当前位置:文档之家› 高等数学第12章无穷级数测试卷教学提纲

高等数学第12章无穷级数测试卷教学提纲

高等数学第12章无穷级数测试卷教学提纲
高等数学第12章无穷级数测试卷教学提纲

精品文档

第十二章无穷级数测试卷 一、填空题: 1. 若数项级数

∑∞

=1n n

u

收敛,则n n u ∞

→lim = .

2. 若数项级数∑∞

=1n n u 的通项满足1.11

||n u n ≤,则∑∞

=1

n n u 是 级数.

3. 若数项级数

∑∞

=1n n

q

,当 |q | 时收敛,当 |q | 时发散.

4. 若幂级数

n

n n

y a

∑∞

=0

的收敛区间为(-9,9),则幂级数n n n x a 20

)3(-∑∞

=的收敛区间

为 . 5.级数

∑∞

=---1

1

1

2

1)1(n n n 的部分和n S = ,此级数的和为 .

6.已知级数612

1

2π=∑∞

=n n ,则级数∑∞

=-12

)12(1n n 的和等于 . 7.幂级数∑∞

=--+11

2)

3(2n n

n n nx 的收敛半径R= . 8.函数)3ln()(x x f +=在0=x 点展开的幂级数为 .

9.函数)()(2

πππππx x x x f -+=的傅里叶级数为

()∑∞

=++1

sin cos 2n n n nx b nx a a ,则系数=3b .

10.周期为2的函数)(x f ,设它在一个周期[)1,1-上的表达式为||)(x x f =,且它的傅里叶级数的和函数为)(x S ,则=-)5(S . 二、单项选择题:

1.当条件( )成立时,级数

∑∞

=+1

)(n n n

v u

一定发散.

A .

∑∞

=1n n

u

发散且

∑∞

=1

n n

v

收敛; B.

∑∞

=1n n

u

发散;

C.

∑∞

=1

n n

v

发散; D.

∑∞

=1

n n

u

∑∞

=1

n n

v

都发散.

精品文档

2.若两个正项级数

∑∞

=1

n n

u

∑∞

=1

n n

v

满足),2,1(Λ=≤n v u n n 则结论( )是正确的.

A.

∑∞

=1n n

u

发散,则

∑∞

=1n n

v

发散; B 。

∑∞

=1n n

u

收敛,则

∑∞

=1n n

v

收敛;

C .

∑∞

=1

n n

u

发散,则

∑∞

=1

n n

v

收敛; D 。

∑∞

=1

n n

u

收敛,则

∑∞

=1

n n

v

发散.

3.

n n n x x )1(3

1

2101+=-∑∞

=+在区间( )上成立. A.(-1,1); B.(-3,3); C.(-2,4); D.(-4,2) . 4.若级数

∑∞

=1

2n n a 收敛, 则∑

=1n n

n

a ( ) (A) 绝对收敛 (B)条件收敛 (C) 发散 (D)收敛性不定 5.下列级数中,条件收敛的是( C )

(A)

=--1n n 1

n )32()

1( (B)

∑∞

=-+-1

2

1

2

)

1(n n n n

(C)

∑∞

=--1

n 3

1

n n

1

)

1( ( D)

∑∞

=--1

n 31

n n

51)

1(

6.设)11ln()1(n

u n

n +

-=, 则( ).

A .

∑∞

=1n n

u

∑∞

=1

2n n

u

都收敛; B .

∑∞

=1n n

u

∑∞

=1

2n n

u

都发散;

C .

∑∞

=1

n n

u

收敛,

∑∞

=1

2n n

u

发散; D .

∑∞

=1

n n

u

发散,

∑∞

=1

2n n

u

收敛 .

7.设),2,1(0Λφ=n u n 且

∑∞

=1

n n

u

收敛,常数)2,

0(π

λ∈,则级数∑∞

=-1

2)tan ()1(n n n u n n λ

为( ).

A .绝对收敛;

B .收敛性与λ有关

C .条件收敛;

D .发散 . 8.级数

∑∞

=--1

)cos 1()1(n n n λ

(常数0φλ)( ). A .发散; B .条件收敛 C .绝对收敛; D .收敛性与λ有关 . 9.若级数∑∞

=---1

1

)()

1(n n

n n

a x 在0>x 处发散,在0=x 处收敛,则常数=a ( ).

《微积分》《高等数学》第二章测试题

《微积分》第二章测试题 1. 【导数的概念】已知()23f '=,求()() 22lim h f h f h h →+-- 解()() ()() ()()()0 0222222lim lim 226h h f h f h f h f f h f f h h h →→+--+---??'=+== ?-?? 2. 设函数cos ln x y x e a -=++,求 d y d x 解 sin x dy x e dx -=-- 3. 设函数arctan x y e =,求 d y d x 解 d y d x () arctan arctan 1 1 1221x x e e x x x x =? ? = ++ 4. 设函数2 sin cos 2y x x =,求 d y d x , x dy dx = 解()2 2 2 2 4 sin cos 2sin 12sin sin 2sin y x x x x x x ==-=- ()()3 2 2 2sin cos 8sin cos 2sin cos 14sin sin 214sin dy x x x x x x x x x dx =-=-=-, 0x dy dx == 5. 【函数的微分,记得加dx 】设函数2 sin 2x y x = ,求dy 解2 4 3 3 2cos 22sin 22cos 22sin 22cos 22sin 2,dy x x x x x x x x x x dy dx dx x x x ---== ∴= 6. 【高阶导数】设函数11 y x = -,求 n n d y dx 解 () () () () () () () 2 3 1 2 3 4 1 23 ! 11, 21, 3!1,, 1n n n n dy d y d y d y n x x x x dx dx dx dx x ----+' = -=--=-=--=-- 7.【隐函数求导】 设函数()y y x =由方程2 sin 20xy y -=确定,求 d y d x 解 等式两边同时对x 求导2 22sin 20,y xyy y y ''+-=则 () 2 2 2 2sin 222221dy y y y y dx y xy xy xy x y '== = = ---

大学高等数学阶段测验卷

第一章函数与极限阶段测验卷 学号 班级 成绩 考试说明:1、请将客观题答案全部填涂在答题卡上,写在试卷上一律无效。 2、请在答题卡上填涂好、班级、课程、考试日期、试卷类型和考号。试卷类型 划A;考号为学号的后九个数,请填涂在“考号”的九个空格并划线。 3、答题卡填涂不符合规者,一切后果自负。 一.是非判断题(本大题共10题,每题2分,共20分) 1. x y 2cos 1-=与x y sin =是相同的函数. ( ) A 、正确 B 、错误 2. 函数ln(1)y x x =-+在区间(,1)-∞-单调递增.( ) A 、正确 B 、错误 3. 函数x y e =在(0,)+∞有界. ( ) A. 正确 B. 错误 4. 设()f x 在[,](0)a a a ->上有定义,则函数1 ()[()()]2 g x f x f x =--是奇函数.( ) A. 正确 B. 错误 5. 函数2sin y x =是当0x →时的无穷小.( ) A. 正确 B. 错误 6.函数y = 是初等函数.( ) A 、正确 B 、错误 7. 当x →∞时,函数22135x y x +=+趋向于1 3 .( ) A 、正确 B 、错误 8. 当0x →时,函数2 12 y x = 与1cos y x =-是等价无穷小.( ) A 、正确 B 、错误 9. 211lim cos 2 x x x →∞=-( ) A 、正确 B 、错误

10. 函数1 (12),0;, 0x x x y e x ?? +≠=??=? 在0x =处连续. ( ) A 、正确 B 、错误 二.单项选择题(本大题共12个,每题3分,共36分) 11.函数)5)(2ln(+-=x x y 的定义域为( ). A. 25≤≤-x ; B. 2>x ; C. 2>x 或5-

高等数学第一章测试卷

高等数学第一章测试卷(B ) 一、选择题。(每题4分,共20分) 1?假设对任意的 x R ,都有(x) f(x) g(x),且]im[g(x) (x)] 0,则 lim f (x)() A.存在且等于零 B.存在但不一定为零 C. 一定不存在 D.不一定存在 1 x 2. 设函数f(x) lim 2n ,讨论函数f (x)的间断点,其结论为( ) n 1 x A.不存在间断点 B.存在间断点x 1 C.存在间断点x 0 D.存在间断点x 1 x 2 X 1 3. 函数f (x) 一2 . 1 —2的无穷间断点的个数为( ) X 1 \ x 7.[x]表示取小于等于x 的最大整数,则lim x - x 0 x f(x) asinx A. 0 B. 1 C. 2 D. 3 4.设函数f (x)在( )内单调有界, {X n }为数列,下列命题正确的是( A.若{x n }收敛,则{ f (x n ) }收敛 B.若{&}单调,则{ f (x n ) }收敛 0若{ f (X n ) }收敛,则仏}收敛 D.若{ f (X n ) }单调,则 {X n }收敛 5.设{a n }, {b n }, {C n }均为非负数列,且 lim n a n 0,lim b n 1,limc n n n ,则() A. a n b n 对任意n 成立 B. b n C n 对任意n 成立 C.极限lim a n C n 不存在 n D. 极限lim b n C n 不存在 n 二、填空题(每题 4分,共 20分) 6.设 X, f (X) 2f (1 X) 2 x 2x , 则 f (X) 8.若 lim]1 X X ( 丄 X a)e x ] 1, 则实数a 9.极限lim X (X 2 X a)(x b) 10.设 f (X)在 x 0处可导, f (0) 0,且f (0) b ,若函数 F(x) 在x 0处连续, 则常数 A

高等数学第二章练习及答案

第二章 一、选择题. 1. 函数1y x =+在0x =处 ( ) A 、无定义 B 、不连续 C 、可导 D 、连续但不可导 2. 设函数221,0(), 0x x f x x x +

7. (arctan 2)d x =________,[]ln(sin 2)d x =__________. 8. 函数32()39f x x ax x =++-,已知()f x 在3x =-时取得极值,则a =______. 9.设需求量q 对价格p 的函数为2e 100)(p p q -=,则需求弹性E p =__________. 三、判断题. 1. 若()f x 在点0x 处可导,则()f x 在点0x 处连续. ( ) 2. dy 是曲线()y f x =在点00(,())x f x 处的切线纵坐标对应于x ?的改变量. ( ) 3. 函数()y f x =在0x 点处可微的充要条件是函数在0x 点可导. ( ) 4. 极值点一定是驻点. ( ) 5. 函数y x =在点0x =处连续且可导. ( ) 四、计算题. 1.求函数y =. 2. 求由方程0e e 2=+-+y x y x 所确定的隐函数()y f x =的导数y '. 3. 设e x y x =,求y '. 4. 求由方程cos()y x y =+所确定的隐函数()y f x =的二阶导数.y '' 五、求下列极限. (1)sin lim sin x x x x x →∞-+, (2)x x x x x x x --+-→4240sin 23lim , (3)11lim 1ln x x x x →??- ?-? ?, (4)1lim(1)(0)x x a x a →∞->, (5)()10lim 1x x x →+, (6)1lim ()x x x x e →+∞+. 六、应用题. 1. 求函数32 ()391f x x x x =--+的单调性、极值与极值点、凹凸区间及拐点. 2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求量为100010q p =-(q 为需求量,p 为价格).试求:(1)成本函数,收入函数;(2)产量为多少吨时利润最大?

第十二章 无穷级数A同步测试卷教学文案

第十二章无穷级数A 同步测试卷

第十二章 无穷级数同步测试A 卷 一、单项选择题(每小题3分,共15分) 1.下列级数中,收敛的是( ) 2100111111 () 22223++++++++L L L A n 2111111()23100222 ++++++++L L L n B 211111 ()(1)()()2222+++++++L L n C n 2111111 ()(1)()23222++++++++++L L L L n D n 2.设1 ∞ =∑n n u 为数项级数,下列结论中正确的是( ) 1 ()lim ,1+→∞=

4. 设常数0>k ,则级数1 21 (1)∞ -=+-∑n n k n n ( ). ()A 发散. ()B 条件收敛. ()C 绝对收敛. ()D 收敛性与k 有关. 5. 周期为2π的函数()f x ,在一个周期上的表达式为 (0) ()2(2)πππππ≤≤?=? -≤≤?x f x x x ,设它的傅里叶级数的和函数是()S x ,则(2)π=S ( ). () ()()2()02 π ππA B C D 二、填空题(每小题4分,共20分) 6. 级数111 ( )23∞ =+∑n n n 的和为 . 7. 幂级数21 12(3) ∞ -=+-∑ n n n n n x 的收敛半径为 . 8. 已知级数1 211 1 (1)2,5∞ ∞ --==-==∑∑n n n n n u u ,则级数1 ∞ ==∑n n u . 9.将1 ()2= -f x x 展开为x 的幂级数时,其收敛域为 . 10.将()1(0)π=+≤≤f x x x 展开为余弦级数时,0=a . 三、解答题(共65分) 11. (8分)判断下列运算过程是否正确,若不正确,指出错误所在. 因为1 1ln(1)(1) ∞ -=+=-∑n n n x x n ,因此取2=x 得11 2ln 3(1)∞ -==-∑n n n n . 12. (8 分)讨论级数2∞ =n . 13. (8分)求级数2012!∞ =+∑g n n n n x n 的和函数.

(完整版)高等数学第一章测试题10选择(带答案和解析)

高等数学第一章测试题 一、单项选择题 1.0 . (),()x x x x x x βα→→当时,都是无穷小,则当时(,)不一定是无穷小 ()()()x A x αβ+ () 22()()x B x αβ+ ()ln[1()()]x C x αβ+? ()2 ()() x x D αβ 答案:D 2 0() (),()1,. () lim x x x x x x x ααββ→===解析:当时 2 1 2.( )0,,,1 lim x x ax b x a b a b →∞ +--=+则常数的值所组成的数组()为()设 10011111A B C D -()(,)()(,)()(,)()(,) 答案:D 解析: 0)1 1(2 lim =--++∞ →b ax x x x 1 ) 1)((1)11( 2 2 lim lim +++-+=--++∞ →∞ →x x b ax x b ax x x x x 01 1)()1(2 lim =+-++--=∞ →x b x b a x a x 10,0,a a b -=+=则分子的二次项和一次项系数为零: 即1,1-==b a 22 1)32 3(x f x x x -=-+、已知函数, 下列说法正确的是( )。

2(A)f(x)有个无穷间断点 ())1(1B f x 有个可去间断点,个无穷间断点 ()2()C f x 有个第一类间断点 ()111()f D x 有个可去间断点,个无穷间断点,个跳跃间断 答案:B 221(1)(1)1 ()32(2)(1)2 x x x x f x x x x x x --++=== -+---解析: 212320,1,2x x x x -+===令得 2.1x x ==是可去间断点,是无穷间断点 4、 是 。 A.奇函数 B.周期函数 C.有界函数 D.单调函数 答案:A ()()f x f x -=-解析: 1()11115. f x x = + +、函数的定义域为____ A. 0,≠∈x R x 但 1 ,10 .x R B x ∈+≠ 1,0,1,.2x x C R ∈≠-- 0.,,1x R x D ∈≠- x ∈R,但x ≠0,?1 答案:C 解析:略. 6、 答案:C |sin | ()cos x f x x xe -=()x -∞<<+∞的值为 , 极限)00()1(lim 0≠≠+→b a a x x b x 答( ) . . a be D e C a b B A a b ) ()(ln )(1)(

专升本高等数学测试及答案(第二章)

高等数学测试(第二章) 一.选择题(每小题2分,共20分) 1 .设函数0()10 2 x f x x ≠=??=?? 在0x =处( ) A .不连续B .连续但不可导C .可导D .可微 2.设函数()ln 2f x x x =在0x 处可导,且0()2f x '=,则0()f x 等于( )A .1 B .2 e C .2e D .e 3.设函数()f x 在点x a =处可导,则0()()lim x f a x f a x x →+--等于( ) A .0 B .()f a ' C .2()f a ' D .(2)f a ' 4.设x x x f += ??? ??11,x x g ln )(=,则[()]f g x '= ( ) A . 2) 1(1x + B .2)1(1x +- C .1x x + D .22 )1(x x +- 5.设函数 )(x f 在),(+∞-∞内可导,则下列结论中正确的是 ( ) A .若)(x f 为周期函数,则)(x f '也是周期函数 B .若)(x f 为单调增加函数,则)(x f '也是单调增加函数 C .若)(x f 为偶函数,则)(x f '也是偶函数 D .若 )(x f 为奇函数,则)(x f '也是奇函数 6.设)(x f 可导,则下列不成立的是 ( ) A .)0()0()(lim 0 f x f x f x '=-→ B .)()()2(lim 0 a f h a f h a f h '=-+→ C .)()()(lim 0 000 x f x x x f x f x '=??--→? D .)(2)()(lim 0000 x f x x x f x x f x '=??--?+→?

高等数学第一章练习题答案

第一章 练习题 一、 设()0112>++=?? ? ??x x x x f ,求)(x f 。 二、 求极限: 思路与方法: 1、利用极限的运算法则求极限; 2、利用有界变量与无穷小的乘积仍是无穷小这一性质; 3、利用两个重要极限:1sin lim 0=→x x x ,e x x x =??? ??+∞→11lim ; 4、利用极限存在准则; 5、用等价无穷小替换。注意:用等价无穷小代替时被代替的应是分子、分母或其无穷小因子。如果分子或分母是无穷小的和差,必须将和差化为积后方可用等价无穷小代替积中的因子部分。 6、利用函数的连续性求极限,在求极限时如出现∞-∞∞ ∞,,00等类型的未定式时,总是先对函数进行各种恒等变形,消去不定因素后再求极限。 7、利用洛比达法则求极限。 1、()()()35321lim n n n n n +++∞ → 2、???? ? ?---→311311lim x x x 3、122lim +∞ →x x x 4、x x x arctan lim ∞ →

5、x x x x sin 2cos 1lim 0-→ 6、x x x x 30 sin sin tan lim -→ 7、()x x 3cos 2ln lim 9 π → 8、11232lim +∞→??? ??++x x x x 三、 已知(),0112lim =??? ?????+-++∞→b ax x x x 求常数b a ,。 四、 讨论()nx nx n e e x x x f ++=∞→12lim 的连续性。 五、 设()12212lim +++=-∞→n n n x bx ax x x f 为连续函数,试确定a 和b 的值。 六、 求()x x e x f --=111 的连续区间、间断点并判别其类型。 七、 设函数()x f 在闭区间[]a 2,0上连续,且()()a f f 20=,则在[]a ,0上 至少有一点,使()()a x f x f +=。 八、 设()x f 在[]b a ,上连续,b d c a <<<,试证明:对任意正数p 和q , 至少有一点[]b a ,∈ξ,使 ()()()()ξf q p d qf c pf +=+

高等数学I(专科类)测试题

考试科目:《高等数学》高起专 一.选择题 (每题4分,共20分) 1. 函数 y = 的定义域是 ( ). (a) (2,6)- (b) (2,6] (c)[2,6) (d)[2,6]- 2. 设11f x x =-(), 则(())f f x = ( ) (a) 1x x - (b) 12x - (c) 1x - (d) 1x x - 3. 10 lim(12)x x x →- (a) e (b) 1 (c) 2e - (d) ∞ 4. 2 20lim (2) x x sin x → (a) 12 (b) 13 (c) 1 (d) 14 5. 在 0x → 时, sin x x - 是关于 x 的 ( ) (a) 低阶无穷小量 (b) 等价无穷小量 (c) 高阶无穷小量 (d) 同阶但不等价无穷小量 二.填空题(每题4分,共28分) 6. 设2(1)3f x x x -=++, 则 ()f x =___________. 7. 函数()f x = 的定义域是__________ 8. 若(31)1x f x +=+, 则()f x =__________ . 9. 2sin(2)lim 2 x x x →--=_____. 10. 设1,0,()5,0,1tan ,0x x f x x x x -? , 则 0lim ()x f x +→=_______.

11. 4lim(1)x x x →∞-=_____. 12. 3232lim 35 x x x x x →∞+--+=_____. 三.解答题(满分52分) 13. 求 45lim()46 x x x x →∞--. 14. 求 0x →. 15. 求 2sin lim 24cos x x x x x →∞-+. 16. 求 2lim x →-. 17. 求 123lim 24 n n n +→∞-+. 18. 设函数22cos ,0()2,0ln(14)a x x x f x x x x +-≤??=?>?+? , 在 0x = 处极限存在, 求 a 的值。 19. 若 33lim 12 x x ax b →-=++, 试确定常数 ,a b 的值。 附:参考答案: 一.选择题 (每题4分,共20分) 1)a 2)d 3)c 4)a 5)c 二.填空题(每题4分,共28分) 6)2 35x x ++ 7)12x -<<

第十二章无穷级数

第十二章无穷级数 1下列无穷级数中发散的无穷级数是( ) A.∑ ∞ =+1 n 2 2 1n 3n B. ∑ ∞ =+-1 n n 1n )1( C. ∑ ∞ =--3 n 1 n n ln )1( D. ∑ ∞ =+1 n 1n n 32 2.设幂级数∑∞ --1 )3(n n n x a 在x =1处收敛,则在x =4处该幂级数( ) A.绝对收敛 B.条件收敛 C.发散 D.敛散性不定 3.下列无穷级数中,收敛的无穷级数是( ) A .∑ ∞ =++15312n n n B .∑ ∞ =--+11)1(1n n n C .∑ ∞ =-15 1 n n D .∑ ∞ =--1 1 )1(n n n 4.设正项级数∑∞ =1 n n u 收敛,则下列无穷级数中一定发散的是( ) A .∑∞=+1 100n n u B .∑∞=++1 1)(n n n u u C .∑∞ =1 )3(n n u D .∑∞ =+1 )1(n n u 5.下列无穷级数中,发散的无穷级数为( ) A.()∑ ∞ =+11 1 n n n B. ∑ ∞ =??? ??+13101n n C. ∑ ∞ =?? ? ??+12 110 1 n n n D. ∑ ∞ =+11 3 2n n n 6.无穷级数∑∞ =023n n n 的前三项和S 3=( ) A.-2 B. 419 C.8 27 D. 8 65 7.幂级数1! n n x n ∞ =∑的和函数为( ) A.1x e - B.x e C.1x e + D.2x e + 8.已知幂级数()n 1 1n n a x ∞ =+∑在x =-3处收敛,则该级数在x =0处是 A.绝对收敛 B.条件收敛 C.发散 D.敛散性不确定 9.无穷级数1 1 !n n ∞ =∑ 的和为______. 10.设()f x 是周期为2π的周期函数,它在[,)ππ-上表达式为1()1 f x -?=?? , , 0x x ππ -≤≤≤<

高等数学第二章练习及答案

x) 1 3. 函数f (x) lnx 在x 1处的切线方程是 _______________________ 1 4. 设 f(—) x ,则 f (x) ___ ________ x 3 5. 函数 f (x) sin(cosx ),贝y f (x) ___________________ 6.设函数f(x) ln cosx ,则二阶导数f (x) 、选择题. 1.函数y A 、无定义 不连续 第二章 C 、可导 D 、连续但不可导 2.设函数f (X ) 2x 2 x , 1,x 0 ,则 f (x)在点x 0处 A 、没有极限 B 、有极限但不连续 C 、连续但不可导 D 、可导 3?设函数y f (x)可微, 则当 y dy 与x 相比,是 x 的等价无穷小 x 的同阶无穷小 C . x 的高阶无穷小 x 的低阶无穷小 4.函数 x 3的单调增区间是 中B 、(严,T 3 3 3 C 、(于 5?函数f (x) 1 (e x e x )的极小值点是 ) ) ) ) (0,+ ) ) 不存在 、填空题. 1. 已知(sin x) cosx , 利用导数定义求极限 2、 如果f (x °) 4,则 lim f(x 0 3x) x 0 f (X o )

7. d(arctan2x) ,d In (sin 2x) 四、计算题. 六、应用题. 产品的市场需求量为 q 1000 10 p ( q 为需求量,p 为价格)?试求:(1 )成本函数,收入 函数;(2)产量为多少吨时利润最大? 8.函数f(x) x 3 ax 2 3x 9,已知f (x)在x 3时取得极值,则 a = p 9 ?设需求量q 对价格p 的函数为q(p) 100e ? ,则需求弹性E p 三、判 断题. 1. 若f(x)在点X o 处可导,则f (x)在点X o 处连续. 2. dy 是曲线y f (x)在点(x 0, f (怡))处的切线纵坐标对应于 x 的改变量. 3. 函数y f (x)在x 0点处可微的充要条件是函数在 X 。点可导. 4. 极值点一定是驻点. 5. 函数y x 在点x 0处连续且可导. 1.求函数 y arctan-. 1 x 2的导数. 2.求由方程x y e 2x e y 0所确定的隐函数 y f(x)的导数y . e 3.设 y x ,求 y . 4.求由方程y cos(x y)所确定的隐函数 y f (x)的二阶导数y . 五、求下列极限. (1) lim x x sin x x sin x (2) 4 c 2 lim X x 0 3x 2x si nx 4 , (3) 01 x x 1 ln x (4) 1 lim( a' X 1)x (a 0), (5) (6) lim (x x 1 X \ X e)x . 1.求函数f (x) x 3 3x 2 9x 1的单调性、极值与极值点、凹凸区间及拐点. 2.某厂生产一批产品, 其固定成本为2000元,每生产一吨产品的成本为 60元, 对这种

第十二章无穷级数(解题方法归纳)

第十二章解题方法归纳 一、正项级数敛散性的判定方法 1. 一般项极限不趋于零则级数发散? 2. 比较审敛法 3. 比较审敛法的极限形式 4. 比值审敛法 5. 根值审敛法 1. 一般项极限不趋于零则级数发散 例1判定级数a n s = 1 ? 2s ? 3s ? 「n s *11 (s 0)的敛散性. n 4 『方法技巧』无论是正项级数还是任意项级数,判定其敛散性时一般第 步都是验证一般项的极限是否为零. 2. 比较审敛法 n a 2n 1 a 1 ln 3 n 的敛散性. 由于lim n s =邑学0,所以总n s 发散. n =1 00 a n 判定级数二诗 (a 0)的敛散性. 当a 1时, n a 2n 1 a n a 2n 1 a n a '2n a

1 ,则 n 4. 比值审敛法 解 lim n u n =lim 也 芋=—lim(1 —)n n 存 * f 2n 2 n 、任意项级数敛散性的判定 lim W = lim 山 n ?:V n r‘ U n 二 lim —二 lim x 3 — (3) J :In n J :ln x 二 lim 2 x 门:31 n x x 「::二 lim —— = lim —=::, J 和6 由比较审敛法的极限形式得 1 发散. 例4判定级数 v n!e 的敛散性. n n U n 1 n 1 n (n 1)!e n 解 lim J =lim n 1 F u n F (n +1) 无法断言原级数是否收敛,但 e >1,从而u n 单调递增且5 = e,故m U n 0 n n :! n 5.根值审敛法 例5判定级数 二(n 1)n 2n n n 2 的敛散性. (n 1)n 2 故由根值审敛法知二(n 1)n n n 2 nm 2 n 发散. 例6试研究级数曰 a 1 a n (a - 0)是绝对收敛、条件收敛还是发散. oO a 解先考虑级数nd 畀 的敛散性.

高等数学第一章练习题

第一章函数、极限、连续 一、单项选择题 1.区间[a,+∞),表示不等式() 2.若 3.函数是()。 (A)偶函数(B)奇函数(C)非奇非偶函数(D)既是奇函数又是偶函数 4.函数y=f(x)与其反函数 y=f-1(x)的图形对称于直线()。 5.函数 6.函数 7.若数列{x n}有极限a,则在a的ε邻域之外,数列中的点() (A)必不存在 (B)至多只有有限多个 (C)必定有无穷多个 (D)可以有有限个,也可以有无限多个 8.若数列{ x n }在(a-ε, a+ε)邻域内有无穷多个数列的点,则(),(其中为某一取定的正数) (A)数列{ x n }必有极限,但不一定等于 a (B)数列{ x n }极限存在且一定等于 a (C)数列{ x n }的极限不一定存在 (D)数列{ x n }一定不存在极限

9.数列 (A)以0为极限(B)以1为极限(C)以(n-2)/n为极限(D)不存在极限 10.极限定义中ε与δ的关系是() (A)先给定ε后唯一确定δ (B)先确定ε后确定δ,但δ的值不唯一 (C)先确定δ后给定ε  (D)ε与δ无关 11.任意给定 12.若函数f(x)在某点x0极限存在,则() (A) f(x)在 x0的函数值必存在且等于极限值 (B) f(x)在x0的函数值必存在,但不一定等于极限值 (C) f(x)在x0的函数值可以不存在 (D)如果f(x0)存在则必等于极限值 13.如果 14.无穷小量是() (A)比0稍大一点的一个数 (B)一个很小很小的数 (C)以0为极限的一个变量 (D)0数 15.无穷大量与有界量的关系是() (A)无穷大量可能是有界量

高数第一章综合测试题复习过程

第一章综合测试题 一、填空题 1 、函数1()arccos(1) f x x =-的定义域为 . 2、设()2ln f x x =,[()]ln(1ln )f g x x =-, 则()g x = . 3、已知1tan ,0,()ln(1) , 0ax x e e x f x x a x +?+-≠?=+??=? 在0x =连续,则a = . 4、若lim 25n n n c n c →∞+??= ?-?? ,则c = . 5 、函数y =的连续区间为 . 二、选择题 1、 设()f x 是奇函数,()g x 是偶函数, 则( )为奇函数. (A )[()]g g x (B )[()]g f x (C )[()]f f x (D )[()]f g x 2、 设)(x f 在(,)-∞+∞内单调有界, {}n x 为数列,则下列命题正确的是( ). (A )若{}n x 收敛,则{()}n f x 收敛 (B )若{}n x 单调,则{()}n f x 收敛 (C )若{()}n f x 收敛,则{}n x 收敛 (D )若{()}n f x 单调,则{}n x 收敛 3、 设21(2)cos ,2,()4 0, 2, x x f x x x ?+≠±?=-??=±? 则()f x ( ). (A )在点2x =,2x =-都连续 (B )在点2x =,2x =-都间断 (C )在点2x =连续,在点2x =-间断 (D )在点2x =间断,在点2x =-连续 4、 设lim 0n n n x y →∞ =,则下列断言正确的是( ). (A )若{}n x 发散,则{}n y 必发散 (B )若{}n x 无界,则{}n y 必有界 (C )若{}n x 有界,则{}n y 必为无穷小 (D )若1n x ?????? 收敛 ,则{}n y 必为无穷小 5、当0x x →时,()x α与()x β都是关于0x x -的m 阶无穷小,()()x x αβ+是关于0x x -的n 阶无

无穷级数单元测试题答案

第十二章 无穷级数单元测试题答案 一、判断题 1、对; 2、对; 3、错; 4、对; 5、对; 6、对; 7、对; 8、错; 9、错;10、错 二、选择题 1、A 2、A 3、D 4、C 5、D 6、C 7、C 8、B 三、填空题 1、2ln 2、 收敛 3、5 4、π33--,ππ1248+-,???????±±=--±±==,... 3,1,2 1,...4,2,0,2 1 )(k k k S ππ 四、计算题 1、判断下列级数的收敛性 (1)∑∞ =--1131 arcsin )1(n n n 解:这是一个交错级数, 1arcsin 31arcsin 13lim 13n n u n n n →∞==,所以n u 发散。 又由莱布尼茨判别法得 111arcsin arcsin 33(1) n n u u n n +=>=+ 并且1 lim lim arcsin 03n n n u n →∞→∞ ==,满足交错级数收敛条件, 故该交错级数条件收敛。

(2)∑∞ =??? ? ?+11n n n n 解:lim lim()[lim()]1011n n n n n n n n u n n →∞→∞ →∞===≠++ 不满足级数收敛的必要条件,故级数发散。 (3) )0,(,31 211>++++++b a b a b a b a Λ 解:另设级数1 () n v n a b =+ 1111111 (1)() 23n n n v n a b a b n ∞ ∞ ====+++++++∑∑ L L 上式为1 a b +与一个调和级数相乘,故发散 又11 () n n u v na b n a b = >=++, 由比较审敛法可知,原级数发散。 (4)ΛΛ++++++ n n 134232 解:lim 10n n n u →∞==≠ 不满足级数收敛的必要条件,故该级数发散 2、利用逐项求导数或逐项求积分或逐项相乘的方法,求下列级数在收敛区间上的和函数 (1) Λ++++7 537 53x x x x 解:设357 ()357 x x x f x x =++++L (补充条件1x <,或求出R ) 逐项求导,得2462 1 ()11f x x x x x '=++++=-L (这是公比21q x =<的几何级数)

高等数学练习题第二章导数与微分

高等数学练习题 第二章 导数与微分 系 专业 班 学号 第一节 导数概念 一.填空题 1.若)(0x f '存在,则x x f x x f x ?-?-→?) ()(lim 000 = )(0x f '- 2. 若)(0x f '存在,h h x f h x f h ) ()(lim 000 --+→= )(20x f ' . 000 (3)() lim x f x x f x x ?→+?-?=03()f x '. 3.设20-=')(x f , 则=--→)()2(lim )000 x f x x f x x 4 1 4.已知物体的运动规律为2 t t s +=(米),则物体在2=t 秒时的瞬时速度为5(米/秒) 5.曲线x y cos =上点( 3 π ,21)处的切线方程为03 123=- -+π y x ,法线方程为 03 22332=-+ -π y x 6.用箭头?或?表示在一点处函数极限存在、连续、可导、可微之间的关系, 可微 ? 可导 <≠ ? | 连续 <≠? 极限存在。 二、选择题 1.设0)0(=f ,且)0(f '存在,则x x f x ) (lim 0→= [ B ] (A ))(x f ' ( B) )0(f ' (C) )0(f (D) 2 1 )0(f 2. 设)(x f 在x 处可导,a ,b 为常数,则x x b x f x a x f x ??--?+→?) ()(lim 0 = [ B ] (A ))(x f ' ( B) )()(x f b a '+ (C) )()(x f b a '- (D) 2 b a +)(x f ' 3. 函数在点 x 处连续是在该点 x 处可导的条件 [ B ] (A )充分但不是必要 (B )必要但不是充分 (C )充分必要 (D )即非充分也非必要 4.设曲线22 -+=x x y 在点M 处的切线斜率为3,则点M 的坐标为 [ B ]

第十二章 无穷级数A同步测试卷

第十二章 无穷级数同步测试A 卷 一、单项选择题(每小题3分,共15分) 1.下列级数中,收敛的是( ) 2100111111 () 22223++++++++A n 2111111()23100222 ++++++++n B 211111 ()(1)()()2222+++++++n C n 2111111 ()(1)()23222++++++++++ n D n 2.设 1 ∞ =∑n n u 为数项级数,下列结论中正确的是( ) 1 ()lim ,1+→∞=k ,则级数 1 2 1 (1)∞ -=+-∑n n k n n ().

()A 发散. ()B 条件收敛. ()C 绝对收敛. ()D 收敛性与k 有关. 5. 周期为2π的函数()f x ,在一个周期上的表达式为 (0) ()2(2) πππππ≤≤?=?-≤≤?x f x x x , 设它的傅里叶级数的和函数是()S x ,则(2)π=S ( ). ()()()2()02 π ππA B C D 二、填空题(每小题4分,共20分) 6.级数 111 ( )23∞ =+∑n n n 的和为. 7. 幂级数 21 12(3) ∞ -=+-∑n n n n n x 的收敛半径为. 8. 已知级数 1 211 1 (1) 2,5∞ ∞--==-==∑∑n n n n n u u ,则级数1 ∞ ==∑n n u . 9.将1 ()2= -f x x 展开为x 的幂级数时,其收敛域为. 10.将()1(0)π=+≤≤f x x x 展开为余弦级数时,0=a . 三、解答题(共65分) 11. (8分)判断下列运算过程是否正确,若不正确,指出错误所在. 因为1 1 ln(1)(1) ∞ -=+= -∑n n n x x n ,因此取2=x 得11 2ln 3(1)∞ -==-∑n n n n . 12. (8 分)讨论级数 ∞ =n 的敛散性. 13. (8分)求级数2012! ∞ =+∑n n n n x n 的和函数. 14. (8分)将2125()65-= --x f x x x 展开为x 的幂级数. 15. (8分)求极限212lim()(1)→∞+++>n n n a a a a .

高等数学第一章测试卷

高等数学第一章测试卷(B ) 一、选择题。(每题4分,共20分) 1.假设对任意的∈x R ,都有)()()(x g x f x ≤≤?,且0)]()([lim =-∞→x x g x ?,则)(lim x f x ∞ →( ) A.存在且等于零 B.存在但不一定为零 C.一定不存在 D.不一定存在 2.设函数n n x x x f 211lim )(++=∞→,讨论函数)(x f 的间断点,其结论为( ) A.不存在间断点 B.存在间断点1=x C.存在间断点0=x D. 存在间断点1-=x 3.函数222111)(x x x x x f +--=的无穷间断点的个数为( ) A. 0 B. 1 C. 2 D. 3 4.设函数)(x f 在),(+∞-∞内单调有界,}{n x 为数列,下列命题正确的是( ) A.若}{n x 收敛,则{)(n x f }收敛 B.若}{n x 单调,则{)(n x f }收敛 C.若{)(n x f }收敛,则}{n x 收敛 D.若{)(n x f }单调,则}{n x 收敛 5.设}{},{},{n n n c b a 均为非负数列,且∞===∞ →∞→∞→n n n n n n c b a lim ,1lim ,0lim ,则( ) A. n n b a <对任意n 成立 B. n n c b <对任意n 成立 C. 极限n n n c a ∞→lim 不存在 D. 极限n n n c b ∞ →lim 不存在 二、填空题(每题4分,共20分) 6.设x x x f x f x 2)1(2)(,2-=-+?,则=)(x f ____________。 7.][x 表示取小于等于x 的最大整数,则=??????→x x x 2lim 0__________。 8.若1])1(1[lim 0=--→x x e a x x ,则实数=a ___________。 9.极限=???? ??+-∞→x x b x a x x ))((lim 2 ___________。 10.设)(x f 在0=x 处可导,b f f ='=)0(,0)0(且,若函数?????=≠+=00sin )()(x A x x x a x f x F 在0=x 处连续,则常数=A ___________。

相关主题
文本预览
相关文档 最新文档