当前位置:文档之家› 高压变频器基础教程精选.

高压变频器基础教程精选.

高压变频器基础教程精选.
高压变频器基础教程精选.

高压变频器基础教程

作者:上海艾帕电力电子有限公司竺伟

前言

随着电气传动技术,尤其是变频调速技术的发展,作为大容量传动的高压变频调速技术也得到了广泛的应用。高压电机利用高压变频器可以实现无级调速,满足生产工艺过程对电机调速控制的要求,以提高产品的产量和质量,又可大幅度节约能源,降低生产成本。近年来,各种高压变频器不断出现,高压变频器到目前为止还没有像低压变频器那样近乎统一的拓扑结构。根据高压组成方式可分为直接高压型和高-低-高型,根据有无中间直流环节来分,可以分为交-交变频器和交-直-交变频器,在交-直-交变频器中,按中间直流滤波环节的不同,可分为电压源型和电流源型。高-低-高型变频器采用变压器实行输入降压,输出升压的方式,其实质上还是低压变频器,只不过从电网和电机两端来看是高压的,是受到功率器件电压等级技术条件的限制而采取的变通办法,需要输入,输出变压器,存在中间低压环节电流大,效率低下,可靠性下降,占地面积大等缺点,只用于一些小容量高压电机的简单调速。常规的交-交变频器由于受到输出最高频率的限制,只用在一些低速,大容量的特殊场合。直接高压交-直-交变频器直接高压输出,无需输出变压器,效率高,输出频率范围宽,应用较为广泛。我们将对目前使用较为广泛的几种直接高压输出交-直-交型变频器及其派生方案进行分析,指出各自的优缺点。评价高压变频器的指标主要有:成本,可靠性,对电网的谐波污染,输入功率因数,输出谐波,dv/dt,共模电压,系统效率,能否四象限运行等。顺便指出,我们习惯称作的高压变频器,实际上电压一般为 2.3-10KV,国内主要为3KV,6KV和10KV,和电网电压相比,只能算作中压,故国外常成为Medium V oltage Drive。

高压变频器正向着高可靠性,低成本,高输入功率因数,高效率,低输入输出谐波,低共模电压,低dv/dt等方向发展。电流源型变频器技术成熟,且可四象限运行,但由于高压时器件串联的均压问题,输入谐波对电网的影响和输出谐

波对电机的影响等问题,使其应用受到限制。对风机和水泵等一般不要求四象限运行的设备,单元串联多电平PWM电压源型变频器在输入,输出谐波,效率和输入功率因数等方面有明显的优势,具有较大的应用前景。对于轧机,卷扬机等要求四象限运行和动态性能较高的场合,双PWM结构的三电平电压源型变频器会得到广泛的应用。

一、电流源型变频器

电流源型变频器(CSI:Current Source Inverter)采用大电感作为中间直流滤波环节。整流电路一般采用晶闸管作为功率器件,少数也有采用GTO的,主要目的是采取电流PWM控制,以改善输入电流波形。逆变部分一般采用晶闸管或GTO作为功率器件。由于存在着大的平波电抗器和快速电流调节器,所以过电流保护比较容易。当逆变侧出现短路等故障时,由于电抗器存在,电流不会突变,而电流调节器则会迅速响应,使整流电路晶闸管的触发角迅速后移,电流能控制在安全范围内。为了对接地短路也实现保护,通常把滤波电抗器分为两半,上下直流母线各串一半。电流源型变频器的一大优点是能量可以回馈电网,系统可以四象限运行。虽然直流环节电流的方向不能改变,但整流电压可以反向(当整流电路工作在有源逆变状态时),能量可以回馈到电网。

晶闸管目前工业应用的最高电压为8000V左右,当电网电压较高时,可采用晶闸管串联的办法。比如,当电网电压为交流4160V时,需要2个耐压为5KV 的晶闸管串联,才能满足5900V峰值电压时的耐压要求。考虑到器件串联时的均压问题和器件耐压使用安全裕量,在工业应用中,一般使用到器件额定电压的50-60%。晶闸管串联存在静态均压和动态均压问题。均压电阻会消耗一部分功率,影响系统的效率。晶闸管的通态压降一般较低,门极触发电路比较简单,驱动功率较低。以6500V,4200A的晶闸管为例,通态压降可做到1.73V,门极触发电流仅需400mA,触发功率仅为3W,该晶闸管的断态电压临界上升率达2000V/us,通态电流临界上升率达250A/us(连续)。

由于电源侧采用三相桥式晶闸管整流电路,输入电流的谐波成份较大,为了降低谐波,可采取多重化,有的还必须加输入滤波装置。电流源型变频器输入功率因数一般较低,且会随着转速的下降而降低,通常要附加功率因数补偿装置。

另外,电流源型变频器还会产生较大的共模电压,当没有输入变压器时,共模电压会施加到电机定子绕组中心点和地之间,影响电机绝缘。电流源型变频器的输出电流谐波较高,会引起电机的额外发热和转矩脉动,必要时也可采取输出12脉冲方式或设置输出滤波器,当然系统的复杂性和成本也会增加。由于均压电路等固定损耗较大,以及输入功率因数较低,导致无功电流较大等原因,系统效率会随着负载的降低而降低。

电流源型变频器种类较多,主要有串联二极管式,输出滤波器换相式,负载换相式和GTO-PWM式等。其中,前三种电流源型变频器的逆变功率器件都采用晶闸管,输出采用120°导通方式。GTO-PWM式电流源型变频器采用GTO 作为功率器件,逆变器一般采取电流PWM控制方式。在系统控制上,电流源型变频器在一般应用时采取电压-频率协调控制。与电压源型变频器可以直接控制输出电压不同,电流源型变频器的输出电压是由输出电流及负载决定的,所以为了实现电压频率协调控制,必须设置电压环以实现输出电压的闭环控制。高性能时,通常采取磁场定向矢量控制,采用常见的转速电流双闭环,通过速度和磁通闭环调节器分别得到定子电流的转矩分量和励磁分量,经过极坐标变换,得到定子电流幅值和负载角,定子电流的幅值作为电流环的给定值,控制晶闸管整流电路实现定子电流的闭环控制,负载角和同步旋转坐标系的位置角迭加在一起,用于逆变侧晶闸管的触发脉冲分配。

电流源型变频器对电网电压的波动较为敏感,一般电网电压下降15%,变频器就会跳闸停机。

一、晶闸管电流源型变频器(一)

1 串联二极管式电流源型变频器

图1是串联二极管式电流源型变频器的逆变电路结构图。图中C13,C35,C51和C46,C62,C24是换相电容器,利用换相电容和电机电感之间的谐振实现晶闸管的强迫换流,二极管VD1-VD6在换流过程中隔离电机反电势,使它不影响换相电容的放电过程。变频器运行与电机参数(主要是漏感)的关系较大,换相电容的容量要与电机电感和负载电流相匹配。在实际应用中,通常要根据所带电机的不同,相应地配置换相电容的数量。

2输出滤波器换相式电流源型变频器

输出滤波器换相式电流源型变频器利用输出滤波器对晶闸管进行换相,组成结构如图2所示。滤波器大概在50%转速时提供电机所需的全部励磁电流,在这点以上,负载(包括电机和滤波器)维持超前的功率因数。所以逆变器的晶闸管可以实现自然换流,滤波器的容量基本和变频器容量相当,除了庞大的滤波电容外,滤波器还必须串联一定量的电感,以防止产生过大的di/dt,影响晶闸管的安全。由于滤波器容量较大,足以让电机自激发电,所以在滤波器输出和电机之间必须附加一个接触器,以防止变频器跳闸或自由停车时,电机自激发电。庞大的滤波器的优点是对输出120°方波电流起到了很好的滤波作用,所以速度较高时,电机电流波形有所改善。当输出频率降低时,滤波器的滤波作用下降,电机电流波形的质量也有所下降。在变频调速过程中,由于输出电压随着频率的上升正比上升,电容的阻抗与频率成反比关系,所以,随着输出频率的上升,流入滤波器的基波电流幅值按照频率的平方关系上升,直到额定值。因此,这种变频器运行的最高频率一般不会超过额定频率的1.1倍,否则,当频率过高时,变频器无法提供滤波电容所需的无功电流。

图2 输出滤波器换向式电流源型变频器

在起动和低速时,由于输出电压较低,滤波电容基本上起不到换相作用,一般采取电流断续换相法。每当逆变侧晶闸管要换相时,设法使流入到逆变器的直流电流下降到零,使逆变侧晶闸管暂时关断,然后给换向后应该导通的晶闸管加上触发脉冲。重新恢复直流电流时,电流将根据触发顺序流入新导通的晶闸管,从而实现从一相到另一相的换相。断流的办法很多,其中一种方法是在直流环节设置一直流电流旁路电路,当要关断逆变侧晶闸管时,直流环节电流被此电路所旁路,而不会流过逆变侧晶闸管,晶闸管自然关断。当下一对晶闸管需要导通时,再切断旁路电路,恢复直流电流继续流向逆变器(图2)。此辅助断流电路要能承受全部直流环节电压,并能通过全部直流电流,时间大约几百微秒,以保证晶闸管恢复阻断。高压晶闸管要求较高的阻断电压,带来的负面影响是需要较长的关断时间,因此,辅助断流电路需要相当的容量。当然,辅助断流电路不是设计成为连续运行的,只是在起动和低速时工作,使速度达到一定值,让滤波电容能正常工作,变频器要求能在两种模式之间自动切换。另一种方法是封锁电源,或让电源侧整流入逆变状态,直流环节电流迅速衰减,以达到短时间内断流的目的。触发新的晶闸管时再让电源恢复。直流回路的平波电抗器对电流断续换相是十分不利的,因此必须在电抗器两端并联一个续流晶闸管,当电流衰减时,触发此晶闸管使之导通,使电抗器的能量得以释放,以便不影响逆变器的断流(图3)。

输出滤波器换相式电流源型变频器在一些调速范围不大(比如60-100%)的场合还是应用比较成功的。

3 负载换相式电流源型变频器(LCI)

负载换相式电流源型变频器(LCI:Load Commutated Inverter),负载为

同步电机,变频器工作原理与输出滤波器换相式电流源型变频器有些类似,组成结构见图3。

晶闸管的关断主要靠同步电机定子交流反电势自然完成,不需要强迫换相,逆变器晶闸管的换流与整流桥晶闸管的换流极其相似。变频器的输出频率一般不是独立调节的,而是依靠转子位置检测器得到的转子位置信号按一定顺序周期性地触发逆变器中相应的晶闸管,LCI这种“自控式”功能,保证变频器的输出频率和电机转速始终保持同步,不存在失步和振荡现象。同步电机在整个调速范围内都必须提供超前的功率因数,以保证逆变器晶闸管的正常换相。电机必须有足够的漏电感,以限制晶闸管的di/dt,电机也要能够承受变频器输出的谐波电流,除了需要特殊的同步电机之外,LCI应用是较为成功的。尤其是在一些超大容量的传动系统中,因为LCI无须强迫换流电路,结构简单,在大容量时只有晶闸管能够提供所需的电压和电流耐量,从电机角度来说,同步电机在大容量时,相对异步电机也有不少优势。现在,随着大容量自关断器件的应用越来越广泛,LCI应用逐渐减少。

变频器输出电流波形和输入电流波形极为相似,呈120°方波状,输出电流中含有丰富的谐波成分,谐波电流会产生电机的附加发热,也会产生转矩脉动。图4为该变频的输出电压,电流和转矩。

在起动和低速时,电机反电势很小,不足以保证安全换相,因此,一般也采取电流断续换相法。

LCI的一个主要缺点就是转矩过载能量不强。过载能力不强是因为换相造成的,为了保证利用反电势换相的安全,要设置一定的换相提前角,比如空载换相提前角设为60°,这样一来就导致平均转矩下降且转矩脉动增加。

一、GTO-PWM式电流源型变频器(二)

GTO-PWM式电流源型变频器采用GTO作为逆变部分功率器件,见图5。GTO 可以通过门极进行关断,所以它不象晶闸管那样需要用于强迫关断的换流电路,可使主电路结构简化。对于额定电压为交流6KV的变频器,逆变器侧可采用每三个6000V的GTO串联,作为一个开关使用,一共由18个GTO组成,GTO串联时,同样存在稳态和动态均压问题。

GTO是在晶闸管基础上发展起来的全控型电力电子器件,目前的电压电流等级可达6000V,6000A。GTO开关速度较低,损耗大,需要庞大的缓冲电路和门极驱动电路,增加系统的复杂性和成本,使其应用受到限制。GTO中数千只独立的开关单元做在一个硅片上,由于开关不均匀,需要缓冲电路来维持工作,以限制器件承受的dv/dt,缓冲电路一般采用RCD型结构,二极管和电容必须有与GTO相同的耐压等级,二极管要求用快恢复二极管。缓冲电路的损耗产生热量,影响器件的可靠运行,并且影响变频器的效率。为了降低损耗,也有采取能量回馈型缓冲电路的方案,通过DC/DC变换电路把缓冲电容中储存的能量返回到中间直流环节,但增加了装置的复杂性。GTO的开关频率较低,一般在几百赫兹,比如300HZ。

以6000V,3000A(最大可关断阳极电流值)的GTO为例,通态平均电流为1030A,通态压降 3.5V,门极开通触发电流1A,通态阳极电流上升率400A/us(f=200HZ条件下),滞后时间2.5us,上升时间5us,存储时间25us,下降时间3us,最小通态维持时间100us,最小断态维持时间100us,开通每脉冲能耗2.5Ws,关断每脉冲能耗16Ws。GTO的门极驱动,除了需要晶闸管一样的导通触发脉冲外,还需要提供相当大的的反向关断电流,上述GTO的门极峰值关断电流就达900A,所以GTO的门极驱动峰值功率非常大。

与输出滤波器换相式电流源型变频器相比,GTO-PWM式电流源型变频器输出滤波电容的容量可以大大降低,但不能省去。因为电机可近看作漏电感再加一个旋转反电势组成。电流源型变频器的输出电流幅值是由整流电路的电流环决定的。在换流过程中,由于流过电机电感的电流不能突变,所以必须有电容缓冲变

频器输出电流和电机绕组电流的差值。电容容量的选择取决于换流过程中允许产生尖峰电压的大小。由于输出电容的容量比起输出滤波器换相式电流源型变频器大大下降了,电容的滤波效果也跟着下降,输出电流波形的质量也会下降。电机电流质量的提高可以通过GTO采用谐波消除的电流PWM开关模式来实现。在低频时,输出电流每个周期内相应的PWM波形个数较多,谐波消除会比较有效。但是,由于受到GTO开关频率的限制,高速时谐波消除效果大大下降,图6为该变频器满载时输出电压电流波形。若整流电路也采用GTO作电流PWM控制,可以得到较低的输入谐波电流和较高的输入功率因数,当然系统的复杂性和成本也会相应增加,一般很少采用。

二、三电平PWM电压源型变频器

在PWM电压源型变频器中,当输出电压较高时,为了避免器件串联引起的动态均压问题,同时降低输出谐波和dv/dt,逆变器部分可以采用三电平方式,也称NPC(Netural Point Clamped中心点箝位)方式,如图7。逆变部分功率器件可采用GTO,IGBT或IGCT。

图7 三电平逆变器主电路结构

IGBT广泛应用在各种电压源型PWM变频器中,具有开关快,损耗小,缓冲及门极驱动电路简单等优点,但电压电流等级受到导通压降限制。IGBT目前做到3300V,1200A。3300V的IGBT组成三电平变频器,输出交流电压最高为2.3KV,若要求更高等级输出电压,必须采取器件直接串联,比如用2个3300V 的IGBT串联作为一个开关使用,一共使用24个3300V的IGBT,组成三电平变频器,可做成4160V输出电压等级的变频器。器件直接串联就带来稳态和动态的均压问题,这样就失去了三电平变频器本身不存在动态均压问题的优点,所以一般很少采用。

以3300V,1200A的IGBT模块为例,其饱和压降为3.4V左右,开通延迟时间370ns,上升时间250ns,关断延迟时间1550ns,下降时间200ns,开通每脉冲损耗2880mWs,关断每脉冲损耗1530mWs。集成在模块内的反并联续流二极管,正向压降2.8V,峰值反向恢复电流1320A,反向恢复电荷740uAs。

集成门极换流晶闸管IGCT(integrated gate-commutated thyristor)是由GCT(gate commutated turn-off thyristor)和其门极控制电路集中成一体化的组件。

GCT是在GTO基础上发展起来的新器件,它保留了GTO高电压,大电流,低导通压降的优点,又改善了其开关性能。GCT采用了缓冲层设计,它使器件的通态和开关损耗可减少到原来的1/2-1/2.5,但缓冲层会导致关断时不能尽快抽走器件

在通态时存储的电荷,常规的GTO采用阳极短路技术,为存储电荷的抽走提供一条通路,但阳极短路和缓冲层的结合会导致极高的触发电流和维持电流。GCT取消阳极短路,而将阳极做成可穿透型,这样,电荷存储时间减少至1/20,

后沿拖尾电流减小20倍。同时还能在同样阻断电压条件下,减少芯片厚度30%,使得导通压降进一步降低。GTO有两个稳定工作状态“通”和“断”,在它们之间(开断过程中)是不稳定状态。GCT采用一种新的低电感的驱动电路,在门极20V偏置情况下,可获得4000A/us电流变化率,使得在大约1us时间内,阳极电压开始上升前,将全部阳极电流经门极流出,不通过阴极,晶闸管的p n p n四层结构暂时变为p n p晶体管的三层结构,有了稳定的中间状态,一致性好,据称可以无缓冲电路运行。由于GCT硅片厚度减少,允许在同一GCT片上做出高效的反并联续流二极管。GCT的门极关断峰值电流非常大,驱动电路需要相当容量的MOSFET和相当数量的电解电容及其它元件组成,电路非常复杂,要求很高,所以一般由GCT生产厂家把门极触发及状态监视电路和GCT管芯,甚至反并联续流二极管做成一个整体,成为IGCT,通过光纤输入触发信号,输出工作状态信号。

IGCT作为一种新的电力电子器件,刚刚开始工业应用,其实际性能如何,还有待于现场应用的考验。

目前IGCT最大容量为:反向阻断型:4500V,4000A,逆导型:5500V,1800A。用于三电平逆变器时,输出最高交流电压为4160V,如要求更高的输出电压,比如6KV交流输出,只能采取器件直接串联。

以5500V,1800A(最大可关断阳极电流值)的逆导型IGCT为例,通态平均电流为700A,通态压降为3V,通态阳极电流上升率530A/us,导通延迟时间小于2us,上升时间小于1us,关断延迟时间小于6us,下降时间小于1us,最小通态维持时间10us,最小断态维持时间10us,导通每脉冲能耗小于1J,关断每脉冲能耗小于10J。内部集成的反并联续流二极管(快恢复二极管),通态平均电流290A,通态压降5.2V,反向恢复电流变化率小于530A/us,反向恢复电流小于780A。

与普通的二电平PWM变频器相比,由于输出相电压电平数由2个增加到3个,线电压电平数则由3个增加到5个,每个电平幅值相对降低,由整个直流母线电压变为一半的直流母线电压,在同等开关频率的前提下,可使输出波形质量有较大的改善,输出dv/dt也相应下降。与二电平变频器相比,在相同输出电压条件下,这种结构还可使功率器件所需耐压降低一半。为了减少输出谐波,希

望有较高的开关频率,但受到器件开关过程的限制,还会导致变频器损耗增加,效率下降,所以功率器件开关频率一般为几百赫兹。三电平变频器若不设置输出滤波器,一般需采用特殊电机,或普通电机降额使用。

若输入也采用对称的三电平PWM整流结构,可以做到输入功率因数可调,输入谐波很低,且可四象限运行,系统具有较高的动态性能,当然成本和复杂性也大大增加了。

二、三电平变频器原理(一)

图8为三电平逆变器一相的基本结构,V1-V4代表一相桥臂中的4个功率开关,DF1-DF4为反并联的续流二极管,DC1,DC2为箝位二极管,所有的二极管要求有与功率开关相同的耐压等级。Ed为一组电容二端电压,C为中心点

图8 三电平基本结构

对于每相桥臂通过控制功率器件V1-V4的开通,关断,在桥臂输出点可获得三种不同电平+Ed,0,-Ed,见表1。

由表1看出,功率开关V1和V3状态是互反的,V2与V4也是互反。同时规定,输出电压只能是+Ed到0,0到-Ed,或相反地变化,不允许在+Ed和-Ed

之间直接变化。所以不存在二个器件同时导通或同时关断,也就不存在动态均压问题。

对于由三个桥臂组成的三相逆变器,根据三相桥臂U,V,W的不同开关组合,最终可得到三电平变频器的33=27种开关模式,见表2。

采用中心点箝位方式使输出增加了一个电平,输出电压的台阶降低了一半,而且很重要的一点是增加了输出PWM控制的自由度,使输出波形质量在同等开关频率条件下有较大的提高。

图9为一三电平变频器主电路结构图。

图9 三电平变频器

整流电路采用12脉冲二极管整流结构。逆变部分功率器件可以采用IGCT,反并联续流二极管集成在IGCT中。由于受到器件开关损耗,尤其是关断损耗的限制,IGCT的开关频率为600HZ左右。直流环节用二组电容分压,得到中心点。直流环节还有di/dt限制电路,共模电抗器,保护用IGCT等。di/dt限制电路主要由di/dt限制电抗器,与之反并联的续流二极管和电阻组成,因为IGCT器件本身不能控制di/dt,所以必须通过外加di/dt限制电路,使逆变器IGCT反并联续流二极管的反向恢复控制在安全运行范围内,同时该电路也用于限制短路时的电流上升率。共模电抗器一般在变压器与变频器分开安置,且变压器副边和整流桥输入之间电缆较长时采用,当变压器和变频器一起放置时,可以省去。其作用

主要是承担共模电压和限制高频漏电流,因为当输出设置滤波器时,由于滤波电容的低阻抗,电机承受的共模电压极小,共模电压由输入变压器和逆变器共同承担,当变压器与变频器之间电缆较长,线路分布电容较大,容抗下降,导致变压器承受的共模电压下降,逆变器必须承受较高的共模电压,影响功率器件安全,共模电抗器就是设计用来承受共模电压的。另外高频的共模电压还会通过输出滤波电容,变压器分布电容,电缆分布电容形成通路,产生高频漏电流,影响器件安全,共模电抗器也起到抑制高频漏电流的作用。保护用IGCT的作用是当逆变器发生短路等故障时,切断短路电流,起到相当于快熔的作用。由于逆变电路采用IGCT作为功率器件,而IGCT本身不象IGBT那样存在过电流退饱和效应,可以通过检测集电极电压上升来进行短路检测,并通过门极关断进行保护,所以必须通过霍尔电流传感器,检测到过电流,然后通过串联在上下直流母线的二个保护用IGCT进行关断。由于直流环节存在共模电抗器和di/dt限制电抗器,导致整流桥输出和滤波电容之间存在较大阻抗,这样电网的浪涌电压要通过整流桥形成浪涌电流,再通过滤波电容吸收的效果大大降低,为了保护整流二极管免受浪涌电压的影响,在整流桥输出并联了阻容吸收电路。箝位二极管保证了桥臂中最外侧的两个IGCT承受的电压不会超过一半的直流母线电压,确切地说,应该是对应侧滤波电容的电压,所以最外侧的两个IGCT不存在过压问题。内侧的两个器件仍要并联电阻,以防止产生过压。因为在同侧二个器件同时处于阻断状态时,内侧的器件承受的电压可能超过一半的直流母线电压,具体电压取决于同侧二个器件的漏电流匹配关系。

如果不加输出滤波器,三电平变频器输出时电机电流总谐波失真可以达到17%左右,会引起电机谐波发热,转矩脉动。输出电压跳变台阶为一半直流母线电压,dv/dt也较大,会影响电机绝缘,所以一般需配特殊电机。若要使用普通电机,必须附加输出滤波器。输出滤波器有dv/dt滤波器和正弦波滤波器二种,dv/dt滤波器容量较小,只对电压变化率起抑制作用,使电机绝缘不受dv/dt的影响,对电机运行动态性能的影响较小,如果系统动态性能要求较高时,适合采用,而且成本较低。正弦波滤波器容量较大,输出电压波形可大大改善,接近正弦波,由于滤波器的阻抗较低,而且滤波器中点接地,使电机承受的共模电压很小,电机绝缘不受影响。正弦波滤波器的滞后作用会影响系统的动态相应,同时由于滤

波器对输出电压的衰减作用,也会限制变频器的最低运行频率。由于滤波器采取低通设计,还限制了变频器的输出上限频率。滤波器在满载时的损耗会降低变频系统效率0.5%左右。

图10为三电平变频器输出电压和经滤波器后输出至电机的电压波形。图11a 和11b分别显示了未经滤波和经滤波后电压的谐波分布图。滤波前,输出总电压谐波失真为29%,经过滤波后,可降低到4%左右,电机的电流谐波失真可从17%降低到2%左右。

图10 三电平变频器输出电压和滤波后电压

图11 三电平变频器输出电压谐波和滤波后电压谐波

a) 变频器输出电压谐波b) 滤波后电压谐波

最新文件仅供参考已改成word文本。方便更改

高压变频器使用手册——中英文版-第2章

第2章 ChapterⅡ 安装与接线 Installation & Connection 本章简要介绍PowerSmart TM变频器的安装与接线 The chapter introduces installation and connection of PowerSmart TM Drive briefly 2.1产品确认 2.1 Product Confirmation 拿到产品时,请确认下表中所列项目: When you get the product, please confirm the items listed in below table: 表2-1 Tab2-1

如有不良情况,请与本公司业务部门联系。 If there unfavorable condition, please contact with our corporate business sector. 2.2 安装环境的要求和管理 2.2 Requirements and Management of Installation Environment 2.2.1 安装现场 2.2.1 Installation Field 安装变频器的地点应满足通风散热和操作的要求。变频器背面离墙的距离不小于600mm,正面离墙的距离不小于1.5米。变频器顶部(从风机顶部算起)到屋顶的距离不小于500mm。 The site of installing drive should satisfy the requirements of ventilation, heat dispersion and operation. The distance between back face of drive and wall should not be less than 600mm, the distance between front face of drive and wall should not be less than 1.5m. The distance between top of drive (calculated from the top of fan) and ceiling should not be less than 500mm. 2.2.2环境标准 2.2.2 Environment Standard 变频器安装在电气室内,工作环境温度为0~40o C。由于工作中变频器将散发出大量热量(约电动机每100KW散发出3.5KW热量),电气室要配备通风或空调装置。 Drive is installed in electric room with operation environment temperature 0~40o C. Because the drive will give off much heat (approximately, motor gives off 3.5kw heat per 100KW during) operation, electric room should be equipped with ventilation or air-conditioning device. 环境湿度最高为相对湿度90%,要避免凝露,例如在潮湿季节,特别是当变频器不工作时,不要将室内温度降得太低。

高压变频器改造

高压变频器用于火力发电厂节能分析报告 第一章概述 国家大力提倡走节约型发展之路,做到珍惜资源、节约能源、保护环境、可持续发展。由于目前国内仍然以燃煤电厂为主,怎样在火力发电厂来落实和贯彻减能、增效的方针政策,大力促进火力发电厂节能是一个值得探讨的问题,而推广应用各种新技术、新工艺、新管理是实现节能的唯一途径。信息、通讯、计算机、智能控制、变频技术的发展,为火力发电厂的高效、节约运作、科学管理,以及过程优化提供了前所未有的手段,进而促进火力发电厂的科学管理和自动化水平的提高。 针对节能工程必须追求合理的投资回报率,下面的报告就是针对火力发电厂在提高用电率方面实施的节能工程的跟踪与效益的分析。 第二章国内火力发电厂能源消耗的分析 据国家《电动机调速技术产业化途径与对策的研究》报告披露,中国发电总量的66%消耗在电动机上。且目前电动机装机容量已超过4亿千瓦,高压电机约占一半。而高压电机中近70%拖动的负载是风机、泵类、压缩机。具体到火力发电厂来说主要有九种风机和水泵:送风机、引风机、一次风机、排粉风机、脱硫系统增压风机、锅炉给水泵、循环水泵、凝结水泵、灰浆泵。 可以说这些设备在火力发电厂中应用极广,种类数量繁多,总装机容量大,而且平均耗电量已占到厂用电的45%左右。 但是泵与风机这些主要耗电设备在我国火力发电厂中普遍存在着“大马拉小车”的现象,大量的能源在终端利用中被白白地浪费掉。浪费的主要原因有以下两点: 1、运行方式技术落后 据调查,目前我国火力发电厂中除少量采用汽动给水泵、液力耦合器及双速电机外,其它水泵和风机基本上都采用定速驱动,阀门式挡板调节。这种定速驱动的泵,在变负荷的情况下,由于采用调节泵出口阀开度(风机则采用调节入口风门开度)的控制方式,达到调节流量得目的,以满足负荷变化的需要。所以在工艺只需小流量的情况下,其泵或风机仍以额定的功率,恒定的速度运转着,特别是在机组低负荷运行时,其入口调节挡板开度很小,引风机所消耗的电功率大部分将被风门节流而消耗掉,能源损失和浪费极大。另外,风机档板执行机构为大力矩电动执行机构,故障较多,风机自动率较低,存在严重的节流损耗。 2、运行实际效率低下 从实际运行效率上来说,在机组变负荷运行时,由于水泵和风机的运行偏离高效点,偏离最优运行区,使运行效率降低。调查显示,我国50MW以上机组锅炉风机运行效率低于70%的占一半以上,低于50%的占1/5左右。这是因为,我国许多大中型泵与风机套用定型产品,由于型谱是分档而设,间隔较大,一般只能套用相近型产品,造成泵与风机的实际运行情况运行效率低,能耗高。同时在设计选型时往往加大保险系数,裕量过大,也是造成运行工况偏离最优区,实际运行情况运行效率低下的原因。 第三章降低能源消耗的技术策略 为了降低上述火力发电厂运行设备的能源消耗,同时提高火力发电厂的发电效率,新建火力发电厂可选用高效辅机和配套设备,做法有二。一是采用液力耦合器、双速电动机、叶片角度可调的轴流式风机等设备;二是采用变频调速装置。尽管采用液力耦合器在一次投资方面具有一定的优势,但液力偶合调速装置除在节能方面比变频调速效果过相差很远以外,还在功率因数、起动性能、运行可靠性、运行维护、调节及控制特性、综合投资及回报等方面有较大差异。因此,现有老的火力发电厂减少能耗最经济,最简单可行的方法就是加装变频调

罗宾康高压变频器介绍

我主要写的是应用场合及功能介绍 罗宾康高压变频器介绍 一、产品介绍 1、罗宾康系列变频调速系统特点 1.1高效率、无污染、高功率因数 第宾康系列高压变频调速系统采用的是功率单元串联的高-高方案,采用了多绕组高压 移相变压器,二次侧绕组中流过的电流,在变压器一次侧叠加时,形成非常逼近正弦波的电流波形。经 过实际测试,50Hz运行时,网侧电流谐波<2 %,电机侧输岀电压谐波 <1.5 % (即使在40Hz时,仍然<2 % ),成套装置的效率>97 %,功率因数>0.96。完全满足了 IEEE519 —1992对电压、电流谐波含量的要求; *通过采用自主开发的专用PWM空制方法,比同类的其它方法可进一步降低输岀电压 谐波1?2% 。1.2先进的故障单元旁路运行(专业核心技术) *为了提高系统的可靠性,整个变频调速系统中考虑了一定的输出电压裕量,并在各功率单元中增加了旁路电路。当某个功率单元岀现故障时,可以自动监测故障并启动旁路电路,使得该单元不再投入运行,同时程序会自动进行运算,调整算法,使得输出的三个线电压仍然完全对称,电机的运行不受任何影响; *以6kV高压变频调速系统为例,每相有6个单元时,预置好参数,当某一相中有2 个功率单元岀现故障时,故障单元将自动旁路,系统仍然可以满负荷运行;即使某一相中所有6个单元 故障,全部被旁路,系统输岀容量仍可高达额定容量的57.7 %。这种控 制方法处于国际先进,国内领先水平,将大大提高系统的可靠性。 .3高性能的控制技术 *罗宾康系列高压变频调速系统率先实现了简易矢量控制技术,可以实现恒转矩快速动态响应,并且具有加、减速自适应功能,即可根据运行工控参数的实际情况,自动调整加、减速时间,在不超过最大允许电流的情况下,快速达到设定频率或转速。同时,系统可以自动识别电机转速,用户可以不考虑电机目前的运行状态,电机不需要停止运行时,可直接实现电机的启动、加速、减速或停止操作; *罗宾康系列高压变频调速系统还可以实现反馈能量自动限制功能。 1.4高可靠性 *控制电源可实现外部220V供电和高压电源辅助供电双路电源自动切换,同时配置了UPS即使两路电 源都岀现故障时,控制系统仍然可以工作足够长的时间,控制整个系统安全停机,发岀报警,并记录故障时的所有状态参数; *高压主电路与低压控制电路采用光纤传输,安全隔离,使得系统抗干扰能力强; ?当单元故障数目超过设定值,系统可自动切换到工频运行(自动旁路柜); ?移相变压器有完善的温度监控功能;

GBP-D和GBP-H系列高压变频器使用说明书

GBP-D和GBP-H系列高压变频器使用说明书 焦作市明株自动化工程有限责任公司 2009年11月

目录 第1章安全注意事项 (3) 第2章变频器柜体组成 (4) 第3章变频器安装和存放环境 (5) 第4章变频器接线说明 (6) 第6章变频器故障说明与维护 (13) 第7章变频器常见故障处理 (14) 附录1: GBP-D和GBP-H系列高压变频器型号列表 (16) 附录2: GBP-D和GBP-H系列高压变频器功率单元型号列表 (17) 附录3:干式变压器温控仪设置说明 (18) 附录4:调试内容记录表 (19)

第1章安全注意事项 1.1 在使用高压变频器前,请仔细阅读本使用说明书。 1.2 高压变频器(本章以下简称设备)属高压设备,内有能致人伤亡的高压交流电流,使用时请务必遵循本说明书。 1.3 当设备带电或有残余电压时不要打开任何柜门。 1.4 当设备停电之后,功率单元内仍可能存在危险电压,请等待5分钟之后才能打开柜门,否则可能导致电击或伤害。 1.5 在确认设备已经不发烫和不带电之前,千万不要触摸设备内部的任何部位,否则可能导致电击。 1.6 在接触或测量设备内元器件时,必须十分小心,严防表笔接触到其它端子,导致伤害或故障。 1.7 当主电源切断后,必须等待10分钟后,才能切断控制电源,否则可能导致故障。 1.8 在主电源送电之前,必须先送控制电直到触摸屏不再显示“通信中断”为止,否则可能造成设备故障或损坏。 1.9 当确认变频器有部件损坏之后,不得进行再次通入高压主电源,否则可能造成人身伤害和加深设备损坏器件。 1.10 当设备着火时,不要尝试使用设备,否则可能引起火灾。 1.11 必须由经过认证的人员正确设置参数,如果设置了错误参数,系统可能超限运行损坏设备。1.12 只有有资格的人员以及受过培训的人员可以操作设备,不具有资格或未受过培训的人员操作可能导致人员伤害或设备故障。 1.13 在设备有高压电源供电的情况下,一般不要切断控制电源,否则可能导致人身伤害或设备损坏。 1.14 如果高压输入误送到设备的输出端,这样会严重损坏变频器和引起火灾。 1.15 不要阻塞设备的通风口,否则设备内部的温度将会上升导致故障。 1.16 操作前请熟悉设备上的警告标示,否则可能导致电击或伤害。 1.17 当清理或检查时,必须切断主电源和控制电源。 1.18 不要接触旋转的风机,否则可能导致伤害。 1.19 取出功率单元时要当心,功率单元任何侧受到过大的力都会导致人身伤害或功率单元损坏。1.20 设备在运输或安装过程中,不得靠近水源,否则设备进水之后使用过程中可能导致电击或故障。 1.21 用户不允许更改和搬运设备,可能导致人员伤害或设备损坏。 1.22 安装时,设备不得倾斜超过30°,否则设备可能滑落导致伤害或故障。 1.23 确保设备外壳接地良好,接地电阻不得大于4Ω,否则绝缘能力的下降会导致漏电或电击。1.24 设备在吊装时,必须确认吊车、钢绳、吊钩有足够的吊装能力,起吊工具有足够的强度和安全系数,操作方法必须正确,否则会导致人身伤害或设备故障。 1.25 请严格遵照以上安全规范进行操作,否则将可能导致人身的伤害和设备的故障。

五分钟让你学会高压变频器选型

五分钟让你学会高压变频器选型 产品选型一直是大家感到棘手的一个问题,请大家花费5分钟吸收,教会你选择准确、经济、实用的高压变频器产品型号。 1.选择过高电压等级的弊端 选择过高的电压等级造成投资过高,回收期长。电压等级的提高,电机的绝缘必须提高,使电机价格增加。电压等级的提高,使变频器中电力半导体器件的串联数量加大,成本上升。 可见,对于200~2000kW的电机系统采用6kV、10kV电压等级是极不经济、很不合理的。 2.变频器容量与整流装置相数关系 变频器装置投入6kV电网必须符合国家有关谐波抑制的规定。这和电网容量和装置的额定功率有关。 短路容量在1000MVA以内,1000kW装置12相(变压器副边双绕组)即可,如果24相功率就可达2000kW,12相基本上消除了幅值较大的5次和7次谐波。 整流相数超过36相后,谐波电流幅值降低不显著,而制造成本过高。如果电网短路容量2000MVA,则装置容许容量更大。 3.把最高电压降到3kV以下可节约大量投资 从电力电子器件特性及安全系数考虑电压等级的必要性,受电力电子器件电压及电机允许的dv/dt限制,6kV变频器必须采用多电平或多器件串联,造成线路复杂,价格昂贵,可靠性差。对于6kV变频器若是用1700VIGBT,以美国罗宾康的PERFECTHARMONY系列6kV高压变频器为例,每相由5个额定电压为690V的功率单元串联,三相共60只器件。若是用3300V器件,也需3串共30只器件,数量巨大。另一方面

装置电流小,器件的电流能力得不到充分利用,以560kW为例,6kV电机电流仅60A左右,而1700V的IGBT电流已达2400A,3300V器件电流达1600A,有大器件不能用,偏要用大量小器件串联,极不合理。即使电机功率达2000kW,电流也只有140A左右,仍很小。 国外的中压变频器有多个电压等级:1.1kV,2.3kV,3kV,4.2kV,6kV,它们主要由电力电子器件的电压等级所确定。 输出同样功率的变频器,使用较高电压或较多单元串联所花的代价大于用较低电压,较少数量而电流较大单元的代价,也就是说在器件电流允许条件下应尽可能选用低的电压等级。 4.隔离变压器问题 为了隔离、改善输入电流及减小谐波,现在所有的中压“直接变频”器都不是真正的直接变频,其输入侧都装有输入变压器,这种配置短时间内不会改变。既然输入侧有变压器,变频器和电机的电压就没有必要和电网一样,非用10kV和6kV不可,功率2500kW以下电压可以不超过3kV,因此就有了变频器和电机的合理电压等级问题。 200kW~800kW以下的变频调速宜选用380V或660V电压等级。它线路简单,技术成熟,可靠性高,dv/dt小,价格便宜。仍以560kW电机为例,630kW660V的低压变频器约35万,而同容量6000V中压变频器约90万。实现的方法有低-低,低-高,高-低和高-低-高等几种形式。由于电机,变压器的价格远低于变频器,即使更换电机、变压器也合理。 5.原有6kV高压电机如何与3.5kV变频器电压配套 自建国以来传统的6kV高压电机是已投产的主要产品,为了推广3.5kV变频器不可能再花钱更换电机,作者提出一个简便方案,以供参考。 制造厂原有6kV电机一般均为星形接线,其相绕组承受实际电压为3468V,故只要将绕组改接成三角形其它不变。配3.5kV变频器就把变频器电压从6kV下降到3.5kV,可见4.5kV器件不串联就可承受3kV耐压。如果用1.7kV器件3串即可。制造成本将下降30%。而我国目前30MW 机组最大电机2500kW采用3.5kV电压完全合理。

日立变频器操作说明 SJ

SJ300型日立变频器操作说明该变频器采用“标准数字操作器OPE--S”,内部参数我厂已经设定,出厂时设定为“就地”操作,但只需简单调试就能实现“就地/集控”的操作转换。 一.就地操作 按“功能键”显示“d001”,按“向下键”直至显示“A- - -”, 按“功能键”显示“A001”,再按“功能键”显示“01”,按“向上键”显示“02”频率由操作器设定,按“存储键”确认。 按“向上键”显示“A002”,按“功能键”显示“01”,再按“向上键”显示“02”运行指令由操作器控制,按“存储键”运行键指示灯亮。 输出频率由F001设定,出厂时设定为50Hz。 按“功能键”显示“A- - -”, 按“向上键”直至显示“d001”输出频率监视,再按“功能键”显示“”即为输出频率,“就地操作”设定完毕。 按“运行键”电动机运行,按“停止/重置键”电动机停止。 二.集控操作 按“功能键”显示“d001”,按“向下键”直至显示“A- - -”, 按“功能键”显示“A001”,再按“功能键”显示“02”,按“向下键”显示“01”频率设定由控制端子操作,按“存储键”存储参数。 按“向上键”显示“A002”,按“功能键”显示“02”,再按“向下键”显示“01”运行指令由控制端子操作,按“存储键”确认。 4-20mA控制频率时设定:A101=0、A102=50、A103=20、A104=100。 按“功能键”显示“A- - -”, 按“向上键”直至显示“d001”输出频率监视,

再按“功能键”显示“”即为输出频率,现在“频率”的高低由DCS系统4-20mA 信号控制,“集控操作”设定完毕。 合上Q3(控制柜内C45单极空气开关)变频器即为“集控”运行,这时电动机的“起动/停止”及“转速”均由DCS系统控制。 *说明:电机正反转以集控为准,就地控制的转向可通过F004设定,“00”为正转;“01”为反转。采用默认值时为正转。 靖江市合金钢机械厂 2004年5月8日

日立变频器操作说明(SJ300)

SJ300型日立变频器操作说明 该变频器采用“标准数字操作器OPE--S”,内部参数我厂已经设定,出厂时设定为“就地”操作,但只需简单调试就能实现“就地/集控”的操作转换。 一.就地操作 按“功能键”显示“d001”,按“向下键”直至显示“A- - -”, 按“功能键”显示“A001”,再按“功能键”显示“01”,按“向上键”显示“02”频率由操作器设定,按“存储键”确认。 按“向上键”显示“A002”,按“功能键”显示“01”,再按“向上键”显示“02”运行指令由操作器控制,按“存储键”运行键指示灯亮。 输出频率由F001设定,出厂时设定为50Hz。 按“功能键”显示“A- - -”, 按“向上键”直至显示“d001”输出频率监视,再按“功能键”显示“00.0”即为输出频率,“就地操作”设定完毕。 按“运行键”电动机运行,按“停止/重置键”电动机停止。 二.集控操作 按“功能键”显示“d001”,按“向下键”直至显示“A- - -”, 按“功能键”显示“A001”,再按“功能键”显示“02”,按“向下键”显示“01”频率设定由控制端子操作,按“存储键”存储参数。 按“向上键”显示“A002”,按“功能键”显示“02”,再按“向下键”显示“01”运行指令由控制端子操作,按“存储键”确认。 4-20mA控制频率时设定:A101=0、A102=50、A103=20、A104=100。 按“功能键”显示“A- - -”, 按“向上键”直至显示“d001”输出频率监视,再按“功能键”显示“00.0”即为输出频率,现在“频率”的高低由DCS系统4-20mA信号控制,“集控操作”设定完毕。 合上Q3(控制柜内C45单极空气开关)变频器即为“集控”运行,这时电动机的“起动/停止”及“转速”均由DCS系统控制。 *说明:电机正反转以集控为准,就地控制的转向可通过F004设定,“00”为正转;“01”为反转。采用默认值时为正转。 靖江市合金钢机械厂 2004年5月8日

高压变频器的IGBT模块选择及计算分析

高压变频器的IGBT模块选择及计算分析 目前变频器应用中常用的几种模块,如IGCT、IEGT、GTO、IGBT。通过计算分析比较,得出IGBT是目前性价比较好的器件。 1、概述 由于我国元器件工业落后,还不能生产高压IGBT,西方国家仍对中国实行技术封锁。比如6500V IGBT仍不向中国出口,且不论其价格不菲。在直接串联技术选用什么样的功率开关器件对决定变频器的性价比至关重要。 目前可选的器件有好几种,如IGCT、IEGT、GTO、IGBT,而IGBT则又分为1700V,3300V,6500V。而各器件厂家都宣称自己的器件最好。到底选哪一种器件,其性价比较好,让我们进行一些具体比较,比较的依据为各厂家产品样本所列的技术参数。 2、几种常用的功率器件 变频器向前发展,一直是随着电力电子器件的发展而发展。只要电力电子器件有了新的飞跃,变频器就一定有个新飞跃,必定有新的变频器出现。在20世纪50年代出现了硅晶闸管(SCR);60年代出现可关断晶闸管(GTO晶闸管);70年代出现了高功率晶体管(GTR)和功率场效应管(MOSFET);80年代相继出现了绝缘栅双极功率晶体管(IGBT)以及门控晶闸管(IGCT)和电力加强注入型绝缘栅极晶体管(IEGT),90年代出现智能功率模块(IPM)。由于这些元器件的出现,相应出现了以这些逆变器件为主的变频器,反过来,变频器要求逆变器件有个理想的静态特性:在阻断状态时,能承受高电压;在导通状态时,能大电流通过和低的导通压降,损耗小,发热量小;在开关状态转换时,具有短的开、关时间,即开关频率高,而且能承受高的du/dt;全控功能,寿命长、结构紧凑、体积小等特点,当然还要求成本低。上述这些电力电子器件有些是满足部分要求,有些是逐步向这个方向发展,达到完善的要求,特别是中(高)压变频器更需要耐压高的元器件。 3、模块选择分析 3.1 相关定义及公式 我们以设计一台中压变频器为例,直流工作电压为3600V,。设电机功率因数为0.8,载波频率为3kHz,输出频率为50Hz,采用下列公式分别用不同功率开关器件构成变频器的一个开关组件的指标进行估算。以400A的峰值电流Icp计算,采用下列估算公式: 1、稳定功耗 2、开关功耗 3、总功耗

利德华福高压变频器

利德华福高压变频器 应用范围 近年来,我国年工业生产总值不断提高,但是能耗比却居高不下,高能耗比已成为制约我国经济发展的瓶颈,为此国家投入大量资金支持节能降耗项目,其中高压变频调速技术已越来越广泛的应用在各行各业,它不仅可以改善工艺,延长设备使用寿命,提高工作效率等,最重要的是它可以“节能降耗”,这一点已被广大用户所认可,且深受关注。 从1998年开始,利德华福人通过一年开发,一年开局试验,一年市场考验,其研发制作的HARSVERT-A系列高压变频调速系统,完全具有自主知识产权,适合国内电网特性,符合国内用户使用习惯。该系列高压变频调速系统自2000年投入国内市场后,在市政供水、电力、冶金、石油、石化、水泥、煤炭等行业陆续投入运行。由于安装便捷、操作简单、运行稳定、安全可靠、维护方便,并在节能、节电、省人、省力、自动控制、远程监控等方面效果显着,以及优异的产品性价比和周到的服务,受到用户的广泛欢迎。 火力发电:引风机、送风机、吸尘风机、压缩机、排污泵、锅炉给水泵等 冶金:引风机、除尘风机、通风机、泥浆泵、除垢泵等 石油、化工:主管道泵、注水泵、循环水泵、锅炉给水泵、电潜泵、卤水泵、引风机、除垢泵等

市政供水:水泵等 污水处理:污水泵、净化泵、清水泵等 水泥制造:窑炉引风机、压力送风机、冷却器吸尘风机、生料碾磨机、窑炉供气风机、冷却器排风机、 分选器风机、主吸尘风机等 造纸:打浆机等 制药:清洗泵等 采矿行业:矿井的排水泵和排风扇、介质泵等 其他:风洞试验等

系统原理 HARSVERT-A系列高压变频调速系统采用单元串联多电平技术,属高-高电压源型变频器,直接3、6、10KV输入,直接3、6、10KV高压输出。变频器主要由移相变压器、功率模块和控制器组成。 系统结构 功率模块结构 功率模块为基本的交-直-交单相逆变电 路,整流侧为二极管三相全桥,通过对IGBT逆 [功率单元电路结构]变桥进行正弦PWM控制,可得到单相交流输出。 每个功率模块结构及电气性能上完全一 致,可以互换。(备件种类单一) 输入侧结构 输入侧由移相变压器给每个功率模块供电,移相变压器的副边绕组分为三

6kV800kW高压变频器操作说明书

WLdrive系列高压变频器 使用说明书 卧龙电气集团股份有限公司 2012年4月

目录 一、前言 (3) 二、安全操作 (4) 1、安全注意事项 (4) 2、安全操作 (4) 3、安全性规则与警告 (6) 三、验货和产品检查 (8) 1、检查项目 (8) 2、变频器的尺寸 (8) 3、变频器型号说明 (8) 4、产品铭牌 (9) 5、WLdrive-HV系列高压变频器的技术参数 (9) 四、变频器接线 (12) 五、WLdrive系列高压变频器原理 (14) 1、系统结构 (14) 2、多重化输入设计 (15) 4、接口与通讯 (17) 5、控制器 (17) 六、硬件组成及特点 (18) 1、WLdrive-HV高压IGBT变频器硬件配置 (18) 2、旁路柜 (18) 3、变压器柜 (20) 4、功率柜 (21) 5、控制器柜 (22) 七、按钮及面板功能 (23) 1、按钮 (23) 2、触摸屏介绍 (24) 3、画面结构 (25) 4、主控画面 (26) 八、触摸屏操作 (28) 1、数据查询操作步骤 (28) 2、参数设定步骤 (29) 3、系统管理操作步骤 (32) 九、参数设定 (34) 1、参数设定画面介绍 (34) 2、功能参数一览表 (39) 十、系统管理 (41) 1、密码设定 (41) 2、时间设定 (41) 3、PLC时间同步 (42) 4、系统信息 (42) 5、软件版本 (43)

6、数据保护 (43) 7、参数初始化 (44) 8、高级设置 (44) 十一、故障管理 (45) 1、当前故障 (45) 2、故障首出 (45) 3、历史故障 (46) 4、故障记录 (46) 十二、参数的详细说明 (47) 十三、产品标准与性能 (57) 1、特点 (57) 2、符合的相关标准 (57) 3、应用范围 (58) 4、功能 (58) 十四、故障对策 (61) 1、故障报警的处理 (61) 2、故障保护的处理 (61) 3、功率单元过电压 (62) 4、功率单元欠电压 (62) 5、输出过电流 (62) 6、功率单元过热 (62) 7、功率柜风机故障 (63) 8、变压器过热报警与保护 (63) 9、故障后功率单元更换 (63) 十五、保养和维护 (64) 1、变频器的日常维护 (64) 2、保养和维护 (64) 4、绝缘试验 (65) 5、变频器贮存 (66) 6、报废注意事项 (66) 7、保修 (66) 附录A(接线端子功能说明) (67)

高压变频器的工作原理及功能

是指输入电压在3KV以上的大功率,主要电压等级有3000V、3300V、6000V、6600V、10000V等电压等级的高压大功率变频器,高压变频器主要以进口为主,我国已有高压变频器生产企业,以后我们就可以用国产的高压变频器了。对大企业的高压节能也就方便多了。高压变频器由高-低-高;低-高;高-高之分。高-低-高方式高压变频器是把高压用降压后,用变频器进行控制,再用升压变压器把电压升到我们使用的电压,供给高压电机使用。一般高低高方式都用在小功率的高压电机做变频节能用。 低-高方式高压变频器是用低压变频器控制后,直接用升压变压器把电压升到电机使用电压。低高方式也是用在小功率高压电机做变频节能用。高-高方式高压变频器是直接用变频器多个模块串联后,直接使用高压电源,直接输出高压,供高压电机使用。高高方式主要用在大功率高压电机做变频节能用。高压变频器主要有日本富士高压变频器、日本三菱高压变频器、日本东芝高压变频器、瑞典ABB高压变频器、德国西门子高压变频器、美国罗宾康高压变频器、合亿高压变频器、利德华福高压变频器等。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.doczj.com/doc/c510037799.html,/

GBP-H-06系列高压变频器使用说明书

GBP-H-06系列高压变频器使用说明书 焦作市明株自动化工程有限责任公司 2009年11月

目录 第1章安全注意事项 (3) 第2章变频器柜体组成 (4) 第3章变频器安装和存放环境 (5) 第4章变频器接线说明 (6) 第6章变频器故障说明与维护 (13) 第7章变频器常见故障处理 (14) 附录1: GBP-D和GBP-H系列高压变频器型号列表 (16) 附录2: GBP-D和GBP-H系列高压变频器功率单元型号列表 (17) 附录3:干式变压器温控仪设置说明 (18) 附录4:调试内容记录表 (19)

第1章安全注意事项 1.1 在使用高压变频器前,请仔细阅读本使用说明书。 1.2 高压变频器(本章以下简称设备)属高压设备,内有能致人伤亡的高压交流电流,使用时请务必遵循本说明书。 1.3 当设备带电或有残余电压时不要打开任何柜门。 1.4 当设备停电之后,功率单元内仍可能存在危险电压,请等待5分钟之后才能打开柜门,否则可能导致电击或伤害。 1.5 在确认设备已经不发烫和不带电之前,千万不要触摸设备内部的任何部位,否则可能导致电击。 1.6 在接触或测量设备内元器件时,必须十分小心,严防表笔接触到其它端子,导致伤害或故障。 1.7 当主电源切断后,必须等待10分钟后,才能切断控制电源,否则可能导致故障。 1.8 在主电源送电之前,必须先送控制电直到触摸屏不再显示“通信中断”为止,否则可能造成设备故障或损坏。 1.9 当确认变频器有部件损坏之后,不得进行再次通入高压主电源,否则可能造成人身伤害和加深设备损坏器件。 1.10 当设备着火时,不要尝试使用设备,否则可能引起火灾。 1.11 必须由经过认证的人员正确设置参数,如果设置了错误参数,系统可能超限运行损坏设备。1.12 只有有资格的人员以及受过培训的人员可以操作设备,不具有资格或未受过培训的人员操作可能导致人员伤害或设备故障。 1.13 在设备有高压电源供电的情况下,一般不要切断控制电源,否则可能导致人身伤害或设备损坏。 1.14 如果高压输入误送到设备的输出端,这样会严重损坏变频器和引起火灾。 1.15 不要阻塞设备的通风口,否则设备内部的温度将会上升导致故障。 1.16 操作前请熟悉设备上的警告标示,否则可能导致电击或伤害。 1.17 当清理或检查时,必须切断主电源和控制电源。 1.18 不要接触旋转的风机,否则可能导致伤害。 1.19 取出功率单元时要当心,功率单元任何侧受到过大的力都会导致人身伤害或功率单元损坏。1.20 设备在运输或安装过程中,不得靠近水源,否则设备进水之后使用过程中可能导致电击或故障。 1.21 用户不允许更改和搬运设备,可能导致人员伤害或设备损坏。 1.22 安装时,设备不得倾斜超过30°,否则设备可能滑落导致伤害或故障。 1.23 确保设备外壳接地良好,接地电阻不得大于4Ω,否则绝缘能力的下降会导致漏电或电击。1.24 设备在吊装时,必须确认吊车、钢绳、吊钩有足够的吊装能力,起吊工具有足够的强度和安全系数,操作方法必须正确,否则会导致人身伤害或设备故障。 1.25 请严格遵照以上安全规范进行操作,否则将可能导致人身的伤害和设备的故障。

发电厂高压变频器选型和存在问题的探讨

发电厂高压变频器选型和存在问题的探讨随着高压变频调速技术日趋成熟。韶关电厂于2OO5年首先对一台200Mw 机组的引风机进行高压变频调速改造试用,结合本厂的实际应用经验,对高压变频器选型与应用时应注意的技术问题进行阐述.同时对实际应用中存在的问题进行了分析。?在火力发电厂中,厂用电量约占机组发电量的5%~8%,其 中风机、泵类负载的用电量约占厂用电的80%;而这些设备在容量设计和选型上有很大的裕度,采用风门或阀门调节截流能量损失很大,在实际运行中机组负荷也需要调节,在机组调峰运行或负荷率较低的工况下情况更甚。随着能源供需的矛盾日益突出, “厂网分离、竞价上网”政策的实行,更加剧了电厂的成本压力,迫使发电企业实行节能降耗,以增加竞争力。在电机节能方面,变频器有其他调速设备不可比拟的优势,特别是高压变频器的节能效果更为显著,据统计我国风机、泵类进行高压变频改造后节电率可达20%~60%。因此,对火力发电厂的高压辅机进行变频调速改造,可以最大限度地降低厂用电率和发电成本,提高企业的市场竞争力。 1 高压变频器的选型 众所周知,高压辅机设备运行的稳定性、可靠性直接影响火力发电机组的安全稳定运行,一旦这些关键辅机设备由于变频器故障而非正常停机,往往会导致机组负荷大幅下降甚至跳机、锅炉熄火等事故。造成的损失是节能效益无法弥补的。因此,电厂

辅机在进行高压变频器改造时,对高压变频设备的稳定性、可靠性要求必须排在首位。在高压变频器选型时应关注几个方面。? 1.1 高压变频器平均无故障时间 高压变频器的指标需要生产厂家从采购、设计、制造、检验、管理等环节加以保证。因此在选型时可以通过收资、调研,选择产品设计技术先进、生产与品质控制严格、设备运行较稳定、用户业绩评价高的产品。?1.2 对环境的适应能力?评定高压变频器对环境的适应能力主要从以下几个方面考虑:? a)对电网电压波动的适应能力。当母线上电动机成组自起动、当母线上最大一台电动机组起动时对变频器运行的影响,这与变频器允许的输入电压波动范围参数有关.对于火电机组应保证母线电压跌落30%时变频器不会停机。另外,存母线切换等情况下所造成的母线电压瞬时失电发生后,变频器应具有持续或恢复运行的功能(有些厂家称为“失压再起动功能”),即在母线电压瞬问降低或消失(如事故切换)时变频器不跳闸或使电机系统惯性运行;当母线电压重新恢复正常后,变频器能根据捕捉到的电动机转速止确调整自身输出,重新拖动电动机运行的功能。在电源瞬间跌落或消失时问不长的情况下,该功能保证变频器所驱动负载的稳定性,减少对机组运行的影响,避免锅炉灭火现象的发生。这一点是在选择重要辅机高压变频器时所必须考虑的问题。?b)对现场环境的适应能力。高压变频器大多安装于现场辅机附近,灰尘较多,灰尘进人变频柜内会导致绝缘下降或击穿损坏电

高压变频器操作手册

[Shift]键组合汇总表 *进入子菜单光标由 、 控制,进入按cancel/enter,退出按Shift+cancel/enter 液晶显示包含5个动态显示和刷新的字段。分别是模式(MODE)、速度设定值(DEMD)、转速(RPM)、电机电压(VLTS)、总输出电流(ITOT).模式字段固定,剩下的4个字段可由操作者选择修改

高压变频器操作程序: 1. 在送高压电之前,先将变频器的控制电源送上,观察风机是否转动正常,变频器的键盘显示是否正常。 2. 高压电送上之后,观察变频器键盘显示是否正常。

3.变频器的启动有两种方法: ①现场的操作柱操作,当仪表发出4-20ma速度信号后,按启动信号变频器就会根据 所给的速度指令和加速斜波驱动电机,按停止信号,变频器就会根据设定减速的斜波停止电机。 ②另外一种操作方法是在键盘上操作,上下箭头键是用来调节速度指令。 本地模式:所有操作由本地实现按面板上手动启动键,+ 速度用上下键调节。 SOP程序代码:18000104 远程按钮 远程模式:由现场操作实现,速度由仪表4-40mA 信号控制。 速度设定电位器SOP程序程序代码:18000103 仪表4-20mA 信号 SOP程序的选择必须在送高压之前进行,否则选择另外一个SOP时会造成高压开关脱扣 1.故障复位键:[Fault Reset] 清除变频器故障,无论在哪一种操作方式下通过此键都能对变频器的故障进行复位2.自动键:[Automatic] 速度设定值由4-20mA输入及速度曲线参数决定 3.手动停止按钮:[Manual Stop] 切换到停止模式,不管变频器处于什么状态(手动、远程或自动)都能使变频器关断。 4.手动启动键:[Manual Start] 切换到手动控制模式(手动模式包括本地和远程) 5控制柜上有一个红色紧停按钮,无论在哪一种操作方式下通过此按钮都能对变频器进行紧急停车。 一般故障处理 真空断路器脱扣信号有五个条件: 1. 当变频器的变压器温升过高时。 2. 高压变压器发生短路时。 3.高压柜门被打开时。 4.风机故障并且超过30秒时。 5.控制电源丢失时将启动联锁。 当上述五个中的任一个发生时脱扣真空短路器。

西门子高压变频器操作说明

高压变频器操作说明 1.上电前检查: a) 检查变频器周围环境,温度和湿度是否符合变频器运行条件,变频器运行温 度要求在0-40℃范围内,最好能够控制在25℃左右,湿度不超过95%,且无 凝结或水雾; b) 变频器进出电缆是否紧固,检查高低压电缆是否有损伤; c) 清理变频器灰尘。 2.上380V控制电检查: a) 合变频器控制电源开关“CDS1”; b) 按UPS启动按钮; c) 上控制电后,确认变频器面板上是否有故障或报警,该故障或报警是否影响 变频器正常运行,可否复位,如果不能复位,待问题解决后才能进行下一步 操作; d) 检查变频器冷却风机是否运行正常,变频器进风口滤网是否堵塞,如果滤网 堵塞,需清洁滤网或更换备用滤网后方可进行下一步操作。 e) 旁路柜操作: 变频运行:合QS1和QS2,同时确认QS3处于断开状态; 工频运行:合QS3,同时确认QS1和QS2处于断开状态。 注意:1.两台旁路柜不能同时处于变频状态。 2.变频运行时,两台旁路柜都处于带电状态,禁止对刀闸进行操作。3.变频运行: b) 将变频器“就地/远方”选择开关选择在“远方”,则变频器只能从远方操 作; 如果将选择开关选择在“就地”,则变频器只能在操作面板进行操作。 b) 合变频器进线高压开关,此时变频器高压柜内有高压电,禁止打开变频器高 压柜门(包括功率单元柜门和变压器柜门); c) 确认变频器是否有故障或报警,该故障或报警是否影响变频器正常运行,可 否复位,如果不能复位,待问题解决后才能进行下一步操作; d) 若以上步骤均检查无误,可从远方运行变频器。 e) 以上步骤完成后,电机处于变频运行状态。 4.停机步骤: a) 从远方发出停机指令,变频器正常停机,若用“急停”按钮停变频器,变频 器停机的同时将跳高压; b)若要进行以下操作,请先将变频器输入端高压开关断开,然后才允许进行以 下操作; c) 操作刀闸开关; d) 按UPS停止按钮; e) 关变频器控制电源开关“CDS1”; f) 高压停电15分钟后方可打开高压柜门。 注意:

高压变频器与低压变频器的选择

高压变频器的选择 高压变频器的种类繁多,其分类方法也多种多样。按着中间环节有无直流部分,可分为交交变频器和交直交变频器;按着直流部分的性质,可分为电流型和电压型变频器;按着有无中间低压回路,可分为高高变频器和高低高变频器;按着输出电平数,可分为两电平、三电平、五电平及多电平变频器;按着电压等级和用途,可分为通用变频器和高压变频器;按着嵌位方式,可分为二极管嵌位型和电容嵌位型变频器等等。 目前高压变频器技术采用领先技术的是采用IGCT技术的电压型高压变频器,由于在变频器的直流环节采用了电容元件而得名,随着技术的进步,高压变频器可以实现四象限运行,也能实现矢量控制,已经成为当前传动系统调速的主流产品。 另一种是目前市场上各厂家普遍采用的单元串联型变频器,这是近几年才发展起来的一种电路拓扑结构,它主要由输入变压器、功率单元和控制单元三大部分组成。采用模块化设计,由于采用功率单元相互串联的办法解决了高压的难题而得名,可直接驱动交流电动机,无需输出变压器,更不需要任何形式的滤波器。 6KV变频器,可以有15个或者18个功率单元组成,每相由5或者6台功率单元相串联,并组成Y形连接,直接驱动电机。每台功率单元电路、结构完全相同,可以互换,也可以互为备用。 变频器的输入部分是一台移相变压器,原边Y形连接,副边采用延边三角形连接,共15到18副三相绕组,分别为每台功率单元供电。它们被平均分成Ⅰ、Ⅱ、Ⅲ三大部分,每部分具有5到6副三相小绕组,之间均匀相位偏移8.5或者10度。 缺点: 1、由于变压器采用延边三角形接法,实现8.5度或者10度的移相,由于工艺原因造成相应的误差,使得变压器内部环流大,发热量高,变压器效率低,从而整个系统效率下降。 2、由于随着负载率的不同,不是所有的功率单元都输出功率,导致谐波不能互相抵消。因此在低于额定负载时,谐波增加很快。由于同样原因,使得启动转矩较小,电机抖动及发热较大,噪声也较高。 3、由于需要保护电机不受共模电压的影响需要将电机接地,因此将共模电压引到了变压器上,使得变压器承受了更大的电应力,使得变压器可靠性降低,寿命降低。 4、由于引入了复杂的移相隔离变压器,使得成本增加。需制造复杂而昂贵的移相变压器。驱动元器和连线多。相应长期使 用中故障必然多,维护复杂且工作量大。 5、变压器的效率降低,影响了整个系统的效率,并随负载率的降低效率更要降低。 6、如果变压器损坏,维修极复杂,费用极高。总费用至少在购价的45%左右。 7、移相主变压器接点太多,接线复杂,系统的内阻和损耗增大。 8、输出电压波形在额定负载时尚好,低于35Hz以下畸变突出,谐波含量大增。 9、电机从0Hz起动时振动大,电机温度高,不能快加速。 10、功率因数低,谐波污染大。 11、动态特性软,响应速度慢,加速和减速时间长。 12、不易用于含有制动工况的机械转动和能量回馈的四象限运行,且无法实现制动。 13、装置的体积太大,重量大,安装占地面积大。 14、低频段或轻负载时波形畸变大,输出三相电压非对称性频摆加大。 15、电机磁链脉动增大,电机中性点与变频器中性点出现电位差,谐波剧增。 16、变压器来承受共模电压对绝缘的冲击和谐波热能。 高压变频器的选型注意事项 1.选择过高电压等级的弊端 选择过高的电压等级造成投资过高,回收期长。电压等级的提高,电机的绝缘必须提高,使电机价格增加。电压等级的提高,使变频器中电力半导体器件的串联数量加大,成本上升。 可见,对于200~2000kW的电机系统采用6kV、10kV电压等级是极不经济、很不合理的。 2.变频器容量与整流装置相数关系 变频器装置投入6kV电网必须符合国家有关谐波抑制的规定。这和电网容量和装置的额定功率有关。

相关主题
文本预览
相关文档 最新文档