当前位置:文档之家› DSP实验指导书完全版正文_图文(精)

DSP实验指导书完全版正文_图文(精)

DSP实验指导书完全版正文_图文(精)
DSP实验指导书完全版正文_图文(精)

第一章实验系统介绍

一、系统概述

EL-DSP-EXPII教学实验系统属于一种综合的教学实验系统,该系统采用双CPU 设计,实现了DSP 的多处理器协调工作。两个DSP 通过HPI 口并行连接,CPU1可以通过HPI 主机接口访问CPU2的存储空间。该系统采用模块化分离式结构,使用灵活方便用户二次开发。客户可根据自己的需求选用不同类型的CPU 适配板,我公司所有CPU 适配板是完全兼容的,用户在不需要改变任何配置情况下,更换CPU 适配板即可作TI 公司的不同类型的DSP 的相关试验。除此之外,在实验板上有丰富的外围扩展资源(数字、模拟信号发生器,数字量IO 扩展,语音CODEC 编解码、控制对象、人机接口等单元),可以完成DSP 基础实验、算法实验、控制对象实验和编解码通信试验。

EL-DSP-EXPII 教学实验系统功能框图

二、硬件组成

该实验系统其硬件资源主要包括:● CPU 单元

● 数字量输入输出单元● 存储器及信号扩展单元● BOOTLOADER 单元● 语音模块● 液晶模块● CPLD 接口● A/D转换单元● D/A转换单元● 信号源单元● 温控单元● 步进电机● 直流电机● 键盘接口●

电源模块

1、 C PU 单元

CPU 单元包括CPU1、CPU2两块可以更换的 CPU板,用户可根据需要选择不同种类的CPU 板。板上除CPU 之外还包括以下单元: 1) CPU模式选择

CPU 通常情况下可以根据用户需求工作在不同的模式下,主要用MP/MC ————

的电平来决定。当MP/MC ————

为高电平时,DSP 工作在微处理器模式,当MP/MC —————

为低电平时。DSP 工作在为计算机方式。在不同模式下存储器映射表有所不同。详细信息请查阅相应的数据手册。 2)电源模块

在CPU 板上由于TMS320VC54X 数字信号处理器内核采用3.3V 和1.8V 供电,因此需要将通用的5V 转换成3.3V 和1.8V 。为中央处理器提供内部电源。转换电路如图所示:

3)电平转换

由于数字信号处理其内部采用3.3V 和1.8V 供电,而且其输入输出接口电平为3.3V ,对于数字量输出而言完全可以和5V 电平兼容。但对于数字量输入而言,由于其内部是3.3V ,因此不能将中央处理器的输出口直接和外围扩展的5V 器件相连,必须加入电平转换期间进行电平转换和信号隔离。典型的就是数据线,必须进行隔离,对于其他的涉及到的输入信号也要进行相应的转换。在CPU 板上,U2(LVTH16245)完成了该项功能。4)复位电路以及时钟单元

复位电路主要包括上电复位和硬件手动复位,每次复位要求至少要有8到10个系统时钟。因此要求适当的配置复位电路RC 网络。时钟电源主要利用数字信号处理器内部晶振源,并通过外部锁相环控制电路,选择适当倍频倍数,为CPU 内部提供系统时钟。

2、数字量输入输出单元

● 8bit 的数字量输入(由八个带自锁的开关产生),通过74LS244缓冲;8bit 的数

字量输出(通过八个LED 灯显示),通过74LS273锁存。数字量的输入输出都映射到CPU 的IO 空间。

● 数字量显示的八个LED 数码管,通过HD7279控制。

3、存储器及信号扩展单元:

1 静态存储器SRAM(IS61C256 32K×8bit

在该实验板上,使用的存储器接口芯片是ISSI 公司的IS61C256,它具有以下特点:

● 访问速度10、12、15、20、25ns 可选;● 低功耗:400mW (典型);● 低静态功耗

-250μW (典型)CMOS 器件; -55mW (典型)TTL 器件;

● 全静态操作,无需时钟或刷新;● 输入输出和TTL 电平兼容;● 单5V 供电。

静态存储器分为两个部分, 一部分是32K ×16bit 的程序存储器(地址为

8000H ~0FFFFH )芯片序号U20、U21和32K ×16bit 的数据存储器(地址为0000H ~7FFFH )芯片序号U22、U23。根据选择不同类型的CPU 分别映射到相应地址的程序空间和数据空间。

2 、DSK 扩展信号插座:

接插件P7、P8是和TI 公司DSK 兼容的信号扩展接口,可连接图像处理、高速AD 、DA 、USB 、以太网等扩展板,也可以连接TI 公司的标准DSK 扩展信号板。

4、BOOTLOADER 单元:

使用的存储器接口芯片是28C256 32K×8bit ,地址为数据空间8000H ~

0FFFFH ,它具有以下特点:

● 访问速度快于45ns

● 低功耗:典型静态CMOS 电流20μA

● 单5V 供电

● 供电电压可在±10%变化● 典型编程时间4S

● 100mA 闩锁保护从-1V 到V CC + 1V ● 高噪声门限

● CMOS/TTL 输入/输出电平兼容

标准28脚DIP 、PDIP 封装或32脚PLCC 封装

板上芯片序号U24用来存放用户程序,可以通过选择CPU 板上的

MP/MC_______

来选择bootloader 模式。出厂时存储器内固化了系统测试程序,上电后可对系统硬件进行自动测试。在本系统中采用并行存储器引导模式。

5、语音处理单元

语音CODEC 采用TLC320AD50芯片。该芯片采用sigma-delta 技术提供高精度低速信号变换,有两个串行同步变换通道、D/A转换前的差补滤波器和A/D变换后的滤波器。其他部分提供片上时序和控制功能。Sigma-delta 结构可以实现高精度低速的数模/模数转换。芯片的各种应用软件配置可以通过串口来编程实现。主要包括:复位、节电模式、通信协议、串行时钟速率、信号采样速率、增益控制和测试模式。最大采样速率22.05kb/s,采样精度16bit 。

语音处理单元由语音输入模块、TLC320AD50模块、输出功率模块组成。语音输入模块采用偏置和差动放大技术,并经过滤波和处理后将输入到语音编解码芯片TLV320AD50,前端输入的电压范围为-2.5V---+2.5V。经过变换后输入到AD50的芯片的差动信号范围为0---5V 。TLC320AD50C 作为主方式,通过DSP 的MCBSP0口进行通信。音频信号通过D/A转换后输出,由于TLC320AD50输出的是差动信号,因此首先经过差动放大,然后可以推动功率为0.4W 的板载扬声器,也可以接耳机输出。

语音处理单元原理框图

语音处理单元接口说明:

J14:音频输入端子,可输入CD 、声卡、MP3、麦克风等语音信号。 J15:音频输出端子,可接耳机、音箱。 J3:语音处理单元输入信号接口 J1:语音处理单元输出信号接口

J6:地

语音处理单元拨码开关说明:

语音处理单元可调电位器说明:

注:语音处理单元的二号孔IN 和OUT 通过导线的连接,可以为温控单元,信号源单元提供A/D,D/A转换的功能。详细操作参见实验指导。

6、液晶模块

本实验系统选用中文液晶显示模块LCM12864ZK ,其字型ROM 内含8192个16*16 点中文字型和128个16*8半宽的字母符号字型;另外绘图显示画面提供一个64*256点的绘图区域GDRAM ;而且内含CGRAM 提供4 组软件可编程的

16*16 点阵造字功能。电源操作范围宽(2.7V to 5.5V;低功耗设计可满足产品的省电要求。同时,与CPU 等微控器的接口界面灵活(三种模式并行8 位/4 位串行3 线/2 线;LCD 数据接口基本上分为串行接口和并行接口两种形式,本实验采用串行接口方式,用户根据需要改变跳线JS1改用并行接口方式。

JS1

注:连接1,2串行方式

液晶模块拨码开关说明:

7、CPLD 接口

采用XILINX 公司的XC95144XL 芯片,完成译码和时序控制。JTAG4为CPLD 下载接口。可用XILINX 公司的软件,通过并口下载电缆对CPLD 在线编程。

D2、D3为CPLD 工作指示灯,正常工作时D2、D3点亮。CPU1复位时, D3不亮,CPU2复位时,D2不亮。

8、D/A转换单元

数模转换采用DAC08芯片,分辨率8位,精度1LSB ,转换时间可达85ns 。DAC08

可以应用在8-bit, 1 us A/D变换,伺服电机、波形发生、语音编码、衰减器、可编程功率变换器、CRT 显示驱动、高速modems 以及其他要求低成本、高速等多功能场合。在本实验系统中,DAC08采用对称偏移二进制输出方式,输出电压范围-5V~+5V。

注:Vref=+10V

对称偏移二进制输出编码图

底板DAC08参考电压Vref=+5V;输入00h ,输出电压-5V ;输入ffh ,输出电压+5V。

D/A单元原理框图

数模转换单元接口说明:

J4:DA 输出端子 J2:地

9、A/D转换单元

模数转换芯片选用AD7822,单极性输入,采样分辨率8BIT ,并行输出;內含取样保持电路,以及可选择使用內部或外部参考电压源,具有转换后自动Power-Down 的模式,电流消耗可降低至

5μA 以下。转换时间最大为420ns , SNR可达48dB ,INL 及DNL 都在±0.75 LSB以內。可应用在数据采样、DSP 系统及移动通信等场合。在本实验系统中,参考电压源+2.5V,偏置电压输入引脚Vmid=+2.5V。模拟输入信号经过运放处理后输入AD7822。

AD7822编码图

模数单元原理框图

模数转换单元拨码开关说明:

J12: AD输入端子 J23:地

拨码开关其它设置状态为非法状态

10、信号源单元

频率、幅值可调双路三角波、方波和正弦波产生电路采用两片8038信号发生器,输出频率范围20~100KHz ,幅值范围-10V~+10V。输出波形、频率范围可通过波段开关来选择。频率、幅值可独立调节。两路输出信号可以经过加法器进行信号模拟处理和混叠,作为信号滤波处理的混叠信号源。混叠后的信号从信号源1输出。

ICL8038原理框图

信号源单元原理框图

信号源单元波段开关说明:

波形选择波段开关拨到底板丝印的相应位置选择对应的波形(正弦、三角、方波),频率选择波段开关拨到底板丝印的相应位置选择对应的频率范围(0~2K、2K~10K、10K~120K)。

信号源单元电位器说明:

J8:信号源1输出 J7:信号源2输出 J5:地

11、温度控制单元

由温度信号采集单元、加热信号驱动单元、模拟温箱加热控制电路组成。温度信号采集单元电路的热敏电阻的阻值随温度的变化而变化,经运放处理,输出一个

电压变化(逐渐减小的温度信号给系统板的A/D采集输入端;加热信号驱动单元将系统板送来的加热信号分两路处理:一路放大后驱动加热指示二极管发光;另一路经隔离后驱动可控硅导通。模拟温箱加热控制电路由加热信号隔离电路、AC220V 控制电路(可控硅)输出电路组成。

温度控制单元拨码开关说明:

J10:温度控制单元反馈电压输出 J11:地

LED18:+12V电源指示灯。

12、步进电机单元

步进电机多为永磁感应式,有两相、四相、六相等多种,实验所用的电机为两相四拍式,通过对每相线圈中的电流的顺序切换来使电机作步进式旋转,驱动电路由脉冲信号来控制,所以调节脉冲信号的频率便可改变步进电机的转速。脉冲信号是有DSP 的IO 端口(地址8001H 的低四位提供。位0对应“D ”,位1对应“C ”,位2对应“B ”,位3对应“A ”;

如下图所示,电机每相电流为0.2A ,相电压为5V ,两相四拍的通电顺序如下表所示:

注:顺时针方向旋转通电顺序为0-1-2-3;

逆时针方向旋转通电顺序为3-2-1-0; 步进电机单元拨码开关说明:

LED16:+12V电源指示灯; LED17:+5V电源指示灯;

13、直流电机单元

该单元由电压调整、驱动电路、速度检测反馈电路组成。由系统板送来的电压信号与可调节的基准电压经加法运算后,输出驱动直流电机运行;速度检测、反馈电路由于电机同轴转的转盘上的强力磁钢、霍尔磁感应放大器、单周期速度信号采集器组成,当与电机同轴运行的转盘上的磁钢与霍尔片正对时,霍尔片输出负电压,经整形、放大,供系统采集。

J9:直流电机控制脉冲输入端 J13:地

LED15:中断反馈指示灯;

14、键盘接口

键盘接口是由芯片HD7279按制的,HD7279是一片具有串行接口的,可同时驱动8位共阴式数码管或(64只独立LED )的智能显示驱动芯片,该芯片同时还可连接多达64键的键盘矩阵, 单片即可完成LED 显示, 键盘接口的全部功能。HD7279A 内部含有译码器,可直接接受BCD 码或16进制码,并同时具有2种译码方式。此外,还具有多种控制指令,如消隐、闪烁、左移、右移、段寻址等。HD7279A 具有片选信号,可方便地实现多于8

C D

位的显示或多于64键的键盘接口。在该实验系统中,仅提供了16个键。

15、其它接口说明

电源单元:为系统提供+5V、+12V、-12V 、+3.3V电源

JTAG 接口:

K1:非自锁按键,每按一下产生一个负的脉冲。

综上所述,本章介绍了该系统的硬件资源,看完本章内容,应该对实验系统有一个基本的了解,在余下的几章中将会结合实验详细介绍,每个单元在实验中的具体应用。

第二章调试软件安装说明

一、CCS 的安装

利用CCS 集成开发环境,用户可以在一个开发环境下完成工程定义、程序编辑、编译链接、调试和数据分析等工作环节。下图为典型CCS 集成开发环境窗口示例。整个窗口由主菜单、工具条、工程窗口、编辑窗口、图形显示窗口、内存单元显示窗口和寄存器显示窗口等构成。

相关主题
文本预览
相关文档 最新文档