当前位置:文档之家› 用切比雪夫曲线拟合导航卫星广播星历_陈刘成

用切比雪夫曲线拟合导航卫星广播星历_陈刘成

用切比雪夫曲线拟合导航卫星广播星历_陈刘成
用切比雪夫曲线拟合导航卫星广播星历_陈刘成

卫星传输广播电视节目管理办法

卫星传输广播电视节目管理办法 广发办字(1997)638号 第一条为加强对利用卫星方式传输广播电视节目活动的管理,提高广播电视覆盖率,根据《广播电视管理条例》的规定,制订本办法。 第二条本办法所称“卫星传输广播电视节目”是指境内广播电台、电视台利用卫星方式传输广播电视节目,以扩大广播电视覆盖的活动。 第三条广播电影电视部负责全国的卫星广播电视频段和转发器使用的规划和管理,负责全国的卫星传输广播电视节目活动的审批和监督管理。 省级人民政府广播电视行政部门负责本行政区域内的卫星传输广播电视节目活动的初审和日常监督检查工作。 第四条利用卫星方式传输广播电视节目,应当逐渐采用数字压缩技术,坚持广播节目与电视节目共星发射、共缆传输、共同入户的原则。 第五条省级以上广播电台、电视台可以申请利用卫星方式传输广播电视节目。 第六条广播电台、电视台利用卫星方式传输广播电视节目,应当具备以下条件: (一)符合全国广播电视发展的总体规划和覆盖要求; (二)有足够的资金保障; (三)自制节目能力达到每天5小时以上,节目播出时间达到每天18小时以上; (四)有健全的节目审查和管理制度; (五)有利用电视通道副载波传输广播节目的条件和设备,有开展卫星多工应用的方案; (六)有随时关断卫星广播电视节目的技术保证; (七)广播电影电视部规定的其他条件。 第七条中央的广播电台、电视台利用卫星方式传输广播电视节目,应当向广播电影电视部提出书面申请。中国教育电视台利用卫星方式传输电视节目,应

当报经国家教育委员会批准,并向广播电影电视部提出书面申请。 省级广播电台、电视台利用卫星方式传输广播电视节目,应当向省级人民政府广播电视行政部门提出书面报告。省级人民政府广播电视行政部门认为需要利用卫星方式传输的,应当报经同级人民政府批准,并向广播电影电视部提出书面申请。 书面申请应当包括经费、设备、节目储备来源、管理制度、技术参数和人员编制等内容。 第八条省级人民政府广播电视行政部门申请利用卫星方式传输广播电视节目,应当向广播电影电视部提交以下材料: (一)书面申请; (二)省级广播电台、电视台的书面报告; (三)省级人民政府的批准文件; (四)资金保障的证明。 第九条广播电影电视部负责对利用卫星方式传输广播电视节目的申请进行审批。经批准后,方可使用卫星转发器,建设卫星上行站。 第十条卫星上行站的建设应当符合国家有关规定和标准。工程竣工,由广播电影电视部组织进行工程验收、入网测试、模拟演练。经验收合格后,方可正式向卫星传送节目。 第十一条卫星广播电视节目应当符合国家法律、法规的规定,坚持正确的舆论导向。 第十二条卫星广播电视节目不得出现以下内容: (一)危害国家的统一、主权和领土完整的; (二)危害国家的安全、荣誉和利益的; (三)煽动民族分裂,破坏民族团结的; (四)泄露国家秘密的; (五)诽谤、侮辱他人的; (六)宣扬淫秽、迷信或者渲染暴力的; (七)法律、行政法规规定禁止的其他内容。 第十三条利用卫星方式传输广播电视节目的广播电台、电视台应当在节目

GPS广播星历计算卫星位置和速度

“GPS广播星历计算卫星位置和速度” 及“GPS伪距定位”计算试验 1.试验内容及上交成果 1.1 试验内容 应用C语言按预定格式(函数、输入输出变量之名称、类型)编写“GPS广播星历计算卫星位置和速度”函数SatPos_Vel( )、“GPS伪距定位”函数Positioning( )。将此两个函数组成文件F2.cpp,并包含于文件GPS_Positioning.cpp中。编译、连接并运行文件GPS_Positioning.cpp,逐一时刻读取广播星历(Ephemeris.dat)、观测时间及伪距、卫星号(Observation.dat)信息,计算WGS84坐标系中观测时刻相应的卫星位置、速度以及载体位置,结果保存于文件Position.dat中。 1.2 上交成果 磁盘文件F2.cpp、Position.dat,并存于“学号作者中文姓名”目录中。 2.函数说明 2.1 星历文件读取函数 void EFileReading(Efile) 功能:读取星历文件,给星历数据结构体Ephemeris赋值。 输入变量:EFile 字符串,文件名。 2.2 观测数据读取函数 int ObsReading(fp_Obs,Time,Rho,Mark) 功能:从文件Observation.dat中读取某一时刻的伪距、卫星号。读取成功函数值返回“1”,失败返回“-1”(读错,或至文件尾)。 输入变量:fp_Obs 文件指针; 输出变量:Time double,时间(秒); Rho double[12],伪距(米); Mark int[12],卫星号,“-1”表示此通道无卫星、无伪距。 2.3 最小二乘估计函数 int LeastSquareEstimation(Y,A,P,m,n, X) 功能:最小二乘方法求解观测方程Y=AX+ε,其中观测值方差阵的逆阵为P(也称为权阵),得未知参数X。成功返回“1”,失败返回“-1”(亏秩)。 输入变量:Y double[m],观测方程自由项(米); A double[m×n],系数阵(无量纲),按第1行第1、2……n元素,

卫星基础知识

中星9号卫星简介——双备份直播星之一 编者按:我国双备份直播卫星之一的中星9号卫星计划于2007年11月用中国的长征三号乙火箭在西昌卫星中心发射升空。然而发射计划几经挫折,一延再延,终于在2008年6月9日顺利升空。至此,数字电视三大运营主体:有线、地面、卫星全部到位,竞争的大幕正徐徐拉开,中国数字电视市场的发展开始进入全新的时代。 2005年2月,国家正式批准直播星的建设方案。直播星将采用正在研制的东方红4号地球同步通讯卫星平台作为首发主星,并命名为鑫诺2号。进口的法国阿尔卡特公司SB4000卫星平台作为后补备用星,命名为中星9 号形成“一中一外”的直播星系统空间段方案。两颗卫星均采用长征火箭发射,双星共位运营,可保证我国直播星广播电视节目的安全传输。然而2006年发射的鑫诺2号升空后失效,中星9号从备份星升格为主星,未来还需要发射一颗中星9号的备份星。我国计划发射鑫诺4号为中星9的备份星。与曾出现故障的鑫诺2号一样,鑫诺4号卫星也是基于中国自主研发的东方红四号卫星平台进行开发的,载有18个36MHz带宽及4个54MHz 带宽Ku频段转发器,未来升空后将与中星9号一起在东经92.2度轨道位共轨工作。“实事求是地讲,东方红四号平台还不是很成熟,这一点从鑫诺2号升空后发生故障可见一斑,”一位不愿透露姓名的卫星界人士告诉记者,“所以鑫诺4号的研发工作慎之又慎,预期发射计划会往后推。” 直播卫星的管理、运营分为空间段和地面段。空间段主要负责卫星发射及运行测控;地面段主要负责卫星接收终端、内容、服务及未来商业平台的运营。2007年12月成立的中国直播卫星有限公司,是直播星空间段运营管理的唯一主体。按照国资委批准的重组方案,中国直播卫星有限公司整合了中国卫星通信集团公司、鑫诺卫星通信有限公司和中国东方通信卫星有限公司旗下所有与卫星相关的资产、业务和团队,管理着中卫1号、鑫诺1号、鑫诺3号、中星6B等四颗广播电视传输星,以及最新发射成功的中星9号直播星。中星9号功率为10700瓦,设计寿命15年,具有22 个转发器,采用国际电联(ITU)规定的卫星广播业务(BSS)专用Ku波段,以大功率向地面广播播出,可将广播电视在全国的覆盖率提高到98%以上,届时广大民众可用0.45~0.6m天线收看卫星广播电视节目,实现电视节目直播到户。国际电联分配给中国的广播电视卫星BSS频段轨位有62°E,92.2°E,134°E三个轨位和香港使用的122°E轨位。中国的领土东西经度范围在135°E~73.5°E(中国地理中心城市兰州位于103°E),因此我国的广播电视卫星首选使用92.2°E轨位较好,这样对全国大部分的电视接收用户天线的仰角可在35°以上,只有我国东北部分地区的接收天线仰角在20°以下。

卫星电视广播的工作原理

卫星电视广播的工作原理 电视节目由电视台通过卫星地面发射站,用定向天线向太空中的卫星发射电视信号(上行频率为f1),卫星转发器接收来自地面的电视信号,经过放大、变换等一系列处理,再用下行频率f2向地面服务区转发电视信号。这样,服务区内众多的地面卫星接收站便可接收到电视台发出的电视节目。通常一颗卫星上装有24个以上转发器,每个转发器可以转发一套模拟电视节目或4~8套经数字视频压缩的电视节目。 目前世界各国卫星电视广播普遍采用C频段(3.7~4.2GHz)和Ku频段(11.7~12.75GHz)。由于C频段是和地面通信业务共用的,所以为了避免卫星电视信号对地面通信业务的干扰,卫星发射到地面的功率通量密度受到限制(一般EIRP=36dBW)左右。为保证接收图像质量,通常采用口径为1.8~3.0m的接收天线。Ku频段的特点是频率高、频率范围宽、信道容量大,是卫星电视广播的优选频段。卫星发射Ku频段到地面,其功率通量密度不受限制(一般EIRP=50dBW)。加上信号波长短,同样口径天线的增益要比C频段高,因而采用较小口径的天线(0.5~1.2m)就能获得满意的图像。这是世界各国卫星电视广播的发展方向。 为了充分利用频段内的无线电频率,防止相互干扰,又将每个频段内分成若干频道。如果不采用数字视频压缩技术,由于每两个相邻频道之间的频率间隔均为19.18MHz,而卫星下行的电视信号带宽一般都大于20MHz,这样相邻频道间的信号频带就相互重叠,形成相互干扰。因此,邻国或相邻地区之间,常采用不同频道和不同极化方式进行卫星电视广播。通常是将相邻两个频道号的单、双号分别按水平极化和垂直极化(或左旋圆极化和右旋圆极化)方式工作,以削弱相邻频道之间的相互干扰。 数字频带压缩技术 通常,卫星上一个转发器只能传送一套模拟电视节目,而租用一个卫星转发器的年租金约为150~200万美元。如果采用数字频带压缩技术,则一个转发器便可同时传送多套电视节目(例如4套),无疑将大大节省每套节目所需的费用,而且由于电视信号的数字化,还将大大提高电视图像的质量。此外,对数字电视加扰加密也比较简单易行,从而可以实现收费电视业务。 电视广播中心制作好的中央电视台第3、5、6、7频道的4路PAL制电视节目和一个辅助数字通道分别送到码率压缩编码器,再送入四相移调制器(QPSK),输出70MHz中频(IF)信号,光缆、微波传送到中国电视广播地球上行站,经上变频、高功放(HPA),由天线发往卫星。我国于1996年8月1日利用亚洲2号卫星Ku频段正式开始了经数字视频压缩的节目传送任务。在接收站只要以相反过程进行接收、解调、解码、D/A变换等视频处理,就可以在电视机上显示出原有的电视图像了。 卫星电视广播的地面接收 由于卫星转发器的体积和质量都受到严格限制,转发器的发射功率一般在几十瓦到160多瓦。经过3.6万千米传输到达地面,信号能量受到很大衰减,同时混入了各种噪声。为了接收如此微弱的信号,卫星地面接收站必须采用方向性极强的天线来收集信号能量,并通过低噪声微波放大器的放大、变换,然后输入卫星电视接收机,观众才可以收看(听)到电视图像和声音。 最近几年,卫星电视直播产业在美国、欧洲和亚太地区已得到迅速发展,这类向家庭直播的卫视接收天线口径一般在0.45m左右。我国的卫星电视广播主要面向城市地区,为提

切比雪夫多项式-详细-Chebyshev polynomials

切比雪夫多项式是与棣美弗定理有关,以递归方式定义的一系列正交多项式序列。通常,第一类切比雪夫多项式以符号Tn表示,第二类切比雪夫多项式用Un表示。切比雪夫多项式Tn 或Un 代表n 阶多项式。 切比雪夫多项式在逼近理论中有重要的应用。这是因为第一类切比雪夫多项式的根(被称为切比雪夫节点)可以用于多项式插值。相应的插值多项式能最大限度地降低龙格现象,并且提供多项式在连续函数的最佳一致逼近。 在微分方程的研究中,数学家提出切比雪夫微分方程 和 相应地,第一类和第二类切比雪夫多项式分别为这两个方程的解。这些方程是斯图姆-刘维尔微分方程的特殊情形. 定义:第一类切比雪夫多项式由以下递推关系确定 也可以用母函数表示 第二类切比雪夫多项式由以下递推关系给出 此时母函数为 从三角函数定义:第一类切比雪夫多项式由以下三角恒等式确定 其中n = 0, 1, 2, 3, .... . 是关于的n次多项式,这个事实可以这么看: 是:的实部(参见棣美弗公式),而从左边二项展开式可以看出实部中出现含的项中,都是偶数次的, 从而可以表示成的幂。 用显式来表示 尽管能经常碰到上面的表达式但如果借助于复函数cos(z), cosh(z)以及他们的反函数,则有

类似,第二类切比雪夫多项式满足 以佩尔方程定义:切比雪夫多项式可被定义为佩尔方程 在多项式环R[x] 上的解(e.g., 见Demeyer (2007), p.70). 因此它们的表达式可通过解佩尔方程而得出: 归递公式 两类切比雪夫多项式可由以下双重递归关系式中直接得出: T0(x) = 1 U ? 1(x) = 1 Tn + 1(x) = xTn(x) ? (1 ? x2)Un ? 1(x) Un(x) = xUn ? 1(x) + Tn(x) 证明的方式是在下列三角关系式中用x 代替 xTn(x) ? (1 ? x2)Un(x) 正交性 Tn 和Un 都是区间[?1,1] 上的正交多项式系. 第一类切比雪夫多项式带权 即: 可先令x= cos(θ) 利用Tn (cos(θ))=cos(nθ)便可证明. 类似地,第二类切比雪夫多项式带权即: 其正交化后形成的随机变量是Wigner 半圆分布). 基本性质 对每个非负整数n,Tn(x) 和Un(x) 都为n次多项式。并且当n为偶(奇)数时,它们是关于x 的偶(奇)函数,在写成关于x的多项式时只有偶(奇)次项。 时,Tn 的最高次项系数为2n ? 1 ,n = 0时系数为1 。

卫星坐标计算

GPS 卫星坐标计算 班级:08测绘一班 姓名:浦绍佼 学号:20080754

目录 实验目的: (3) 卫星坐标计算步骤: (3) 具体过程: (5) 四:运行与结果 (12) 五,心得体会: (13)

实验目的: 根据导航文件求出卫星坐标。 卫星坐标计算步骤: 一:计算平均角速度: n =;n0=;:由导航文件给出二:规划时刻:,为参考历元 三:平近点角: 四:偏近点角:+e;(此处进行迭代运算) 五:真近点角:; 六:升交点角距:; 七:摄动改正:顾及?,I,n的摄动变化以及正弦改正模型的振幅项,;则 升交点角距: 轨道向径:

轨道倾角: 式中:为参考时刻的升交角距; 八:改正后的升交角距: 改正后的轨道向径:; 改正后的轨道倾角:; 九:卫星在升交点轨道直角坐标系的坐标: ;: 十:升交点经度: 7.2921151467*rad/s;:升交点赤经变化率; :GPS周开始时刻的升交点经度; 十一:卫星在地固坐标系的空间直角坐标为: =R(-)(R(-) R(-), (R(-)为旋转矩阵,将其代入展开后得: ; ;

具体过程: 一:原始资料(卫星导航文件) 二:进行必要的界面设计:

三:编写代码: using System; using System.Collections.Generic; using https://www.doczj.com/doc/c85993559.html,ponentModel; using System.Data; using System.Drawing; using System.Text; using System.Windows.Forms; using System.IO; using System.Diagnostics; namespace 20080754 { public partial class Form1 : Form { private string stFilePath = string.Empty; public Form1() { InitializeComponent(); listView1.Columns.Add("序号", 40, HorizontalAlignment.Center); listView1.Columns.Add("星历参数", 80, HorizontalAlignment.Center); listView1.Columns.Add("参数值", 130, HorizontalAlignment.Center); listView1.GridLines = true; listView1.View = View.Details; listView1.HeaderStyle = ColumnHeaderStyle.Clickable; listView1.FullRowSelect = true;

卫星数字电视广播标准介绍资料

卫星数字电视广播标准介绍 08通信B班王喆 一、DVB-S标准介绍 DVB-S系统标准于1993发布,是公认的最成功的两个系统之一 (DVB-S 和GSM标准),被全球直播卫星电视广播商大量采用。DVB-S系统具有覆盖面 广、节目容量大等特点,可适用于多种卫星广播系统,适用于不同带宽的卫星 转发器,卫星转发器带宽可以从Array 26MHz到72MHz,转发器功率从 49dBW 到61dBW。 DVB-S系统的音频编码使 用MPEG-2LayerII笫二层音频 编码,也称MUSICAM。音频的 MPEG-2LayerII编码压缩系统 利用了声音的低声音频谱掩蔽 效应,这一人体生理学效应允 许我们对于人耳不太敏感的频 率进行低码率编码,此技术的 采用可以大大地降低音频编码 速率。MPEG-2LayerII音频编码 可用于单音,立体声,环绕声 和多路多语言声音的编码。图1 采用DVB-S标准的中星6B卫星信号覆盖图

DVB-S系统的视频采用标准的MPEG-2压缩编码,MPEG-2视频编码系统由一个大家族构成,每一个子系统之间都有兼容性和共同性,根据图像清晰度的不同,它分成四种信源格式或称“等级”(Level),从录像带(VCR)的低图像清晰度,到高清晰度电视。除了根据图像清晰度定义的“等级”以外,DVB-S视频标准还定义了“档次”(Profile)的概念,每一个不同的“档次”(Profile)能够提供构成编码系统的压缩工具和压缩算法。在使用MPEG一2 MP@ML格式时,用户端如若达到CCIR 601演播室质量,码率为9Mb/s,如若达到PAL质量,码率为5Mb/s;工作频率为l1G/12GHz;为了达到最大的功率利用率而又不使频谱利用率有很大的降低,数据流的调制采用四相相移键控调制(QPSK)方式并使用卷积码和RS级联纠错的方式,但是其纠错性能略显不足。 但这种编码方式的缺点也是明显的,首先是编码效率相对较低,其次是其载噪比门限距离理论上的信道极限仍存在较大的差距。同时DVB-S只支持MPEG-2传输流格式的信号输入,且采用单一QPSK信号调制,在相同载噪比(C/N)条件下,每个符号传输的经信道编码的比特数仅为2,在卷积编码率为1/2时,实际有效载荷的传输效率仅为每符号0.92比特,而且在DVB-S的基带成型处理中升余弦滤波滚降因子固定为0.35,这些都限制了系统的信号传输能力,例如在36MHZ的标准转发器带宽内,3/4卷积编码率条件下,DVB-S的有效信息传输容量仅为36.86MBPS。 二、DVB—S2与DVB-S的技术比较 现在,面临有线数字电视等的强大竞争的卫星直播系统,由于HDTV、VOD、PPV、交互业务等多种业务的开展,对传输总量的需求大大提高。这就要求卫星直播系统必须采用新的技术体制与手段,提供比过去更多的传输能力。此外,在DVB-S出现后的十年里,纠错编码等信号处理技术有了突破性进展,使升级DVB-S 在技术上成为可能。特别是,卫星技术本身的进步,例如点波束卫星的出现,使得采用比DVB-S中的QPSK更高效的调制方式成为可能。 2003年,DVB组织发布了基于低密度奇偶校验编码(LDPC)和BCH码的DVB-S2系统,也就是欧洲的第二代卫星广播系统,该系统已经被ITU-R和欧洲通信标准协会ETSI接受。 DVB-S2相比DVB-S在技术上有很大改进,其特点为: 1、新的信道编码方案 DVB-S2最引人注目的革新在于信道编码方式,包括纠错编码和调制。纠错编码和调制是在实际的信道情况下,寻找最佳途径传输信息。香农的编码理论给出了最佳编码方案可以达到的信道容量,却没有给出具体的编码方案,以及没有描述实现起来的复杂程度,因此,编码和调制的研究集中于在最充分的利用传输资源(即带宽、功率、复杂度)的条件下,选择传输和接收方案,以逼近香农给出的极限。DVB-S2纠错编码使用LDPC与BCH码级联,调制则以多种高阶调制方式取代QPSK。 与DVB-S相比,DVB-S2可提供除QPSK外的多种具有更高频带利用率的调制方式,如8PSK、16APSK、32APSK。DVB-S2的16APSK和32APSK调制技术,减少了幅度变化,更能适应线性特性相对不好的卫星传输信道,使高位调制方式通过卫星信道传输成为可能。

卫星电视广播

卫星电视广播简介 1. 什么是卫星电视广播 卫星电视广播就是利用静止卫星上的大功率转发器向特定的地区传送广 播电视信 号,用户通过相应的接收设备直接收看电视和(或)收听相应的节目, 一般地称这种广播方式为卫星电视广播。 2. 卫星电视广播的特点 (1) 覆盖面积大,传输距离远,能量分布均匀,但信号弱。 同步卫星位于赤道上空约35786km 的高空,一颗卫星的视区可达全球面 积的 42.4%,三颗卫星可覆盖全球,由于卫星转发器是利用定向天线把电波聚集 成窄波束,能比较均匀的辐射到覆盖区域内,服务区中心和边缘地区的电场一般 相差2?4dB,同时在服务区域内不受地理条件限制,是解决边远地区和山区的 电视覆盖的最好办法。特别是我国幅员辽阔,地域复杂,用一个转发器就能均匀 地覆盖整个国土。 由于卫星的辐射功率小,而且卫星离地面距离远,因此,到达地面的场强要比一 般地面电视广播弱30dB 以上,故要接收卫星电视信号需要较大的天线和低噪声 前置放大器。 (2) 卫星电视广播质量高、传送节目套数多,信息容量大。 卫星电视广播采用的是调频,因而抗干扰能力强,输出信噪比高,失真 小;工 作频率高,受工业干扰、无线电波等干扰较小,而且可实现较宽的工作频 段。如:KU 频段(11.7?12.2 ) GHz 宽度达500MHz 能容纳24个模拟频道, 每个频道带宽可达 27MHz.;卫星电视天线发射的波束窄,而且是直接视线接收, 不存在向地面电视广播那样多次中转和变换带来的失真以及信噪比下降的情况, 信号比较稳定。 (3 )投资少,成效高。 根据亚洲广播联盟(ABU 估算,如果覆盖1000万平方公里的面积与微 波中继线 路相比,总投资要节约 60%我国只需要一颗卫星即可覆盖全国,而相 同条件下则需要架设100米高的电视塔2400座和更多的微波中继站,而且卫星 传播还可以减少大量的维护人员。 3. 卫星电视广播系统的组成 卫星电视广播系统主要有上行地球站、 广播卫星、卫星电视接收站、卫 星测 控站四大个主要部分组成。下面是卫星电视广播系统组成示意图,如图10.1 所示。 翌蛍个体 爲聽网接收者 收转站收转站 (1)上行地球站(简称上行站) 上行地球站的主要任务就是把电视广播中心的广播电视信号加以信号 处理,并 经过调制、上变频,然后对输出信号的功率进行放大处理,再通过定向 发射天 线向卫星发送上行微波信号。 同时也接收由卫星下行微弱的微波信号, 以 监 遥测遥控宀" 跟 踪站基 上行站 _t5 矗

3.2.4 切比雪夫多项式零点插值

定理6 在-1≤x ≤1上,在首项系数为1的一切n 次多项式H n (x )中 从这个定理知,所有首项系数为1的n 次多项式在区间[-1, 1]上的最大值满足 11121)(max ?<

现在我们提出一个问题:怎样选取节点x j ( j = 0, 1, 2, …, n ) 由于∏=?n j j x x 0)(是一个最高次项系数为1的n + 1次多项式,由T n (x )的极性讨论知, 当x j 满足 )(2 1)())((110x T x x x x x x n n n +=???L L 时, n n x x x x x 2 1)()(max 011=??<

卫星数字收音机知识

三大国际地面数字广播标准: 1。DAB/DMB 2。DRM 3。HDRadio DAB(数字音频广播标准)被许多国家特别是欧洲国家的广播系统所采用,在市面上可供挑选的DAB收音机非常多。除无失真接收和CD级音质外,DAB的音频编码标准还允许用同一发射机发射多个数字广播和视频信道。目前全球有5亿多用户接收近1000个不同的DAB 广播节目。 数字多媒体广播(DMB)是从DAB演化出来的,使用现有的DAB基础设施广播节目。DMB标准允许在同一频谱范围内提高频道的数量,并提供像数据和视频文件传输等新服务,第一个商用DMB已经在韩国开播,欧洲正在进行DMB试播。 DRM(世界数字广播)是一个新的开放式广播标准,该标准直到最近才开发出来,可以通过长波、中波和短波承载数字广播信号。与需要重新分配频率的数字广播不同,DRM能够更高效地使用现有的调幅(AM)频段(低30MHz)。DRM采用一项叫做带内同频(IBOC)技术,能够在同一频率上同时广播模拟和数字信号。 DRM广播已经出现在欧洲以及欧洲以外的地区,第一批DRM收音机已经上市。另一个IBOC 技术HDRadio允许调幅和调频电台同时广播数字和模拟信号,为广播公司提供了一个通过同一频率广播多套节目的平台(组播);HDRadio提供CD级的高清音质、实时天气预报和最新路况信息、滚读文本和图像内容。 美国有1000多家HDRadio广播电台,受众占美国总人口的90%,其它几个国家也在测试这项技术。 卫星广播标准 卫星广播技术采用商用通信卫星在世界五大洲传送数字无线电信号,世广、Sirius和XMRadio 是当今世界上的主要卫星广播公司,世广信号覆盖面主要是在非洲、亚洲和部分欧洲地区,Sirius和XMRadio主要在北美地区。这三大广播公司都是私营公司,服务都是有偿的,节目解码播放需要他们提供的独有的硬件。 据消费电子协会统计,2006年初全球卫星广播入户率达到10%。 意法半导体的解决方案

高等数值分析插值程序题Runge现象

插值程序题 1.对Runge函数RR(xx)=1/(1+25xx2)在区间[-1,1]做下列插值逼近,并和RR(xx)的图像进行比较,并对结果进行分析。 (1)等距节点xx ii=?1+ii?,?=0.1,0≤?≤20,20次netown插值多项式图像;(2)节点xx ii=cos?2ii+142ππ?,(i=0,1,2,…,20),20次Lagrange插值多项式的图像;(3)等距节点xx ii=?1+ii?,?=0.1,0≤?≤20,20次分段线性插值函数图像;(4)等距节点xx ii=?1+ii?,?=0.1,0≤?≤20,20次三次样条插值函数的图像。解:(1)20次等距节点netown插值多项式和R(xx)的图像比较图如下所示(求值点之间的间隔为0.0001,以下相同): 从图像可以看出,在插值区间中部netown插值多项式与原Runge函数符合得较好;但在插值区间的两端两者的差别很大(netown在区间[-1,-0.9]的最小值为-59.7819),此时的插值余项不满足要求,因此用等距20次netown插值多项式来对Runge函数在区间[-1,1]做插值逼近并不合适,会出现明显的Runge现象。 (2)20次非等距节点Lagrange插值多项式(切比雪夫多项式零点插值)和R(xx)

的图像比较图如上所示。 此时插值的节点并不等距,插值节点两边密,中间疏,虽然此时Lagrange插值多项式也是20次,但相比等距netown插值,非等距Lagrange插值曲线与原函数吻合得很好,没有出现明显的Runge现象,两端比较密的插值节点较好地抑制了Runge现象。为了比较节点选取对高次插值结果的影响,用20次等距Lagrange插值也原函数在区间[-1,1]进行了插值,其与原函数图像比较如下: 其图像与(1)中netown插值几乎一样,因此对高次插值多项式,插值时适当的选取插值节点,能有效的抑制Runge现象。 (3)20次等距节点分段线性插值函数和R(xx)的图像比较图如下所示: 分段线性插值是这几种插值方法中最容易处理的一个,只需要将每个节点对应的函数值求出再将相邻的节点两两用直线相连即可。此处采用了等距节点,从图中可以看出除了区间中部存在偏差之外,区间其他部分与原函数吻合得很好,没有出现Runge现象。这是因为分段线性插值通过对插值区间分段的方法将插值函

卫星通信基础知识

卫星通信基础知识 一、电磁波 振动的电场和磁场在空间的传播叫做电磁波。 由收音机收到的无线电广播信号,由电视机收到的高频 电视信号,医院里物理治疗用的红外线,消毒和杀菌用的紫外线,透视照相用的X射线,以及各种可见光,都属于电磁波。 二、电磁波的频率、波长 人们用频率、波长和波速来描述电磁波的性质。 频率是指在单位时间内电场强度矢量E(或磁场强度矢量H)进行完全振动的次数,通常用f表示。波长是指在波的传播方向上相邻两个振动完全相同点之间的距离,通常用λ表示。波速是指电磁波在单位时间内传播的距离,通常用v 表示。频率f,波长λ,和波速v之间满足如下关系: v=λf 如果一电磁波在一秒内振动一次,该电磁波的频率就是1Hz ,在国际单位制中,波速的单位是m/s(米/秒) ,波长的单位是m(米) ,频率的单位是Hz. 对于无线电信号,它属于电磁波,它的传播速度为光速,即每秒约前进30万公里。 例如:对于一个频率为98MHz的调频广播节目,其波长为300,000,000米除98,000,000Hz,等于3.06米。 不同的频率的(或不同波长)电磁波具有不同的性质用途。人们按照其频率或波长的不同把电磁波分为不同的种类,频率在300GHz(1GHz=109Hz)以下的波称为无线电波,主要用于广播,电视或其他通讯。频率在3×1011Hz-4×1014Hz 之间的波称为红外线,它的显著特点是给人以“热”的感觉,常用于医学上的物理治疗或红外线加热,探测等,频率在3.84×1014HZ-7.69×1014Hz之间的波为可见光,它能引起人们的视觉,频率在8×1014Hz-3×1017Hz之间的波称为紫外线,具有较强的杀菌能力,常用于杀菌,消毒,频率在3×1017 Hz-5×1019Hz之间的波称为X射线(或伦琴射线)它的穿透能力很强,常用于金属探测,人体透视等,

GPS卫星的坐标计算

第三章GPS 卫星的坐标计算 在用GPS 信号进行导航定位以及制订观测计划时,都必须已知GPS 卫星在空间的瞬间位置。卫星位置的计算是根据卫星导航电文所提供的轨道参数按一定的公式计算的。 3.1卫星运动的轨道参数 3.1.1基本概念 1.作用在卫星上力 卫星受的作用力主要有:地球对卫星的引力,太阳、月亮对卫星的引力,大气阻力,大气光压,地球潮汐力等。 中心力:假设地球为匀质球体的引力(质量集中于球体的中心),即地球的中心引力,它决定卫星运动的基本规律和特征,决定卫星轨道,是分析卫星实际轨道的基础。此种理想状态时卫星的运动称为无摄运动,卫星的轨道称为无摄轨道。 摄动力:也称非中心力,包括地球非球形对称的作用力、日月引力、大气阻力、大气光压、地球潮汐力等。摄动力使卫星运动产生一些小的附加变化而偏离理想轨道,同时这种偏离量的大小随时间而改变。此种状态时卫星的运动称为受摄运动,卫星的轨道称为受摄轨道。 虽然作用在卫星上的力很多,但这些力的大小却相差很悬殊。如果将地球引力当作1的话,其它作用力均小于10-5。 2.二体问题 研究两个质点在万有引力作用下的运动规律问题称为二体问题。 3.卫星轨道和卫星轨道参数 卫星在空间运行的轨迹称为卫星轨道。 描述卫星轨道状态和位置的参数称为轨道参数。 3.1.2卫星运动的开普勒定律 (1)开普勒第一定律 卫星运行的轨道为一椭圆,该椭圆的一个焦点与地球质心重合。此定律阐明了卫星运行轨道的基本形态及其与地心的关系。由万有引力定律可得卫星绕地球质心运动的轨道方程。r 为卫星的地心距离,as 为开普勒椭圆的长半径,es 为开普勒椭圆的偏心率;fs 为真近点角,它描述了任意时刻卫星在轨道上相对近地点的位置,是时间的函数。 (2)开普勒第二定律 卫星的地心向径在单位时间内所扫过的面积相等。表明卫星在椭圆轨道上的运行速度是不断变化的,在近地点处速度最大,在远地点处速度最小。 近地点 远地点 s s s s f e e a r cos 1)1(2+-=

卫星通信基础知识37499

卫星通信基础知识 第一节电磁波常识 一、电磁波 振动的电场和磁场在空间的传播叫做电磁波。 由收音机收到的无线电广播信号,由电视机收到的高频电视信号,医院里物理治疗用的红外线,消毒和杀菌用的紫外线,透视照相用的X射线,以及各种可见光,都属于电磁波。 二、电磁波的频率、波长 人们用频率、波长和波速来描述电磁波的性质。 频率是指在单位时间内电场强度矢量E(或磁场强度矢量H)进行完全振动的次数,通常用f表示。波长是指在波的传播方向上相邻两个振动完全相同点之间的距离,通常用λ表示。波速是指电磁波在单位时间内传播的距离,通常用v表示。频率f,波长λ,和波速v之间满足如下关系: v=λf 如果一电磁波在一秒内振动一次,该电磁波的频率就是 1Hz ,在国际单位制中,波速的单位是m/s(米/秒) ,波长的单位是m(米) ,频率的单位是Hz. 对于无线电信号,它属于电磁波,它的传播速度为光速,即每秒约前进30万公里。 例如:对于一个频率为98MHz的调频广播节目,其波长为300,000,000米除98,000,000Hz,等于3.06米。 不同的频率的(或不同波长)电磁波具有不同的性质用途。人们按照其频率或波长的不同把电磁波分为不同的种类,频率在300GHz(1GHz=109Hz)以下的波称为无线电波,主要用于广播,电视

或其他通讯。频率在3×1011Hz-4×1014Hz之间的波称为红外线,它的显著特点是给人以“热”的感觉,常用于医学上的物理治疗或红外线加热,探测等,频率在3.84×1014HZ-7.69×1014Hz之间的波为可见光,它能引起人们的视觉,频率在8×1014Hz-3×1017Hz之间的波称为紫外线,具有较强的杀菌能力,常用于杀菌,消毒,频率在3×1017 Hz-5×1019Hz之间的波称为X射线(或伦琴射线)它的穿透能力很强,常用于金属探测,人体透视等,在原子核物理中还有频率为1018Hz-1022Hz以上的射线,其穿透能力就更强了。 三、波段与频道 由于利用频率可以计算出波长,一个频率范围将对应一个波长范围,所以频段与波段具有同样的意思。两个叫法是对应的,也是通用的,在电视广播领域中,更多使用波段。 微波是指波长在微米级的无线电信号。 按照波长和用途不同,人们把无线电波又分成许多波段,如表1.1所示。 表1.1 无线电波波段的划分 频道是指传送一个信号源节目所使用的频率(或波长)范围。通常一个频段(或波段)能够再分成多个频道。 四、极化方式

卫星广播技术交流

广播技术发展到今天,卫星直播广播利用卫星实现广播节目的大范围覆盖,它可以实现多媒体直播,听众还可以使用与普通收音机相仿的接收机收听节目。由于节目是以数字方式传送的,音质可以达到CD级,受自然条件的负面影响很小。 一、卫星广播的原理 卫星广播系统由地球同步卫星、广播上行站、数字接收机及地面控制运营网络组成。广播流程如下: 1、电台的信号上行可以通过传统的“总站”方法来实现,即各电台将信号传给一个中心站进行处理,然后再从这里统一传输给卫星的透明转发器部分。另一种方案是选择采用更小、更方便的上行馈送站,通过星上处理转发器将这些不同的信号转换成单一的下行信号,再发送回地面。 2、卫星转发器向地面发送数字广播信号,实现覆盖。无论使用“总站”还是“分站”上行方式,传输到用户端的信号都是完全一样的。 3、地面广播接收机接收、播放节目。 就流程而言,卫星广播与卫星电视基本相同。不同的是:卫星广播

接收机无需大型抛物形天线,只要用小型便携式接收机就可以收听广播节目。接收机上带有直径为10cm左右的圆形天线。 卫星广播的特点是方向性不强,这一点与数字卫星电视广播不同。在世界任何地区,如山区、公海、森林都可以很清楚地收听节目,因为直播卫星辐射功率大,覆盖区域内EIRP值高,故其接收系统比一般通信卫星接收系统简单、小巧、价廉。 二、卫星广播的发展 广播在20世纪20年代诞生后,经历了调幅、调频两个发展阶段,正快步进入数字化的第三个阶段。首先登场的是欧洲国家于90年代中推出的DAB(digital audio broadcasting)系统,它成为国际电信联盟(ITU)认可的地面数字音频广播系统。近年来,世界上不少有实力的广播机构纷纷以这一系统正式开播或试播数字音频节目。中国广播媒体动作十分迅速,1996年12月16日在广东佛山广播电视中心进行了DAB 首次试播。 时至20世纪末,经国际电信联盟认可的另一套数字音频广播系统已登场亮相。这就是世广卫星集团(WorldSpace)推出的卫星数字音频广播系统。

切比雪夫多项式详细

切比雪夫多项式是与有关,以递归方式定义的一系列序列。通常,第一类切比雪夫多项式以符号Tn表示,第二类切比雪夫多项式用Un表示。切比雪夫多项式T n或U n代表n阶多项式。 切比雪夫多项式在中有重要的应用。这是因为第一类切比雪夫多项式的根(被称为切比雪夫节点)可以用于多项式插值。相应的插值多项式能最大限度地降低,并且提供多项式在的最佳一致逼近。 在的研究中,数学家提出切比雪夫微分方程 和 相应地,第一类和第二类切比雪夫多项式分别为这两个方程的解。这些方程是的特殊情形. 定义:第一类切比雪夫多项式由以下递推关系确定 也可以用表示 第二类切比雪夫多项式由以下给出 此时为 从三角函数定义:第一类切比雪夫多项式由以下三角恒等式确定 其中n = 0, 1, 2, 3, .... . 是关于的n次多项式,这个事实可以这么 看:是:的实部(参见),而从左边二项展开式可以看出实部中出现含的项中,都是偶数次的,从而可以表示成的幂。 用显式来表示 尽管能经常碰到上面的表达式但如果借助于复函数cos(z), cosh(z)以及他们的反函数,则有 类似,第二类切比雪夫多项式满足 以佩尔方程定义:切比雪夫多项式可被定义为 在多项式环R[x] 上的解(e.g., 见, p.70). 因此它们的表达式可通过解佩尔方程而得出: 归递公式 两类切比雪夫多项式可由以下双重递归关系式中直接得出: T0(x) = 1 U ? 1(x) = 1 Tn + 1(x) = xTn(x) ? (1 ? x2)Un ? 1(x) Un(x) = xUn ? 1(x) + Tn(x) 证明的方式是在下列三角关系式中用x 代替

gps导航卫星星历及历书参数意义

为了缩短卫星锁定时间,GPS接收机需利用历书、当地位置的时间来预报卫星运行状态。 历书与星历都是表示卫星运行的参数。历书包括全部卫星的大概位置,用于卫星预报;星历只是当前接收机观测到的卫星的精确位置,用于定位。 历书是从导航电文中提取的,每12.5分钟的导航电文才能得到一组完整的历书。 下表是ICD-GPS-200规定的历书格式: 说明类型字节单位 卫星号short 2 健康状况short 2 偏心率float 4 轨道参考时间long 4 s 轨道倾角float 4 半周 升交点赤经变化率float 4 半周 /s 长半轴的平方根 doubl e 8 升交点赤经 doubl e 8 半周 近地点角距 doubl e 8 半周 参考时间的平近点角 doubl e 8 半周 卫星钟差改正float 4 s 卫星钟漂改正float 4 s/s 历书星期数short 2

GPS星期数short 2 GPS星期秒数long 4 s 校验和 2 利用历书和当地的位置,我们可以计算出卫星的方位和高度角,由此可以计算出当地能观测到的卫星和持续时间,即卫星高度角大于5°的出现时间。GPS卫星星历参数包含在导航电文的第二和第三子帧中。从有效的星历中,我们可解得卫星的较准确位置和速度,从而用于接收机定位和测速。GPS卫星历书每30秒重复一次,有效期为以星历参考时间为中心的4小时内。 GPS卫星星历数据中各参数具体描述: 1、ID: 卫星序列号 2、Health: 卫星健康状况 3、Week: GPS星期周数 4、Toe Time of Applic(s): 星历参考时间 5、IODE: 星历数据期号 6、Eccentricity: 卫星轨道偏心率 7、Orbital Inclination(rad): Toe时的轨道倾角 8、Inclination rate (r/s) 卫星轨道倾角变化率 9、Rate of Right Ascen(R/s): 升交点赤经变化率 10、SQRT(A) (m^1/2): 轨道长半轴的平方根 11、Dn 平均角速度校正值 12、Right Ascen at Toe(rad): Toe时的升交点赤经 13、Argument of Perigee(rad): 轨道近地点角距 14、Mean Anom(rad): Toe时的平近点角 15、Cuc(rad): 升交点角距余弦调和校正振幅 16、Cus(rad): 升交点角距正弦调和校正振幅 17、Crc(m): 轨道半经余弦调和校正振幅 18、Crs(m): 轨道半经正弦调和校正振幅 19、Cic(rad): 轨道倾角余弦调和校正振幅 20、Cis(rad): 轨道倾角正弦调和校正振幅

相关主题
文本预览
相关文档 最新文档