当前位置:文档之家› 工业用涤纶长丝的结构与性能

工业用涤纶长丝的结构与性能

工业用涤纶长丝的结构与性能
工业用涤纶长丝的结构与性能

聚酰亚胺的合成方法2

聚酰亚胺的合成方法 聚酰亚胺是一类环链化合物,根据其结构和制备方法,可分成主链含有脂肪链的聚酰亚胺和主链中含有芳环链的聚酰亚胺2大类。其通式为: 聚酰亚胺由四酸二酐与二胺聚合而成,合成方法有一步法、二步法、三步法和气相沉积法。 2.1一步法 一步法是二酐和二胺在高沸点溶剂中直接聚合生成聚酰亚胺,即单体不经由聚酰胺酸而直接合成聚酰亚胺。该法的反应条件比热处理要温和得多,关键要选择合适的溶剂。为提高聚合物的相对分子质量,应尽量脱去水份。通常采用带水剂进行共沸以脱去生成的水,或用异氰酸酯替代二胺和生成的聚酰胺酸盐在高温高压下聚合。此法的控制工艺尚需完善,并正向实用化迈进。反应方程式如图1。 2.2二步法 二步法是先由二酐和二胺获得前驱体聚酰胺酸,再通过加热或化学方法,分子内脱水闭环生成聚酰亚胺。化学亚胺化法,即用脱水剂处理聚酰胺酸;化学环化后生成的聚酰亚胺中含有大量异酰亚胺,该法制得的聚酰亚胺与用加热方法制得的聚酰亚胺,物理和化学性能有差异,特别是异酰亚胺环具有较低的热稳定性和高化学反应活性;应用不同的脱水剂,环化产物中亚胺/异酰亚胺的比例不同,可认为是互变异构的高度不稳定所引起的。 二步法工艺成熟,但聚酰胺酸溶液不稳定对水汽很敏感,储存过程中常发生分解,所以又出现聚酰胺酸烷基酯法、聚酰胺酸硅烷基酯法等改进方法 聚酰亚胺的另一种前驱体聚酰胺酯,是一种相对稳定的聚合物,能以固态或溶液形式长期存放高相对分子质量的聚酰胺酯通常是由芳香二酸二酯经酰氯化后,与芳香二胺进行溶液缩聚或界面缩聚制得;聚酰胺酯受热或在有机碱的催化下发生酰亚胺化反应生成聚酰亚胺,但脱掉的小分子化

合物是醇或α-烯烃而不是水。中间体聚酰胺酯的溶解性好于聚酰胺酸,可溶于常用低沸点有机溶剂,如二氯甲烷、四氢呋喃等,并可获得高浓度溶液而且可通过改变酯基结构使聚酰胺酯性能各异,可用于制备高强高模材料,是合成聚酰亚胺的典型方法。但其酰亚胺化反应活性低,工艺复杂,制造成本高,有待优化。反应方程式如图2。 2.3三步法 三步法是经由聚异酰亚胺得到聚酰亚胺的方法。聚异酰亚胺结构稳定,作为聚酰亚胺的先母体,由于热处理时不会放出水等低分子物质,容易异构化成酰亚胺,能制得性能优良的聚酰亚胺。聚异酰亚胺是由聚酰胺酸在脱水剂作用下,脱水环化为聚异酰亚胺,然后在酸或碱等催化剂作用下异构化成聚酰亚胺,此异构化反应在高温下很容易进行。聚异酰亚胺溶解性好,玻璃化转变温度较低,加工性能优良。聚酰亚胺为不溶、不熔性材料,难于加工,通常采用先在预聚物聚酰亚胺阶段加工,但由于在高温下进行,亚胺化时闭环脱水易使制品产生气孔,导致制品的机械性能和电性能下降,难以获得理想的产品,作为聚酰亚胺预聚的聚异酰亚胺,其玻璃化温度低于对应的聚酰亚胺,热处理时不会放出水分,易异构化成聚酰亚胺,因此用聚异酰亚胺代替聚酰胺酸作为聚酰亚胺的前身材料,可制得性能优良的制品。该法较新颖,正受到广泛关注。 2.4气相沉积法 气相沉积法主要用于制备聚酰亚胺薄膜,反应是在高温下使二酸酐与二胺直接以气流的形式输送到混炼机内进行混炼,制成薄膜,这是由单体直接合成聚酰亚胺涂层的方法。

《材料结构与性能》习题

《材料结构与性能》习题 第一章 1、一 25cm长的圆杆,直径 2.5mm,承受的轴向拉力4500N。如直径拉细成 2.4mm,问: 1)设拉伸变形后,圆杆的体积维持不变,求拉伸后的长度; 2)在此拉力下的真应力和真应变; 3)在此拉力下的名义应力和名义应变。 比较以上计算结果并讨论之。 2、举一晶系,存在S14。 3、求图 1.27 所示一均一材料试样上的 A 点处的应力场和应变场。 4、一陶瓷含体积百分比为95%的 Al 2O(3 E=380GPa)和 5%的玻璃相( E=84GPa),计算上限及下限弹性模量。如该陶瓷含有5%的气孔,估算其上限及下限弹性模量。 5、画两个曲线图,分别表示出应力弛豫与时间的关系和应变弛豫和时间的 关系。并注出: t=0,t= ∞以及 t= τε(或τσ)时的纵坐标。 6、一 Al 2O3晶体圆柱(图1.28 ),直径 3mm,受轴向拉力 F ,如临界抗剪强度τ c=130MPa,求沿图中所示之一固定滑移系统时,所需之必要的拉力值。同时 计算在滑移面上的法向应力。

第二章 1、求融熔石英的结合强度,设估计的表面能为 1.75J/m 2;Si-O 的平衡原子间距为 1.6 ×10-8 cm;弹性模量值从60 到 75GPa。 2、融熔石英玻璃的性能参数为:E=73GPa;γ =1.56J/m 2;理论强度。如材料中存在最大长度为的内裂,且此内裂垂直于作用力的方向,计算由此而导致的强度折减系数。 3、证明材料断裂韧性的单边切口、三点弯曲梁法的计算公式: 与 是一回事。

4、一陶瓷三点弯曲试件,在受拉面上于跨度中间有一竖向切口如图 2.41所示。如果 E=380GPa,μ =0.24 ,求 KⅠc值,设极限载荷达50 ㎏。计算此材料的断裂表面能。 5、一钢板受有长向拉应力350 MPa,如在材料中有一垂直于拉应力方向的 中心穿透缺陷,长 8mm(=2c)。此钢材的屈服强度为 1400MPa,计算塑性区尺 寸 r 0及其与裂缝半长 c 的比值。讨论用此试件来求 KⅠc值的可能性。 6、一陶瓷零件上有以垂直于拉应力的边裂,如边裂长度为:①2mm;②0.049mm;③ 2μ m,分别求上述三种情况下的临界应力。设此材料的断裂韧性为 2 1.62 MPa〃m。讨论诸结果。 7、画出作用力与预期寿命之间的关系曲线。材料系ZTA陶瓷零件,温度在 2 ,慢裂纹扩展指数-40 ,Y 取π 。设保 900℃, KⅠc为 10MPa〃m N=40,常数 A=10 证实验应力取作用力的两倍。 8、按照本章图 2.28 所示透明氧化铝陶瓷的强度与气孔率的关系图,求出经验公式。 9、弯曲强度数据为: 782,784,866,884,884,890,915,922,922,927,942, 944,1012 以及 1023MPa。求两参数韦伯模量数和求三参数韦伯模量数。 第三章 1、计算室温( 298K)及高温( 1273K)时莫来石瓷的摩尔热容值,并请和安杜龙—伯蒂规律计算的结果比较。 2、请证明固体材料的热膨胀系数不因内含均匀分散的气孔而改变。

注塑材料特性

ABC是什么ABS树脂吧! 一、PBT:聚对苯二甲酸丁二醇酯 聚对苯二甲酸丁二醇酯,英文名polybutylece terephthalate(简称PBT),属于聚酯系列,是由丁二醇glycol)与对苯二甲酸(PTA)或者对苯二甲酸酯(DMT)聚缩合而成,并经由混炼程序制成的乳白色半透明到不透明、结晶型热塑性聚酯树脂。与PET一起统称为热塑性聚酯,或饱和聚酯。 PBT理化特性 PBT为乳白色半透明到不透明、结晶型热塑性聚酯。具有高耐热性、韧性、耐疲劳性,自润滑、低摩擦系数,耐候性、吸水率低,仅为%,在潮湿环境中仍保持各种物性(包括电性能),电绝缘性,但体积电阻、介电损耗大。耐热水、碱类、酸类、油类、但易受卤化烃侵蚀,耐水解性差,低温下可迅速结晶,成型性良好。缺点是缺口冲击强度低,成型收缩率大。故大部分采用玻璃纤维增强或无机填充改性,其拉伸强度、弯曲强度可提高一倍以上,热变形温度也大幅提高。可以在140℃下长期工作,玻纤增强后制品纵、横向收缩率不一致,易使制品发生翘曲。 PBT加工工艺 PBT又可称为热塑性聚酯塑料,为适用于不同加工业者使用,一般多少会加入添加剂,或与其它塑料掺混,随着添加物比例不同,可制造不同规格的产品。由于PBT具有耐热性、耐候性、耐药品性、电气特性佳、吸水性小、光泽良好,广泛应用于电子电器、汽车零件、机械、家用品等,而PBT产品又与PPE、PC、POM、PA等共称为五大泛用工程塑料。 PBT 结晶速度快,最适宜加工方法为注塑,其他方法还有挤出、吹塑、涂覆和各种二次加工成型,成型前需预干燥,水分含量要降至%。 PBT的注塑工艺特性与工艺参数的设定: PBT的聚合工艺成熟、成本较低,成型加工容易。未改性PBT性能不佳,实际应用要对PBT进行改性,其中,玻璃纤维增强改性牌号占PBT的70%以上。 1 PBT的工艺特性 PBT具有明显的熔点,熔点为225~235℃,是结晶型材料,结晶度可达40%。 PBT熔体的粘度受温度的影响不如剪切应力那么大,因此,在注塑中,注射压力对PBT熔体流动性影响是明显。 PBT在熔融状态下流动性好,粘度低,仅次于尼龙,在成型易发生“流延”现象。 PBT成型制品各向异性。PBT在高温下遇水易降解。 2 注塑机 选用螺杆式注塑机时。应考虑如下几点。 ①制品的用料量应控制在注塑机额定最大注射量的30%~80%。不宜用大注塑机生产小制品。 ②应选用渐变型三段螺杆,长径比为15~20,压缩比为~。 ③应选用自锁式喷嘴,并带有加热控温装置。 ④在成型阻燃级PBT时,注塑机的有关部件应经防腐处理。 3 制品与模具设计 ①制品的厚度不宜太厚,PBT对缺口很敏感,因此,制品的直角等过渡处应采用圆弧连接。 ②未改性PBT的成型收缩率较大,在%~%,模具要有一定的脱模斜度。 ③模具需要设排气孔或排气槽。

聚酰亚胺

展开 1 名 词 定 义 2 介 绍 3 概 述 4 分 类

. 1 缩聚型聚酰亚胺 4 . 2 加聚型聚酰亚胺 4 . 3 子类 5 性能 6 质量指标

合 成 途 径 8 应 用 9 展 望 1名词定义 中文名称: 聚酰亚胺 英文名称: polyimide,PI 定义: 重复单元以酰亚胺基为结构特征基团的一类聚合物。具有耐高温、耐腐蚀和优良的电性能。 应用学科: 材料科学技术(一级学科);高分子材料(二级学科);塑料(二级学科) 以上内容由全国科学技术名词审定委员会审定公布 2介绍 聚酰亚胺是综合性能最佳的有机高分子材料之一,耐高温达400℃以上,长期使用温度范围-200~300℃, 无明显熔点,高绝缘性能,103 赫下介电常数4.0,介电损耗仅0.004~0.007,属F至H级绝缘材料。

英文名:Polyimide 简称:PI 聚酰亚胺 聚酰亚胺是指主链上含有酰亚胺环(-CO-N-CO-)的一类聚合物,其中以含有酞酰亚胺结构的聚合物最为重要。聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。近来,各国都在将聚酰亚胺的研究、开发及利用列入21世纪最有希望的工程塑料之一。聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手"(protion solver),并认为"没有聚酰亚胺就不会有今天的微电子技术"。 4分类 4.1缩聚型聚酰亚胺 缩聚型芳香族聚酰亚胺是由芳香族二元胺和芳香族二酐、芳香族四羧酸或芳香族四羧酸二烷酯反应而制得的。由于缩聚型聚酰亚胺的合成反应是在诸如二甲基甲酰胺、N-甲基吡咯烷酮等高沸点质子惰性的溶剂中进行的,而聚酰亚胺复合材料通常是采用预浸料成型工艺,这些高沸点质子惰性的溶剂在预浸料制备过聚酰亚胺 程中很难挥发干净,同时在聚酰胺酸环化(亚胺化)期间亦有挥发物放出,这就容易在复合材料制品中产生孔隙,难以得到高质量、没有孔隙的复合材料。因此缩聚型聚酰亚胺已较少用作复合材料的基体树脂,主要用来制造聚酰亚胺薄膜和涂料。 4.2加聚型聚酰亚胺 由于缩聚型聚酰亚胺具有如上所述的缺点,为克服这些缺点,相继开发出了加聚型聚酰亚胺。目前获得广泛应用的主要有聚双马来酰亚胺和降冰片烯基封端聚酰亚胺。通常这些树脂都是端部带有不饱和基团的低相对分子质量聚酰亚胺,应用时再通过不饱和端基进行聚合。 ①聚双马来酰亚胺 聚双马来酰亚胺是由顺丁烯二酸酐和芳香族二胺缩聚而成的。它与聚酰亚胺相比,性能不差上下,但合成工艺简单,后加工容易,成本低,可以方便地制成各种复合材料制品。但固化物较脆。 ②降冰片烯基封端聚酰亚胺树脂 其中最重要的是由NASA Lewis研究中心发展的一类PMR(for insitu polymerization of monomer reactants, 单体反应物就地聚合)型聚酰亚胺树脂。RMR型聚酰亚胺树脂是将芳香族四羧酸的二烷基酯、芳香族二元胺和5 -降冰片烯-2,3-二羧酸的单烷基酯等单体溶解在一种尝基醇(例如甲醇或乙醇)中,为种溶液可直接用于浸渍纤维。 4.3子类 聚酰亚胺是分子结构含有酰亚胺基链节的芳杂环高分子化合物,英文名Polyimide(简称PI),可分为均苯型P I,可溶性PI,聚酰胺-酰亚胺(PAI)和聚醚亚胺(PEI)四类。

聚酰亚胺合成实验

聚酰亚胺合成实验 实验原理 聚酰亚胺是综合性能最佳的之一,耐高温达400℃以上,长期使用温度范围-200~300℃。聚酰亚胺是指主链上含有酰亚胺环的一类,其中以含有结构的聚合物最为重要。聚酰亚胺作为一种特种,已广泛应用在、、、、、、等领域。近来,各国都在将聚酰亚胺的研究、开发及利用列入 21世纪最有希望的之一。聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手"(protion solver),并认为"没有聚酰亚胺就不会有今天的微电子技术"。 缩聚型聚酰亚胺 缩聚型芳香族聚酰亚胺是由芳香族二元胺和芳香族二酐、芳香族四羧酸或芳香族四羧酸二烷酯反应而制得的。 加聚型聚酰亚胺

目前获得广泛应用的主要有聚、降冰片烯基封端聚酰亚胺及苯乙炔苯酐封端聚酰亚胺。通常这些树脂都是端部带有不饱和基团的低聚酰亚胺,应用时再通过不饱和端基进行聚合。 合成途径 聚酰亚胺主要由二酐和二胺在极性溶剂,如DMF,DMAC或NMP先进行低温缩聚,获得可溶的聚酰胺酸,成膜或纺丝后加热至300℃左右脱水成环转变为聚酰亚胺;也可以向聚酰胺酸中加入乙酐和叔胺类,进行化学脱水环化,得到聚酰亚胺溶液和粉末。二胺和二酐还可以在高沸点溶剂,如酚类溶剂中加热缩聚,一步获得聚酰亚胺。 应用 由于上述聚酰亚胺在性能和合成化学上的特点,在众多的聚合物中,很难找到如聚酰亚胺这样具有如此广泛的应用方面,而且在每一个方面都显示了极为突出的性能。 1、薄膜:是聚酰亚胺最早的商品之一,用于电机的槽绝缘及电缆绕包材料。主要产品有杜邦Kapton,宇部兴产的Upilex系列和钟渊Apical。透明的聚酰亚胺薄膜可作为柔软的太阳能电池底版。 2. 涂料:作为绝缘漆用于,或作为耐高温涂料使用。 3. :用于航天、航空器及火箭部件。是最耐高温的结构材料之一。例如的超音速客机计划所设计的速度为 2.4M,飞行时为177℃,要求使用寿命为60000h,据报道已确定50%的结构材料为以热塑型聚酰亚胺为基体树脂的碳纤维增强复合材料,每架飞机的用量约为30t。 4. 纤维:弹性模量仅次于碳纤维,作为高温介质及放射性物质的过滤材料和防弹、防火织物。 5. :用作耐高温隔热材料。 6. 工程塑料:有热固性也有热塑型,热塑型可以也可以用注射成型或传递模塑。主要用于自润滑、密封、绝缘及结构材料。广成聚酰亚胺材料已开始应用在压缩机旋片、活塞环及特种泵密封等机械部件上。 7. :用作高温结构胶。广成聚酰亚胺胶粘剂作为电子元件高绝缘灌封料已生产。 8.分离膜:用于各种气体对,如氢/氮、氮/氧、二氧化碳/氮或甲烷等的分离,从空气烃类原料气及中脱除水分。也可作为渗透蒸发膜及。由于聚酰亚胺耐热和耐有机溶剂性能,在对有机气体和液体的分离上具有特别重要的意义。 9. :有负性胶和正性胶,分辨率可达亚微米级。与颜料或染料配合可用于彩色滤光膜,可大大简化加工工序。 10. 在微电子器件中的应用:用作介电层进行层间绝缘,作为缓冲层可以减少应力、提高成品率。作为保护层可以减少环境对器件的影响,还

常用塑胶材料特性大全世界通用版

常用塑胶材料特性 一、丙烯腈-丁二烯-苯乙烯(ABS)(乳白色半透明) 优点: 1.力学性能和热性能均好,乳白色半透明,硬度高,表面易镀金属 2.耐疲劳和抗应力开裂、冲击强度高 3.耐酸碱等化学性腐蚀 4.加工成型、修饰容易 缺点: 1.耐候性差 2.耐热性不够理想, 3.拉伸率底 主要应用范围:机器盖、罩,仪表壳、手电钻壳、风扇叶轮,收音机、电话和电视机等壳体,部分电器零件、汽车零件、机械及常规武器的零部件 改性的ABS共聚物: 将ABS加入PVC中,可提高其冲击韧性、耐燃性、抗老化和抗寒能力,并改善其加工性能; 将ABS与PC共混,可提高抗冲击强度和耐热性;以甲基丙烯酸甲酯替代ABS中丙烯腈组分,可制得MBS塑料,即通常所说的透明ABS。 ABS/NYLON 耐热及抗化学性、流动性佳、低温冲击性、低成本 主要用于汽车车身护板、引擎室零组件、连接器、动力工具外壳 ABS/PVC PVC增加防火性、降低成本ABS提供耐冲击性 主要用于家电用品零组件、事务机器零组件 ABS/PC 增加ABS耐热尺寸安定性、改善PC低温、后壁耐冲性、降低成本 主要用于打字机外壳、文字处理器、计算机设备之外壳、医疗设备零组件、小家电零组件、电子

器材零组件、汽车头灯框、尾灯外罩、食物餐盘 ABS/SMA 增加耐热性、流动性、涂装性佳 主要用于电子零组件、罩子、家电器材零组件 模具设计 1.排气 为防止在充模时出现排气不良、灼伤、熔接缝等缺陷,要求开设深度不大于0.04mm 的排气槽。 壁厚 0.8 mm至3.2 mm之间,典型的壁厚约在2.5mm左右,3.8以上需要结构性发泡。圆角 最小在厚度的25%,最适当半径在厚度的60%。 收缩率:0.4%-0.7%一般取0.5% 加强筋:高<3T 宽度0.5T 筋间距>2T 脱模角:0.5°-1.5° 支柱加强筋高度4T,可达支柱高度的90%,宽度0.5T,长度2T, 支柱:外经是内径2倍 具体公司和型号: 日本油墨化学工业公司 ABS\MBS TI-500A 透明级价格较高,主要用于要求流动性好、小而透明、性能和ABS一样的零件台达化学工业股份有限公司 ABS 8540T 阻燃级,耐冲击强度、射出成型用、高流动性、难燃性可达UL94 1/16“V-0 主要用于商用机器、信息产品、肉薄或形状复杂产品。 余姚四塑阻燃塑料厂

聚酰亚胺的结构与性能分析及运用

聚酰亚胺的结构与性能分析及运用 李名敏051002109 摘要:聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。近来,各国都在将聚酰亚胺的研究、开发及利用列入 21世纪最有希望的工程塑料之一。聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认 识。本文介绍了其基本结构与性能及应用。 关键词:聚酰亚胺;工程塑料;聚合物;结构与性能;应用;结晶度;共轭效应; 分子量 1 引言 聚酰亚胺是分子结构含有酰亚胺基链节的芳杂环高分子化合物,英文名Polyimide(简称PI) ,是目前工程塑料中耐热性最好的品种之一。PI作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。近来,各国都在将PI的研究、开发及利用列入21世纪最有希望的工程塑料之一。聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手",并认为"没有聚酰亚胺就不会有今天的微电子技术"[1]。 2 聚酰亚胺的基本结构 聚酰亚胺是指主链上含有酰亚胺环的一类聚合物。均苯型聚酰亚胺是以均苯四甲酸二酐与二胺基二苯醚采用非均相悬浮缩聚法,首先合成出聚酰胺酸(PA酸)再经加热脱水、环化(亚胺化)反应,即得到聚酰亚胺[3]。其亚胺化化学反应式通常为: 在主链重复结构单元中含酰亚胺基团,芳环中的碳和氧以双键相连,芳杂环产生共轭效应,

这些都增强了主键键能和分子间作用力。 3 聚酰亚胺的基本结构与性能的关系 3.1热性能 主链键能大,不易断裂分解。耐低温性好,很低的热膨胀系数。聚酰亚胺大量用于薄膜,突出特点是耐热性好。在250℃下,可连续使用70000h以上。在200℃时拉伸强度达98MPa(1000Kgf/cm2)以上;在300℃经1500h的热老化后,其拉伸强度仍可保持在初始值的2/3以上[5]。分子间距离主要决定于分子的三维堆积密度,分子越规整、对称性越强(越有利于结晶),分子堆积密度就越高,分子间距离就越小。对于同种类的分子,结晶的晶相密度总是高于非晶相密度,这就是结晶有利于耐热性提高的原因。分子主链上引入芳香基团,链刚性增大,使无规热运动链段增大,需要更高的温度链段才能运动(这也是对称的硬链段优先结晶的原因),这就是芳香基团的引入有利于耐热性提高的原因。总之分子间作用力越强、分子间距离越小,分子链刚性越大,所需平衡的无规热运动程度(温度)就越高,耐热性就越好[2]。依此推论,耐热性好的材料,应为分子主链是全芳香(大刚性)、分子间作用力强、分子主链无任何取代基(高对称)的材料,而聚酰亚胺这些条件都符合,所以其具有良好的耐热性。 3.2力学性能 拉伸、弯曲、压缩强度较高;突出的抗蠕变性,尺寸稳定性。聚酰亚胺具有很好的机械性能。作为工程塑料,其弹性模量仅次于碳纤维。纤维增强的PI 塑料的强度[8]、模量能得到进一步提高。聚酰亚胺具有优良的耐磨减摩性,其机械性能随温度波动的变化小,高温下蠕变小,其蠕变速度甚至比铝还小,主要原因是聚酰亚胺分子链中含有大量的芳杂环的共轭效应。 3.3电性能 优良的电绝缘性能。偶极损耗小,耐电弧晕性突出,介电强度高,随频率变化小[7]。聚酰亚胺的大分子中虽然含有相当数量的极性基(如羰基和醚基),但其电绝缘性优良,原因是羰基纳入五元环,醚键与相邻基团形成共扼体系。使其极性受到限制,同时由于大分子的刚性和较高的玻璃化温度,因此在较宽的温度范围内偶极损耗小,电性能十分优良。同时,聚酰哑胺还具有优异的耐电晕性能。这些性能在宽广的温度范围和频率范围内仍能保持较高的水平。 3.4耐化学药品性

橡胶的基本结构与性能

橡胶的基本结构与性能 橡胶的分子特征---构成橡胶弹性体的分子结构有下列特点: ①其分子由重复单元(链节)构成的长链分子。分子链柔软其链段有高度的活动性,玻璃化转变温度(Tg)低于室温; ②其分子间的吸引力(范德华力)较小,在常态(无应力)下是非晶态,分子彼此间易于相对运动; ③其分子之间有一些部位可以通过化学交联或由物理缠结相连接,形成三维网状分子结构,以限制整个大分子链的大幅度的活动性。 从微观上看,组成橡胶的长链分子的原子和链段由于热振动而处于不断运动中,使整个分子呈现极不规则的无规线团形状,分子两末端距离大大小于伸直的长度。一块未拉伸的橡胶象是一团卷曲的线状分子的缠结物。橡胶在不受外力作用时,未变形状态熵值最大。当橡胶受拉伸时,其分子在拉伸方向上以不同程度排列成行。为保持此定向排列需对其作功,因此橡胶是抵制受伸张的。当外力除去时,橡胶将收缩回到熵值最大的状态。故橡胶的弹性主要是源于体系中熵的变化的“熵弹性”。 橡胶的应力-应变性质 应力-应变曲线是一种伸长结晶橡胶的典型曲线,其主要组分是由于体系变得有序而引起的熵变。随着分子被渐渐拉直,使得分子链上支链的隔离作用消失,分子间吸引力变得显著起来,从而有助于抵抗进一步的变形,所以橡胶在被充分拉伸时会呈现较的高抗张强度. 橡胶在恒应变下的应力是温度的函数。随温度的升高橡胶的应力将成比例地增大。 橡胶的应力对温度的这种依赖称为焦耳效应,它可以说明金属弹性和橡胶弹性间的根本差别。在金属中,每个原子都被原子间力保持在严格的晶格中,使金属变形所做的功是用来改变原子间的距离,引起内能的变化。因而其弹性称为“能弹性”。其弹性变形的范围比橡胶中主要由于体系中熵的变化而产生的“熵弹性”的变化范围要小得多。 在一般的使用范围内,橡胶的应力-应变曲线是非线性的,因此橡胶的弹性行为不能简单地以杨氏模量来确定。 橡胶的变形与温度、变形速度和时间的关系 橡胶分子的变形运动不可能在瞬时完成,因为分子间的吸引力必须由原子的振动能来克服,如果温度降低时,这些振动变得较不活泼,不能使分子间吸引力迅速

《材料结构与性能》习题复习课程

《材料结构与性能》 习题

《材料结构与性能》习题 第一章 1、一25cm长的圆杆,直径2.5mm,承受的轴向拉力4500N。如直径拉细成2.4mm,问: 1)设拉伸变形后,圆杆的体积维持不变,求拉伸后的长度; 2)在此拉力下的真应力和真应变; 3)在此拉力下的名义应力和名义应变。 比较以上计算结果并讨论之。 2、举一晶系,存在S14。 3、求图1.27所示一均一材料试样上的A点处的应力场和应变场。 4、一陶瓷含体积百分比为95%的Al2O3(E=380GPa)和5%的玻璃相(E=84GPa),计算上限及下限弹性模量。如该陶瓷含有5%的气孔,估算其上限及下限弹性模量。 5、画两个曲线图,分别表示出应力弛豫与时间的关系和应变弛豫和时间的关系。并注出:t=0,t=∞以及t=τε(或τσ)时的纵坐标。

6、一Al2O3晶体圆柱(图1.28),直径3mm,受轴向拉力F ,如临界抗剪强度τc=130MPa,求沿图中所示之一固定滑移系统时,所需之必要的拉力值。同时计算在滑移面上的法向应力。 第二章

1、求融熔石英的结合强度,设估计的表面能为1.75J/m2;Si-O的平衡原子间距为1.6×10-8cm;弹性模量值从60到75GPa。 2、融熔石英玻璃的性能参数为:E=73GPa;γ=1.56J/m2;理论强度。如材料中存在最大长度为的内裂,且此内裂垂直于作用力的方向,计算由此而导致的强度折减系数。 3、证明材料断裂韧性的单边切口、三点弯曲梁法的计算公式: 与 是一回事。 4、一陶瓷三点弯曲试件,在受拉面上于跨度中间有一竖向切口如图2.41所示。如果E=380GPa,μ=0.24,求KⅠc值,设极限载荷达50㎏。计算此材料的断裂表面能。 5、一钢板受有长向拉应力350 MPa,如在材料中有一垂直于拉应力方向的中心穿透缺陷,长8mm(=2c)。此钢材的屈服强度为1400MPa,计算塑性区尺寸r0及其与裂缝半长c的比值。讨论用此试件来求KⅠc值的可能性。

材料结构与性能(珍藏版)

材料结构与性能(珍藏版) 一、何为金属键?金属的性能与金属键有何关系? 二、试说明金属结晶时,为什么会产生过冷? 三、结合相关工艺或技术说明快速凝固的组织结构特点。 四、画出铁碳合金相图,并指出有几个基本的相和组织?说明它们的结构和 性能特点。 五、说明珠光体和马氏体的形成条件、组织形态特征和性能特点。 六、试分析材料导热机理。金属、陶瓷和玻璃导热机制有何区别?将铬、 银、Ni-Cr合金、石英、铁等物质按热导率大小排序,并说明理由。 七、从结构上解释,为什么含碱土金属的玻璃适用于介电绝缘? 八、列举一些典型的非线性光学材料,并说明其优缺点。 九、什么是超疏水、超亲水?超疏水薄膜对结构与表面能有什么要求? 十、导致铁磁性和亚铁磁性物质的离子结构有什么特征? 答案自测 特别重要的名词解释 原子半径:按照量子力学的观点,电子在核外运动没有固定的轨道,只是概率分布不同,因此对原子来说不存在固定的半径。根据原子间作用力的不同,原子半径一般可分为三种:共价半径、金属半径和范德瓦尔斯半径。通常把统和双原子分子中相邻两原子的核间距的一半,即共价键键长的一半,称作该原子的共价半径(r c);金属单质晶体中相邻原子核间距的一半称为金属半径 (r M);范德瓦尔斯半径(r V)是晶体中靠范德瓦尔斯力吸引的两相邻原子核间距的一半,如稀有气体。

电负性:Parr等人精确理论定义电负性为化学势的负值,是体系外势场不变的条件下电子的总能量对总电子数的变化率。 相变增韧:相变增韧是由含ZrO2的陶瓷通过应力诱发四方相(t相)向单斜相(m相)转变而引起的韧性增加。当裂纹受到外力作用而扩展时,裂纹尖端形成的较大应力场将会诱发其周围亚稳t-ZrO2向稳定m-ZrO2转变,这种转变为马氏体转变,将产生近4%的体积膨胀和1%-7%的剪切应变,对裂纹周围的基体产生压应力,阻碍裂纹扩展。而且相变过程中也消耗能量,抑制裂纹扩展,提高材料断裂韧性。 Suzuki气团:晶体中的扩展位错为保持热平衡,其层错区与溶质原子间将产生相互作用,该作用被成为化学交互作用,作用的结果使溶质原子富集于层错区内,造成层错区内的溶质原子浓度与在基体中的浓度存在差别。这种不均匀分布的溶质原子具有阻碍位错运动的作用,也成为Suzuki气团。

3一分钟读懂聚酰亚胺PI材料结构与性能

通常所说的聚酰亚胺材料是分子结构含有酰亚胺基链节的芳杂环高分子化合物,英文名Polyimide(简称PI),是目前工程塑料中耐热性最好的品种之一。 聚酰亚胺结构与性能的关系如下图所示: 聚酰亚胺主要性质如下: 1、全芳香聚酰亚胺按热重分析,其开始分解温度一般都在500℃左右。由联苯二酐和对苯二胺合成的聚酰亚胺,热分解温度达到600℃,是迄今聚合物中热稳定性最高的品种之一。

2、聚酰亚胺可耐极低温,如在-269℃的液态氦中不会脆裂。 3、聚酰亚胺具有优良的机械性能,未填充的塑料的抗张强度都在100MPa以上,均苯型聚酰亚胺的薄膜(Kapton)为170MPa以上,而联苯型聚酰亚胺(Upilex S)达到400MPa。作为工程塑料,弹性膜量通常为3-4GPa,纤维可达到 200Gpa,据理论计算,均苯二酐和对苯二胺合成的纤维可达500GPa,仅次于碳纤维。 4、聚酰亚胺的热膨胀系数在2×10-5-3×10-5,广成热塑性聚酰亚胺3×10-5,联苯型可达10-6℃,个别品种可达10-7。 5、一些聚酰亚胺品种不溶于有机溶剂,对稀酸稳定,一般的品种不大耐水解,这个看似缺点的性能却使聚酰亚胺有别于其他高性能聚合物的一个很大的特点,即可以利用碱性水解回收原料二酐和二胺,例如对于Kapton薄膜,其回收率可达80%-90%。改变结构也可以得到相当耐水解的品种,如经得起120℃,500小时水煮。 6、聚酰亚胺具有很高的耐辐照性能,其薄膜在5×109rad 快电子辐照后强度保持率为90%。

7、聚酰亚胺具有良好的介电性能,介电常数为3.4左右,引入氟,或将空气纳米尺寸分散在聚酰亚胺中,介电常数可以降到2.5左右。介电损耗为10-3,介电强度为 100-300KV/mm,广成热塑性聚酰亚胺为300KV/mm,体积电阻为1017Ω/cm。这些性能在宽广的温度范围和频率范围内仍能保持在较高的水平。 8、聚酰亚胺是自熄性聚合物,发烟率低。 9、聚酰亚胺在极高的真空下放气量很少。 10、聚酰亚胺无毒,可用来制造餐具和医用器具,并经得起数千次消毒。有一些聚酰亚胺还具有很好的生物相容性,例如,在血液相容性实验为非溶血性,体外细胞毒性实验为无毒。 聚酰亚胺PI性质小结: 1、力学性能:拉伸、弯曲、压缩强度较高,突出的抗蠕变性和尺寸稳定性。 2、热性能:主链键能大、不易断裂分解、耐高温、耐低温、低热膨胀系数。

常用橡胶性能一览表

常用橡胶性能一览表

由于具有优异的耐老化性能耐冲击性也较好,所以常用做胎侧。 EPDM三元乙丙胶三元乙丙橡胶是一种在乙烯和丙烯共聚物中引入了第三单体的高分子聚合物,产品性能及优点:超高分子量,高乙烯含量,可高度填充填充剂和油,易碎的性能缩短了混炼的时间. 分子结构和特性 三元乙丙是乙烯、丙烯和非共轭二烯烃的三元共聚物。二烯烃具有特殊的结构,只有两键之一的才能共聚,不饱和的双键主要是作为交链处。另一个不饱和的不会成为聚合物主链,只会成为边侧链。三元乙丙的主要聚合物链是完全饱和的。这个特性使得三元乙丙可以抵抗热,光,氧气,尤其是臭氧。三元乙丙本质上是无极性的,对极性溶液和化学物具有抗性,吸水率低,具有良好的绝缘特性。

在三元乙丙生产过程中,通过改变三单体的数量,乙烯丙烯比,分子量及其分布以及硫化的方法可以调整其特性。 热塑性弹性体 (TPE) 高刚性耐高温且保有低温的弯曲性,优异的耐化学品性,应用于管材、静音齿轮、电线被覆、发卷、自动收缩管线. TPE热塑性弹性体特性: 1、材料有半透、高透明、白色、黑色供选择。 2、已通过ROHS、PAHs、FDA测试,等级测试。 3、材料环保无卤无毒无味,不含塑胶软化剂、磷苯二甲酸盐、重金属等化合物。 4、良好的减震性和防滑耐磨。 5、良好的抗紫外线及耐化学药品性。 6、广阔的硬度范围选择(邵氏0度-110度)。可根据需求任意调整。 7、在—60度至135度的长期使用温度 8、压缩变形及永久变形小 9、卓越的抗动态疲劳性能 10、极优的耐臭氧及耐候性能 11、亮面、雾面均可,光滑的外观和舒适的橡胶柔软质感。 12、材料不含水分,无须干燥可直接使用,节约能源。 13、易于加工,着色。水口料即边角料可百分百回收再利用,降低产品,且不影响产品物性。 14、它可以通过二次注塑成型,与PP、PE、PS、ABS、PC、PA等基体材料包覆粘合,也可单独成形。替代软质PVC部分硅橡胶。 TPE/TPR 之应用领 域运动器材: 手把类(高尔夫球、各种球拍、脚踏车、滑雪器材、滑水器材等), 潜水器材(蛙鞋、蛙镜、呼吸管、手电筒等)、刹车块、运动护垫。日常用品:

《材料结构与性能》课程论文

《材料结构与性能》课程论文 刚玉-尖晶石浇注料微结构参数控制及其强度、热震稳定性和抗渣性能研究 学生姓名:周文英 学生学号:201502703043 撰写日期:2015年11月

摘要 本文通过使用环境对耐火材料的要求,耐火材料与结构参数的分析,耐火材 料结构控制措施进展分析等方面总结了耐火材料的使用现状,并提出了下一步耐 火材料的改进措施。分别是:在基质中加入一定量的硅微粉,改变液相的粘度, 提高抗渣性;控制铝镁浇注料基质的粒径分布,使大颗粒含量一定保证其高温强度;使用球形轻骨料代替原来的致密骨料,提高气孔率,降低体积密度,提高能 源利用率,降低能耗。 关键词:铝镁浇注料;高温强度;抗渣性;热震稳定性 Abstract Requirements of the apply for fire resistance, analysis of refractory materials and structure parameters, current application and the promotion about the refractory are introduced in this paper. It included that: add some sillicon power into matrix in order to improve the viscosity of the liquid for abtaining better slag resistance; control the distribution of the particle in the matrix to ensure the high temperature strength; use spherical light aggregate instead of the original density aggregate to improve porosity and the rate of energy. Keywords:Alumina-Magnesia castable; high temperature strength; slag resistance; themal shock resistance.

山大复合材料结构与性能复习题参考答案.doc

1、简述构成复合材料的元素及其作用 复合材料由两种以上组分以及他们之间的界面组成。即构成复合材料的元素包括基体相、增强相、界面相。 基体相作用:具有支撑和保护增强相的作用。在复合材料受外加载荷时,基体相一剪切变形的方式起向增强相分配和传递载荷的作用,提高塑性变 形能力。 增强和作用:能够强化基体和的材料称为增强体,增强体在复合材料中是分散相, 在复合材料承受外加载荷时增强相主要起到承载载荷的作用。 界面相作用:界面相是使基体相和增强相彼此相连的过渡层。界面相具有一定厚度,在化学成分和力学性质上与基体相和增强相有明显区别。在复 合材料受外加载荷时能够起到传递载荷的作用。 2、简述复合材料的基本特点 (1)复合材料的性能具有可设计性 材料性能的可设计性是指通过改变材料的组分、结构、工艺方法和工艺参数来调节材料的性能。显然,复合材料中包含了诸多影响最终性能、可调节的因素,赋予了复合材料的性能可设计性以极大的自由度。 ⑵ 材料与构件制造的一致性 制造复合材料与制造构件往往是同步的,即复合材料与复合材料构架同时成型,在采用某种方法把增强体掺入基体成型复合材料的同时?,通常也就形成了复合材料的构件。 (3)叠加效应 叠加效应指的是依靠增强体与基体性能的登加,使复合材料获得一?种新的、独特而又优于个单元组分的性能,以实现预期的性能指标。 (4)复合材料的不足 复合材料的增强体和基体可供选择地范围有限;制备工艺复杂,性能存在波动、离散性;复合材料制品成本较高。

3、说明增强体在结构复合材料中的作用能够强化基体的材料称为增强体。增强体在复合材料中是分散相。复合材料中的增强体,按几何形状可分为颗 粒状、纤维状、薄片状和由纤维编制的三维立体结构。喑属性可分为有机增强体 和无机增强体。复合材料中最主要的增强体是纤维状的。对于结构复合材料,纤 维的主要作用是承载,纤维承受载荷的比例远大于基体;对于多功能复合材料, 纤维的主要作用是吸波、隐身、防热、耐磨、耐腐蚀和抗震等其中一种或多种, 同时为材料提供基本的结构性能;对于结构陶瓷复合材料,纤维的主要作用是增 加韧性。 4、说明纤维增强复合材料为何有最小纤维含量和最大纤维含量 在复合材料中,纤维体积含量是一个很重要的参数。纤维强度高,基体韧性好,若加入少量纤维,不仅起不到强化作用反而弱化,因为纤维在基体内相当于裂纹。所以存在最小纤维含量,即临界纤维含量。若纤维含量小于临界纤维量,则在受外载荷作用时,纤维首先断裂,同时基体会承受载荷,产生较大变形,是否断裂取决于基体强度。纤维量增加,强度下降。当纤维量大于临界纤维量时,纤维主要承受载荷。纤维量增加强度增加。总之,含量过低,不能充分发挥复合材料中增强材料的作用;含量过高,由于纤维和基体间不能形成一定厚度的界面过渡层, 无法承担基体对纤维的力传递,也不利于复合材料抗拉强度的提高。 5、如何设才计复合材料 材料设计是指根据对?材料性能的要求而进行的材料获得方法与工程途径的规划。复合材料设计是通过改变原材料体系、比例、配置和复合工艺类型及参数,来改变复合材料的性能,特别是是器有各向异性,从而适应在不同位置、不同方位和不同环境条件下的使用要求。复合材料的可设计性赋予了结构设计者更大的自由度,从而有可能设计出能够充分发掘与应用材料潜力的优化结构。复合材料制品的设计与研制步骤可以归纳如下: 1)通过论证明确对于材料的使用性能要求,确定设计目标 2)选择材料体系(增强体、基体) 3)确定组分比例、几何形态及增强体的配置 4)确定制备工艺方法及工艺参数

材料结构和性能解答(全)

1、离子键及其形成的离子晶体陶瓷材料的特征。 答:当一个原子放出最外层的一个或几个电子成为正离子,而另一个原子接受这些电子而成为负离子,结果正负离子由于库仑力的作用而相互靠近。靠近到一定程度时两闭合壳层的电子云因发生重叠而产生斥力。这种斥力与吸引力达到平衡的时候就形成了离子键。此时原子的电中性得到维持,每一个原子都达到稳定的满壳层的电子结构,其总能量达到最低,系统处于最稳定状态。因此,离子键是由正负离子间的库仑引力构成。由离子键构成的晶体称为离子晶体。离子晶体一般由电离能较小的金属原子和电子亲和力较大的非金属原子构成。离子晶体的结构与特性由离子尺寸、离子间堆积方式、配位数及离子的极化等因素有关。 离子键、离子晶体及由具有离子键结构的陶瓷的特性有: A、离子晶体具有较高的配位数,在离子尺寸因素合适的条件下可形成最密排的结构; B、离子键没有方向性 C、离子键结合强度随电荷的增加而增大,且熔点升高,离子键型陶瓷高强度、高硬度、高熔点; D、离子晶体中很难产生自由运动的电子,低温下的电导率低,绝缘性能优良; E、在熔融状态或液态,阳离子、阴离子在电场的作用下可以运动,故高温下具有良好的离子导电性。 F、吸收红外波、透过可见波长的光,即可制得透明陶瓷。 2、共价键及其形成的陶瓷材料具有的特征。 答:当两个或多个原子共享其公有电子,各自达到稳定的、满壳层的状态时就形成共价键。由于共价电子的共享,原子形成共价键的数目就受到了电子结构的限制,因此共价键具有饱和性。由于共价键的方向性,使共价晶体不密堆排列。这对陶瓷的性能有很大影响,特别是密度和热膨胀性,典型的共价键陶瓷的热膨胀系数相当低,由于个别原子的热膨胀量被结构中的自由空间消化掉了。 共价键及共价晶体具有以下特点: A、共价键具有高的方向性和饱和性; B、共价键为非密排结构; C、典型的共价键晶体具有高强度、高硬度、高熔点的特性。 D、具有较低的热膨胀系数; E、共价键由具有相似电负性的原子所形成。 3、层状结构材料的各向异性。 答:层状结构中范德华力起着重要的作用,陶瓷的层状结构间有较强的若键存在使得层与层之间连接在一起。蒙脱石和石墨的结构层内键合类型不同于层间键合类型,因此材料显示出较高的各向异性。所有的这些层状结构的层与层之间很容易滑移,粘土矿物中的这种层状结构使它在有水的情况下容易发生塑性变形。 4、影响陶瓷材料密度的因素。 答:密度是指单位体积的质量,陶瓷材料的密度有四种表示方式,分别是:结晶学密度、理论密度、体积密度、相对密度。前三种在制作过程中没有形成气孔,在结构内的原子间只有间隙。陶瓷材料的密度主要取决于元素的尺寸,元素的质量和结构堆积的紧密程度。相对原子质量大的元素构成的陶瓷材料显示出较高的密度,如碳化钨、氧化铪等。金属键合和离子键合陶瓷中的原子形成紧密堆积,会使其密度比共价键键合陶瓷(较开放的结构)的密度更奥一些,如锆石英。 5、硬度所反映的材料的能力;静载荷压入法测定硬度的原理。

聚酰亚胺

聚酰亚胺( PI) 聚酰亚胺是综合性能最佳的有机高分子材料之一,耐高温达 400℃以上,长期使用温度范围-200~300℃,无明显熔点,高绝缘性能,103 赫下介电常数,介电损耗仅~,属F至H级绝缘材料。 聚酰亚胺是指主链上含有酰亚胺环(-CO-NH-CO-)的一类聚合物,其中以含有酞酰亚胺结构的聚合物最为重要。 性能: 1.外观淡黄色粉末 2.弯曲强度(20℃) ≥170MPa 3.密度~cm3 4.冲击强度(无缺口) ≥28kJ/m2 5.拉伸强度≥100 MPa 6.维卡软化点 >270℃ 7.吸水性(25℃,24h) 8.伸长率 >120% 钛酸钡 分子式:BaTiO3 分子量:性状白色粉末熔点1625℃相对密度溶解性:溶于浓硫酸、盐酸及氢氟酸,不溶于热的稀硝酸、水和碱。熔点:1625℃ 钛酸钡是一致性熔融化合物,其熔点为1618℃。在此温度以下,1460℃以上结晶出来的钛酸钡属于非铁电的6/mmm。此时,六方晶系是稳定的。在1460~130℃之间钛酸钡转变为立方钙钛矿型结构。在此结构中Ti4+(钛)居于O2-(氧离子)构成的氧中央,Ba2+(钡

离子)则处于八个氧八面体围成的空隙中(见右图)。此时的钛酸钡晶体结构对称性极高,因此无偶极矩产生,晶体无,也无。 随着温度下降,晶体的对称性下降。当温度下降到130℃时,钛酸钡发生顺电-铁电相变。在130~5℃的温区内,钛酸钡为四方晶系4mm,具有显着地铁电性,其沿c轴方向,即[001]方向。钛酸钡从转变为四方晶系时,结构变化较小。从来看,只是沿原的一轴(c 轴)拉长,而沿另两轴缩短。 当温度下降到5℃以下,在5~-90℃温区内,转变成mm2点群,此时晶体仍具有,其自发极化强度沿原立 方的面对角线[011]方向。为了方便起 见,通常采用的参数来描述的。这样处理 的好处是使我们很容易地从中看出的情 况。钛酸钡从转变为正交晶系,其结构变 化也不大。从来看,相当于原的一根面对 角线伸长了,另一根面对角线缩短了,c轴不变。 当温度继续下降到-90℃以下时,晶体由转变为三方晶系3m,此时晶体仍具有铁电性,其自发极化强度方向与原立方晶胞的[111]方向平行。钛酸钡从转变成三方晶系,其结构变化也不大。从晶胞来看,相当于原立方晶胞的一根伸长了,另一根体对角线缩短了。

相关主题
文本预览
相关文档 最新文档