当前位置:文档之家› 第五章 相图作业答案

第五章 相图作业答案

第五章 相图作业答案
第五章 相图作业答案

第五章 三元合金相图(习题)

第五章 三元合金相图 1 根据Fe -C -Si 的3.5%Si 变温截面图(5-1),写出含0.8%C 的Fe-C-Si 三元合金在平衡冷却时的相变过程和1100℃时的平衡组织。 图5-1 2 图5-2为Cu-Zn-Al 合金室温下的等温截面和2%Al 的垂直截面图,回答下列问题: 1) 在图中标出X 合金(Cu-30%Zn-10%Al )的成分点。 2) 计算Cu-20%Zn-8%Al 和 Cu-25%Zn-6%Al 合金中室温下各相的百分含量,其中α相成分点为Cu-22.5%Zn-3.45%Al ,γ相成分点为 Cu-18%Zn-11.5%Al 。 3) 分析图中Y 合金的凝固过程。 Y

% 图5-2 3 如图5-3是A-B-C 三元系合金凝固时各相区,界面的投影图,A 、B 、C 分别形成固溶体α、β、γ。 1) 写出P p '',P E '1和P E '2单变量线的三相平衡反应式。 2) 写出图中的四相平衡反应式。 3) 说明O 合金凝固平衡凝固所发生的相变。

图5-3 图5-4 4 图5-4为Fe-W-C三元系的液相面投影图。写出e1→1085℃,P1→1335℃,P2→1380℃单变量线的三相平衡反应和1700℃,1200℃,1085℃的四相平衡反应式。I,II,III三个合金结晶过程及室温组织,选择一个合金成分其组织只有三元共晶。 5 如图5-5为Fe-Cr-C系含13%Cr的变温截面 1)大致估计2Cr13不锈钢的淬火加热温度(不锈钢含碳量0.2%, 含Cr量13%) 2)指出Cr13模具钢平衡凝固时的凝固过程和室温下的平衡组织(Cr13钢含碳量2%)3)写出(1)区的三相反应及795 时的四相平衡反应式。 图5-5 图5-6 6 如图5-6所示,固态有限溶解的三元共晶相图的浓度三角形上的投影图,试分析IV区及VI区中合金之凝固过程。写出这个三元相图中四相反应式。

三元相图的绘制(氯仿、盐酸、水)

基 础 化 学 实 验 实验 三相图的绘制——O H HCl CHCl 23--体系

三元相图的绘制 本实验是综合性实验。其综合性体现在以下几个方面: 1.实验内容以及相关知识的综合 本实验涉及到多个基本概念,例如相律、相图、溶解度曲线、连接线、等边三角形坐标等,尤其是在一般的实验中(比如分析化学实验、无机化学实验等)作图都是用的直角坐标体系,几乎没有用过三角坐标体系,因此该实验中的等边三角形作图法就具有独特的作用。这类相图的绘制不仅在相平衡的理论课中有重要意义,而且对化学实验室和化工厂中经常用到的萃取分离中具有重要的指导作用。 2.运用实验方法和操作的综合 本实验中涉及到多种基本实验操作和实验仪器(如电子天平、滴定管等)的使用。本实验中滴定终点的判断,不同于分析化学中的大多数滴定。本实验的滴定终点,是在本来可以互溶的澄清透明的单相液体体系中逐渐滴加试剂,使其互溶度逐渐减小而变成两相,即“由清变浑”来判断终点。准确地掌握滴定的终点,有助于学生掌握多种操作,例如取样的准确、滴定的准确、终点的判断准确等。 一.实验目的 1. 掌握相律,掌握用三角形坐标表示三组分体系相图。 2. 掌握用溶解度法绘制三组分相图的基本原理和实验方法。 二.实验原理 三组分体系K = 3,根据相律: f = K–φ+2 = 5–ф 式中ф为相数。恒定温度和压力时: f = 3–φ 当:φ= 1 则: f = 2 因此,恒温恒压下可以用平面图形来表示体系的状态与组成之间的关系,称为三元相图。一般用等边三角形的方法表示三元相图。 对共轭溶液的三组分体系,即三组分中二对液体AB及AC完全互溶,而另一对BC则不溶或部分互溶的相图,如图5-1所示。图中EK1K2K3DL3L2L1F是互溶度曲线;K1L1,K2L2是连结线。互溶度曲线下面是两相区,上面是一相区。 共轭溶液的三元相图(A:醋酸;B:水;C:氯仿) 三.实验准备

三组分体系相图绘制.doc

实验八三组分体系等温相图的绘制 一、目的要求 1. 熟悉相律,掌握用三角形坐标表示三组分体系相图。 2. 掌握用溶解度法绘制相图的基本原理。 二、实验原理 对于三组分体系,当处于恒温恒压条件时,根据相律,其自由度f*为:f*=3-Φ式中,Φ为体系的相数。体系最大条件自由度f*max=3-1=2,因此,浓度变量最多只有两个,可用平面图表示体系状态和组成间的关系,通常是用等边三角形坐标表示,称之为三元相图。如图2-8-1所示。 等边三角形的三个顶点分别表示纯物A、B、C,三条边AB、BC、CA 分别表示A和B、B和C、C和A所组成的二组分体系的组成,三角形内任何一点都表示三组分体系的组成。图2-8-1中, P点的组成表示如下:经P点作平行于三角形三边的直线,并交三边于a、b、c三点。若将三边均分成100等份,则P点的A、B、C组成分别为:A%=Pa=Cb,B%=Pb=Ac,C%=Pc=Ba。

2 苯-醋酸-水是属于具有一对共轭溶液的三液体体系,即三组分中二对液体A和B,A和C完全互溶,而另一对液体B和C只能有限度的混溶,其相图如图2-8-2所示。 图2-8-1 等边三角形法表示三元相图图2-8-2 共轭溶液的三元相图图2-8-2中,E、K2、K1、P、L1、L2、F点构成溶解度曲线,K1L1和K2L2是连结线。溶解度曲线内是两相区,即一层是苯在水中的饱和溶液,另一层是水在苯中的饱和溶液。曲线外是单相区。因此,利用体系在相变化时出现的清浊现象,可以判断体系中各组分间互溶度的大小。一般来说,溶液由清变浑时,肉眼较易分辨。所以本实验是用向均相的苯-醋酸体系中滴加水使之变成二相混合物的方法,确定二相间的相互溶解度。 三、仪器试剂 具塞锥形瓶(100mL,2只、25mL,4只);酸式滴定管(20mL,1支);碱式滴定管(50mL,1支);移液管(1mL,1支、2mL,1支);刻度移液管(10mL,1支、20mL,1支);锥形瓶(150mL,2只)。

第五章 凝固(题解)

第5章 凝 固 题 解 1. 估计1cm 3的铜在熔点温度含10个原子和60个原子的原子团数目。液态下铜原子体积为1.6×10-29 m 3,σSL 为0.177J ?m -2,T m =1356K 。 解:根据n n G kT i i =????? ? exp ? 先求10个原子及60个原子集团的能量?G i 。原子集团的体积V =N ×?,N 是原子数,?是原子体积。设集团是球状,半径为r 。则 143(π ?=N r 集团的表面积A r N ==4434223 πππ ()? 在熔点产生10个原子及60个原子集团的能量变化为 ????G A N G A N 10102323 2923 20606023 23 29 22043443101610401772521043443601610 4017783310===××××=×===××××=×????γππγππγπ πγππ()()(.)..()()( .)..J J 每cm 3有Cu 的原子数n = = ×=×??11 1610 6251023 223?..cm 在1cm 3中10个原子及60个原子集团数 n n G kT n n G kT 101022 2023 163606022 2023 362510252101381013568851062510833101381013562905=???????=×?×××=×=???????=×?×××=??????exp .exp(..).exp .exp(..??cm cm 2. 镍的平衡熔点为1728K ,固相的V S =6.6cm 3/mol ,液/固相界面能γ=2.25×10-5 J ?cm - 2 ,如球 形粒子半径是1cm 、1μm 、0.01μm 时,熔点各降低多少?设?H =18066J/mol 。 解:熔点与曲率半径的关系为T T V T H m =?2κγS m m ? 现讨论的是球体,曲率半径就是球体半径r 。把各不同半径数据代入得 r r r 1cm 1m 0.01m K K K =?×××××≈=?×××××≈=?×××××≈???17282166225101728 18066 1728172821066225101728 18066 172771172821066225101728 18066 1699554565........μμ 3. 镍在获得过冷度为平衡熔点(K)的0.18倍时均匀形核,问在大气压下的平衡熔点温度下能均匀形核所要求的压力多大?凝固的体积变化为?V =?0.26cm 3 /mol 。 解:题给出 ?T K =×=0181728311. 因 d d m m T p T V H =???, 故 ????p H T T V =?m m 把数据代入。得

第六章材料科学基础武汉理工大学陆佩文

第六章相平衡 内容提要:本章系统阐述相图的基本原理并结合实际介绍相图在无机非金属的研究和生产实践中的具体应用。 重点:判读三元系统相图的规则及分析三元系统相图的步骤 难点:相图在无机非金属材料的研究和生产实践中的具体应用 §1硅酸盐系统相平衡特点 一、热力学平衡态与非平衡态 二、硅酸盐系统中的组分、相及相律 1、组分——系统中每一个能单独分离出来并独立存在的化学均匀物质称为物种或组元。 独立组分数C——决定一个相平衡系统的成分所必需的最少物种(组元)数成为独立组分数。 独立组分数=物种数-独立化学平衡关系式数 C = S – R – R, S:物质数(物种数或组分数) R:相平衡物系中所存在的独立化学反应的平衡反应式的数量 R,:浓度限制条件的数量(只存在同一相中) 2、相——体系中具有相同物理与化学性质的均匀部分的总和称为相。 3、相律 相律数学式为:n = - F+ C P 式中F——自由度:在一定范围内可以任意改变而不引起系统中相数目和形态的改变的独立可变因素(或变量)的数目称为自由度。 C——独立组元数即组分数; P——系统平衡时的相数; n——外界影响因素的数目(一般只涉及P和T) 如果外界因素只有温度和压力影响时,相律关系式为2 F; C - + =P 对于凝聚体系(不考虑压力)相律为:1 F C + =P - 凝聚系统:不含气相或气相可以忽略的系统称为凝聚系统。 §2单元系统(P-T图) 单元系统中只有一种组分,不存在浓度问题,影响系统的平衡因素只有温度和压力,因此单元系统相图是用温度和压力二个坐标表示的。 单元系统中,C = 1 F = C – P + 2 = 3 – P P min= 1 F max= 2 (两个变量为温度和压力) P max= 1 F min= 0

第五章 三元合金相图

第五章 三元合金相图 (一)名词解释 成分三角形、直线法则、重心法则、二元共晶线、三元共晶线、水平截面图、垂直截面图; (二)回答问题 1.图①为A-B-C 三元固态完全不溶共晶相图投影图: 1) 分析合金1 . 2. 3三元合金的平截面图,填写 2.图②为A-B-C 三元固态有限溶解的 3. 杠杆定律与重心法则有什么关系?在 4. 三元合金的匀晶转变和共晶转变与二元合金的匀晶转变和共晶转变有何区E 1 图① 衡结晶过程,写出反应式及室温组织。 2) 求合金3室温组织中各组织组成物及相组成相对重量。 3) 画出M-N 及B-H 变温出各相区,并指出各种三元合金成分特点。 共晶相图投影图,分析1、2、3、4、5、 6合金的平衡结晶过程,写出反应式及 室温组织。 E 1 C 图② 三元相图的分析中怎样用杠杆定律和重心法则 别?

5. 三元相图的垂直截面与二元相图有何不同:?为什么二元相图中可应用杠杆定律而三元相图的垂直截面中却不能? 6. 图 ③、④、⑤ 为A-B-C三元合金相图在T E 温度时的四相平衡转变水平截面图 形:(1)说明在T E 温度时各发生何种类型的四相平衡转变?并写出反应式。(2) 在稍大于或略低于T E 温度时各发生何种类型的二元反应?写出反应式。 7. 在成分三角形分别标出含A20%, B40%的ABC 三元合金以及含A55%, B20%的ABC 三元合金的成分点。 8. 分析三元匀晶相图中成分为O 的合金的平衡凝固过程。 9. 在Pb-Sn-Sb 三元系成分三角形内画出下列合金的位置。 1)20%Pb-60%Sb; 2)30%Pb-30%Sn 10..温度为189时,Sb-10%Pb-40%Sn 合金的平衡组织中包含C D δγβ、、三个相。这三个相的成分分别为: Sn Pb Sn Pb Sn Pb %15%65%40%3%50%5??????δγβ、、。 求该合金在上述温度下所含三个平衡相所占的分数。 11.二元与三元固溶体转变与共晶转变的自由度有无区别?如何解释 12.为什么三元相图的一般垂直截面的两相区内,杠杆定律不适用,举例说明之。 13.在三元相图中,是否只有单析溶解度曲面或双析溶解度曲面投影内的合金,才有一个次生相或两个次生相析出? 14.在三元相图中,液相面投影图十分重要,是否根据它就可以判断该合金系凝固过程中所有的相平衡关系? 15.在实际应用中一般不直接使用完整的三元相图,而是使用其等温截面图或变温截面图。那么,这两种图各有什么特点和作用?

第7章 三元相图作业答案

第六章 三元相图作业答案 Chapter 6 Ternary Phase Diagram 作业1:30kg 成分为O (20%A ,50%B ,30%C )的合金与10kg 成分为Z (20%A ,10%B ,70%C )的合金熔化在一起后, 形成新合金x, 试求x 合金中A 、B 、C 组元的含量各是多少,并在浓度三角形中标出各合金。 解答: 30 7050101030--=--=C C B B X X X X X B %=40% X C %=40% X A %=20% 作业2:某三元合金K 在温度为t1时分解为B 组元和液相两个相的相对量 2=L B W W 。已知合金K 中A 组元和C 组元重量比为3,液相含B 量为40%, 试求合金K 的成分。

解答: B B L B X X BK KL W W --===100402 X B -40=200-2X B 3X B =240 X B =80% 已知 X A +XB=100%-80%=20% X A /X C =3 故 X A =15% X C =5% 作业3: A 、 B 、 C 三组元固态完全不互溶,右图为其三元相图投影图。已知合金O 的成分为80%A 、10%B 、10%C ,a 点的成分为60%A 、20%B 、20%C ,E 点的成分为50%A 、10%B 、40%C 。 (1)写出图中合金I 和P 的室温平衡组织。 (2)简要写出合金O 的结晶过程和室温平衡组织。 (3)计算室温下合金O 的组织组成物的相对含量。

解: (1) I :B+(A+B+C ) P :(B+C )+(A+B+C ) (2) 合金O 加热到液相面温度以上后,缓慢降 温,首先遇到液相面Ae 1Ee 3A ,开始结晶出初晶A ,这时液相的成分等于合金成分,两相平衡相联结线的投影是AO 线。继续冷却时,不断析出初晶A ,液相中A 组元的含量 不断减少,B 、C 组元的含量不断增加,液相成分沿AO 的延长线变化。当液相成分到达a 点时,开始发生三相共晶转变,L →(A+B )。此后在温度继续下降时,液相中不断凝固出两相共晶(A+B ),液相成分沿aE 线变化,直到E 点发生四相共晶转变L →(A+B+C )。在略低于E 点温度凝固完毕,不再发生其它转变。故合金在室温下的平衡组织为A+(A+B )+(A+B+C )。(3分) (3) 作aD//BC ,OF//BC ,aM//AB ,EN//AB ,延长Ea 交AB 于q ()%5060 100) 80100(60100%=----=== AD DF Aa Oa A (1分) %2540 20 405.05.0%)1()%(=-?=?=-= +AN MN A Eq Ea B A (1分) (A+B+C)%=1-A%-(A+B)%=25% (1分) 作业4 图示为A 、B 两组元固态完全不溶解、C 组元固态部分溶解的三元相图 的投影图。 (1).假定T A >T B >T C >T e1>T e3>T e2>T E ,画出T 温度(T e3>T>T e2)的等温截面图, 并标注出各相区;(5分) (2).画出XY 变温截面图,并标注出各相区;(5分) (3).分析合金O 的相变过程。(2分)

三元系相图绘制

实验三组分相图的绘制 一实验目的 绘制苯一醋酸一水体系的互溶度相图。为了绘制相图就需通过实验获得平衡时,各相间的组成及二相的连结线。即先使体系达到平衡,然后把各相分离,再用化学分析法或物理方法测定达成平衡时各相的成分。但体系达到平衡的时间,可以相差很大。对于互溶的液体,一般平衡达到的时间很快;对于溶解度较大,但不生成化合物的水盐体系,也容易达到平衡;对于一些难溶的盐,则需要相当长的时间,如几个昼夜。由于结晶过程往往要比溶解过程快得多,所以通常把样品置于较高的温度下,使其较多溶解,然后把它移放在温度较低的恒温槽中,令其结晶,加速达到平衡。另外摇动、搅拌、加大相界面也能加快各相间扩散速度,加速达到平衡。由于在不同温度时的溶解度不同,所以体系所处的温度应该保持不变。 二实验原理 水和苯的互溶度极小,而醋酸却与水和苯互溶,在水和苯组成的二相混合物中加入醋酸,能增大水和苯之间的互溶度,醋酸增多,互溶度增大。当加入醋酸到达某一定数量时,水和苯能完全互溶。这时原来二相组成的混合体系由浑变清。在温度恒定的条件下,使二相体系变成均相所需要的醋酸量,决定于原来混合物中水和苯的比例。同样,把水加到苯和醋酸组成的均相混合物中时,当水达到一定的数量,原来均相体系要分成水相和苯相的二相混合物,体系由清变浑。使体系变成二相所加水的量,由苯和醋酸混合物的起始成分决定。因此利用体系在相变化时的浑浊和清亮现象的出现,可以判断体系中各组分间互溶度的大小。一般由清变到浑,肉眼较易分辨。所以本实验采用由均相样品加人第三物质而变成二相的方法,测定二相间的相互溶解度。 当二相共存并且达到平衡时,将二相分离,测得二相的成分,然后用直线连接这二点,即得连结线。 一般用等边三角形的方法表示三元相图(图1)。等边三角形的三个顶点各代表纯组分;三角形三条边AB、BC、CA分别代表A和B、B和C、C和A所组成的二组分的组成;而三角形内任何一点表示三组分的组成。 例如图1-1中的P点,其组成可表示如下:经P点作平行于三角形三边的直线,并交三边于a、b、c三点。若将三边均分成100等分,则P点的A、B、C组成分别为: A%=Cb,B%=Ac,C%=Ba 对共轭溶液的三组分体系,即三组分中二对液体AB及AC完全互溶,而另一对BC则不溶或部分互溶的相图,如图1-2所示。图中EK1K2K3DL3L2L1F是互溶度曲线,K1L1、K2L2等是连结线。互溶度曲线下面是两相区,上面是一相区。 图1-1等边三角形法表示三元相图图1-2共轭溶液的三元相图

第8章-三元相图-笔记及课后习题详解(已整理-袁圆-201487)(DOC)

第8章三元相图 8.1 复习笔记 一、三元相图的基础 三元相图的基本特点:完整的三元相图是三维的立体模型;三元系中的最大平衡相数为四。三元相图中的四相平衡区是恒温水平面;三元系中三相平衡时存在一个自由度,所以三相平衡转变是变温过程,反应在相图上,三相平衡区必将占有一定空间。 1.三元相图成分表示方法 (1)等边成分三角形 图8-1 用等边成分三角形表示三元合金的成分 三角形内的任一点S都代表三元系的某一成分点。 (2)等边成分三角形中的特殊线 ①等含量规则:平行于三角形任一边的直线上所有合金中有一组元含量相同,此组元为所对顶角上的元素。 ②等比例规则:通过三角形定点的任何一直线上的所有合金,其直线两边的组元含量之比为定值。 ③背向规则:从任一组元合金中不断取出某一组元,那么合金浓度三角形位置将沿背离此元素的方向发展,这样满足此元素含量不断减少,而其他元素含量的比例不变。 ④直线定律:在一确定的温度下,当某三元合金处于两相平衡时,合金的成分点和两平衡相的成分点必定位于成分三角形中的同一条直线上。 (3)成分的其他表示方法: ①等腰成分三角形:两组元多,一组元少。 ②直角成分坐标:一组元多,两组元少。 ③局部图形表示法:一定成分范围内的合金。 2.三元相图的空间模型

图8-2 三元匀晶相图及合金的凝固(a)相图(b)冷却曲线 3.三元相图的截面图和投影图 (1)等温截面 定义:等温截面图又称水平截面图,它是以某一恒定温度所作的水平面与三元相图立体模型相截的图形在成分三角形上的投影。 作用:①表示在某温度下三元系中各种合金所存在的相态; ②表示平衡相的成分,并可以应用杠杆定律计算平衡相的相对含量。 图8-3 三元合金相图的水平截面图 (2)垂直截面 定义:固定一个成分变量并保留温度变量的截面,必定与浓度三角形垂直,所以称为垂直截面,或称为变温截面。 常用的垂直截面有两种: ①通过浓度三角形的顶角,使其他两组元的含量比固定不变; ②固定一个组元的成分,其他两组元的成分可相对变动。 图8-4 三元相图的垂直截面图

三元相图的绘制详解

三元相图的绘制 本实验是综合性实验。其综合性体现在以下几个方面: 1.实验内容以及相关知识的综合 本实验涉及到多个基本概念,例如相律、相图、溶解度曲线、连接线、等边三角形坐标等,尤其是在一般的实验中(比如分析化学实验、无机化学实验等)作图都是用的直角坐标体系,几乎没有用过三角坐标体系,因此该实验中的等边三角形作图法就具有独特的作用。这类相图的绘制不仅在相平衡的理论课中有重要意义,而且对化学实验室和化工厂中经常用到的萃取分离中具有重要的指导作用。 2.运用实验方法和操作的综合 本实验中涉及到多种基本实验操作和实验仪器(如电子天平、滴定管等)的使用。本实验中滴定终点的判断,不同于分析化学中的大多数滴定。本实验的滴定终点,是在本来可以互溶的澄清透明的单相液体体系中逐渐滴加试剂,使其互溶度逐渐减小而变成两相,即“由清变浑”来判断终点。准确地掌握滴定的终点,有助于学生掌握多种操作,例如取样的准确、滴定的准确、终点的判断准确等。 一.实验目的 1. 掌握相律,掌握用三角形坐标表示三组分体系相图。 2. 掌握用溶解度法绘制三组分相图的基本原理和实验方法。 二.实验原理 三组分体系K = 3,根据相律: f = K–φ+2 = 5–ф 式中ф为相数。恒定温度和压力时: f = 3–φ 当φ= 1,则f = 2 因此,恒温恒压下可以用平面图形来表示体系的状态与组成之间的关系,称为三元相图。一般用等边三角形的方法表示三元相图。 在萃取时,具有一对共轭溶液的三组分相图对确定合理的萃取条件极为重要。在定温定压下,三组分体系的状态和组分之间的关系通常可用等边三角形坐标表示,如图1所示:

图1 图2 等边三角形三顶点分别表示三个纯物质A,B,C。AB,BC,CA,三边表示A和B,B和C,C和A所组成的二组分体系的组成。三角形内任一点则表示三组分体系的组成。如点P 的组成为:A%=Cb B%=Ac C%=Ba 具有一对共轭溶液的三组分体系的相图如图2所示。该三液系中,A和B,及A和C 完全互溶,而B和C部分互溶。曲线DEFHIJKL为溶解度曲线。EI和DJ是连接线。溶解度曲线内(ABDEFHIJKLCA)为单相区,曲线外为两相区。物系点落在两相区内,即分为两相。 图3(A醋,B水,C氯仿)绘制溶解度曲线的方法有许多种,本实验采用的方法是:将将完全互溶的两组分(如氯仿和醋酸)按照一定的比例配制成均相溶液(图中N点),再向清亮溶液中滴加另一组分(如水),则系统点沿BN线移动,到K点时系统由清变浑。再往体系里加入醋酸,系统点则沿AK上升至N’点而变清亮。再加入水,系统点又沿BN’由N’点移至J点而再次变浑,再滴加醋酸使之变清……如此往复,最后连接K、J、I……即可得到互溶度曲线,如图3所示。 三. 实验准备 1. 仪器:具塞磨口锥形瓶,酸式滴定管,碱式滴定管,移液管,分析天平。 2. 药品:冰醋酸,氯仿,NaOH溶液(0.2mol·mol–3),酚酞指示剂。

三元相图的绘制详解

三元相图得绘制 本实验就就是综合性实验。其综合性体现在以下几个方面: 1、实验内容以及相关知识得综合 本实验涉及到多个基本概念,例如相律、相图、溶解度曲线、连接线、等边三角形坐标等,尤其就就是在一般得实验中(比如分析化学实验、无机化学实验等)作图都就就是用得直角坐标体系,几乎没有用过三角坐标体系,因此该实验中得等边三角形作图法就具有独特得作用。这类相图得绘制不仅在相平衡得理论课中有重要意义,而且对化学实验室与化工厂中经常用到得萃取分离中具有重要得指导作用。 2、运用实验方法与操作得综合 本实验中涉及到多种基本实验操作与实验仪器(如电子天平、滴定管等)得使用。本实验中滴定终点得判断,不同于分析化学中得大多数滴定。本实验得滴定终点,就就是在本来可以互溶得澄清透明得单相液体体系中逐渐滴加试剂,使其互溶度逐渐减小而变成两相,即“由清变浑”来判断终点。准确地掌握滴定得终点,有助于学生掌握多种操作,例如取样得准确、滴定得准确、终点得判断准确等。 一、实验目得 1、掌握相律,掌握用三角形坐标表示三组分体系相图。 2、掌握用溶解度法绘制三组分相图得基本原理与实验方法。 二、实验原理 三组分体系K= 3,根据相律: f =K–φ+2=5–ф 式中ф为相数。恒定温度与压力时: f= 3–φ 当φ= 1,则f = 2 因此,恒温恒压下可以用平面图形来表示体系得状态与组成之间得关系,称为三元相图。一般用等边三角形得方法表示三元相图。 在萃取时,具有一对共轭溶液得三组分相图对确定合理得萃取条件极为重要。在定温定压下,三组分体系得状态与组分之间得关系通常可用等边三角形坐标表示,如图1所示:

图1图2 等边三角形三顶点分别表示三个纯物质A,B,C。AB,BC,CA,三边表示A与B,B与C,C 与A所组成得二组分体系得组成。三角形内任一点则表示三组分体系得组成。如点P得组成为:A%=Cb B%=Ac C%=Ba 具有一对共轭溶液得三组分体系得相图如图2所示。该三液系中,A与B,及A与C完全互溶,而B与C部分互溶。曲线DEFHIJKL为溶解度曲线。EI与DJ就就是连接线。溶解度曲线内(ABDEFHIJKLCA)为单相区,曲线外为两相区。物系点落在两相区内,即分为两相。 图3(A醋,B水,C氯仿) 绘制溶解度曲线得方法有许多种,本实验采用得方法就就是:将将完全互溶得两组分(如氯仿与醋酸)按照一定得比例配制成均相溶液(图中N点),再向清亮溶液中滴加另一组分(如水),则系统点沿BN线移动,到K点时系统由清变浑。再往体系里加入醋酸,系统点则沿AK上升至N’点而变清亮。再加入水,系统点又沿BN’由N’点移至J点而再次变浑,再滴加醋酸使之变清……如此往复,最后连接K、J、I……即可得到互溶度曲线,如图3所示。 三、实验准备 1、仪器:具塞磨口锥形瓶,酸式滴定管,碱式滴定管,移液管,分析天平。 2、药品:冰醋酸,氯仿,NaOH溶液(0、2mol·mol–3),酚酞指示剂。 四、操作要点(各实验步骤中得操作关键点) 1、因所测得体系中含有水得成分,所以玻璃器皿均需干燥。

《无机材料科学基础》课后习题第六章.doc

第10章习题?解答 1. 解释下列名词:凝聚系统,介稳平衡,低共熔点,双升点,双降点,马鞍点,连线规则,切线规则,三角形规则,重心规则。 解:凝聚系统:不含气相或气相可以忽略的系统。 介稳平衡:即热力学非平衡态,能量处于较高状态,经常出现于硅酸盐系统中。 低共熔点:是一种无变量点,系统冷却时儿种晶相同时从熔液中析出,或加热时同时融化。 双升点:处于交叉位的单转熔点。双降点:处于共轴位的双转熔点。 马鞍点:三元相图界线上温度最高点,同时又是二元系统温度的最低点。 连线规则:将一界线(或其延长线)与相应的连线(或其延长线)相交,其交点是该界线上的温度最高点。切线规则:将界线上某一点所作的切线与相应的连线相交,如交点在连线上,则表示界线上该处具有共熔性质;如交点在连线的延长线上,则表示界线上该处具有转熔性质,远离交点的晶相被回吸。 三角形规则:原始熔体组成点所在副三角形的三个顶点表示的物质即为其结晶产物;与这三个物质相应的初初晶区所包围的三元无变量点是其结晶结束点。 重心规则:如无变点处于其相应副三角形的重心位,则该无变点为低共熔点:如无变点处于其相应副三角形的交义位,则该无变点为单转熔点;如无变点处于其相应副三角形的共轴位,则该无变点为双转熔点。 2. 从SiCh的多晶转变现象说明硅酸盐制品中为什么经常出现介稳态晶相? 解:在573笆以下的低温,SiO2的稳.定晶型为b 一石英,加热至573°C转变为高温型的a 一石英,这种转变较快;冷却时在同一温度下以同样的速度发生逆转变。如果加热速度过快,则a 一石英过热而在I6OO°C 时熔融。如果加热速度很慢,则在870°C转变为a 一鳞石英。a 一鳞石英在加热较快时,过热到1670°C时熔融。当缓慢冷却时,在870°C仍可逆地转变为a —石英;当迅速冷却时,沿虚线过冷,在163°C转变为介稳态的b 一鳞石英,在1171转变为介稳态的& 一鳞石英。加热时g 一鳞石英仍在原转变温度以同样的速度先后转变为b 一鳞石英和a 一鳞石英。a 一鳞石英缓慢加热,在1470V时转变为 a 一方石英,继续加热到I713°C熔融。当缓慢冷却时,在1470°C时可逆地转变为a 一鳞石英:当迅速冷却时,沿虚线过冷, 在180?270°C转变为介稳状态的b 一方石英;当加热b 一方石英仍在180-270°C迅速转变为稳定状态的 a 一方石英。爆融状态的SiO2由于粘度很大,冷却时往往成为过冷的液相—一石英玻璃。虽然它是介稳态, 由于粘度很大在常温下可以长期不变。如果在IOOO"C以上持久加热,也会产生析晶。熔融状态的SiO”只有极其缓慢的冷却,才会在17I3°C可逆地转变为a —方石英。对Si。?的相图进行分析发现,SiO?的所有处于介稳状态的熔体的饱和蒸汽压都比相同温度范围内处于热力学稳定态的熔体的饱和蒸汽压高。而理论和实践i正明,在给定的温度范围,具有最小蒸汽压的相一定是最稳定的相。所以由于晶型转变速度不同,在不同的加热或冷却速率下,硅酸盐制品中经常出现介稳态晶相。 3. SiCb具有很高的熔点,硅酸盐玻璃的熔制温度也很高。现要选择一种氧化物与SiO?在800°C的低温下形成均一的二元氧化物玻璃,请问,选何种氧化物?加入量是多少? 解:根据Na2O-SiO2系统相图可知最低共峪点为799C。故选择Na2O能与SiO?在800C的低温下形成均—的二元氧化物玻璃。 4. 具有不一致熔融二元化合物的二元相图(图10-12 (c))在低共熔点E发生如卜?析晶过程:L=A+C, 已知E点的B含量为20%,化合物C的B含量为64%。今有G,C?两种配料,己知G中B含量是C?中B含量的1.5倍,且在高温熔融冷却析晶时,从该二配料中析出的初相(即达到低共熔温度前析出的第一种晶体)含量相等。请计算C” C2的组成。

第六章 三元相图作业

第六章 三元相图 Chapter 6 Ternary Phase Diagram 作业1:30kg 成分为O (20%A ,50%B ,30%C )的合金与10kg 成分为Z (20%A ,10%B ,70%C )的合金熔化在一起后, 形成新合金x, 试求x 合金中A 、B 、C 组元的含量各是多少,并在浓度三角形中标出各合金。 作业2:某三元合金K 在温度为t1时分解为B 组元和液相两个相的相对量2 L B W W 。已知合金K 中A 组元和C 组元重量比为3,液相含B 量为40%, 试求合金K 的成分。 作业3: A 、 B 、 C 三组元固态完全不互溶,右图为其三元相图投影图。已知合金O 的成分为80% A 、10% B 、10% C ,a 点的成分为60%A 、20%B 、20%C ,E 点的成分为50%A 、10%B 、40%C 。 (1)写出图中合金I 和P 的室温平衡组织。 (2)简要写出合金O 的结晶过程和室温平衡组织。 (3)计算室温下合金O 的组织组成物的相对含量。 作业4 图示为A 、B 两组元固态完全不溶解、C 组元固态部分溶解的三元相图的投影图。 (1).假定T A >T B >T C >T e1>T e3>T e2>T E ,画出T 温度(T e3>T>T e2)的等温截面图, 并标注出各相区;(5分) (2).画出XY 变温截面图,并标注出各相区;(5分) (3).分析合金O 的相变过程。(2分)

作业5:根据图1所示三元相图完成下列各题: (共15分) a) 假定T A >T B >T C >T e1> T e3> T e2 >T E, 画出T 温度(T e1>T >T e3)水平截面图。(6分) b) 画出XY 垂直截面图,并分析合金1、2、3的相变过程。 (9分) 作业6 根据图示三元相图完成下列各题: 1. 假定T A >T B >T C >T e1> T e3> T e2>T E ,画出T 温度(T e1>T>T e2)水平截面图; 2. 画出XY 垂直截面图; 3.分析合金x 1,x 2,x 3的相变过程.

第7章三元相图作业答案汇总

第六章三元相图作业答案 Chap ter 6 Ternary P hase Diagram 作业 1: 30kg 成分为 O (20%A ,50%B ,30%C )的合金与 10kg 成分为 Z ( 20%A ,10%B , 70%C )的合金熔化在一起后, 少,并在浓度三角形中标出各合 金。 解答: 30 _ X B -10 _70-X C 10 50 -X B X C -30 X B %=40% X c %=40% X A %=20% 作业2:某三元合金 K 在温度为t1时分解为B 组元和液相两个相的相对量 形成新合金X,试求x 合金中A 、B 、C 组元的含量各是多 斜2 。已知

合金K中A组元和C组元重量比为3,液相含B量为40%,试求合金K的成分。

解答: WB" W L BK 3X B=240 作业3: A、 B、 A 10% B、 Co (1) X B -40 100-X B X B=80% X B-40=200-2X B 已知X A+XB=100%-80%=20% X A/X C=3 故X A=15% X C=5% 右图为其三元相图投影图。已知合金0的成分为80 % C三组元固态完全不互溶, 10% C, a 点的成分为60% A、20% B、20% C, E 点的成分为50 % A 10 % B 40 % 写出图中合金I和P的室温平衡组织。 简要写出合金O的结晶过程和室温平衡组织。 计算室温下合金0的组织组成物的相对含量。

(A+B+C)%=1-A%-(A+B)%=25% 作业4图示为A 、B 两组元固态完全不溶解、C 组元固态部分溶解的三元相图 的投影图。 (1).假定 T A >T B >T c >T e1>T e3>T e2>T E ,画出 T 温度(T e3>T>T e2)的等温截面图, 并标注出各相区;(5分) (2).画出XY 变温截面图,并标注出各相区;(5 分) (3).分析合金O 的相变过程。(2分) 解: (1) I : B+ (A+B+C P: ( B+C + (A+B+C 合金O 加热到液相面温度以上后,缓慢降 温,首先遇到液相面 Ae i Ee s A,开始结晶出 初晶A,这时液相的成分等于合金成分, 两 相平衡相联结线的投影是 A0线。继续冷却 时,不断析出初晶A ,液相中A 组元的含量 A0的延长线变化。当液相成分 不断减少,B 、C 组元的含量不断增加,液相成分沿 到达a 点时,开始发生三相共晶转变, L 7( A+B )O 此后在温度继续下降时,液相中 不断凝固出两相共晶(A+B ,液相成分沿aE 线变化,直到E 点发生四相共晶转变 L 7( A+B+Co 在略低于E 点温度凝固完毕,不再发生其它转变。故合金在室温下的 平衡组织为 A+ ( A+B + (A+B+C O ( 3分) 作 aD//BC , OF//BC ,aM//AB ,EN//AB ,延长 Ea 交 AB 于 q A% = Oa = DF =(100一60)—(100—8°)= 50% Aa AD 100-60 (1 分) (A + B)% =25% Eq AN 40 (1 分) (1 分)

第5章 三元合金相图

第5章 三元合金相图 由A-B-C 三组元组成的合金称三元合金,其相图称三元相图。要确定三元合金的成分,必须给出其中两个组元的成分。所以,在三元相图中表示成分的坐标轴有两个。 5-1 三元相图成分表示方法 在三元相图中表示成分的两个坐标轴原则上可以 交成任何角度,但一般采用等边三角形的三个边表示。 设P 为等边三角形内任意点,从P 点分别做三条 边的平行线,交三条边于a 、b 、c 点。根据等边三角 形的几何性质: %100==++=++AB Ba Ac Cb Pc Pb Pa 因此,可用Cb 、Ac 、Ba 表示A 、B 、C 的成分。这样,三角形中每一点都表示一个三元合金的成分。该三角形称浓度三角形,或成分三角形。 5-2 三元相图中的定量法则 一、直线法则 二元合金处于两相平衡时,自由度f =2-2+1=1,温度和成分两个变量中只有一个可以独立改变,如当温度一定时,两个平衡相的成分是确定的。 三元合金处于两相平衡时,f =3-2+1=2,当温度一定时,两个平衡相中,只有一个相的成分可独立改变。当温度和其中一个相的成分一定时,剩余相的成分是确定的。 假设某三元合金的成分点为P ,在某一温度下,该合金处于α、β两相平衡,两相的成分点为a 、b (P133图4)。可以证明(P133),此时,a 、b 、P 三成分点在一条直线上,且P 点位于a 、b 之间。这一规律称直线法则。 二、杠杆定律 三元相图中的杠杆定律与二元相图中的类似,即同样也只适用于两相区,但形式上略有不同,在直线法则的基础上: %100%?=ab Pb α, %100%?=ab Pa β 三、重心法则 三元合金处于α、β、γ三相平衡时,f =3-3+1=1。当温度一定时,三个平衡相的成分是确定的,其成分点a 、b 、c 构成一个三角形。若将成分比喻成重量,则合金的成分点P 一定落在成分点a 、b 、c 三角形的重心处,这一规律

第二十讲三元相图总结

第二十讲三元相图总结 第五节三元相图总结 一、主要内容: 三元系的两相平衡 三元系的三相平衡 三元系的四相平衡 三元相图的相区接触法则 三元合金相图应用举例 二、要点: 三元系的两相平衡特点,共轭曲面,共轭曲线,三元系三相平衡特点(共晶型,包晶型),等温截面的相区接触法则,三元系的四相平衡特点,三元共晶反应型,包晶反应型,三元包晶反应型,利用单变量线的走向判断四相平衡类型,相区接触法则 三、方法说明: 掌握三元合金相图的特点,使学生能够看懂并应用三元相图,重点是掌握相区接触法则,利用单变量线判断四相平衡的类型,利用杠杆定律,重心法则估算出各组成相的相对含量 授课内容: 一、三元系的两相平衡 三元相图的两相区以一对共轭曲面为边界,所以无论是等温截面还是变温截面都截取一对曲线为边界。 在等温截面上平衡相的成分由两相区的连线确定,可用杠杆定律计算相的相对含量。 在变温截面上,只能判断两相的温度变化范围,不反应平衡相的成分。 二、三元系的三相平衡 三元系的三相平衡区的立体模型是一个三棱柱体,三条棱边为三个相成分的单变量线。 三相区的等温截面图的三个顶点就是三个相的成分点。各连接一个单相区,三角形的三个边各邻接一个两相区。可以用重心法则计算三个相的含量。 如何判断三相平衡是二元共晶反应还是二元包晶反应? 在垂直截面图中,曲边三角形的顶点在上方的是二元共晶反应;顶点在下方的是二元包晶反应。 三、三元系的四相平衡 三元系的四相平衡,为恒温反应。如果四相平衡中由一个相是液体三个相是固体,会有如下三种类型: 1)三元共晶反应: 2)包共晶反应: 3)三元包晶反应: 四个三相区与四相平衡平面的邻接关系有三种类型: 1)在四相平面之上邻接三个三相区,是三元共晶反应。 2)在四相平面之上邻接两个三相区,是包共晶反应。 3)在四相平面之上邻接一个三相区,是三元包晶反应。 液相面的投影图应用的十分广泛。 以单变量线的走向判断四相反应类型: 当三条液相单变量线相交于一点时,在交点所对应的温度必然发生四相平衡转变。 1)若三个箭头都指向交点为三元共晶反应。 2)若两条液相单变量线的箭头指向交点,一条背离交点,发生包共晶反应。 3)若一条液相单变量线的箭头指向交点,两条背离交点,发生三元包晶反应。

第八章 三元相图

第八章三元相图

三元合金系(ternery system)中含有三个组元,因此三元相图是表示在恒压下以温度变量为纵轴,两个成分变量为横轴的三维空间图形。由一系列空间区面及平面将三元图相分隔成许多相区。

第一节三元相图的基础知识 三元相图的基本特点: (1) 完整的三元相图是三维的立体模型; (2) 三元系中可以发生四相平衡转变。四相平衡区是恒温水平面; (3) 三元相图中有单相区、两相区、三相区和四相区。除四相平衡区外,一、二、三相平衡区均占有一定空间,是变温转变。

一、三元相图成分表示方法 三元相图成分通常用浓度(或成分)三角形(concentration/composition triangle)表示。常用的成分三角形有等边成分三角形、等腰成分三角形或直角成分三角形。

(一) 等边成分三角形-图形 1. 等边成分三角形图形 在等边成分三角形中,三角形的三个顶点分别代表三个组元A、B、C,三角形的三个边的长度定为0~100%,分别表示三个二元系(A—B系、B—C系、C—A系)的成分坐标,则三角形内任一点都代表三元系的某一成分。其成分确定方法如下:由浓度三角形所给定点S,分别向A、B、C顶点所对应的边BC、CA、AB 作平行线(sa、sb、sc),相交于三边的c、a、b点,则A、 B、C组元的浓度为:WA = sc = Ca WB = sa= Ab WC = sb= Bc ?注:sa+ sb+ sc = 1 Ca + Ab+ Bc= 1

2. 等边成分三角形中特殊线 (1) 平行等边成分三角形某一边的直线。 凡成分点位于该线上的各三元相,它们所含与此线对应顶角代表的组元的质量分数(浓度)均相等。 (2) 通过等边成分三角形某一顶点的直线 位于该线上的所有三元系,所含另外两顶点所代表的的组元质量分数(浓度)比值为恒定值。

第五章 凝固(习题)

第5章 凝 固 习 题 1. 估计1cm 3的铜在熔点温度含10个原子和60个原子的原子团数目。液态下铜原子体积为 1.6×10-29 m 3,σSL 为0.177J ?m -2,T m =1356K 。 2. 镍的平衡熔点为1728K ,固相的V S =6.6cm 3/mol ,液/固相界面能γ=2.25×10-5J ?cm - 2 ,如球形粒子半径是1cm 、1μm 、0.01μm 时,熔点各降低多少?设?H =18066J/mol 。 3. 镍在获得过冷度为平衡熔点(K)的0.18倍时均匀形核,问在大气压下的平衡熔点温度下能均匀形核所要求的压力多大?凝固的体积变化为?V =?0.26cm 3 /mol 。 4. 为什么r max 会随过冷度?T 而变? 5. 证明无论对非均匀形核和均匀形核下式均成立:??G V G **=12 V 6. 讨论铸模壁的裂缝在表面的张角在非均匀形核中的作用。裂缝在表面张口宽度如何影响非均匀形核? 7. 金的T m =1336K ,γSL =0.132,γLV =1.128,γSV =1.400J ?m -2,其中下标S 、L 分别表示固相和液相,V 表示气相。说明金可在T m 以下熔化。(熔化潜热为1.2×109J ?m -3)。 8. 证明熔化熵?S =4R (R 为气体普适常数)时固液界面以粗糙界面最稳定,设ξ=0.5。

9. 式(5-25)中的晶体学因子ξ=η/ν,η为表面层最近邻原子数,ν为固体内部原子的最近邻原子数。界面指数越高,η/ν越小。对面心立方金属,η/ν最大为0.5,如何用熔化熵判别液固界面的类型。 10.一个铝锭厚25cm ,在无过冷的情况下注入砂模。假设模/金属间的热阻和固态金属/液态金属间的热阻可以忽略不计。 a)若砂模很薄(设3cm ),砂模外侧温度保持300K ,砂模很快建立平稳态传热,问多长时间这个锭可以完成凝固。 b)若砂模很厚,凝固只靠砂模导热进行。问多长时间这个锭可以完成凝固。铝的熔点T m =933K ,熔化潜热?H =3.97×105J/kg ,铝的密度ρm =2.7×10-3 kg/cm 3,砂型的比热c p m =1.13×103J/kg ?K ,砂型的热导率κm =6.06×10-3W/cm ?K ,密度为1.58g/cm 3。 11.铝在钢模中超高速冷却,钢模保持300K ,钢模/金属间的界面热阻为0.24cm 2K ?W -1, κAl =2.2W ?cm -1?K -1。假定传热为界面控制(即牛顿冷却),问液/固界面推移速度是多大? 这种情况能否符合原假设的界面控制传热?(可采用上题的数据) 12.画出k 0 >1时和图5-31对应的a 、b 、c 、d 各线。 相图如下图所示。C 0成分的熔体,凝固后的浓度分布如右下图所示。其中a 线是在固、液相中完全扩散、b 线是液相中完全混合、c 是在液相中仅有溶质扩散、d 线是液相中溶质部分混合的情况。 13.Al-Cu 相图可简化为:T m (Al)=660°C ,共晶温度 T E =546°C ,铜在铝中的最大溶解度w (Cu)=5.65%, 共晶成分w (Cu)=33%,固、液相线均为直线。液相 中铜的扩散系数D L =3×10-9 m 2?s -1,设合金在无对流 的条件下凝固,液/固界面是平面的,界面推移速度 为5μm ?s -1 a)w (Cu)=0.5%的Al-Cu 合金在平稳态下 凝固时界面温度是什么?扩散层(即溶质

相关主题
文本预览
相关文档 最新文档