当前位置:文档之家› 计算材料学在复合材料中的应用

计算材料学在复合材料中的应用

计算材料学在复合材料中的应用
计算材料学在复合材料中的应用

计算材料学在复合材料中的应用

蒋雯3120140417

摘要:随着计算机技术的发展,计算材料学成为复合材料领域越来越重要的研究分析手段。本文通过查阅文献,介绍了有限元方法、分子动力学法和人工神经网络法的基本原理以及其在复合材料领域的应用,最后对计算材料学在作者日后科研工作中可能的应用进行了展望。

关键词:计算材料学;有限元方法;分子动力学法;人工神经网络法;复合材料

1引言

20世纪90年代以来,由于计算机技术的飞速发展,计算机模拟在材料微结构研究领域的地位日渐突显,这是因为:一方面,无论在定量还是定性方面,计算机模拟可以在很多方面提供实验无法获得或很难获得的信息;另一方面,计算机的飞速发展与测试环境的改进为直接验证理论的可靠度提供了很好的条件。在材料科学研究中,采用计算机模拟技术,从分子的微观性质计算到预测材料的介观、宏观性质,已成为新兴的学术方向,并已形成了一门新学科,即计算材料学[1]。

复合材料是指由两种或两种以上异质、异形、异性的原材料通过某种工艺组合成的一种新的材料。它即保留了原组分材料的主要特性。又通过复合效应获得了原组分材料所不具备的新性能。与普通单相增强材料相比,其冲击强度、疲劳强度和断裂韧性显著提高,并具有特殊的热膨胀性能。基于以上这些特点,复合材料一度成为学者们的研究热点,将计算材料学应用于复合材料的研究,能解决许多实验不能解决的问题,因此也受到了人们的重视[2]。

本文主要介绍有限元法、分子动力学法和人工神经网络法在复合材料研究中的应用情况。最后对计算材料学在作者日后的科研工作中可能的应用进行了展望。

2 有限元方法

2.1 有限元方法介绍

有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统进行模拟。利用简单而又相互作用的元素,即单元,就可以用

有限数量的未知量去逼近无限未知量的真实系统。

有限元分析是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的近似解,然后推导求解这个域总的满足条件,从而得到问题的解。这个解

不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大

多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各

种复杂形状,因而成为行之有效的工程分析手段。

有限元方法主要用来对复合材料的力学行为进行数值模拟,得到材料的相关力学性能参数。其本质是将有限元计算技术与力学和材料学相结合,根据复合材料具体细观结构,建立代表性计算体元、界面条件和边界条件,求解受载下体元中具有夹杂的边值问题。从而建立起细观局部场量与宏观平均场量间的关系,最终获得复合材料的宏观力学响应[3]。

2.2有限元方法在复合材料研究中的应用

2.2.1刚度问题

由于先进的金属基和陶瓷基复合材料的广泛应用和计算机技术的发展,复合材料的细观结构与宏观有效模量之间的定量关系可以通过有限元细观力学计算获得[3]。例如方岱宁等[4]计算了正交各向异性复合材料的九个柔度常数,分析了长纤维形状、分布对有效剪切模量和杨氏模量的影响,同时还模拟了颗粒形状、取向、分布对性能的影响。Brown等人分析了纤维截面形状对金属基复合材料有效模量的影响。图1是用轴对称单胞和三维体单胞模型对含不同分布的玻璃球颗粒增强的高分子基复合材料轴向

刚度的计算结果和实验结果的对比[3]。

图1不同模型计算的有效轴向弹性模量结果与所有结果的比较[3]

2.2.2残余应力

复合材料在制备过程中,从熔解温度冷却到室温,由于增强相和基体的热膨胀系数不同,而产生残余应力,造成复合材料基体局部塑性屈服,所产生的残余应力对材料受载时的力学行为将有较大的影响。有限元计算能够求解和模拟变化的温度场下的残余应力场[3]。例如Davis模拟了复合材料制备冷却过程中压缩残余应力的形成过程,并分析了该压缩残余应力所造成的塑性屈服现象。Weissenbek分析了含不同分布的纤维周期复合材料的拉伸平均应变与温度之间的关系[3]。

2.2.3损伤问题

复合材料在制造、加工过程中,不可避免地会出现一些细观缺陷,例如纤维、颗粒等增强相的断裂、它们与基体的脱粘以及基体中产生微空洞微裂纹等。缺陷造成的局部应力场的变化一般很复杂,必须应用有限元计算细观力学来对细观损伤进行数值分析,才可以克服求解析解时作出的过多的简化,使结果更加接近实际。例如陈陆平、潘敬哲和钱令希等人利用参数拟规划化和非连续线弹性本构模型,构造了复合材料纤维/基体界面失效问题的细观力学模型并进行了有限元细观计算分析,得到了与实验相吻合的结果[3]。

3分子动力学

3.1 分子动力学原理简介

分子动力学方法早在20世纪50年代末就已提出,但直到80年代恒压分子动力学方法得以成功应用,它才真正成为材料科学领域的一个重要研究方法[5]。分子动力学是进行材料纳观尺度模拟的一个主要方法,相比于蒙特卡罗方法,该方法更适合于求解与时间相关的问题。

经典分子动力学方法是按该体系内部的内禀动力学规律计算并确定位形的转变。首先针对微观物理体系,给出体系内粒子间相互作用势,建立一组运动方程,认为每个粒子都服从经典牛顿力学定律,然后通过对方程进行数值求解,得到各个粒子在不同时刻的坐标与动量,即其在相空间的运动轨迹,再利用统计计算方法得到多体系统的静态和动态特性,从而得到系统的宏观性质[6]。

第一性原理是Car和Parrinello等人为了求解半导体和金属的势函数而提出的。这种方法实际上是一种新的求解牛顿方程的方法,既求解波函数的运动方程,又求解针对原子坐标的运动方程,把原子核和核外电子的自由度统一考虑进来,从而把密度泛函理论和分子动力学有机结合起来。目前,在对于第一性原理分子动力学运动方程的求解中,常引入平面波(plane wave)和超软赝势(ultra-soRpseudo-potential)方法[6]。

3.2 分子动力学在复合材料研究中的应用

3.2.1界面研究

利用分子动力学模拟可以在原子级别上对晶体表面和界面进行优化驰豫,并分析计算其界面原子构型、电子密度分布、界面能量状态等。国绍文等人使用分子动力学方法对SiC/Al复合材料与其表面Ni涂层的相互作用进行了模拟计算,得到了分子动力学优化平衡后的界面原子构型,其相互作用能计算结果为108.4kJ/mol,与实验结果相一致。Benedek等人使用第一性原理方法,模拟了晶格错配的﹛222﹜MgO/Cu界面,由于MgO和Cu的晶格常数比约为7/6,界面两侧的原子层均发生翘曲畸变以形成优化键合,此外,计算了界面结合能和界面电子结构。此外其他研究者还对

TiC/Ti的极性界面结构、Co/Al界面等等众多复合材料的界面进行了计算,得到了大量计算数据和有价值的结果[5]。

3.2.2力学性能

对于复合材料,界面的力学性能是另一个更为关注的问题,分子动力学在获得界面平衡构型后,可以对其进行加载模拟,以研究界面应力和载荷传递,计算界面力学性能参数,模拟材料变形和失效。Bachlechner等人对Si(111)/Si3N4(0001)界面进行了分子动力学建模模拟,计算了界面的能量和界面力学参数,并对Si3N4薄膜中的开裂进行了模拟。在该研究中得到的界面杨氏模量为199.1GPa。通过模拟界面的连续拉伸变形,得到系统首先在Si3N4薄膜起裂纹并扩展至界面,并且在裂纹下的Si原子面上产生错位原子[6]。

4 人工神经网络

4.1人工神经网络介绍

人工神经网络技术由于其建模的高效性、准确性和从已知实验数据中获取知识所具有的优势,引起了材料研究工作者的高度重视[7]。由于复合材料可设计性的自由度大,影响因素多,利用传统的数学建模方法来研究结构、工艺与性能之间的关系,尚存在许多困难,而简化求解问题的数学和力学模型,使得模型本身存在较大的局限性,难以满足工程技术上的需要。神经网络擅长处理复杂的多元非线性问题,它不需预先指定函数形式,便能通过学习对强非线性数据进行拟合、建模和预报,是研究复合材料的有力工具[7、8]。

4.2人工神经网络在复合材料研究中的应用

4.2.1材料性能预测

复合材料结构设计的一个重要步骤是在设计阶段运用数值模拟手段对结构进行静动态分析计算,有限元法是解决此问题最有力的数值工具,但有限元计算一般需要材料特性作为输入数据,而这些数据需要实际结构相

同的测试样本上测得,具有极大的局限性。华宏星等[9]通过利用神经网络,取六阶固有频率作为网络输入层参数,复合材料板刚度为输出参数,输出层神经元数等于各向异性刚度系统的个数,建立正交各向异性板的动态特性(固有频率)与刚度的非线性模型,来预测估计复合材料板刚度,作为有限元计算的输入数据,有效解决了实测数据困难的问题。

4.2.2 工艺设计与优化

复合材料的结构设计、制备或加工工艺的优化,强烈地依赖于它们与材料性能或其它所关注目标之间的关系模型,利用神经网络建立材料性能与工艺条件之间的关系模型后,就可以利用该模型来完成工艺条件的优化工作。例如,对于碳/碳复合材料,化学气相沉积(CVD)法是目前制备SiC涂层的主要方法,但该工艺热解生成SiC的化学反应十分复杂,在气相外延生长反应中,除了主反应外,还有许多副反应,体系最终所含物质的种类和数量,取决于这些反应之间相互作用的结果,是一个极为复杂的非线性过程,因此,建立与实际情况相吻合的数学模型还十分困难[10]。徐志淮等[11]基于神经网络技术,建立了碳/碳复合材料SiC- CVD工艺模型,实现了对SiC沉积规律的预测,获得了工艺各参数之间的交互效应,对工艺参数与沉积速率之间关系的预测与实验结果相吻合,证实了将神经网络应用于复合材料抗氧化涂层的制备过程的控制和工艺优化是有效和可行的。

4.2.3 损伤预测与检测

不同的复合材料其损伤、失效机理也往往存在很大程度上的区别。以纤维增强复合材料为例,其细观损伤有基体开裂、界面脱粘或纤维拔出等模式,这些损伤模式之间又存在复杂的相互作用,在损伤的演化中还存在模式之间的互相转变,而在不同的变形阶段,可能由不同的损伤模式起主要作用;因此,要寻找能够同时模拟多种损伤模式的力学模型和数学模型是很困难的。在数学模型难以对损伤机理进行准确描述的情况下,通过采集实验样本,利用神经网络分析研究各种情况下的损伤情况,是一种高效而准确的方法[10]。例如,Manish T.Valoor等[12]提出了厚复合梁模型,来研究层合板固有频率与分层尺寸、位置之间的关系,模型如图2所示。每

一部分都可视为相对独立的梁,通过施加适当的边界条件,它们又可组成一个整体。假设分层部分具有相同的横向位移,通过计算可以得到各种分层位置和尺寸下梁的固有频率;将这些计算结果作为神经网络的学习样本,可以建立梁的固有频率与分层位置、尺寸的关系模型;利用训练后的模型,输入梁的固有频率,就可以预测该梁哪一位置,发生了多大尺寸的分层。

图2厚复合梁模型[12]

5计算材料学在作者科研工作中应用的展望

综合以上叙述我们不难看出,计算材料学在复合材料领域的应用渗透到各个方面,从复合材料的力学性能,到复合材料的界面,再到工艺设计,检测等方面都有深入的应用。因此,计算材料学在复合材料的研究中,在一定程度上与实验科学有着同等的重要性,其依托于计算机的性质,使得其在成本、效率等方面有着重要优势。

一种复合材料的诞生,必然经历着以下几个阶段:材料设计——材料制备——性能检测。在每个环节中,计算材料学都能发挥重要作用。

首先是材料设计环节。分子动力学,蒙特卡洛法和有限元等方法均可运用于材料的设计。利用软件构建设想的复合材料成分和结构模型,计算出不同成分和结构的复合材料的力学性质参量,对材料可能的静动态力学行为进行预测,可以有效指导材料设计,提高效率。

材料的制备通常需要耗费大量资源,而制备的效果往往不可预测,如若工艺失败,将会浪费原料和设备资源。今后如若在科研中遇到新工艺的制备效果预测问题,我们应当考虑借助计算机模拟的方法,对新工艺新成分的制备效果进行预测,避免工艺失败造成的无谓浪费。

复合材料的力学性能检测环节,能够更多地应用材料计算学。复合材料的力学参量,可以利用分子动力学、人工神经网络的方法进行预测,这

对于珍贵样品显得尤为重要。对于实际难以进行的实验,例如侵彻实验,有限元方法也能很好地为我们提供实验过程每个瞬态的细节信息。在材料力学性能检测方面,将计算与实验相结合,不仅能提高效率,节约成本,更能提高实验的准确性。

总而言之,材料计算学是我们日后科研中的有力工具,它不仅能在关键时刻解决重要问题,更能为工作锦上添花。材料计算学的深入学习,对提高科研能力至关重要。

6 参考文献

[1]赵文娟,丁桦.计算材料学及其在钛合金研究中的应用[J].航空制造技术,2007, 8: 013.

[2]贺毅强.颗粒增强金属基复合材料的研究进展[J].材料热处理技术,2012,41(2):133-136.

[3]方岱宁,周储伟.有限元计算细观力学对复合材料力学行为的数值分析[J].力学进展,1900,28(2):173-188.

[4]方岱宁,齐航.颗粒增强复合材料有效性能的三维数值分析[J].力学学报,1996,28(4): 475-482.

[5]李健,杨延清,罗贤,等.分子动力学模拟在复合材料界面研究中的进展[J].稀有金属材料与工程,2013, 42(003): 644-648.

[6]Haile J M. Molecular dynamics simulation: elementary methods[M].John Wiley&Sons,Inc.,1992.

[7]樊新民,孔见.人工神经网络在材料科学研究中的应用[J].材料导报,2002,16(4): 28-30.

[8]何林,黄传真,黄勤,等.人工神经网络和优化方法相结合在复合材料研究中的应用[J].硅酸盐通报,2004,23(1): 85-87.

[9]华宏星,陈小琳.运用神经网络识别复合材料板刚度[J].复合材料学报,2000,17(1): 108-110.

[10]顾正彬,李贺军,李克智,等.人工神经网络在复合材料研究中的应用[J].宇航计测技术,2003,23(4): 13-18.

[11]徐志淮,李贺军.神经网络模型在SiC 涂层制备中的应用[J].无机材料学报,2000,15(3): 511-515.

[12]Valoor M T, Chandrashekhara K. A thick composite-beam model for delamination prediction by the use of neural networks[J]. Composites science and technology, 2000, 60(9): 1773-1779.

计算材料学

计算材料学 计算材料学是近20年里发展起来的一门边缘学科. 它运用固体物理理论, 理论化学和计算机算法来研究材料里的一些实验研究有困难的课题. 它是材料研究里的"计算机实验". 本课程主要介绍计算材料学里的原子和纳米尺度模拟的一些常用方法, 如原子相互作用势、最小能量法、分子动力学、蒙特卡洛方法, 也简单介绍了电子-原子尺度的模拟方法、微观-介观尺度的模拟方法、介观-宏观尺度的模拟方法和跨尺度模拟方法. 本课程还采用材料研究中的实际例子来说明这些方法的运用. 课程性质: 学时:32 对象:研究生 教学用语:中文/英语 先修课要求:高等数学, 大学物理, 量子与统计,固体物理 教学内容 1.绪论(2学时) 1.1 计算材料学的发展概况 1.2 计算材料学的范围与层次 2.原子相互作用势(4学时) 2.1 原子相互作用势的一般形式 2.2经验性对势 2.3 多体势 2.4 壳模型 2.5 键级势 3.最小能量法(6学时) 3.1 完整晶体结构模拟

3.2 缺陷模拟 3.3 自由能最小能量法 3.4 表面结构模拟 4.分子动力学方法(6学时) 4.1 原子系统的运动方程 4.2 运动方程的积分 4.3 边界条件 4.4 分子动力学方法在材料科学中的应用 5.蒙特卡洛方法(6学时) 5.1 随机数 5.2 蒙特卡洛积分 5.3 Metropolis蒙特卡洛方法 5.4蒙特卡洛方法的误差 5.5 蒙特卡洛方法在材料科学中的应用 6.电子-原子尺度的模拟方法简介(3学时) 6.1 Hartree-Fock 方法 6.2 分子轨道理论 6.3 从头计算法 6.4 紧束缚势方法 6.5 局域电子密度泛函理论 7.微观-介观尺度的模拟方法简介(3学时) 7.1 离散位错静力学和动力学 7.2 Ginzburg-Landau相场动力学模型

复合材料总思考题及参考答案

复合材料概论总思考题 一.复合材料总论 1.什么是复合材料?复合材料的主要特点是什么? ①复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。 ②1)组元之间存在着明显的界面;2)优良特殊性能;3)可设计性;4)材料和结构的统一 2.复合材料的基本性能(优点)是什么?——请简答6个要点 (1)比强度,比模量高(2)良好的高温性能(3)良好的尺寸稳定性(4)良好的化学稳定性(5)良好的抗疲劳、蠕变、冲击和断裂韧性(6)良好的功能性能 3.复合材料是如何命名的?如何表述?举例说明。4种命名途径 ①根据增强材料和基体材料的名称来命名,如碳纤维环氧树脂复合材料 ②(1) 强调基体:酚醛树脂基复合材料(2)强调增强体:碳纤维复合材料 (3)基体与增强体并用:碳纤维增强环氧树脂复合材料(4)俗称:玻璃钢 4.常用不同种类的复合材料(PMC,MMC,CMC)各有何主要性能特点? PMC MMC CMC(陶瓷基) 使用温度60~250℃400~600℃1000~1500℃ 材料硬度低高最高 强度较高较高较高 耐老化性能差中优 导热性能差好一般 耐化学腐蚀性能好差好 生产工艺难易程度成熟居中最复杂 生产成本最低居中最高 5.复合材料在结构设计过程中的结构层次分几类,各表示什么?在结构设计过程中的设计层次如何,各包括哪些内容?3个层次 答:1、一次结构:由集体和增强材料复合而成的单层材料,其力学性能决定于组分材料的力学性能、相几何和界面区的性能; 二次结构:由单层材料层复合而成的层合体,其力学性能决定于单层材料的力学性能和铺层几何三次结构:指通常所说的工程结构或产品结构,其力学性能决定于层合体的力学性能和结构几何。 2、①单层材料设计:包括正确选择增强材料、基体材料及其配比,该层次决定单层板的性能; ②铺层设计:包括对铺层材料的铺层方案作出合理安排,该层次决定层合板的性能; ③结构设计:最后确定产品结构的形状和尺寸。 6.试分析复合材料的应用及发展。 答:①20世纪40年代,玻璃纤维和合成树脂大量商品化生产以后,纤维复合材料发展成为具有工程意义的材料。至60年代,在技术上臻于成熟,在许多领域开始取代金属材料。 ②随着航空航天技术发展,对结构材料要求比强度、比模量、韧性、耐热、抗环境能力和加工性能都好。针对不同需求,出现了高性能树脂基先进复合材料,标志在性能上区别于一般低性能的常用树脂基复合材料。以后又陆续出现金属基和陶瓷基先进复合材料。 ③经过60年代末期使用,树脂基高性能复合材料已用于制造军用飞机的承力结构,今年来又逐步进入其他工业领域。

复合材料的发展和应用

复合材料的发展和应用 复合材料的发展和应用 具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候 论文格式论文范文毕业论文 全球复合发展概况复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电气、、健身器材等领域,在近几年更是得到了飞速发展。另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。树脂基复合材料的增强材料树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。 1、玻璃纤维目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到10%以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道

的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃纤维属于耐高温的玻璃纤维,是比较理想的耐热防火材料,用其增强酚醛树脂可制成各种结构的耐高温、耐烧蚀的复合材料部件,大量应用于火箭、导弹的防热材料。迄今为止,我国已经实用化的高性能树脂基复合材料用的碳纤维、芳纶纤维、高强度玻璃纤维三大增强纤维中,只有高强度玻璃纤维已达到国际先进水平,且拥有自主知识产权,形成了小规模的产业,现阶段年产可达500吨。 2、碳纤维 3、芳纶纤维 20世纪80年代以来,荷兰、日本、前苏联也先后开展了芳纶纤维的研制开发工作。日本及俄罗斯的芳纶纤维已投入市场,年增长速度也达到20%左右。芳纶纤维比强度、比模量较高,因此被广泛应用于航空航天领域的高性能复合材料零部件(如火箭发动机壳体、飞机发动机舱、整流罩、方向舵等)、舰船(如航空母舰、核潜艇、游艇、救生艇等)、汽车(如轮胎帘子线、高压软管、摩擦材料、高压气瓶等)以及耐热运输带、体育运动器材等。 4、超高分子量聚乙烯纤维超高分子量聚乙烯纤维的比强度在各种纤维中位居第一,尤其是它的抗化学试剂侵蚀性能和抗老化性能优良。它还具有优良的高频声纳透过性和耐海水腐蚀性,许多国家已用它来制造舰艇的高频声纳导流罩,大大提高了舰艇的探雷、扫雷能力。除在军事领域,在汽车制造、船舶制造、医疗器械、体育运动器材等领域超高分子量聚乙烯纤维也有广阔的应用前景。该纤维一经问世就引起了世界发达国家的极大兴趣和重视。 5、热固性树脂基复合材料热塑性树脂基复合材料热塑性树脂基复合材料是20世纪80年代发展起来的,主要有长纤维增强粒料、连

复合材料成型工艺大全及说明

复合材料成型工艺大全及说明 复合材料成型工艺是复合材料工业的发展基础和条件。随着复合材料应用领域的拓宽,复合材料工业得到迅速发展,老的成型工艺日臻完善,新的成型方法不断涌现,目前聚合物基复合材料的成型方法已有20多种,并成功地用于工业 生产。 视所选用的树脂基体材料的不同,各方法适用于热固性和热塑性复合材料的生产,有些工艺两者都适用。复合材料制品成型工艺特点:与其它材料加工工艺相比,复合材料成型工艺具有如下特点: (1)材料制造与制品成型同时完成一般情况下,复合材料的生产过程,也就是制品的成型过程。材料的性能必须根据制品的使用要求进行设计,因此在选择材料、设计配比、确定纤维铺层和成型方法时,都必须满足制品的物化性能、结构形状和外观质量要求等。(2)制品成型比较简便一般热固性复合材料的树脂基体,成型前是流动液体,增强材料是柔软纤维或织物,因此用这些材料生产复合材料制品,所需工序及设备要比其它材料简单的多,对于某些制品仅 需一套模具便能生产。 ◇ 层压及卷管成型工艺1、层压成型工艺层压 成型是将预浸胶布按照产品形状和尺寸进行剪裁、叠加后,

放入两个抛光的金属模具之间,加温加压成型复合材料制品的生产工艺。它是复合材料成型工艺中发展较早、也较成熟的一种成型方法。该工艺主要用于生产电绝缘板和印刷电路板材。现在,印刷电路板材已广泛应用于各类收音机、电视机、电话机和移动电话机、电脑产品、各类控制电路等所有需要平面集成电路的产品中。层压工艺主要用于生产各种规格的复合材料板材,具有机械化、自动化程度高、产品质量稳定等特点,但一次性投资较大,适用于批量生产,并且只能生产板材,且规格受到设备的限制。层压工艺过程大致包括:预浸胶布制备、胶布裁剪叠合、热压、冷却、脱模、加工、后处理等工序。2、卷管成型工艺卷管成型工是用预浸胶布在卷管机上热卷成型的一种复合材料制品 成型方法,其原理是借助卷管机上的热辊,将胶布软化,使胶布上的树脂熔融。在一定的张力作用下,辊筒在运转过程中,借助辊筒与芯模之间的摩擦力,将胶布连续卷到芯管上,直到要求的厚度,然后经冷辊冷却定型,从卷管机上取下,送入固化炉中固化。管材固化后,脱去芯模,即得复合材料卷管。卷管成型按其上布方法的不同而可分为手工上布法和连续机械法两种。其基本过程是:首先清理各辊筒,然后将热辊加热到设定温度,调整好胶布张力。在压辊不施加压力的情况下,将引头布先在涂有脱模剂的管芯模上缠上约1圈,然后放下压辊,将引头布贴在热辊上,同时将胶布拉上,盖

碳纤维及其复合材料的发展及应用_上官倩芡

第37卷第3期上海师范大学学报(自然科学版)Vol.37,N o.3 2008年6月J ou rnal of ShanghaiNor m alUn i versity(Natural S ci en ces)2008,J un 碳纤维及其复合材料的发展及应用 上官倩芡,蔡泖华 (上海师范大学机械与电子工程学院,上海201418) 摘要:叙述了碳纤维的结构形态、分类以及在力学、物理、化学方面的性能,介绍了碳纤维增强复合材料的特性,着重阐述了碳纤维增强树脂基复合材料中基体的分类、选择和应用,指出了碳纤维及其复合材料进一步发展的趋势. 关键词:碳纤维;复合材料 中图分类号:O636文献标识码:A文章编号:1000-5137(2008)03-0275-05 碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能.此外,还具有纤维的柔曲性和可编性[1~3].碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用.因此碳纤维及其复合材料近几年发展十分迅速.本文作者就碳纤维的特性、分类及其在复合材料领域的应用等内容进行介绍. 1碳纤维特性、结构及分类 碳纤维是纤维状的碳材料,由有机纤维原丝在1000e以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料.碳纤维主要具备以下特性:1密度小、质量轻,碳纤维的密度为1.5~2g/c m3,相当于钢密度的1/4、铝合金密度的1/2;o强度、弹性模量高,其强度比钢大4~5倍,弹性回复为100%;?热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;?摩擦系数小,并具有润滑性;?导电性好,25e时高模量碳纤维的比电阻为775L8/c m,高强度碳纤维则为1500L8/c m;?耐高温和低温性好,在3000e非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软,也不脆化;?耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀[4~7].除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性. 碳纤维的结构取决于原丝结构和碳化工艺,但无论用哪种材料,碳纤维中碳原子平面总是沿纤维轴平行取向.用X-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构[8],如图1所示.构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面.在层平面内的碳原子以强的共价键相连,其键长为0.1421n m;在层平面之间则由弱的范德华力相连,层间距在0.3360~0.3440n m之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐.处于石墨层片边缘的碳原子和层面内部结构完整的基础碳原子不同.层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性 收稿日期:2008-01-04 基金项目:上海市教委科研基金项目(06D Z034). 作者简介:上官倩芡(1974-),女,上海师范大学机械与电子工程学院副教授.

复合材料工艺与设备复习材料

复合材料工艺与设备 增强纤维(CF,GF)的生产工艺与设备(表面处理工艺与设备) 玻璃纤维在生产过程中辅助材料的作用:浸润剂的种类,作用 种类:增强型浸润剂和纺织型浸润剂; 作用:1、润滑-保护作用;2、粘结-集束作用; 3、防止玻璃纤维表面静电荷的积累;4、为玻璃纤维提供进一步加工和应用所需要的特性;5、使玻璃纤维获得与基材有良好的相容性及界面化学结合或化学吸附等性能 C纤维生产工艺中,惰性气体和张力的作用 惰性气体作用:①保护新生产的纤维不受氧化②作为传热介质③排除裂解产物(非C元素)。张力的作用:①使分子取向②使分子结构规整③产生轴向拉伸应力 增强纤维在表面处理工艺中的影响因素 玻璃纤维表面处理的影响因素:①处理剂的种类;②偶联剂的用量1~%;③处理方法(前处理法、后处理法、迁移法);④烘焙温度与时间(偶联剂与GF的硅层结构的最佳结合程度); ⑤偶联剂溶液的配制(PH值的调节,一般用5%的氨水)。 手糊成型工艺与设备 手糊工艺的特点:优点:1、守护成型不受产品尺寸和形状的限制,适宜尺寸大、批量小、形状复杂产品的生产;2、设备简单、投资少、设备折旧费低;3、工艺简单;4、易于满足产品设计要求,可以在产品不同部位任意增补增强材料;5、制品树脂含量高,耐腐蚀性好;缺点:1、生产效率低,劳动强度大,劳动卫生条件差;2、产品质量不易控制,性能稳定性不高;3、产品力学性能较低。 原材料选择原则:1、产品设计的性能要求;2、手糊成型工艺要求;3、价格便宜,材料容易取得。聚合物基体的选择原则:1、能在室温下凝胶、固化。并在固化过程中无低分子物得产生。2、能配制成粘度适当的胶液,适宜手糊成型的胶液粘度为。3、无毒或低毒;4、价格便宜。增强纤维的选择原则:以玻璃纤维为例,工艺特点:1、很好的疏松性;2、铺覆的变形性;3、纤维的均匀性。 先进手糊法的种类:喷射成型、热压釜、树脂传递模塑与反应注射模塑。 RTM(树脂传递模塑)基本工艺过程:将液态热固性树脂及固化剂,由计量设备分别从储桶

SMC复合材料的应用和特点

SMC复合材料是Sheet molding compound的缩写,即片状模塑料。主要原料由GF (专用纱)、UP (不饱和树脂)、低收缩添加剂,MD (填料)及各种助剂组成。它在二十世纪六十年代初首先出现在欧洲,在1965年左右,美、日相继发展了这种工艺。 我国于80年代末,引进了国外先进的SMC生产线和生产工艺。SMC复合材料及其SMC模压制品,具有优异的电绝缘性能、机械性能、热稳定性、耐化学防腐性。所以SMC制品的应用范围相当广泛。现在发展趋势是SMC复合材料最终取代BMC材料。 材料中以纤维增强材料应用广、用里大。其特点是比重小、比强度和比模量大。例如碳纤维与环氧树脂复合的材料,其比强度和比模量均比钢和铝合金大数倍,还具有优良的化学稳定性、减摩耐磨、自润滑、耐热、耐疲劳、耐蠕变、消声、电绝缘等性能。石墨纤维与树脂复合可得到膨胀系数几乎等于零的材料。纤维增强材料的另一个特点是各向异性,因此可按制件不同部位的强度要求设计纤维的排列。以碳纤维和碳化硅纤维增强的铝基复合材料,在500C时仍能保持足够的强度。

材料成型工艺灵活,其结构和性能具有很强的可设计性。用模具一次成型法制造各种构件,可提高结构强度,通过纤维种类和不同排布的设计,可提高构件不同部位的性能。通过调节复合材料各组分的成分、构成及排列方式,既可使构件在不同位置承受不同的作用力,还可制成兼有刚性、韧性和塑性等矛盾性能的复合材料多功能产品,这些都是传统材料所不具备明显海洋气候的地下环境时其腐蚀危害更为明显,再加上地铁工程的杂散电流腐蚀,大大降低了金属材料的使用年限。的优点。复合材料疏散平台与电缆支架的应用技术中,复合材料性能的“可设计性”起到很大作用。 杭州金盟道路设施有限公司是一家专注于复合材料检查井盖以及复合材料整体技术解决方案的国家高新技术企业。在SMC复合材料的应用中我们也有丰富的经验,如果想了解更多复合材料产品,可以登录我们官网咨询。

复合材料的发展前景,发展与应用

复合材料的发展及应用 随着科学技术迅速发展,特别是尖端科学技术的突飞猛进,对材料性能提出越来越高,越来越严和越来越多的要求。在许多方面,传统的单一材料已不能满足实际需要。这时候复合材料就出现在了这百家争鸣的舞台上。 基本概论 复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。此定义来自ISO。在复合材料中,通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。从上述定义中可以看出,复合材料是两个或多个连续相与一个或多个分散相在连续相中的复合,复合后的产物为固体时才称为复合材料。所以我们可根据增强材料与基体材料的名称来给复合材料命名,增强基体复合材料。如:玻璃钎维环氧树脂复合材料,可写作玻璃/环氧复合材 料。 分类与性能 按增强材料形态分类可分为(1)连续纤维复合材料;(2)短纤维复合材料;(3)粒状填料复合材料;(4)编织复合材料。按增强纤维种类分类可分为(1)玻璃纤维复合材料;(2)碳纤维复合材料;(3)有机,金属,陶瓷纤维复合材料。在此篇文章中主要讨论以基体材料分类的几种复合材料。1.聚合物基复合材料——比强度,比模量大;耐疲劳性好;减震性好;过载时安全性好;具有多种功能性;

有很好的加工工艺性。2金属基复合材料——高比强度,高比模量;导热,导电性能;热膨胀系数小,尺寸稳定性好;良好的高温性能;耐磨性好;良好的疲劳性能和断裂韧性;不吸潮,不老化,气密性好。此外还有陶瓷,水泥基复合材料,都有与上类似的特点。 基体材料 一:金属材料 选择基体的原则:使用要求,组成特点,基体金属与增强物的相 容性。 结构复合材料的基体:450℃以下的轻金属基体(“铝基和镁基”用于航天飞机,人造卫星,空间站,汽车发动机零件,刹车盘等);450-700℃的复合材料的金属基体(“钛合金”用于航天发动机);1000℃以上的高温复合材料的金属基体(“镍基,铁基耐热合金和金属间化合物”用于燃气轮机)。 二:陶瓷材料 陶瓷是金属和非金属元素的固体化合物,其键合为共价键或离子键,与金属不同,它们不含有大量的电子。一般而言,陶瓷具有比金属更高的熔点和硬度,化学性质非常稳定,耐热性,抗老化性皆佳。常用的陶瓷基体主要包括玻璃(无机材料高温烧结),玻璃陶瓷,氧化物陶瓷(MgO,Al2O3,SiO2,莫来石等),非氧化物陶瓷(氮化物,碳化物,硼化物和硅化物等)。 三:聚合物材料

复合材料的发展和应用的论文

复合材料的发展和应用的论文 全球复合材料发展概况 复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。 随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商ppg公司统计,2000年欧洲的复合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国gdp增长率的2倍,达到4%~6%。2000年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,2000年的总产量约为145万吨,预计2005年总产量将达180万吨。 从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达万吨,欧洲汽车复合材料用量到2003年估计可达万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达万吨,汽车等领域的用量仅为万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车制造业中。与此同时,随着近年来人们对环保问题的日益重视,高分子复合材料取代木材方面的应用也得到了进一步推广。例如,用植物纤维与废塑料加工而成的复合材料,在北美已被大量用作托盘和包装箱,用以替代木制产品;而可降解复合材料也成为国内外开发研究的重点。 另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。 树脂基复合材料的增强材料 树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。 1、玻璃纤维 目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到10%以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃

计算材料学讲稿-6

第一次课绘制简单分子 一、画一个苯酰胺 目的:介绍Materials Visualizer中画结构的工具。 用到的模块:Materials Visualizer 化学家每天都要处理很多种类的小分子和中间物。所以容易的创建模型对建模环境都是很重要的。苯酰胺是典型的小分子结构。以下通过建立他的结构来学习Materials Studio。下面是要建立的苯酰胺的结构: Benzamide 1.创建3D文档: 从菜单中选择File | New...打开New Document对话框。选择3D Atomistic Document(三维原子文档),按OK。建立了一个三维窗口,工程管理器中显示建立了名为3D Atomistic Document.xsd的文件。在工程管理器这个文件名上右击鼠标,选择Rename改名。键入my_benzamide的新名字,按回车。选择File | Save 命令,或按标准工具条中的按钮。在my quickstart文件夹(每个工程都对应一个同名的文件夹)中建立了名为my_benzamide.xsd的文件。 2. 改变到Ball and Stick球棍模型显示方式。 三维窗口中右击鼠标,选择Display Style,打开Display Style对话框,在Atom 选项卡上设置。Materials Studio能在任何显示方式下添加原子。 3. 画环和原子链。

在草画工具条上单击Sketch Ring 按钮,鼠标移到三维窗口。鼠标变为 铅笔行状提示你处于草画模式。鼠标榜的数字表示将要画的环包括的原子数目。可以通过按3-8的数字键改变。确保这个数字为6,三维窗口中单击。画出了一个6个C原子的环。如果安装ALT键单击,产生共振键。 现在单击草画工具条Sketch Atom 按钮,这是通用添加原子工具,可加 入任何元素,默认加入C原子。如下在环上加入两个C原子。在环上移动鼠标,当一个原子变为绿色时单击,键的一端就在这个原子上,移动鼠标再单击就加入了一个C原子,再移动,并双击。这样在环上加入了两个原子。另一种结束添加原子的方法是在最后一个原子位置单击,然后按ESC键。注意,新加入的原子的化学键已经自动加上。 注意:你可以按Undo 按钮取消错误操作。 4、加入氧原子。 按Sketch Atom按钮旁的向下按钮,显示可选元素,选择氧Oxygen,在支链上移动鼠标,当变为蓝色显示时单击,这个原子就有了一个化学键,移动鼠标并双击。加入了O原子。在3D窗口工具条上按按钮,进入了选择模式。 5. 编辑元素类型。 单击链末端的C原子,选定它。选定的对象用黄色显示。按Modify Element按钮旁的箭头,显示元素列表,选择Nitrogen氮,选定的原子就变为了氮原子。单击三维窗口中空白地方,取消选择,就可以看到这种变化了。 6.编辑键类型。 在三维窗口中在C和O原子中间单击选定C-O键。选定的键以黄色显示。按下SHIFT键,单击其它三个相间的键。现在选定了三个C-C键和一个C-O键。 单击Modify Bond 按钮旁的向下按钮,显示键类型的下拉列表,选择Double Bond双键。取消选定。 7. 调整氢原子和结构 现在可以给结构自动加氢。单击Adjust Hydrogen 按钮,自动给模型加入

常用复合材料介绍

非金属材料及复合材料 学习目标:了解非金属材料和复合材料的种类、性能特点及应用,特别是塑料、橡胶、陶瓷、复合材料的性能特点及应用。 本章导读:塑料与橡胶为有机高分子材料,与金属相比质量轻,具有金属材料不可比拟的特殊性能,使用极为广泛;陶瓷为无机非金属材料,具有高硬度、耐蚀的性能,除日用陶瓷外,工业上使用的特种陶瓷更具有其独特的性能,在机械加工、航空航天、化学工业等领域都有应用;复合材料是由两种或多种材料组成的多相材料,具有较好的综合性能,其应用越来越受到广泛的重视,大家熟悉的玻璃钢、塑钢门窗、羽毛球拍等,都是用复合材料制造的。 第一节塑料与橡胶 塑料与橡胶属高分子材料,目前,全世界合成高分子材料的年产量按体积计已超过钢铁材料,并正以每年14%的速度增长,其使用领域广泛,涉及工业制造及日常生活。 高分子材料是由若干原子按一定规律重复地连接而成的长链分子,长链分子的最大伸直长度可达毫米级,其分子量一般大于5000。高分子材料按来源可分为天然高分子(天然橡胶、蚕丝、皮革、木材等)和合成高分子化合物(塑料、橡胶等)。 合成高分子化合物是由一种或几种单体(简单结构的低分子化合物)聚合而成的,因此高分子化合物又称高聚物或聚合物。如聚乙烯分子就是由单体乙烯经聚合反应连接而成: n(CH2=CH2)—— --[ CH2—CH2 ]-- n 乙烯聚乙烯 高分子化合物的化学组成一般并不复杂,是由重复连接的结构单元组成的,这种重复连接的结构单元称为“链节”,如聚乙烯中的 --[ CH-2—CH2 ]--。大分子链之间存在的相互作用力使链节连接起来,其连接方式决定了高分子化合物的性能。 一、塑料 1.塑料的组成 塑料的主要组成是合成树脂和添加剂。合成树酯是具有可塑性的高分子化合物的统称,它是塑料的基本组成物,它决定了塑料的基本性能,塑料中合成树酯含量一般为30%~100%。树酯在塑料中还起粘结剂的作用,许多塑料的名称是以树酯来命名的,如聚苯乙烯塑料的树酯就是聚苯乙烯;添加剂的作用主要是改善塑料的某些性能或降低成本,常用的添加剂有填充剂、增塑剂、稳定剂、润滑剂、固化剂、着色剂等。

复合材料的发展和应用(1)

复合材料的发展和应用(1) 全球复合材料发展概况 复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。 随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商PPG公司统计,20XX年欧洲的复

合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国GDP增长率的2倍,达到4%~6%。20XX年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,20XX年的总产量约为145万吨,预计20XX年总产量将达180万吨。 从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。20XX年美国汽车零件的复合材料用量达万吨,欧洲汽车复合材料用量到20XX年估计可达万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在20XX年的用量达万吨,汽车等领域的用量仅为万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车制造业中。与此同时,随着近年来人们对环保问题的日益重视,高分子复合材料取代木材方面的应用也得到了进一步推广。例如,

【PDF】计算材料学MDexpRef

计算材料学 分子动力学上机实验教程(2014.04) 课时安排、重要通知、更新、软件下载请见: https://www.doczj.com/doc/c510355397.html, 上机实验相关软件分类介绍 分子动力学:LAMMPS --- 附录1 操作系统:CentOS(linux)--- 附录2 可视化:Atomeye --- 附录3(课堂使用),OVITO --- 附录4(推荐课下使用) 画图:Gnuplot --- 附录5 文本编辑:Gedit:Linux,GNOME桌面环境下兼容UTF-8的文本编辑器。它使用GTK+编写而成,简单易用,支持包括gb2312、gbk在内的多种字符编码。 远程登录和文件传输:sftp(Xmanager) 附录1. LAMMPS介绍: LAMMPS-Large-scale Atomic/Molecular Massively Parallel Simulator, 大规模原子分子并行模拟器。美国Sandia 国家实验室开发,开放源代码且可以免费获取使用,使用者可以根据自己需要自行修改源代码。LAMMPS可以支持包括气态,液态或者固态相形态下、各种系综下、百万级的原子分子体系,并提供支持多种势函数。 且LAMMPS有良好的并行扩展性。 材料领域,LAMMPS已经是准标准化的分子动力学软件。 LAMMPS官网:https://www.doczj.com/doc/c510355397.html,/ 使用LAMMPS: (1)输入一般至少包括两个: (a)input文件: LAMMPS命令集成在该文本中,可以包括MD相关的模型结构,弛豫条件,加载方式,输出 内容等绝大多数信息。具体每一行语句在官网上有详细的解释。我们学习的一项主要内容是理解和改写input文件。 (b)势函数文件:将势函数的参数等信息独立出来,写成单独的一个文件,在input文件内调入使用。 (2)运行软件: 保证当前目录下写好了input文件和势函数文件,终端上输入命令(串行): (3)输出一般有三个部分:(所有输出都与input文件与输出相关的指令相关) (a)直接输出在屏幕上,一些程序运行的关键信息直接出现输出屏幕上,一般是整个体系的信息。这些内容默 认保存在https://www.doczj.com/doc/c510355397.html,mmps文件里,我们称为log文件。 (b)输出记录每个原子信息的文件,有多种形式,我们的到的x.cfg文件是可以被可可视化软件Atomeye直接 读取的。也可以用gedit直接打开,可以看到每一行记录一个原子的信息,比如坐标,速度,动能,势能等。 (c)其它按照input文件中的指令计算并输出的文件或者是对log文件中的内容处理提取得到的文件。同样可 以用gedit打开,我们可以对其进行后续的分析,计算,画图等处理。 Input脚本语法介绍: (LAMMPS版本更新非常快,这里只是对本课程所需的命令及其它部分常用命令的介绍,关注LAMMPS官网https://www.doczj.com/doc/c510355397.html,/,是学习LAMMPS最有效的方法!) 以下□表示空格,红色表示可更改的参数

复合材料开发以及运用

复合材料开发以及使用 世界复合材料发展概况 复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它能够发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用 范围。因为复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应 用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年 更是得到了飞速发展。 随着科技的发展,树脂与玻璃纤维在技术上持续进步,生产厂家的制 造水平普遍提升,使得玻纤增强复合材料的价格成本已被很多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。所以,碳纤维、硼纤维等增强复合材料相继问世,使高分子复合材料家族更加完备, 已经成为众多产业的必备材料。当前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高 价值产品计入,其产值将更为惊人。从世界范围看,世界复合材料的 生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中 国内地的市场发展迅速。据世界主要复合材料生产商PPG公司统计,2000年欧洲的复合材料世界占有率约为32%,年产量约200万吨。与 此同时,美国复合材料在20世纪90年代年均增长率约为美国GDP增 长率的2倍,达到4%~6%。2000年,美国复合材料的年产量达170万 吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在世界市场 上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化 密切相关,各国的占有率变化很大。总体来说,亚洲的复合材料仍将 继续增长,2000年的总产量约为145万吨,预计2005年总产量将达 180万吨。 从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达14.8万吨,欧洲汽车复合材料

新型复合材料的发展与应用

新型复合材料的发展与应用复合材料是应现代科学技术发展而涌现出的一类具有极大生命力的新材料,它们均由两种或两种以上物理和化学性质不同的物质组合起来而得到的一种多相固材料。复合材料区别于单一材料的显着特征是材料性能的可设计性,即经过选择性设计和加工,通过各组分性能间的相互补充,可获得新的优良性能。 生活中有许许多多的复合材料,传统的复合材料有钢筋混凝土,玻璃钢鱼竿、一体成型的鞋子、用于开关绝缘的合成树脂等。新型复合材料是具有更高性能的材料,具有比强度高、比模量高、密度低等,它包括用碳、芳纶、陶瓷等纤维和晶体等高性能增强体与耐热性好的热固性和热塑性树脂基构成的高性能聚合物复合材料。 人类在远古时代就从实践中认识到,?可以根据用途需要,组合两种或多种材料,利用性能优?势互补,制成原始的复合材料。所以,复合材料既是一?种新型材料,也是一种古老的材料。复合材料的发展历?史,可以从用途、构成、功能,以及设计思想和发展研?究等,大体上分为古代复合材料和现代复合材料两个阶?段。 ?古代复合材料在西安东郊半坡村仰韶文化遗址,?发现早在公元前2000年以前,古代人已经用草茎增强?土坯作住房墙体材料。 ????在金属基复合材料方面,中国也有高超的技艺。最具代表性的如越王剑,是金属包层复合材料制品,不仅光亮锋利,而?且韧性和耐蚀性优异,埋藏在潮湿环境中几千年,出土后依然寒光夺目,锋利无比。 5000年以前,中东地区用芦苇增强沥青造船。古埃及墓葬出土,发现有用名贵紫檀木在普通木材上装饰贴面的棺撑家具。古埃及修建金字塔,用石灰、火山灰等作粘合剂,混和砂石等作砌料,这是最早最原始的颗粒增强复合材料。但是,上述辉煌的历史遗产,只是人类在与自然界的斗争实践中不断改进而取得的,同时都是取材于天然材料,对复合材料还是处于不自觉的感性认识阶段。。

计算材料学

计算材料学(Computational Materials Science),是材料科学与计算机科学的交叉学科,是一门正在快速发展的新兴学科,是关于材料组成、结构、性能、服役性能的计算机模拟与设计的学科,是材料科学研究里的“计算机实验”。它涉及材料、物理、计算机、数学、化学等多门学科。 计算材料学- 学科介绍 计算材料学(Computational Materials Science),是材料科学与计算机科学的交叉学科,是一门正在快速发展的新兴学科,是关于材料组成、结构、性能、服役性能的计算机模拟与设计的学科,是材料科学研究里的“计算机实验”。它涉及材料、物理、计算机、数学、化学等多门学科。计算材料学主要包括两个方面的内容:一方面是计算模拟,即从实验数据出发,通过建立数学模型及数值计算,模拟实际过程;另一方面是材料的计算机设计,即直接通过理论模型和计算,预测或设计材料结构与性能。前者使材料研究不是停留在实验结果和定性的讨论上,而是使特定材料体系的实验结果上升为一般的、定量的理论,后者则使材料的研究与开发更具方向性、前瞻性,有助于原始性创新,可以大大提高研究效率。因此,计算材料学是连接材料学理论与实验的桥梁。 计算材料学- 研究领域 材料的组成、结构、性能、服役性能是材料研究的四大要素,传统的材料研究以实验室研究为主,是一门实验科学。但是,随着对材料性能的要求不断的提高,材料学研究对象的空间尺度在不断变小,只对微米级的显微结构进行研究不能揭示材料性能的本质,纳米结构、原子像已成为材料研究的内容,对功能材料甚至要研究到电子层次。因此,材料研究越来越依赖于高端的测试技术,研究难度和成本也越来越高。另外,服役性能在材料研究中越来越受到重视,服役性能的研究就是要研究材料与服役环境的相互作用及其对材料性能的影响。随着材料应用环境的日益复杂化,材料服役性能的实验室研究也变得越来越困难。总之,仅仅依靠实验室的实验来进行材料研究已难以满足现代 新材料研究和发展的要求。然而计算机模拟技术可以根据有关的基本理论,在计算机虚拟环境下从纳观、微观、介观、宏观尺度对材料进行多层次研究,也可以模拟超高温、超高压等极端环境下的材料服役性能,模拟材料在服役条件下的性能演变规律、失效机理,进而实现材料服役性能的改善和材料设计。因此,在现代材料学领域中,计算机“实验”已成为与实验室的实验具有同样重要地位的研究 手段,而且随着计算材料学的不断发展,它的作用会越来越大。 计算材料学的发展是与计算机科学与技术的迅猛发 展密切相关的。从前,即便使用大型计算机也极为困难的一些材料计算,如材料的量子力学计算等,现在使用微机就能够完成,由此可以预见,将来计算材料学必将有更加迅速的发展。另外,随着计算材料学的不断进步与成熟,材料的计算机模拟与设计已不仅仅是材料物理以及材料 计算理论学家的热门研究课题,更将成为一般材料研究人员的一个重要研究工具。由于模型与算法的成熟,通用软件的出现,使得材料计算的广泛应用成为现实。因此,计算材料学基础知识的掌握已成为现代材料工作者必备的 技能之一。 计算材料学涉及材料的各个方面,如不同层次的结构、各种性能等等,因此,有很多相应的计算方法。在进行材料计算时,首先要根据所要计算的对象、条件、要求等因素选择适当的方法。要想做好选择,必须了解材料计算方法的分类。目前,主要有两种分类方法:一是按理论模型和方法分类,二是按材料计算的特征空间尺寸(Characterist ic space scale)分类。材料的性能在很大程度上取决于材料的微结构,材料的用途不同,决定其性能的微结构尺度会有很大的差别。例如,对结构材料来说,影响其力学性能的结构尺度在微米以上,而对于电、光、磁等功能材料来说可能要小到纳米,甚至是电子结构。因此,计算材料学的研究对象的特征空间尺度从埃到米。时间是计算材料学的另一个重要的参量。对于不同的研究对象或计算方法,材料计算的时间尺度可从10-15秒(如分子动力学方法等)到年(如对于腐蚀、蠕变、疲劳等的模拟)。对于具有不同特征空间、时间尺度的研究对象,均有相应的材料计算方法。 目前常用的计算方法包括第一原理从头计算法,分子动力学方法,蒙特卡洛方法,有限元分析等。 计算材料学是目前材料科学中发展最快的科目。随着大量的论文发表和科研材料的科学家数量的快速增加,现在已有条件检验计算材料学对材料科学的影响。可以回顾以下计算机模拟在新材料的发展上起过什么作用,或许更重要的是,总结在材料性能的基础研究方面有哪些突破应该归公与计算机模拟。 有意思的是,人们对模拟方法的期望竟产会超过实际的结果,然而这些过高的期望往往更多来自非专业认识而不是那些正在做这些工作的饿人。如果问一个从事计算材料学的人关于现在使用的方法,他回非茶馆内谨慎地回答:尽管我们的方法很可靠,但仍需要大的发展。这些方法有欠缺并不奇怪,计算材料学只有几十年的历史。因此,我们在关注它现今的地位时,必须同样关注仿镇与建模的可靠性。这门年轻的学科,已经有诸多长足的发展,涉及到许多包含多种距离尺度的现象。 也许最原始的计算材料学是计算固体的电子结构。这些计算显然已经非常成功地表述了材料的结构和性质。现在,对于许多晶体材料,预计的点阵常数和实验值仅相差百分之几。最近的弹性常数计算方法得到了与实验值非常吻合的结果,而且实行起来也比实验容易得多。多体理论的发展,使得目前已能对简单半导体禁带宽度进行预测。 但是,基于这样一些成果,电子结构计算往往表述得似乎比实验值更精确。实际上,着些计算含有很多近似,而且很容易发生误导而得到错误的结论。此外,近似法限

相关主题
文本预览
相关文档 最新文档