent TV;gesture recognition;development status;patent 引言 电视是家庭娱乐休闲必不可少的家用电器。如今,电视依然是最为普及的信息传播载体,用户在观看普通节目的同时,还可以上网、娱乐等。从用户的角度出发,通过自然简单、人性化的方式完成交互,无疑是用户完成电视操作的最佳方式。而手势具有直观、自然、丰富的特点,是一种符合人们日常习惯的交互手段,是表達信息和特定意图的良好载体,由于手势具有上述特性,因此在对智能电视进行操控中得到了良好的运用,实现了对智能电视自然灵活地操作。 1 基于手势识别的智能电视控制技术发展状态分析 1.1 技术分解 本文通过检索获得的专利申请进行统计分析,对基于手势识别的智能电视控制所涉及的具体技术和应用领域进行分解。 根据手势采集设备可以将手势识别系统大致分为基于数据手套和基于视觉的两种手势识别系统。其中,数据手套通过多个传感器反馈各关节的数据,并通过位置跟踪器返回人手所在的三维坐标,从而获取手势在三维空间中的位置信息和手指的运动信息。通过数据手套可以直接获取人手在三维空间中的位置和运动

虚拟现实增强技术综述

虚拟现实增强技术综述 曾玮峰 中南大学信息科学与工程学院 摘要随着近年来计算机三维处理能力的增长和低成本传感显示元件的出现,虚拟现实得到了快速发展,特别是与现实世界产生了越来越多的结合技术,从虚拟和现实的两个角度对虚拟现实进行增强。论文重点围绕近几年的发展趋势,论述了增强现实与增强虚拟环境的技术特点,介绍了虚拟现实增强技术的相关硬件设备发展;然后分别介绍了增强现实和增强虚拟环境技术的发展现状,讨论了移动互联网上的虚实增强技术与应用,最后进行总结并提出需要解决的问题。 关键词增强虚拟环境增强现实虚实增强混合现实 1引言 虚拟现实技术建立人工构造的三维虚拟环境,用户以自然的方式与虚拟环境中的物体进行交互作用、相互影响,极大扩展了人类认识世界,模拟和适应世界的能力。虚拟现实技术从20世纪60~70年代开始兴起,90年代开始形成和发展,在仿真训练、工业设计、交互体验等多个应用领域解决了一些重大或普遍性需求,目前在理论技术与应用开展等方面都取得了很大的进展。虚拟现实的主要科学问题包括建模方法、表现技术、人机交互及设备这三大类,但目前普遍存在建模工作量大,模拟成本高,与现实世界匹配程度不够以及可信度等方面的问题。 图1虚拟现实、增强现实和混合现实搜索量统计对比(来源: Google trends, 2004。01~2014。 06) 针对这些问题,已经出现了多种虚拟现实增强技术,将虚拟环境与现实环境进行匹配合成以实现增强,其中将三维虚拟对象叠加到真实世界显示的技术称为增强现实,将真实对象的信息叠加到虚拟环境绘制的技术称为增强虚拟环境。这两类技术可以形象化地分别描述为“实中有虚”和“虚中有实”。虚拟现实增强技术通过真实世界和虚拟环境的合成降低了三维建模的工作量,借助真实场景及实物提高了用户体验感和可信度,促进了虚拟现实技术的进一步发展。

ebnnuqc医学_图像处理技术

^ | You have to believe, there is a way. The ancients said:" the kingdom of heaven is trying to enter". Only when the reluctant step by step to go to it 's time, must be managed to get one step down, only have struggled to achieve it. -- Guo Ge Tech 医学图像处理技术 摘要:随着医学成像和计算机辅助技术的发展,从二维医学图像到三维可视化技术成为研究的热点,本文介绍了医学图像处理技术的发展动态,对图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。在比较各种技术在相关领域中应用的基础上,提出了医学图像处理技术发展所面临的相关问题及其发展方向。关键词:医学图像处理;图像分割;图像配准;图像融合;纹理分析 1.引言 近20 多年来,医学影像已成为医学技术中发展最快的领域之一,其结果使临床医生对 人体部病变部位的观察更直接、更清晰,确诊率也更高。20 世纪70 年代初,X-CT 的发明 曾引发了医学影像领域的一场革命,与此同时,核磁共振成像象(MRI :Magnetic Resonance Imaging)、超声成像、数字射线照相术、发射型计算机成像和核素成像等也逐步发展。计算机和医学图像处理技术作为这些成像技术的发展基础,带动着现代医学诊断正产生着深刻的变革。各种新的医学成像方法的临床应用,使医学诊断和治疗技术取得了很大的进展,同时将各种成像技术得到的信息进行互补,也为临床诊断及生物医学研究提供了有力的科学依据。 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,往往需要借助医生的经验来判定。至于准确的确定病变体的空间位置、大小、几何形状及与周围生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析,可以大大提高医疗诊断的 准确性和可靠性。此外,它在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用。 本文对医学图像处理技术中的图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。 2.医学图像三维可视化技术 2.1三维可视化概述 医学图像的三维可视化的方法很多,但基本步骤大体相同,如图.。从#$ /&’(或超声等成像系统获得二维断层图像,然后需要将图像格式(如0(#1&)转化成计算机方便处理的格式。通过二维滤波,减少图像的噪声影响,提高信噪比和消除图像的尾迹。采取图像插值方法,对医学关键部位进行各向同性处理,获得体数据。经过三维滤波后,不同组织器官需要进行分割和归类,对同一部位的不同图像进行配准和融合,以利于进一步对某感兴趣部位的操作。根据不同的三维可视化要求和系统平台的能力,选择不同的方法进行三维体绘制,实现三维重构。

基于3D 体感技术的动态手势识别

第27卷第4期2012年8月 光电技术应用 ELECTRO-OPTIC TECHNOLOGY APPLICATION Vol.27,No.4August ,2012 随着机器智能领域的迅猛发展,手作为人身体上最灵活的一个部位及人机交互的一个媒介,得到越来越多的应用。因此基于手势识别的各种应用也是层出不穷。手势是一种自然而直观的人际交流模式。手势识别也理所当然地成为了实现新一代人机交互不可缺少的一项关键技术。然而,由于手势本身具有的多样性(包括肤色、形态的差异性)、多义性(不同手势具有不同的意义)、以及时间和空间上的差异性(会受到光照等因素的影响)等特点,加之人手是复杂变形体及视觉本身的不适定性,因此基于视觉的手势识别是一个极富挑战性并具有很大应用空间的研究方向[1] 。 1手势识别技术的发展 手势识别分为两种,一种是静态的手势识别,即在 摄像头下检测到某个手势时就给出命令。另一种是动态手势识别,即能够识别手做的一些动作。随着3D 体感技术的出现,手势识别进入一个全新的领域。1.1静态手势识别 静态手势识别的常用方法主要有:基于模版匹配的,用边缘特征像素点作为识别特征,并利用Hausdorff 距离模板匹配完成静态手势识别[2];基于SVM 支持向量机,通过皮肤颜色模型进行手势分割, 并用傅里叶描述子描述轮廓,采用针对小样本特别有效且范化误差有界的最小二乘支持向量机(LS -SVM )作为分类器进行手势识别[3]以及集合模版匹配和机器学习理论的手势识别方法[4]等。但由于静态手势识别技术应用的局限性较大,不够灵活,使用人数在减少。 收稿日期:2012-06-24 作者简介:淦创(1990-),男,辽宁锦州人,大学本科,研究方向为计算机图像处理. ·信号与信息处理· 基于3D 体感技术的动态手势识别 淦 创 (北京航空航天大学,北京100191) 摘要:提出了一种基于3D 体感机Kinect 的图像处理手势识别算法,通过深度图像和骨骼图像的方法实现动态手势识别。首先在Kinect 提供的骨骼图像中20个骨点中,选取2个离手部最近的骨骼点,通过追踪这两个骨骼点的位置来实现对手部的追踪,再通过判断手部的深度(即其相对于摄像头的距离)的变化来实现动态手势识别。 关键词:深度图像;骨骼图像;手部追踪;动态手势识别中图分类号:TN94 文献标识码:A 文章编号:1673-1255(2012)04-0055-04 Dynamic Gesture Recognition Based on 3D Kinect GAN Chuang (Beijing University of aeronautics and astronautics,Beijing 100191,China ) Abstract :A kind of gesture recognition algorithm of image processing based on 3D Kinect is proposed.The dynamic gesture recognition algorithm is performed by skeleton images and depth images.At first,two skeleton points which are nearest to hands are choosen from 20skeleton points in a skeleton image.The process of tracking hands is performed by tracking the positions of the two skeleton points.Then the dynamic gesture recognition pro?cess is realized by the change of depths of hands (the distance between a hand and a camera). Key words :depth image;skeleton image;hands tracking;dynamic gesture recognition

红外增强算法综述

红外增强算法综述 在图像形成、传输或变换的过程中,由于受到其它客观因素诸如系统噪声、曝光不足或过量、相对运动等影响,获取图像往往会与原始图像之间产生某种差异(称为降质或退化)。退化后的图像通常模糊不清或者经过机器提取的信息量减少甚至错误,因此必须对其采取一些手段进行改善。图像增强技术正是在此意义上提出的,目的就是为了改善图像的质量。图像增强根据图像的模糊情况采用各种特殊的技术突出图像中的某些信息,削弱或消除元关信息,达到强调图像的整体或局部特征的目的。图像增强尚没有统一的理论方法,常用的图像增强技术有直方图修改、图像平滑滤波、图像锐化等。下面将由红外图像的直方图出发,介绍相关的增强算法。 一、红外图像的直方图及其特点 1、红外图像的直方图 图像的基本描述有灰度、分辨率、信噪比、频谱等等。灰度直方图是用于表达图像灰度分布情况的统计图表,有一维直方图和二维直方图之分。其中最常用的是一维直方图,其定义是:对于数字图像()y x f ,,设图像灰度值为0r 、1r ......1-L r ,则概率密度函数()i r P 为: ()()....3,2,1== i r r P i i 图像上总的像素数的像素数灰度级为 且有()110 =∑-k i r P ,由于i r 取值离散,故直方图习惯画成灰度级—像素数(图1) 的形式。 图1:典型直方图 直方图具有以下性质: 1) 只表示图像中每一灰度级出现的频数,而失去了具有该灰度级的像素的位置信息; 2) 图像与直方图之间是多对一的映射关系;

3) 一副图像各子区直方图之和等于该图像的全图直方图。 在图像处理中,直方图是很有用的决策和评价工具。直方图可以提供下列信息: 1) 每个灰度级像素数出现的频数; 2) 图像像素值的动态范围; 3) 整幅图像的大致平均亮度; 4) 图像的整体对比度情况。 直方图统计在对比度拉伸,灰度级修正、动态范围调整、图像亮度调整、模型化等图像处理方法中发挥了很大作用,在本文后面的讨论中将可以看到直方图的意义。 2、红外直方图的特点 对红外图像直方图与可见光图像直方图进行对比研究可以发现,红外图像相对于可见光图像有着其特有的规律和特点: 1) 像素灰度值动态范围小,很少能覆盖整个灰度级空间。而可见光图像的像素则几乎分布于几乎整个灰度级空间。 2) 绝大部分像素集中于某些相邻的灰度级范围内,在这些范围内以外的灰度级上的像素数量很少,而可见光的像素分布则相对比较均匀。 3) 直方图中有明显的峰存在,很多情况下为单峰或者双峰(分为主峰、次峰),而可见光图像直方图的峰不是很明显,并且峰的数量一般多于两个。 但要注意的是,上述三点是大多数红外图像直方图所具备的特点。由于具体的气候条件、环境温度等因素的影响,不同季节不同时间段内各种物体的热辐射呈现不同的特点,物体越热,红外成像的亮度越高,物体温度越低,其红外成像的亮度就越低,所以实际当中的红外图像往往呈现出各自的特点,并不一定与上述特点完全一致。 二、通常的红外图像增强算法 图像增强是一种基本的图像预处理手段,对图像的某些特征,如对比度、边缘等进行增强或突显,便于后续分析和处理。它并不意味着能增加原始图像的信息,有时甚至会损失一些信息。但图像增强的结果却能加强对某些特定信息的识别能力,使图像中我们感兴趣的特征得以加强,从而使这些特征的检测和识别变得更加容易。 1、红外图像增强算法的分类 图像增强的处理技术从增强的作用域出发,可以分为空间域的方法和变换域的方法两大类,如图2所示。空间域法直接对图像像素进行操作,主要的空间域法有直方图均衡化、直方图规定化、灰度窗口和空域滤波等技术;而频率域法是首先将图像从空间域按照某种变换模型(如傅立叶变换)变换到频率域,然后对图像进行处理,再将其反变换到空间域,获得增强图像,这是一种间接地方法,频域方法有高通滤波、低通滤波、带通和带阻滤波等技术。 图像增强算法的优劣不是绝对的,由于具体用的目的和要求不同,所需要的具体的增强技术也大不相同,因此没有图像增强的通用标准,观察者才是某种增强方法优劣的最终判断者。增强算法处理的效果,除了与算法本身有一定关系外,还与图像的数据特征直接相关。实际应用中应当根据图像数据的特点和工作的要求来选择合理的图像增强处理方法。 由于红外图像的成像机理以及红外成像系统自身的原因,红外图像与可见光图像相比,大多有图像对比度低、图像较模糊、噪声大等特点。为了有利于后续

增强现实综述

增强现实综述 引言 增强现实(Augmented Reality,简称AR),也被称之为混合现实。它是把原本在现实世界的一定时间空间范围内很难体验到的实体信息(视觉信息,声音,味道,触觉等),通过科学技术模拟仿真后再叠加到现实世界被人类感官所感知,从而达到超越现实的感官体验。与传统虚拟现实所要达到的完全沉浸的效果不同,增强现实技术致力于将计算机生成的信息同真实世界中的场景结合起来,它可以为医疗和工程用户提供准确、高效的辅助操作界面,也能够为教育或娱乐程序构造引人入胜的交互环境。增强现实技术在工业设计、机械制造、建筑、教育和娱乐等领域都有着广泛的应用前景,而且它提供了一种更容易时间的虚拟现实的方法,更代表了下一代更易使用的人机界面的发展趋势。 增强现实的发展进程与研究现状综述 发展进程 增强现实 (AugmentedReality,简称AR)技术可以将虚拟的三维物体融合到现实场景中,并能支持用户与其进行交互,它己经成为虚拟现实研究中的一个重要领域,同时也是人机界面技术发展的一个重要方向。 AR技术始于二十世纪六十年代,美国哈佛大学 IvanSutherland教授发明了光学透明头盔显示器(see一 throughHead一 MountedDisplay,简称STHMD)显示计算机生成的3D图形[7]。20世纪80年代到90年代,AR的发展较为成熟,一些公司和高校不断研制出完善的AR系统,其中比较好的有: 1986年,Furness研制的vCAss系统采用头盔显示器将射程、射击目标等作战信息显示在飞行员的视野上。 1986年,美国北卡大学 (LJNCatChaPelHill)研制出用于实现生物化学和建筑可视化的STHMD系统。 1993年,美国哥伦比亚大学的Feine:教授等人设计了一个基于知识的AR系统。该系统用于指导机械维修,可以将有关技术说明叠加在激光打印机上,辅助技术人员完成维修工作,这样,技术人员再也不用带着大量笨重的资料在身边,边进行维修工作,边查阅身边的资料,一旦出现难题、紧急情况,就会不知所措了。

相关主题
文本预览
相关文档 最新文档