当前位置:文档之家› 迭代加深搜索

迭代加深搜索

迭代加深搜索
迭代加深搜索

迭代加深搜索算法

迭代加深搜索,实质上就是限定下界的深度优先搜索。即首先允许深度优先搜索K层搜索树,若没有发现可行解,再将K+1后重复以上步骤搜索,直到搜索到可行解。

迭代加深搜索算法的实现原理及基本框架

在迭代加深搜索的算法中,连续的深度优先搜索被引入,每一个深度约束逐次加1,直到搜索到目标为止。

基本框架如下:

Procedure ID-dfs(dep:integer);

Var

J:integer;

Begin

If dep>深度的限界then exit;// 如果搜索的深度大于限界,则返回上一层

For j:=1to n do// 按照规则生成子结点

If子结点安全then

Begin

入栈;

If子结点是目标结点then对目标结点进行处理,退出程序

Else id-dfs(dep+1);

退栈;

End;

End;

For i:=1to depmax do// 枚举深度的限界

Begin

Id-dfs(i);

If运行超时then break;

End;

迭代加深搜索算法的复杂度分析

从上述迭代加深搜索算法的实现过程和框架,我们可以看出,迭代加深搜索算法就是仿广度优先搜索的深度优先搜索。既能满足深度优先搜索的线性存储要求,又能保证发现一个最小深度的目标结点。(时间复杂度推算详见NOI导刊2010年第6期P26)从实际应用来看,迭代加深搜索的效果比较好,并不比广度优先搜索慢很多,但是空间复杂度却与深度优先搜索相同,比广度优先搜索小很多。

迭代加深搜索算法的应用

使用搜索算法的时候,选择正确的搜索方式很重要。当有一类问题需要做广度优先搜索,但却没有足够的空间,而时间却很充裕,碰到这类问题,我们可以选择迭代加深搜索算法。

例题:POJ 2286 The Rotation Game

四、总结

一般来说,如果目标结点离根结点远,需要遍历整棵树,可以考虑使用深度优先搜索;如果目标离根结点近,或求最小步数,则考虑广度优先搜索或迭代加深搜索;若广度优先搜索存在空间不够的问题,则考虑使用迭代加深搜索。

迭代阈值法

数字图像处理的目的之一是图像识别, 而图像分割是图像识别工作的基础。图像分割是指把图像分解成具有特性的区域并提取出感兴趣目标的技术和过程,是计算机视觉领域的一个重要而且基本的问题,分割结果的好坏将直接影响到视觉系统的性能。因此从原理,应用和应用效果的评估上深入研究图像分割技术具有十分重要的意义。 本课题主要介绍了图像分割的基本知识。图像分割的算法有阈值分割法,边缘检测法,区域分割等,本设计重点介绍了基于最小点阈值方法,基于最优阈值分割方法,基于迭代图像分割方法,最大类间方差法(OTSU)的图像分割法的原理和他们的MATLAB的实现代码与运行结果。 关键词:图像分割;MATLAB;阈值分割;

1 课程设计目的 (3) 2 课程设计要求 (3) 3 相关知识 (3) 3.1 图像分割的概述 (3) 3.2 阈值分割的基本原理 (4) 3.3 阈值分割方法的分类 (5) 3.3.1 基于点的全局阈值方法 (6) 3.3.2 基于区域的全局阈值方法 (6) 3.3.3 局部阈值法和多阈值法 (6) 4 程设计分析 (6) 4.1 基于迭代的方法实现图像切割 (6) 4.2 最大类间方差的方法实现图像切割 (7) 5 程序设计 (8) 5.1 程序简单介绍 (8) 5.2 程序代码 (8) 6 结果与分析 (11) 结束语 (13) 参考文献 (14)

迭代阈值法 1 课程设计目的 本设计的课题任务是掌握图像阈值分割算法研究,实现对图像的分割。了解图像分割的应用及基本方法,理解阈值化图像分割原理,理解三类典型的阈值化分割算法,并利用之进行图像分割,给出实验结果并做出分析。 2 课程设计要求 ⑴查阅相关资料; ⑵理解基于各像素值的阈值分割算法,基于区域性质的阈值分割算法, 基于坐 标位置的阈值分割算;软件编程实现利用基于各像素值的阈值分割算法进行图像分割,要求完成如下内容:包括极小值点阈值、最优阈值、迭代阈值,基于最大方差的阈值,基于最大熵的阈值等方法,利用之实现图像分割,这里的图像可以针对核磁共振图像 ⑶用MATLAB实现,并观察各算法之间的区别。 3 相关知识 3.1 图像分割的概述 在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景),他们一般对应图像中特定的、具有独特性质的区域。为了辨识和分析目标,需要将他们分离提取出来,在此基础上才有可能对目标进一步利用。图像分割就是指把图像分成格局特性的区域并提取出感兴趣目标的技术和过程。这里特性可以是象素的灰度、颜色、纹理等,预先定义的目标可以对应单个区域,也可以对应多个区。现有的图像分割算法有:阈值分割、边缘检测和区域提取法。本文着重研究基于阈值法的图像分割技术。 所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内,表现出一致性或相似性,

算法设计与分析学习总结

算法分析与设计 学习总结 题目:算法分析与设计学习总结 学院信息科学与工程学院 专业2013级计算机应用技术届次 学生姓名 学号2013110657 二○一三年一月十五日

算法分析与设计学习总结 本学期通过学习算法分析与设计课程,了解到:算法是一系列解决问题的清晰指令,代表着用系统的方法描述解决问题的策略机制。算法能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂性和时间复杂度来衡量。算法可以使用自然语言、伪代码、流程图等多种不同的方法来描述。计算机系统中的操作系统、语言编译系统、数据库管理系统以及各种各样的计算机应用系统中的软件,都必须使用具体的算法来实现。算法设计与分析是计算机科学与技术的一个核心问题。 设计的算法要具有以下的特征才能有效的完成设计要求,算法的特征有:(1)有穷性。算法在执行有限步后必须终止。(2)确定性。算法的每一个步骤必须有确切的定义。(3)输入。一个算法有0个或多个输入,作为算法开始执行前的初始值,或初始状态。(4)输出。一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的。(5)可行性。在有限时间内完成计算过程。 算法设计的整个过程,可以包含对问题需求的说明、数学模型的拟制、算法的详细设计、算法的正确性验证、算法的实现、算法分析、程序测试和文档资料的编制。算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法和并行算法。 经典的算法主要有:

迭代法与D值法使用

迭代法 对于两端固定的单跨超静定粱,有转角位移方程如下: F AB AB AB B A AB AB M L i i i M +?-+=6 24?? (F AB M 为A 端的固端弯矩,如在均布荷载作用下2 12 1ql M F AB -=) 令' =AB A AB M i ?2,'=BA B AB M i ?2,L i M AB AB AB ?-="6 所以:F AB AB BA AB AB M M M M M +"+'+'=2 ('AB M 近端转角弯矩,' BA M 远端转角弯矩) 对于框架横梁,AB ?=0,所以0=" AB M , F AB BA AB AB M M M M +'+'=2 即('++?? ? ??'+'=AB F AB BA AB AB M M M M M ) (1) 对于一点A ,AB M +AC M +AD M =0,有02,,,,,,=+ ' + ' ∑∑∑===D C B i F Ai D C B i iA D C B i Ai M M M ,可以得 到: ??? ? ??+'-=' ∑∑∑===D C B i F Ai D C B i iA D C B i Ai M M M ,,,,,,21,

其中: ???? ??+'- =' ∑∑∑===D C B i F Ai D C B i iA D C B i Ai Ai Ai M M i i M ,,,,,,2 1 (2) (2)式得到的' Ai M 为近似值,需要经过多次的迭代才满足精度,迭代的同时, 'iA M 也进行了迭代。这两个值趋近于准确解。 最后:根据(1)式,F Ai iA Ai Ai M M M M +'+'=2。 (3) 迭代法的步骤: 1. 计算固端弯矩F Ai M 和结点不平衡弯矩 ∑=D C B i F Ai M ,,,并设1=-2ik ik ik i i i μ' ∑初始值为 零。 2. 计算分配系数:∑=- D C B i Ai Ai i i ,,2 1,算出与结点相关杆件的弯矩分配系数。 3. 计算结点各杆件的近端转角弯矩:公式(2) ??? ? ??+'-='∑∑∑===D C B i F Ai D C B i iA D C B i Ai Ai Ai M M i i M ,,,,,,21 4. 多次迭代,保证精度。 5. 得到杆端最后弯矩:公式(3),F Ai iA Ai Ai M M M M +'+'=2 举例:

非线性方程组的牛顿迭代法的应用

非线性方程组的牛顿迭代法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

非线性方程组的牛顿迭代法的应用 一、问题背景 非线性是实际问题中经常出现的,并且在科学与工程计算中的地位越来越重要,很多我们熟悉的线性模型都是在一定条件下由非线性问题简化的,为得到更符合实际的解答,往往需要直接研究非线性科学,它是21世纪科学技术发展的重要支柱,非线性问题的数学模型有无限维的如微分方程,也有有限维的。道遥咏计算机进行科学计算都要转化为非线性的单个方程或方程组的求解。从线性到非线性是一个质的变化,方程的性质有本质不同,求解方法也有很大差别。本文主要介绍的是非线性方程组的牛顿迭代法的数值解法。 二、数学模型 对于方程()0=x f ,如果()x f 湿陷性函数,则它的求根是容易的。牛顿法实质上是一种线性化方法,其基本思想是将线性方程()0=x f 逐步归结为某种线性方程来求解。 设已知方程()0=x f 有近似根k x (假定()0'≠k x f ),将函数()x f 在点k x 展开,有 ()()()()k k k x x x f x f x f -+≈', 于是方程()0=x f 可近似地表示为 ()()()0'=-+k k k x x x f x f 这是个线性方程,记其根为1+k x ,则1+k x 的计算公式 () () k k k k x f x f x x ' 1- =+, ,1,0=k 这就是牛顿法。 三、算法及流程 对于非线性方程 ()()()???? ????????=n n n n x L x x f M x L x x f x L x x f f ,,,,,,,,,2 12 12211 在()k x 处按照多元函数的泰勒展开,并取线性项得到

随机直接搜索优化算法NLJ辨识算法

随机直接搜索优化算法NLJ 辨识算法 NLJ 优化算法是随机直接搜索优化算法的一种,它是由随机数直接搜索算法算法发展而来,可以有效地解决各种复杂的问题。因其结构简单以及收敛迅速使其在随机搜索算法中始终占有一席之地。这种算法的核心思想是利用收缩变量来缩小搜索域,找到次优解,然后再基于次优解重复上述过程直到最终获得最优解。 假设待辨识的系统模型为: 1110 1 ()(0,1,...,)n n n H s i n a s a s a s a -= =++ ++ (3.1) 其中,01,,...,n a a a 表示待辨识模型的系数值。 该算法主要有以下步骤: Step 1、初始化参数。根据辨识数据,通过手工调整模型参数大致拟合出一个初始模型,确定模型初始参数(0)k i a ,其次,确定参数搜索范围c 。()k i a j 表示参数i a 在第k 次迭代的搜索结果,0,1,...,k p =,j 表示迭代组数,0,1,...,j m =。参数的搜索范围可由设定参数初始值的倍数决定,具体规则如下: 0l i i r ca = ,当 时,1k k k i i i r ca v -=?。 (3.2) 其中,根据经验知识,c 取值为2。 Step 2、计算性能指标。选择如式(3.3)所示的输出误差指标,作为辨识性能指标式,将待辨识的参数带入系统模型,求解估计值()y t 。 0[()()]N t J y t y t ==-∑ (3.3) 其中,()y t 为t 时刻的实际数据。 Step 3、计算参数估计值。在第k 代计算参数估计参数k l a ,其中rand 是在 [0.5,0.5]-之间分布的随机数,k i a 由下式给出: 1()()k k k l i i a j a j rand r -=+? (3.4) 在第k 次迭代计算后,计算m 组性能指标,选择使得性能指标最小的参数值作为下一次迭代的初始值: 11min[(())](0)|k i k k i i J a j a a --= (3.5) Step 4、修改搜索范围。在第k 次搜索前需要根据下式(3.6)对搜索范围进行修正防止局限的搜索范围导致搜索陷入局部极值。 (3.6) 在此处引入变化率η,首先,计算判断每组参数幅值的变化率,并选择变化 3k >1k k k i i i r cr v -=

水库优化调度

水库调度研究现状及发展趋势 摘要:实施梯级水电站群联合优化运行是统筹流域上下游各电站流量、水头间的关系,从而实现科学利用水能资源的重要手段,符合建设资源节约型、环境友好型社会的要求,是实现节能减排目标的重要途径,对贯彻落实科学发展观,促进流域又好又快发展具有重要意义。本文拟介绍水库调度研究现状及发展趋势,对工程实际具有重要的理论意义。 关键词:水库;优化调度;研究形状;发展趋势 随着水电发展的规划推进落实,大型流域梯级水库群将逐步形成,其联合调度运行必将获得巨大的电力补偿效益和水文补偿效益,同时在实际工程中也会不断涌现新的现象和问题。在新形势下综合考虑梯级上下游电站之间复杂的水力、电力联系,开展梯级水库群联合调度新的优化理论与方法应用研究,统筹协调梯级水库群上下游电站各部门的利益及用水需求,结合工程实际探索梯级水库群联合优化调度的多目标优化及决策方法,实现流域水能资源的高效利用、提高流域梯级水库群的联合运行管理水平乃至达到流域梯级整体综合效益的最大化,对缓解能源短缺、落实科学发展观、贯彻国家“节能 减排”战略以及履行减排承诺均具有重要的理论指导意义和工程实用价值[1]。 1 水库调度研究现状 水库调度研究,按其采用的基本理论性质划分,可分为常规调度(或传统方法)和优 化调度[2]。常规调度,一般指采用时历法和统计法进行水库调度;优化调度则是一种以 一定的最优准则为依据,以水库电站为中心建立目标函数,结合系统实际,考虑其应满足的各种约束条件,然后用最优化方法求解由目标函数和约束条件组成的系统方程组, 使目标函数取得极值的水库控制运用方式 [3]。 常规调度 常规调度主要是利用径流调节理论和水能计算方法来确定满足水库既定任务的蓄泄过程,制定调度图或调度规则,以指导水库运行。它以实测资料为依据,方法比较简单直观,可以汇入调度和决策人员的经验和判断能力等,所以是目前水库电站规划设计阶段以及中小水库运行调度中通常采用的方法。但常规方法只能从事先拟定的极其有限的方案中选择较好的方案,调度结果一般只是可行解,而不是最优解,且该方法难以处理多目标、多约束和复杂水利系统的调度问题。 优化调度 为了充分利用有限的水资源,国内外从上世纪50年代起兴起了水库优化调度研究。其核心有两点:一是根据某种准则建立优化调度模型,二是寻找求解模型的优化方法。 1946年美国学者Masse最早引入优化概念解决水库调度问题。1955年美国人Little[4]采

线性方程组的迭代法应用及牛顿迭代法的改进

线性方程组的迭代法应用及牛顿迭代法的改进 摘要: 迭代解法就是通过逐次迭代逼近来得到近似解的方法。由于从不同 的问题而导出的线性代数方程组的系数矩阵不同,因此对于大型稀疏矩阵所对应线性代数方程组,用迭代法求解。本文论述了Jacobi 法,Gauss-Seidel 法,逐次超松弛法这三种迭代法,并在此基础上对牛顿型的方法进行了改进,从而使算法更为精确方便。 关键词:线性方程组,牛顿迭代法,Jacobi 法,Gauss-Seidel 法,逐次超松弛 法 1.线性方程组迭代法 1.1线性方程组的迭代解法的基本思想 迭代法求解基本思想:从某一初始向量X (0)=[x 1(0) ,x 2(0) ,……………x n (0) ]出发,按某种迭代规则,不断地对前一次近似值进行修改,形成近似解的向量{X (k)}。当近似解X (k) =[x 1(k) ,x 2(k) ,……………x n (k) ]收敛于方程组的精确解向量X* =[x 1*,x 2*,……………x n *]时,满足给定精度要求的近似解向量X (k)可作为X*的数值解。 1.2 线性方程组的迭代法主要研究的三个问题 (1) 如何构造迭代公式 (2) 向量数列{X (k)}的收敛条件 (3) 迭代的结束和误差估计 解线性方程组的迭代解法主要有简单迭代法、 Gauss-Seidel 法和SOR 法。简单迭代法又称同时代换法或Jacobi 法,是最简单的解线性方程组的迭代解法也是其他解法的基础。 1.3Jacobi 迭代法 设方程组点系数矩阵n n j A ai R ???=∈??满足条件0ii a ≠,i=0,1,2, …n 。把A 分解为 A=D+L+U

解线性方程组的几种迭代算法

解线性方程组的几种迭代算法 内容摘要: 本文首先总结了分裂法解线性方程组的一些迭代算法,在此基础上分别通过改变系数矩阵A的分裂形式和对SSOR算法的改进提出了两种新的算法,并证明了这两种算法的收敛性.与其它方法相比,通过改变系数矩阵A的分裂形式得到的新算法具有更好的收敛性,改进的SSOR算法有了更快的收敛速度.最后通过数值实例验证了这两种算法在有些情况下确实可以更有效的解决问题. 关键词: 线性方程组迭代法算法收敛速度 Several kinds of solving linear equations iterative algorithm Abstract: In this paper, we firstly summarize some Iterative algorithms of Anti-secession law solution of linear equations. Based on these, two new algorithms are put forward by changing the fission form of coefficient matrix A and improving the algorithm of SSOR, and the convergence of the two algorithms is demonstrated. Compared with other methods, the new algorithm acquired by changing the fission form of coefficient matrix A is possessed of a better convergence. And the improved SSOR algorithm has a faster convergence speed. Finally, some numerical examples verify that the two algorithms can solve problems more effectively in some cases. Key words: Linear equations Iteration method algorithm Convergence speed

SOR迭代(算法分析和数值算例)

SOR 迭代 基本思想 Gauss-Seidel 迭代(1) 1() (1) ()() k k x D L U x D L +--=-+-的结果作为中间值,记为 (1) k x + 。SOR 方法是将(1) k x + 与上次计算的结果() k x 做加权平均作为最后结果。迭 代格式为: 1(1) (1) ()() 1 1 1[](1),1,2i n k k k k i i ij j ij j i j j i ii x b a x a x x i n a ω ω-++==+=- - +-=∑ ∑ 或者 1(1) () (1) () 1 1[],1,2i n k k k k i i i ij j ij j j j i ii x x b a x a x i n a ω -++===+- - =∑ ∑ 算法: 1. 0,,,A b x t e ω输入迭代初值松弛参数,为迭代次数初始值为0,为记录误差 2. 当1,2i n = 时,1 1:[]n i i i i j j j ii x x b a x a ω == +- ∑ ,结果仍然存储在i x 中。迭 代次数:1t t =+ 3. 计算误差* e x x =-(真解已知) 4. 如果6 510 e -

迭代软件开发流程

迭代软件开发流程 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

1.传统开发流程的问题? 传统的软件开发流程是一个文档驱动的流程,它将整个软件开发过程划分为顺序相接的几个阶段,每个阶段都必需完成全部规定的任务(文档)后才能够进入下一个阶段。如必须完成全部的系统需求规格说明书之后才能够进入概要设计阶段,编码必需在系统设计完成之后才能够进行。这就意味着只有当所有的系统模块全部开发完成之后,我们才进行系统集成,对于一个由上百个模块组的复杂系统来说,这是一个非常艰巨而漫长的工作。 随着我们所开发的软件项目越来越复杂,传统的瀑布型开发流程不断地暴露出以下问题: 需求或设计中的错误往往只有到了项目后期才能够被发现例如:系统交付客户之后才发现原先对于需求的理解是错误的,系统设计中的问题要到测试阶段才能被发现。 对于项目风险的控制能力较弱项目风险在项目开发较晚的时候才能够真正降低,往往是经过系统测试之后,才能确定该设计是否能够真正满足系统需求。 软件项目常常延期完成或开发费用超出预算项目开发进度往往会被意外发生的问题所打乱,需要进行返工或其他一些额外的开发周期,造成项目延期或费用超支。 项目管理人员专注于文档的完成和审核来估计项目的进展情况所以项目经理对于项目状态的估计往往是不准确的,当他回答系统已完成了80%的开发任务时,剩下20%的开发任务实际上消耗的是整个项目80%的开发资源。 在传统的瀑布模型中,需求和设计中的问题是无法在项目开发的前期被检测出来的,只有当第一次系统集成时,这些设计缺陷才会在测试中暴露出来,从而导致一系列的返工:重新设计、编码、测试,进而导致项目的延期和开发成本的上升。 2.采用迭代化开发控制项目风险?

RLS算法辨识系统

自适应滤波器(分别采用LMS 和RLS 算法)对IIR 系统辨识 1. LMS 和RLS 算法简介 LMS 自适应滤波算法是以均方误差最小为准则的,其意义是是滤波器的输出信号和需要信号的误差平方的统计平均值最小,这个准则是依据输入数据的长期统计特性寻求最佳滤波的。而最小二乘(RLS )算法是只依据一组数据来寻求最佳滤波的方法。因此,LMS 滤波是统计意义上的最佳滤波器,而RLS 滤波是针对不同的数据组生成不同的最佳滤波器。RLS 算法实际上是FIR 维纳滤波器的一种时间递归算法,它是严格以最小二乘方准则为依据的算法。它的主要优点是收敛速度快,因此,首先在快速信道均衡,实时系统辨识和时间序列分析中得到广泛应用。其主要缺点是每次迭代计算量很大(对于L 阶横向滤波器,计算量数量级为2L ),因此,在信号处理中它的应用曾一度收到限制。但是近年来人们重新对它产生了兴趣,主要是因为它具有收敛速度快的优点。 RLS 算法的关键是用二乘方的时间平均的最小化准则取代最小均方准则,并按时间迭代计算。具体来说,是要对初始时刻到当前时刻所有误差的平方进行平均并使其最小化,在按照这一准则确定FIR 滤波器的权系数矢量w ,即所依据的准则是 20 ()()min n k n e k ε===∑ (1) 其中()()()e k d k y k =-式中,()d k 是期望响应,()y k 是L 阶FIR 滤波器的输出相应,即 ()()()T T y k k k ==w x x w (2) 2. 自适应滤波器系统辨识原理 如下图所示为自适应滤波器辨识未知系统的基本结构图,其中未知系统可以使FIR 结构,也可以是IIR 结构。在结构图中,x(n)为辨识系统而产生的输入信号,通常可以选择为白噪声,同时输入未知系统和自适应滤波器。d(n)为未知系统的输出信号,即自适应滤波器的参考信号。调整自适应滤波器的系数,使误差信号e(n)的均方误差达到最小,则自适应滤波器的输出y(n)近似等于未知系统的输出d(n)。可以证明,加性噪声v(n)的存在并不影响自适应滤波器最终收敛到最优维纳解。可以认为,具有相同输入和相似输出的两个系统,应该具有相似的特性。因此,可以采用自适应滤波器的特性或其单位脉冲响应来近似替代未知系统的特性或单位脉冲响应。

迭代解法的matlab实现

解线性方程组b AX =的迭代法是从初始解出发,根据设计好的步骤用逐次求出的近似解逼近精确解.在第三章中介绍的解线性方程组的直接方法一般适合于A 为低阶稠密矩阵(指n 不大且元多为非零)的情况,而在工程技术和科学计算中常会遇到大型稀疏矩阵(指n 很大且零元较多)的方程组,迭代法在计算和存贮两方面都适合后一种情况.由于迭代法是通过逐次迭代来逼近方程组的解,所以收敛性和收敛速度是构造迭代法时应该注意的问题.另外,因为不同的系数矩阵具有不同的性态,所以大多数迭代方法都具有一定的适用范围.有时,某种方法对于一类方程组迭代收敛,而对另一类方程组迭代时就发散.因此,我们应该学会针对具有不同性质的线性方程组构造不同的迭代. 4.1 迭代法和敛散性及其MATLAB 程序 4.1.2 迭代法敛散性的判别及其MATLAB 程序 根据定理4.1和谱半径定义,现提供一个名为pddpb.m 的M 文件,用于判别迭代公H=eig(B);mH=norm(H,inf); if mH>=1 disp('请注意:因为谱半径不小于1,所以迭代序列发散,谱半径mH 和B 的所 有的特征值H 如下:') else disp('请注意:因为谱半径小于1,所以迭代序列收敛,谱半径mH 和B 的所有 的特征值H 如下:') end mH 4.1.3 与迭代法有关的MATLAB 命令 (一) 提取(产生)对角矩阵和特征值 可以用表4–1的MATLAB 命令提取对角矩阵和特征值. (二) 提取(产生)上(下)三角形矩阵

可以用表4–2的MATLAB命令提取矩阵的上三角形矩阵和下三角形矩阵. (三)稀疏矩阵的处理 对稀疏矩阵在存贮和运算上的特殊处理,是MA TLAB进行大规模科学计算时的特点和优势之一.可以用表4–3的MATLAB命令,输入稀疏矩阵的非零元(零元不必输入),即可进行运算. 4.2 雅可比(Jacobi)迭代及其MATLAB程序 4.2.2 雅可比迭代的收敛性及其MATLAB程序 [n m]=size(A); for j=1:m a(j)=sum(abs(A(:,j)))-2*(abs(A(j,j))); end for i=1:n if a(i)>=0 disp('请注意:系数矩阵A不是严格对角占优的,此雅可比迭代不一定收敛') return end end if a(i)<0 disp('请注意:系数矩阵A是严格对角占优的,此方程组有唯一解,且雅可比迭代收敛') end 例4.2.2 用判别雅可比迭代收敛性的MATLAB主程序,判别由下列方程组的雅可比迭

迭代法及其在数值求解线性方程组中的应用

郑州师范学院 毕业论文 题目迭代法及其在数值求解 线性方程组中的应用 姓名陈丹丹 学号124103052041 院系数学与统计学院 专业数学与应用数学 年级班级B12数应2班 指导教师王明建 2016年5月20 日

毕业论文作者声明 本人郑重声明:所呈交的毕业论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。 本人完全了解有关保障、使用毕业论文的规定,同意学校保留并向有关毕业论文管理机构送交论文的复印件和电子版。同意省级优秀毕业论文评选机构将本毕业论文通过影印、缩印、扫描等方式进行保存、摘编或汇编;同意本论文被编入有关数据库进行检索和查阅。 本毕业论文内容不涉及国家机密。 论文题目:迭代法及其在数值求解线性方程组中的应用 作者单位:郑州师范学院 作者签名:

目录 摘要 (1) 引言 (3) 1.预备知识 (3) 1.1迭代法的基本形式 (3) 1.2Jocabi迭代法 (4) 1.2.1分量形式的Jacobi迭代法 (4) 1.2.2矩阵形式的Jacobi迭代法 (5) 1.2.3Jacobi迭代法的算法实现步骤 (6) 1.3Gauss-Seidel迭代法 (6) 1.3.1分量形式的Gauss-seidel迭代法 (6) 1.3.2矩阵形式的Gauss-seidel迭代法 (6) 1.3.3Gauss-Seidel迭代法的算法实现步骤 (7) 1.4超松弛迭代法(SOR迭代法) (7) 1.4.1分量形式的SOR方法 (7) 1.4.2矩阵形式的SOR方法 (8) 1.4.3SOR迭代法的算法实现步骤 (9) 1.5迭代法的收敛性 (9) 2. 数值求解线性方程组 (10) 2.1用Jacobi迭代法求解 (10)

Gauss-Seidel迭代法求解线性方程组

一. 问题描述 用Gauss-Seidel 迭代法求解线性方程组 由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值。使用了两倍的存储空间,浪 费了存储空间。若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量) 1(+k i x 时, 用最新分量) 1(1 +k x ,???+) 1(2 k x ) 1(1 -+k i x 代替旧分量) (1 k x ,???) (2 k x ) (1 -k i x ,可以起到节省存储 空间的作用。这样就得到所谓解方程组的Gauss-Seidel 迭代法。 二. 算法设计 将A 分解成U D L A --=,则b x =A 等价于b x =--U)D (L 则Gauss-Seidel 迭代过程 ) ()1()1(k k k Ux Lx b Dx ++=++ 故 )()1()(k k Ux b x L D +=-+ 若设1 )(--L D 存在,则 b L D Ux L D x k k 1)(1)1()()(--+-+-= 令 b L D f U L D G 11)()(---=-=, 则Gauss-Seidel 迭代公式的矩阵形式为 f Gx x k k +=+)()1( 其迭代格式为 T n x x x x ) ()0()0(2)0(1)0(,,,???= (初始向量), )(1 1 1 1 1 )()1()1(∑∑-=-+=++--=i j i i j k j ij k j ij i ii i i x a x a b a x )210i 210(n k ???=???=,,,;,,,

或者 ?? ???--=???=???==?+=∑∑-=-+=+++) (1)210i 210(111 1)() 1()1()()1(i j i i j k j ij k j ij i ii i i i k i k i x a x a b a x n k k x x x ,,,;,,, 三. 程序框图 四. 结果显示

“牛顿迭代法”最新进展文献综述

“牛顿迭代法”最新进展文献综述牛顿法是一种重要的迭代法,它是逐步线性化的方法的典型代表。牛顿迭代法又称为牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。另外该方法广泛用于计算机编程中。 介绍一下牛顿迭代法研究的前沿进展,1992年南京邮电学院基础课部的夏又生写的一篇题名一类代数方程组反问题的牛顿迭代法,对一类代数方程组反问题提出了一个可行的迭代解法。从算法上看,它是一种解正问题—迭代—解正问题迭代改善的求解过程。湖南师范大学的吴专保;徐大发表的题名堆浸工艺中浸润面的非线性问题牛顿迭代方法,为了研究堆浸工艺的机理,用牛顿迭代公式寻求浸润面的非线性方程的数值解,经过14次迭代的误差达到了,说明此算法收敛有效。浙江大学电机系的林友仰发表的牛顿迭代法在非线性电磁场解算中的限制对非线性电磁场解算中的限制做了分析,求解非线性方程组时迭代法是不可避免的。牛顿—拉斐森迭代法由于它的收敛速度快常被优先考虑。应用这个方法的主要问题是求雅可比矩阵。因为雅可比矩阵元素的计算非常费时。然而,本文要说明的是当利用以三角形为单元的有限元法求解非线性方程组时,应用牛顿法其雅可比矩阵容易求得,并且它保持了原系数的对称性和稀疏性,因而节省了时间。与此相反,若在差分法中应用牛顿迭代,并且按习惯用矩形网格进行剖分,则雅可比阵的计算很费时,而且不再保持原有对称性,这就使得存贮量和计算时间大为增加。南株洲工学院信息与计算科学系的吕勇;刘兴国发表的题名为牛顿迭代法加速收敛的一种修正格式,主要内容牛顿迭代法是求解非线性方程的一种重要的数值计算方法,在通常情况下,它具有至少平方收敛。本文利用文献[4]所建立的迭代格式xn+1=xn-αf(xfn)(x+n)f′(xn),对迭代格式中的参数α的讨论,实现了牛顿迭代法加速收敛的一种修正格式。

迭代方法求解方程

1、将方程x5 +5x3– 2x + 1 = 0 改写成各种等价的形式进行迭代,观察迭代是否收敛,并给 出解释。 (1)画图: x1=-6:0.01:6; x2=-3:0.01:3; x3=-1:0.01:1; x4=-0.8:0.01:-0.75; y1=x1.^5 +5*x1.^3-2*x1+1; y2=x2.^5 +5*x2.^3-2*x2+1; y3=x3.^5 +5*x3.^3-2*x3+1; y4=x4.^5 +5*x4.^3-2*x4+1; subplot(2,2,1),plot(x1,y1) ,title('子图(1)') ,grid on, subplot(2,2,2),plot(x2,y2) ,title('子图(2)'),grid on, subplot(2,2,3),plot(x3,y3) ,title('子图(3)'),grid on, subplot(2,2,4),plot(x4,y4) ,title('子图(4)') ,grid on, 由图可知x 的初值应在(-0.78,0.76)之间。 (2)解:第一步构造迭代函数 x f x ()

53512 x x x ++= 1()x f x = 32121555x x x x =-+- 2()x f x = 32521x x x x =-+- 3()x f x = 第二步 利用加速迭代收敛法变形后: 5342 41012515x x x x x --+=-- 1()x f x = 62352435322 x x x x x x x --=++- 2()x f x = 2 5328561 x x x x x x -+=++- 3()x f x = 第三步 迭代 设定初值 00.75x =- 1()n n x f x +=n=0,1,2,3……… 用 MA TLAB 编程 x=-077;y=-0.77;z=-0.77; for k=1:30 x=(-4*x^5-10*x^3+1)/(2-5*x^4-15*x^2); y=(2*y^6+4*y^2-3*y)/(5*y^3+3*y^5+2*y-2); z=(8*z^2-2*z)/(z^5+5*z^3+6*z-1); x,y,z; end 迭代结果为: x = -61.5948 y = -0.7685

非线性方程组的牛顿迭代法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

非线性方程组的牛顿迭代法的应用 一、问题背景 非线性是实际问题中经常出现的,并且在科学与工程计算中的地位越来越重要,很多我们熟悉的线性模型都是在一定条件下由非线性问题简化的,为得到更符合实际的解答,往往需要直接研究非线性科学,它是21世纪科学技术发展的重要支柱,非线性问题的数学模型有无限维的如微分方程,也有有限维的。道遥咏计算机进行科学计算都要转化为非线性的单个方程或方程组的求解。从线性到非线性是一个质的变化,方程的性质有本质不同,求解方法也有很大差别。本文主要介绍的是非线性方程组的牛顿迭代法的数值解法。 二、数学模型 对于方程()0=x f ,如果()x f 湿陷性函数,则它的求根是容易的。牛顿法实质上是一种线性化方法,其基本思想是将线性方程()0=x f 逐步归结为某种线性方程来求解。 设已知方程()0=x f 有近似根k x (假定()0'≠k x f ),将函数()x f 在点k x 展开,有 ()()()()k k k x x x f x f x f -+≈', 于是方程()0=x f 可近似地表示为 ()()()0'=-+k k k x x x f x f 这是个线性方程,记其根为1+k x ,则1+k x 的计算公式 ()() k k k k x f x f x x ' 1- =+, ,1,0=k 这就是牛顿法。 三、算法及流程 对于非线性方程 ()()()???? ????????=n n n n x L x x f M x L x x f x L x x f f ,,,,,,,,,2 1212211 在()k x 处按照多元函数的泰勒展开,并取线性项得到

模式识别感知器算法求判别函数

感知器算法求判别函数 一、 实验目的 掌握判别函数的概念和性质,并熟悉判别函数的分类方法,通过实验更深入的了解判别函数及感知器算法用于多类的情况,为以后更好的学习模式识别打下基础。 二、 实验内容 学习判别函数及感知器算法原理,在MA TLAB 平台设计一个基于感知器算法进行训练得到三类分布于二维空间的线性可分模式的样本判别函数的实验,并画出判决面,分析实验结果并做出总结。 三、 实验原理 3.1 判别函数概念 直接用来对模式进行分类的准则函数。若分属于ω1,ω2的两类模式可用一方程d (X ) =0来划分,那么称d (X ) 为判别函数,或称判决函数、决策函数。如,一个二维的两类判别问题,模式分布如图示,这些分属于ω1,ω2两类的模式可用一直线方程 d (X )=0来划分。其中 0)(32211=++=w x w x w d X (1) 21,x x 为坐标变量。 将某一未知模式 X 代入(1)中: 若0)(>X d ,则1ω∈X 类; 若0)(3时:判别边界为一超平面[1]。 3.2 感知器算法 1958年,(美)F.Rosenblatt 提出,适于简单的模式分类问题。感知器算法是对一种分

类学习机模型的称呼,属于有关机器学习的仿生学领域中的问题,由于无法实现非线性分类而下马。但“赏罚概念( reward-punishment concept )” 得到广泛应用,感知器算法就是一种赏罚过程[2]。 两类线性可分的模式类 21,ωω,设X W X d T )(=其中,[]T 1 21,,,,+=n n w w w w W ,[]T 211,,,,n x x x =X 应具有性质 (2) 对样本进行规范化处理,即ω2类样本全部乘以(-1),则有: (3) 感知器算法通过对已知类别的训练样本集的学习,寻找一个满足上式的权向量。 感知器算法步骤: (1)选择N 个分属于ω1和 ω2类的模式样本构成训练样本集{ X1 ,…, XN }构成增广向量形式,并进行规范化处理。任取权向量初始值W(1),开始迭代。迭代次数k=1。 (2)用全部训练样本进行一轮迭代,计算W T (k )X i 的值,并修正权向量。 分两种情况,更新权向量的值: 1. (),若0≤T i k X W 分类器对第i 个模式做了错误分类,权向量校正为: ()()i c k k X W W +=+1 c :正的校正增量。 2. 若(),0T >i k X W 分类正确,权向量不变:()()k k W W =+1,统一写为: (4) (3)分析分类结果:只要有一个错误分类,回到(2),直至对所有样本正确分类。 感知器算法是一种赏罚过程: 分类正确时,对权向量“赏”——这里用“不罚”,即权向量不变; 分类错误时,对权向量“罚”——对其修改,向正确的方向转换[3]。 3.3 感知器算法的流程及框图 1、确1定样本:输入向量P 、目标向量T 。 2、网络大小:根据向量的维数来选择网络规模。 3、初始化:W 、b 取随机值,范围[-1, +1]。 ???∈<∈>=21T ,0,0)(ωωX X X W X 若若d

迭代法

2 迭代法 2.1 迭代法的一般概念 迭代法是数值计算中一类典型方法,不仅用于方程求根,而且用于方程组求解,矩阵求特征值等方面。迭代法的基本思想是一种逐次逼近的方法。首先取一个精糙的近似值,然后用同一个递推公式,反复校正这个初值,直到满足预先给定的精度要求为止。 对于迭代法,一般需要讨论的基本问题是:迭代法的构造、迭代序列的收敛性天收敛速度以及误差估计。这里,主要看看解方程迭代式的构造。 对方程(1.1),在区间],[b a 内,可改写成为: )(x x ?= (2.1) 取],[0b a x ∈,用递推公式: ) (1k k x x ?=+, Λ,2,1,0=k (2.2) 可得到序列: ∞ ==0210}{,,,,k k k x x x x x ΛΛ (2.3) 当∞→k 时,序列∞=0}{k k x 有极限x ~, 且)(x ?在x ~附近连续,则在式(2.2)两边极限,得, )~(~x x ?= 即,x ~为方程(2.1)的根。由于方式(1.1)和方程(2.1)等价,所以, x x ~ *= 即, *lim x x k k =∞ → 式(2.2)称为迭代式,也称为迭代公式;)(x ?可称为迭代函数。称求得的序列∞ =0 }{k k x

为迭代序列。 2.2 程序和实例 下面是基于MATLAB 的迭代法程序,用迭代格式)(1n n x g p =+,求解方程)(x g x =,其中初始值为0p 。 ************************************************************************** function[p,k,err,P]=fixpt(f1021,p0,tol,max1) % f1021是给定的迭代函数。 % p0是给定的初始值。 % tol 是给定的误差界。 % max1是所允许的最大迭代次数。 % k 是所进行的迭代次数加1。 % p 是不动点的近似值。 % err 是误差。 % P = {p1,p2,…,pn} P(1) = p0; for k = 2:max1 P(k) = feval('f1021', P(k-1)); k, err = abs(P(k) - P(k-1)) p = P(k); if(err

简单迭代法的代码实现

/*简单迭代法的代码实现*/ #include #include #include using namespace std; double e=2.718281818284; double f(double x){ return pow(e,-1*x); } void SimpleDiedai(double x,double d){ double a=x; double b=f(a); int k=0;//记录循环的次数 while(((a-b)>d) || ((a-b)<-1*d)){ cout<100){ cout<<"迭代失败!(可能是函数不收敛)"<>x>>d; SimpleDiedai (x,d); return 0; } /*牛顿迭代法的代码实现*/ #include #include #include using namespace std; double e=2.718281818284; double f(double x){ double a=pow(e,-1*x); return x-(x-a)/(1+a); }

void NewtonDiedai(double x,double d){ double a=x; double b=f(a); int k=0; //记录循环的次数 while(((a-b)>d) || ((a-b)<-1*d)){ cout<100){ cout<<"迭代失败!(可能是函数不收敛)"<>x>>d; NewtonDiedai(x,d); return 0; } /*雅可比算法的代码实现*/ #include #include #include #include using namespace std; //函数求数组中的最大值 double MaxOfList(vectorx){ double max=x[0]; int n=x.size(); for(int i=0;imax) max=x[i]; return max; } //雅可比迭代公式 void Jacobi(vector > A,vector B,int n){

相关主题
文本预览
相关文档 最新文档