当前位置:文档之家› 广东工业大学刘敬勇Behavior of lead compounds during municipal solid waste incineration

广东工业大学刘敬勇Behavior of lead compounds during municipal solid waste incineration

广东工业大学刘敬勇Behavior of lead compounds during municipal solid waste incineration
广东工业大学刘敬勇Behavior of lead compounds during municipal solid waste incineration

Behavior of lead compounds during municipal

solid waste incineration

Hong Yao a ,Ichiro Naruse b,*

a

State Key Laboratory of Coal Combustion,Huazhong University of Science and Technology,Wuhan 430074,China

b

Department of Mechanical Science &Engineering,Nagoya University,Nagoya 464-8603,Japan

Abstract

In order to depress the concentration of heavy metals in the bottom ash in the incinerator,the behavior of lead compounds during simulated municipal solid waste (MSW)incineration was investigated,using an electrically heated drop tube furnace.In the experiments,special type of ?sh food was chosen as the sim-ulated waste,which was burned alone and also blended with pure lead compounds,such as PbO,PbCl 2and PbSO 4.For the simulated waste blending with PbO,test with addition of HCl gas into the combustion air was also conducted.The furnace temperature and combustion air stoichiometry were varied from 873to 1273K and 0.5to 1.2,respectively.Ash particles were isokinetically sampled at the furnace exit by a water-cooled sampling probe,at the tip of which N 2gas was injected to quench the combustion gas and particles.Those particles were then separated by a low pressure impactor with 13stages.The results show that the tendency of the lead enrichment in the ?ne particles less than 1l m depends on the melting temperatures of the lead compounds.Of the three lead compounds,PbCl 2is enriched the most into the ?ne particles,and PbSO 4is the most di?cult at the low-temperatures examined.However,when HCl gas was mixed with the combustion air,more Pb is enriched in ?ne particles even at low temperatures.The low combustion air stoichiometry enhances formation of a large amount of ?ne particles containing high concentrations of lead.The mechanism of Pb enrichment in the coarse particles is controlled by the surface reaction of vapor of Pb compounds with the ash particles.Two-stage incinerator including a ?rst-stage gasi?cation zone with higher temperature and lower stoichiometric air ratio,is preferable to shift the Pb enrichment from bottom ash into ?y ash during waste incineration.

ó2009The Combustion Institute.Published by Elsevier Inc.All rights reserved.

Keywords:Bottom ash;Lead compounds;Municipal solid waste;Incineration

1.Introduction

While the volume of municipal solid waste (MSW)gradually increases,it is hard to ?nd new ?nal disposal sites.Thermal recycle of the MSW is recognized to be one of the suitable ways to

decrease its volume [1].For example,more than 70%of the MSW in Japan is incinerated since there is no space for land?ll.MSW contains higher con-centrations of heavy metals than fossil fuels,there-fore,the control of emissions of these heavy metals is an important issue when the MSW is incinerated or co-?red with other fuels [2–6].

In MSW incinerators,about 90%of the ash leaves as the bottom ash containing relatively coarser particles.In recent time,the bottom ash

1540-7489/$-see front matter ó2009The Combustion Institute.Published by Elsevier Inc.All rights reserved.doi:10.1016/j.proci.2008.07.026

*

Corresponding author.Fax:+81527895123.

E-mail address:naruse@mech.nagoya-u.ac.jp (I.Naruse).

Available online at https://www.doczj.com/doc/c95556585.html,

Proceedings of the Combustion Institute 32(2009)

2685–2691

https://www.doczj.com/doc/c95556585.html,/locate/proci

Proceedings of the

Combustion Institute

has been recycled to be used as materials for road construction and so forth,but the?y ash is gener-ally land?lled because of its high concentrations of trace metals and other pollutants[7–10].Once vaporization has occurred,the heavy metals such as lead,tend to be enriched into the?y ash with a particle size of less than1l m,which are formed by the vaporization–condensation mechanism [11–23].Previous researches mainly focused on removal of the heavy metals in the?ne particles in order to avoid their emissions into the atmo-sphere[24–28].As the vapors of the heavy metal compounds can react with some types of sorbents at high temperatures,the by-products with a larger particle size can be more readily collected by con-ventional air pollution control devices such as scrubbers,electrostatic precipitators and bag-house?lters[29–36].But,a recent report showed that more lead tended to be contained in the bottom ash with the change of waste compositions[7].If the bottom ash contains much high concentrations of the heavy metals,it will be di?cult to recycle in the future due to the strict regulations for soil and water qualities.On the contrary,if the concentra-tions of the heavy metals in the?y ash become high enough,those metals could be much more e?ec-tively recovered as resources at relatively low cost [3,5].Therefore,it is necessary to depress the con-centrations of heavy metals in the bottom ash.In other words,the heavy metals should be transferred from the bottom ash into the?y ash.

Recently,two-stage incineration seems to be an essential technology for dioxin control during MSW incineration.The incineration is separated into two zones with di?erent oxygen concentra-tions.The?rst section is operated under oxygen lean conditions for the complete gasi?cation/ pyrolysis of the organic part of the waste,while the past-combustion chamber is where the com-plete combustion takes place with su?cient excess oxygen.From these viewpoints,it is very important to increase the fraction of the heavy metal vapori-zation in the?rst gasi?cation/pyrolysis zone during MSW incineration.Hence,the objective of this study is to further understand the behavior of lead compounds,as an example of the semi-volatile heavy metals,during MSW incineration under dif-ferent conditions.Since the Pb speciations are unknown in raw MSW,a simulated waste was cho-sen and both it alone and blended with PbO,PbCl2 or PbSO4were burned because our previous research reported that PbO,PbSO4and PbCl2were the main Pb compounds formed during dried sew-age sludge combustion[33].

2.Experimental procedures

The combustion tests were carried out using a 2m tall,40mm inner diameter electrically heated drop tube furnace(DTF)described in our previ-ous research papers[32,33].In order to simulate the MSW,a?sh food was chosen since results of the proximate and ultimate analyses for the?sh food shown in Table1are almost similar to those of dried sewage sludge burnt in our previous papers[32,33]except for di?erence in ash compo-sitions.Because the?sh food does not contain lead,pure lead compounds were physically added to make a mixture fraction of1mass%(Pb base). In the experiments,a simulated solid waste and its mixture with pure PbO,PbCl2or PbSO4were burned.For the simulated waste with PbO addi-tion,combustion test with addition of300ppm HCl gas into the combustion air was also con-ducted.This maintains a stoichiometric ratio of Cl/Pb at2.2in order to have complete conversion to PbCl2although Cl is also contained in the sim-ulated waste.The furnace temperature and com-bustion air stoichiometric ratio(SR)were varied from873to1273K and0.5to1.2,respectively. The produced particles were isokinetically sam-pled at the furnace exit by a water-cooled sam-pling probe,at the tip of which N2gas was injected to quench the combustion gas and parti-cles,which were then introduced into a low pres-sure impactor(LPI)with13stages,allowing particle segregation from aerodynamic diameter 0.06–12.5l m.The coarser particles with diameter of12.5l m and larger were collected by a pre-cyclone.Particle size within simulated waste was less than150l m.A feeding rate of the sample Table1

Properties of the simulated waste and dried sewage sludge

Dried sewage

sludge[32,33]

Simulated

waste Proximate analysis[%]

Ash19.87.8 Volatile matter59.770.7 Fixed carbon9.114.4 Moisture11.47.1 Ultimate analysis[daf%]

C50.749.6

H7.87.0

N7.07.4

O33.235.1

S 1.20.4

Ash compositions[%]

SiO226.40.82

Al2O322.00.48

Fe2O3 6.20.37 CaO 2.833.21

Na2O 1.0 4.49

K2O 2.519.93 Heating value[MJ/kg]17.418.1 Diameter[l m]<150<150

Pb[mg/kg fuel]52.2<5.0

Cl[mg/kg fuel]32603900

2686H.Yao,I.Naruse/Proceedings of the Combustion Institute32(2009)2685–2691

was maintained at about0.5g/min for all experi-ments.At a distance of1200mm from the fuel injector,the produced particles were collected by the LPI for15min in each run.The collected par-ticles in each stage of the LPI were digested in a solution of1ml HF and5ml HNO3.Then,the lead concentration of the respective solutions was analyzed by an atomic absorption spectros-copy(AAS).A transmission electron microscopy with energy dispersive X-ray detector(TEM-EDX)was also used to observe shapes of the par-ticles and identify the elements in the surface of particles.The relative di?erence among the repli-cated results of particle mass and lead concentra-tion did not exceed20%,and the mass balance of Pb was satis?ed to within89–120%for all experiments.

3.Results and discussions

3.1.Particle size distributions of the?ne particles and lead fraction during combustion of the simu-lated waste with and without Pb compounds addition

The simulated waste was completely burnt out at the distance of600mm from the injector when the temperature was above1073K.At a low tem-perature of873K,however,only the volatile mat-ter and part of?xed carbon in the simulated waste were burned.

Figure1(a)and(b)compares di?erential mass-basis particle size distributions(PSDs)of the collected particles in the LPI against the

aerodynamic diameter(d p)at di?erent tempera-tures,during combustion without addition of lead compounds,and with PbO addition,respec-tively.The combustion air SR was kept at1.2.In this?gure,W and D W mean total mass of the particles collected in the whole LPI and each stage,respectively.Figure1(a)shows the PSD of the raw simulated waste and the PSDs of par-ticles produced.The reacting particles have a peak at the size range from0.1to1l m.Further-more,the temperature change from873to 1273K results in an increase of the peak of the ?ne particles by the vaporization–condensation mechanism because the simulated waste contains more alkali metals shown in Table1.Even when the simulated waste with PbO addition was burned,as shown in Fig.1(b),there is no signif-icant di?erence in the PSDs of ash particles, compared with the results of Fig.1(a),except for the peak of the?ne particles,which increases a little due to the vaporization–condensation processes of the PbO addition.On the other hand,the increase of coarse particles(>1l m) with increasing of temperatures can be explained by waste particle breakup during combustion [21,23].

Figure2shows the mass-basis PSDs of Pb fraction in the collected particles at873,1073 and1273K for cases with addition of PbCl2and PbO to the simulated waste.In this?gure,W Pb and D W Pb indicate total mass of Pb in the parti-cles collected in the whole LPI and each stage, respectively.From the?gures,a peak exists at 0.4–1l m,which increases as the temperature increases because of more vaporization of lead. For PbCl2addition shown in Fig.2(a),the shape of the PSDs does not depend on the furnace tem-perature since the melting temperature of PbCl2is 774K,which is lower than the furnace tempera-tures used.Under this experimental condition, PbCl2easily vaporizes.For the PbO addition shown in Fig.2(b),the result shows that part of PbO vaporizes during combustion because of the presence of Cl in the simulated waste.As the tem-perature increases,a greater mass fraction of Pb transforms into the?ne particle mode.For exam-ple,about40%of Pb is detected in the coarse par-ticles at873K.At1273K,on the other hand,90% of Pb is contained in the?ne particles.This is because PbO with a melting temperature of 1161K can vaporize at high temperatures.

H.Yao,I.Naruse/Proceedings of the Combustion Institute32(2009)2685–26912687

However,PSDs of lead during combustion of sludge showed a little decrease with increasing temperature due to the self-capture by the sludge ash[34].Compared with the compositions of sludge and simulated waste shown in Table1, the results show alumino-silicate components in the sludge have more e?ective reaction with lead compounds.

Figure3shows the TEM photograph of parti-cles in the size range of0.49–0.69l m,which cor-responds to the peak of?ne particles shown in Fig.1(b).It also shows their compositions for the simulated waste with PbO addition at 1073K.From the?gure,the particles seem to be coagulated from many?ne particles of50–100nm.According to the EDX analysis,42.3% of Pb and30%of K contribute to the?ne particles because these elements can vaporize at the lower temperatures.Only0.1%Si was found in the?ne particles because of the lower temperature and the lower concentration of Si in the raw simulated waste.However,27.6%of carbon was found in the?ne particles.Carbonaceous components pro-duced are ultra?ne soot aggregates with fractal chain morphologies and spherical primary particles(sizes between30–50nm)and soot aggre-gates with larger primary particles(100–400nm) [37].

Comparison of mass particle size distributions of Pb in the case of combustion of simulated waste at1073and1273K with addition of Pb com-pounds is shown in Fig.4(a)and(b),respectively. From the?gures,the peaks in the coarse particles for PbSO4addition which decreases with the tem-perature are much higher than those of the others. That is because the melting point of PbSO4is as high as1443K,which is higher than the tempera-ture of the furnace.However,the equilibrium pre-diction[38]showed PbSO4decomposes to form PbO at1273K,so the mass PSDs of PbSO4is almost the same as PbO in Fig.4(a).When 300ppm of HCl was added into the simulated waste with PbO combustion at1073K,the PSDs of Pb is almost the same as that of PbCl2.The equilibrium prediction reported that both oxide and sulfate of Pb with presence of HCl showed similar evolution behavior as PbCl2[38].That is to say,more HCl can enhance the Pb vaporiza-tion.There is a little shift of the peak for the?ne particles for three Pb compounds addition because of the di?erent dew point and density of lead compounds[28].This result suggests that a high temperature can help to shift Pb compounds from the coarse to?ne particles especially for the PbO and PbSO4addition.

3.2.E?ect of combustion air stoichiometry on particle size distributions of the?ne particles and lead fraction during combustion of the simulated waste with PbO addition

Since the?rst section of two-stage incinerator is operated under oxygen lean conditions,how to increase the concentration of lead compounds in the?ne particles more e?ciently under fuel-rich combustion should be identi?ed clearly.Figure 5(a)and(b)show the mass-basis PSDs of the col-

Fig.3.TEM photograph of particles with size of0.49–

0.69l m and their compositions for the simulated waste

with PbO addition at1073K.

2688H.Yao,I.Naruse/Proceedings of the Combustion Institute32(2009)2685–2691

lected particles and the Pb fraction for the simu-

lated waste with PbO addition at di?erent air SRs,respectively.From Fig.5(a),when the SR decreases,the?ne particles of less than0.3l m increase.It is because that reducing condition causes more carbonaceous components[37]and more suboxides produced[11–13].Similarly, Fig.5(b)shows that the Pb compounds are enriched in the?ne particles,which are newly formed,at low SR of0.5.The equilibrium predic-tions showed that elemental Pb and PbS were also formed under reducing condition besides that PbCl2was formed with presence of HCl[38]. The lower SR favors the Pb enrichment in the?ne particles because much smaller particles produced under reducing condition provide much more sites and areas for the condensation of lead[34].

In summary,two-stage incineration can be considered when this technology is applied to the practical incinerator.The higher combustion temperature and lower air SR can contribute to shifting the enrichment particle size of Pb from the coarse to?ne particles.This operation can perform to depress the Pb concentration in the bottom ash.The?ne particles,however,easily pass through the?lter downstream,and escape into atmosphere.Our previous researches[32–34] and other work[30,31]showed that addition of kaolin could capture Pb compounds during com-bustion.Therefore,the stage combustion is pref-erable to control the Pb enrichment behavior during incineration.In the primary combustion zone,the reducing atmosphere can be formed by controlling the air SR.In the secondary combus-tion zone,on the other hand,relatively high-tem-perature and an oxidizing atmosphere should be maintained.At the same time,the kaolin,as a sor-bent for Pb vapor,could be injected in the second-ary combustion zone with the secondary air.

3.3.Enrichment mechanisms of lead compounds into the particles

The lead concentration in the collected parti-cles depends upon the particle size,and is propor-tional to1=d n

p

[11–14,23].Figure6shows the Pb concentrations in the collected particles for the simulated waste with PbO and PbCl2addition at 1273K.It can be seen from the?gure that,for the PbO addition,Pb concentration in the?ne particles less than1.6l m keeps constant and has

H.Yao,I.Naruse/Proceedings of the Combustion Institute32(2009)2685–26912689

no dependence of d p.This suggests that the homogeneous nucleation/condensation controls the Pb enrichment in the?ne particles[14,23]. The Pb concentration in the particles of more than1.6l m is proportional to1/d p.This result indicates that the surface reaction of the vapor compounds with the ash particles during com-bustion controls Pb enrichment[14,23].Hence, increasing of surface areas and porosity of sor-bents is useful for capture of trace metals,which is agreement with the previous research[34].For the PbCl2addition,the control mechanisms are the same,while the particle size of the transitions from zero dependence on d p to1/d p shifts from 1.6to2.7l m.This di?erence in the transition particle size is caused by the di?erence in melting temperature and saturation pressure of PbO and PbCl2[28].The result indicated that the surface reaction during sludge combustion controlled lead deposition on the particles of0.9–3l m [39].Compared with sludge combustion,high concentration of Pb compounds addition into the simulated waste causes a wide range particles size of lead formation by homogeneous nucle-ation/condensation.

4.Conclusions

Lead behavior and its shift during municipal solid waste incineration are studied by combus-tion of a simulated waste with three kinds of Pb compound.Fine particles including most of carbonaceous and potassium components with size of less than1l m are produced during com-bustion of the simulated waste.For the PbCl2, the extent of Pb enrichment into the?ne parti-cles is higher than that for the PbO or PbSO4 addition,even at relatively low temperatures. High-temperature operation or presence of high HCl concentration during the MSW incineration can help to shift the Pb compounds vaporiza-tion.Moreover,conditions of lower air stoichi-ometric ratio can enhance Pb enrichment in ?ne particles.The mechanism of Pb enrichment in the coarse particles is controlled by the sur-face reaction of vapor of Pb compounds with the ash particles.Two-stage incinerator including a?rst-stage gasi?cation zone with lower stoichi-ometric air ratio,is preferable to shift the Pb enrichment from bottom ash into?y ash during waste incineration.

Acknowledgments

This work was supported by the National Nat-ural Science Foundation of China(50776038, 50721140649and50721005).The Programme of Introducing Talents of Discipline to Universities (‘‘111”Project No.B06019)and JFE Co.Ltd. are also acknowledged.We thank Mr.Shigefumi MORI and Dr.Tsuyoshi TAKUWA for their experimental support.

References

[1]S.Sakai,S.Sawell,J.Chandler,et al.,Waste

Manag.16(5)(1996)361–366.

[2]L.B.Roy,T.K.Kenneth,Environ.Sci.Technol.16

(1982)831–836.

[3]C.K.Rainer,W.Fritz,H.B.Paul,Environ.Sci.

Technol.21(1987)704–708.

[4]R.Cenni,F.Frandsen,T.Gerhardt,H.Splietho?,

K.R.G.Hein,Waste Manag.18(1998)433–444. [5]S.T.Sukrut,L.D.Edward,Chemosphere46(2002)

837–849.

[6]L.E.Amand,B.Leckner,Fuel83(2004)1803–1821.

[7]M.Takaoka,Ph.D.dissertation,Kyoto University,

Japan,2001,p.43.

[8]J.Rogbeck,J.Hartlen,Waste Manag.16(1996)

109–112.

[9]J.A.Meima,https://www.doczj.com/doc/c95556585.html,ans,Environ.Sci.Technol.

31(1997)1269–1276.

[10]K.Lundtorp, D.L.Jensen,M.A.Sorensen,H.

Mosb k,T.H.Christensen,J.Hazard.Mater.97 (2003)59–70.

[11]M.Neville,R.J.Quann,B.S.Haynes,A.F.Saro?m,

https://www.doczj.com/doc/c95556585.html,bust.Inst.18(1981)1267–1275.

[12]R.J.Quann,M.Neville,M.Janghorbani, C.A.

Mims, A.F.Saro?m,Environ.Sci.Technol.16 (1982)776–781.

[13]B.S.Haynes,M.Neville,R.J.Quann,A.F.Saro?m,

J.Colloid Interface Sci.87(1982)266–278. [14]W.P.Linak,J.O.L.Wendt,Prog.Energy Combust.

Sci.19(1993)145–185.

[15]W.P.Linak,R.K.Srivastava,J.O.L.Wendt,Com-

bust.Sci.Technol.101(1994)7–27.

[16]W.S.Seames,A.Fernandez,J.O.L.Wendt,Environ.

Sci.Technol.36(12)(2002)2772–2776.

[17]W.P.Linak,https://www.doczj.com/doc/c95556585.html,ler,W.S.Seames,et al.,Proc.

Combust.Inst.29(2002)441–447.

[18]C.L.Senior,J.J.Helble,A.F.Saro?m,Fuel Process.

Technol.65(2000)263–288.

[19]C.L.Senior,L.E.Bool,S.Srivasachar,B.R.Pease,

K.Porle,Fuel Process.Technol.63(2000)149–165.

2690H.Yao,I.Naruse/Proceedings of the Combustion Institute32(2009)2685–2691

[20]W.S.Seames,J.O.L.Wendt,Fuel Process.Technol.

63(2000)179–196.

[21]W.S.Seames,Fuel Process.Technol.81(2003)109–

125.

[22]S.Jimenez,J.Ballester,https://www.doczj.com/doc/c95556585.html,bust.Inst.30

(2005)2965–2972.

[23]J.S.Lighty,J.M.Veranth, A.F.Saro?m,J.Air

Waste Manag.Assoc.50(2000)1565–1618. [24]M.Uberol,F.Shadman,Environ.Sci.Technol.25

(1991)1285–1289.

[25]M.V.Scotto,M.Uberoi,T.W.Peterson,Fuel

Process.Technol.39(1994)357–372.

[26]B.K.Gullett,K.Ragnunathan,Energy Fuels8

(1994)1068–1076.

[27]S.B.Davis,J.O.L.Wendt,https://www.doczj.com/doc/c95556585.html,bust.Inst.28

(2000)2743–2749.

[28]S.B.Davis,T.K.Gale,J.O.L.Wendt,W.P.Linak,

https://www.doczj.com/doc/c95556585.html,bust.Inst.27(1998)1785–1791.

[29]W.P.Linak,P.K.Srivastava,J.O.L.Wendt,Com-

bust.Flame100(1995)241–250.[30]T.K.Gale,J.O.L.Wendt,Combust.Flame131

(2002)299–307.

[31]T.K.Gale,J.O.L.Wendt,https://www.doczj.com/doc/c95556585.html,bust.Inst.30

(2005)2999–3007.

[32]H.Yao,I.S.N.Mkilaha,I.Naruse,Fuel83(2004)

1001–1007.

[33]H.Yao,I.Naruse,https://www.doczj.com/doc/c95556585.html,bust.Inst.30(2005)

3009–3016.

[34]H.Yao,N.Saito,I.S.N.Mkilaha,I.Naruse,J.

Chem.Eng.Jpn.35(5)(2002)401–408.

[35]W.P.Linak,https://www.doczj.com/doc/c95556585.html,ler,J.P.Wood,et al.,Aerosol

Sci.Technol.38(2004)900–913.

[36]M.J.Mcnallan,G.J.Yurek,J.F.Elliott,Combust.

Flame42(1981)45–60.

[37]Y.Chen,N.Shah, A.Braun, F.Huggins,G.

Hu?man,Energy Fuels19(2005)1644–1651. [38]H.Yao,N.Saito,I.S.N.Mkilaha,I.Naruse,J.

Jpn.Inst.Energy81(40)(2002)256–262.

[39]H.Yao,I.Naruse,Energy Fuels19(6)(2005)2298–

2303.

H.Yao,I.Naruse/Proceedings of the Combustion Institute32(2009)2685–26912691

广东工业大学应用数学学院数学建模教学大纲Word版

《数学模型》课程教学大纲 Mathematics Modeling 课程编号:课程性质:专业基础理论课/ 选修 适用专业:信息安全、统计开课学期:4 学时数:56 学分数:3.5 编写年月:2006年6月修订年月:2007年1月 执笔者:陈学松 一、课程的性质、目的及任务 随着科学技术和计算机的迅速发展,数学向各个领域的广泛渗透已日趋明显,数学不仅在传统的物理学、电子学和工程技术领域继续发挥着重要的作用,而且在经济、人文、体育等社会科学领域也成为必不可少的解决问题工具。“数学建模”课是培养学生在实际问题中的数学应用意识、训练学生把科技、社会等领域中的实际问题按照既定的目标归结为数学形式,以便于用数学方法求解得出更深刻的规律和属性,提高学生数学建模素质的一门数学应用类课程。因此,设立数学建模课程的意义在于:提高学生的数学素质和应用数学知识解决实际问题的能力,大力培养应用型人才。本课程是沟通实际问题与数学工具之间联系的必不可少的桥梁。是一门充分应用其它各数学分支的应用类课程,其主要任务不是“学数学”,而是学着“用数学”,是为培养善于运用数学知识建立实际问题的数学模型,从而善于解决实际问题的应用型数学人材服务的。通过本课程的学习,使学生较为系统的获得利用数学工具建立数学模型的基本知识、基本技能与常用技巧,培养学生的抽象概括问题的能力,用数学方法和思想进行综合应用与分析问题的能力,并着力导引实践—理论—实践的认识过程,培养学生辩证唯物主义的世界观。 二.课程教学基本要求 通过本课程的学习,使学生了解数学建模是利用数学知识构造刻划客观事物原型的数学模型,利用计算机解决实际问题的一种科学方法。掌握数学建模的基本步骤,即从实际问题出发,遵循“实践——认识——实践”的辨证唯物主义认识规律,紧紧围绕建模的目的,运用观察力、想象力和逻辑思维,对实际问题进行抽象、简化、反复探索、逐步完善,直到构造出一个能够用于分析、研究和解决实际问题的数学模型。会利用数学知识和计算机解决问题,并能够撰写符合要求的数学建模论文。 三.课程教学基本内容、重点和难点 本课程的目的不是向学生传授系统的数学知识,而是将已学过的知识灵活运用到实际问题当中。其教学要求是逐步培养学生能够将实际问题“翻译”为数学语言,并予以求解,然后再解释实际现象,继而应用于实际的思想方法,最终提高学生的数学素质和应用数学知识

广东工业大学808电路理论

广东工业大学808电路理论 东工业大学硕士研究生招生考试大纲——808电路理论广东工业大学 全日制研究生招生考试专业课考试大纲 电路理论 基本内容:(300字以内) 一、电路模型和电路定理 1.电路模型; 2.电流电压参考方向; 3.功率计算; 4.电路元件主要特性; 5.电路基本定律; 二、电阻电路的等效变换 1.电阻的串、并联和Y-△变换; 2.电源的串、并联; 3.输入电阻计算; 三、电阻电路的一般分析方法 1.电路的图和独立方程数; 2.支路电流法; 3.网孔电流法和回路电流法; 4.结点电压法; 四、电路定理 1.叠加定理; 2.替代定理; 3.戴维宁定理和诺顿定理; 五、含有运算放大器的电阻电路 1.运算放大器的电路模型; 2.含有理想运算放大器的电路分析; 六、储能元件 1.电容元件; 2.电感元件; 3.电容、电感元件的串、并联; 七、一阶电路和二阶电路的时域分析 1.动态电路方程; 2.一阶电路的初始值、稳态值和时间常数的计算; 3.一阶电路的零输入响应、零状态响应、全响应、阶跃响应和冲激响应; 4.二阶电路的零输入响应、零状态响应和阶跃响应;

八、正弦稳态电路的分析 1.阻抗(导纳)的串、并联和等效变换; 2.电路的相量图; 3.正弦稳态电路的功率和复功率; 4.正弦稳态电路的分析和串、并联谐振; 九、含有耦合电感的电路 1.互感概念和含有耦合电感电路的计算; 2.空心变压器和理想变压器; 十、三相电路 1.对称和不对称三相电路分析; 2.三相电路功率计算和测量; 十一、非正弦周期电流电路和信号频谱 1.非正弦周期电流分解; 2.有效值、平均值和平均功率; 3.非正弦周期电流电路的计算; 十二、线性动态电路的复频域分析 1.拉普拉斯变换定义、性质和反变换; 2.运算法分析线性电路; 3.网络函数定义、极点和零点; 4.极点、零点与冲激响应和频率响应; 十三、二端口网络 1.二端口网络的方程和参数; 2.二端口的等效电路和连接; 十四、非线性电路 1.非线性电阻、电容和电感; 2.非线性电路的方程; 3.小信号分析法和分段线性化方法。 题型要求及分数比例:(硕士生满分150分) 1.选择题,共30分; 2.简单计算题,共60分; 3.计算题,共60分。 参考书目 电路(第五版)原著邱关源、修订罗先觉,高等教育出版社.2006年

2013广工数据库实验报告

数据库原理实验报告 学院计算机学院 专业计算机科学与技术班级2011 级7 班 学号3111XXXX 姓名XXX 指导教师明俊峰 (2013 年11 月)

计算机学院计算机专业2011(7)班学号:3111 姓名:协作者:________ 教师评定: 实验__一__题目__ 数据库及基本表的建立 _ 实验__二__题目__ 设计数据完整性 __ 实验__三__题目__ 查询数据库 __ 实验平台:SQL Server 2005

计算机学院计算机专业2011(7)班学号:3111 姓名:协作者:________ 教师评定: 实验题目一、数据库及基本表的建立 一、实验目的 1、掌握SQL SERVER的查询分析器和企业管理器的使用; 2、掌握创建数据库和表的操作; 二、实验内容和要求 1、分别使用SQL语句、企业管理器(Enterprise Manager)创建数据库; 2、使用SQL语句、企业管理器(Enterprise Manager)创建数据库表; 三、实验主要仪器设备和材料 1.计算机及操作系统:PC机,Windows 2000/xp; 2.数据库管理系统:SQL sever 2000/2003/2005; 四、实验方法、步骤及结果测试 创建一个教学管理数据库SC,其描述的信息有:学生信息、课程信息、教师信息、学生选课成绩、授课信息、班级信息、系部信息、专业信息。 创建:student表(学生信息表)、course表(课程信息表)、teacher表(教师信息表)、student _course表(学生选课成绩表)、teacher_course表(教师上课课表)等。 1、创建数据库: 确定数据库名称;数据库用于学生管理,命名为SC 确定数据库的位置;要求:数据文件和日志文件分别存储在E盘自己的目录下。 确定数据库的大小;根据实际的数据量确定数据文件的初始大小为30MB,日志文件的初始大小为3MB。 确定数据库的增长;根据实际情况,确定数据文件按20%增长,日志文件按1MB增长。(1)、利用查询分析器(Query Analyzer),使用SQL语句指定参数创建数据库; 1

广东工业大学电子工艺实习

实习报告 实习名称电子工艺实习 学院信息工程学院 年级班别 17级通信工程4班 学号 学生姓名 指导教师 2018年 12 月 19 日

一、实验目的及要求 1、实验目的: 电子工艺实习是一门考验我们动手能力的课程,它是学生在学习理论知识、对模拟电子有一定了解的基础上为进一步提高个人专业能力而准备:它促使学生掌握现代化的电子工艺技术,认识和了解电子器件和元件,设计电子产品,完成电子产品制作的全过程;握器件的识别检测以及读懂相对应的电路原理图并进行PCB设计制作,锻炼焊接工艺的基本技能能力。掌握电子电路安装、调试技术等技能并能认识常见故障同时也是为之后更深一步的学习与实验打下不可或缺的坚实基础。 2、实验要求: 此次的电子工艺的的任务为设计并制作一个基于LM317KC、LM337KC范围为1.25-12V的可调稳压源。通过实验,要求一是学生本人对电路的分析,要求我们懂的并掌握对其电路的元件、元件所组成的部分作用及其工作原理的分析;二是对电路的设计要符合实用、美观等定性要求!在满足上述两大定性要求下,还要求学生: 1)掌握专用工具、仪器仪表的正确使用; 2)掌握并使用相关仪器仪表对电路元件好坏的测定; 3)完成稳压源电路的实物线路布置,分析电路图并将其布线焊接出来; 4)能正确使用仪器仪表,完成产品的全部测试,并能排除故障; 5)学习Multisim电路仿真与设计软件的使用,设计电路图并进行仿真; 6)在稳压源电路的基础上,焊接PCB板收音机电路。 二、实习使用的仪器设备、工具及材料: 1、仪器设备:万用表、变压器 2、工具: 1)焊接工具:30W电烙铁、 2)辅助工具:吸锡器、松香、钳子、镊子、剥线钳 3、制作材料:1个LM317集成稳压器,1个LM337集成稳压器1个,B5K电位器,120Ω和1kΩ电阻各2个,1个2200uf/50V有极电容,各2个1000uf/50V、10uf/25V、100uf/25V型有极电容、100pf无极电容,8个1N4007二极管 三、实习产品 1、产品名称:±1.25~12V可调稳压电源; 2、工作原理:如下图所示

广东工业大学土木工程毕业设计任务书

广东工业大学本科生毕业设计(论文)任务书 题目名称金山谷A区(方案)结构设计 (跨度方案:A ) 学院土木与交通工程学院 专业班级土木工程2010级1班 姓名 学号 一、毕业设计(论文)的内容与要求 1、毕业设计(论文)的内容 进行住宅楼(11层框架━剪力墙结构)的结构设计,综合运用所学的专业理论知识,培养整体建筑结构设计的能力。要求在老师的指导下,参考已学过的课本及有关资料,遵照国家设计规范要求和规定,选择合理的结构方案和设计方法,按进度独立完成结构计算,并绘制结构施工图。 具体内容包括:结构方案和初选截面尺寸;楼板结构设计;结构计算简图及刚度参数计算;荷载计算及结构位移验算;水平荷载作用下的结构内力分析;竖向荷载作用下的结构内力分析;荷载效应及内力组合;截面设计和构造要求;基础设计;结构施工图的绘制;计算机辅助设计。 2、毕业设计(论文)的要求 ⑴、毕业设计(论文)毕业设计计算书应包括统一格式的封面、中外文设计总说明、目录、正文、致谢、参考文献、附录等,并应与毕业设计(论文)任务书、工程图纸、软盘等一同放入填写好的资料袋内上交。 ⑵中外文设计总说明简要介绍设计任务、设计标准、主要技术资料、设计原则及设计方法、设计成果等,中文字数以800字左右为宜,并翻译成英文。 ⑶目录按三级标题编写(即:1……、1.1……、1.1.1……),要求标题层次清晰。目录中的标题应与正文中的标题一致。 ⑷正文的写作应符合《广东工业大学本科生毕业设计(论文)格式规范》的要求。内容要有系统地编排,字体要端正,表示要清楚,计算步骤明确,计算公式和数据来源应有依据,并应附有与设计有关的插图和说明,算书用黑墨水手写,计算书的插可以用铅笔画图。。

广东工业大学化工原理下册总结

一、填空与选择题试题范围(30分) 1、蒸馏定义及概念,实现精馏的理论依据(国庆+李军PPT ) 定义:利用液体混合物中各组分挥发性的差异来分离液体混合物的传质过程。 概念:是质量传递过程(传质过程),即由浓度差引起的物质转移过程 精馏的理论依据(13~14):即多次蒸馏。液体混合物经过多次部分汽化和多次部分冷凝后,几乎被完全分离。 2、进料热状况的种类,q 值大小与进料状况的关系;q 线的物理意义,不同进料状况下 q 线的变化(国庆+李军PPT ) 进料的汽化潜热 需的热量 进料汽化为饱和蒸汽所饱和液体焓饱和蒸汽焓原料焓饱和蒸汽焓=--=--=-= L V F V I I I I F L L q ' 对于饱和液体、气液混合物以及饱和蒸汽而言,q 值就等于进料的液相分率。 进料焓值(温度)增加,q 值减小, 则 q 线与精馏操作线的交点(相应加料热状态下两操作线的交点)沿着精馏操作线朝 x 、y 减小的方向移动。从塔设备的角度,这意味着加料板位置下移。 3、精馏塔计算时,塔内上升蒸汽量与R 的关系 回流比D L R = L ——精馏段下降液体的摩尔流量,kmol/h ;D ——馏出液摩尔流量,kmol/h 4、相对挥发度与饱和蒸气压的关系(国庆PPT ) 00B A p p =α 0 0,B A p p —分别为组分A 、B 的液体蒸汽压,Pa ,即纯液体的饱和蒸汽压; 5、在y -x 相图上,相对挥发度α大小与平衡线、对角线、组分的分离难易程度等之间的关系(李军PPT ) y y x x x y )1(, )1(1--= ?-+?= αααα 1=α时,x y = ; 对于大多数溶液,两相平衡时,y 总是大于 x ,故平衡线位于对角线上方。平衡线偏离对角线越远,表示该溶液越易分离。恒沸点时,x-y 线与对角线相交,该点处汽液相组成相等。 α越大,组分在汽、液两相中的摩尔分数相差越大,分离也越容易 6、精馏塔实际板数计算(李军PPT ) 全塔板效率 ET (总板效率)为完成一定分离任务所需的理论塔板数 N 和实际塔板数 NT 之比

离散数学C语言上机题

广东工业大学计算机科学与技术张法光 离散数学C语言上机题 Anyview 可视化编程作业系统 二元关系章节编程题 EX 01 6.01③试设计一算法, 实现集合的卡氏积运算。 实现下列函数: /** * 进行两个集合的卡氏积运算 * @param pA:要进行卡氏积运算的集合 * @param pB:要进行卡氏积运算的集合 * @return: 将pA和pB进行卡氏积运算后得到的集合 */ pCartersianSet CartesianProduct(pOriginalSet pA, pOriginalSet pB) { pCartersianSet pC=createNullCartersianSet(); //空卡 for(resetOriginalSet(pA);!isEndOfOriginalSet(pA);nextOriginalSetPos(pA)) { // 空卡←序偶插入← 建立序偶← 条件语句 for(resetOriginalSet(pB);!isEndOfOriginalSet(pB);nextOriginalSetPos(pB)) OrderedCoupleInsertToCartersianSet(pC,createOrderedCouple(getCurrentOriginalSetElem(pA),g etCurrentOriginalSetElem(pB))); } return pC; } 02 6.02②试设计一算法, 给定集合A、集合B和集合C,判断集合C是否为A到B的一个二元关系。 实现下列函数: /** * 给定集合A、集合B和集合C,判断集合C是否为A到B的一个二元关系。 * @param pA:集合A * @param pB:集合B * @param pC:集合C * @return: 如果集合C是A到B的一个二元关系,则返回true,否则返回false。 */

数据库实验报告大全 广工 蔡延光版

自动化学院自动化专业班学号 姓名实验时间2011.3.14 教师评定 实验题目数据定义 实验报告一 一、实验目的与要求 目的:使用SQL语言实现数据库的创建、删除;基本表的创建、删除、更新工作;以及索引的创建、删除工作。 要求:1、在SQL SERVER 2000查询分析器中,利用SQL语言中CREATE、DROP 命令实现数据库的创建及删除工作。 2、在SQL SERVER 2000查询分析器中,利用SQL语言中CREATE、ALTER及DROP命令进行基本表的创建、更新、删除工作,并实现基本表中各类完整性约束条件的限定。 3、在SQL SERVER 2000查询分析器中,利用SQL语言中CREATE、ALTER及DROP命令进行基本表中索引的创建、更新、删除工作。 4、完成上述工作后,在SQL SERVER 2000企业管理器中,查看是否成功创建实验所要求数据库、基本表、各类完整性约束条件及索引等内容。 二、实验方案 所有实验内容必须在SQL Server 2000的查询分析器中完成,设置查询分析器的结果区为Standard Execute(标准执行)或Executed Grid(网格执行)方式.发布执行命令.并在结果区中查看查询结果,如果结果不正确则需要进行修改,直到正确为止。要求完成如下内容: 1.定义数据库 定义一个借阅数据库,要求所定义的数据库大小为1M,且数据库名称为Labery_学号。 2.定义下列数据库基本表 在所定义的借阅数据库Labery_学号中,按要求定义如下数据库表: 1)书(book)

列名别名类型及长度是否可为空书号bno char(8)否 类别category varchar(10)否 书名title varchar(40)否 出版社press varchar(30)是 年份book_year Int否 作者author char(20)是 价格price decimal(7,2)否 总藏书量book_total Int否 2)借书证(card) 列名别名类型及长度是否可为空卡号cno char(7)否 姓名name char(8)否 单位department varchar(40)是 类别type char(1)否 3)借书记录(borrow) 列名别名类型及长度是否可为空卡号cno char(7)否 书号bno char(8)否 借书日期borrow_date smalldatetime否 还书日期return_date smalldatetime是 3.完整性约束条件: 主要内容为: 1)确定各基本表的主码; 2)确定各基本表的外码; 3)要求在定义各基本表的同时,确定如下完整性约束条件 1、定义各基本表主码,并且要求主属性不能为空; 2、如果有外码,定义各基本表外码; 3、要求检查借书证中属性Type的值是否为('T','G','U','F')); 4、借书记录borrow基本表中borrow_date默认日期为当前时间。4)确定各基本表哪些字段需要建立索引。

广工-车辆-某次大物作业

13-7,一个动量为p 的电子,沿题13-7图示方向入射并能穿过一宽度为D ,磁感应强度为B 的均匀磁场区域,则该电子出射方向与入射方向的夹角α为(C) (A) p e B D 1c o s - (B) ep BD 1sin - (C) p eBD 1sin - (D)ep BD 1cos - ? 解:电子进入磁场后做匀速圆周运动,所偏离角度?即为其轨迹所对应圆周角,易知:R=Be p ; 所以p eBD =?sin ,所以答案是C 。 13-9,单闸半圆形线圈半径为R ,通电流I 。在均匀磁场B 的作用下从图示位置转过30°时,它所受磁力矩的大小和方向分别是(D ) (A)IB R 241 π,沿图面竖直向下 (B)IB R 2 41 π,沿图画竖直向上 (C) IB R 243π,沿图面竖直向下 (D)IB R 243π,沿图面竖直向上 I B 解:转过30°后,磁矩的方向与B 夹角为60°,所以,B ×m M =,所以IB R M 24 3π= ,由右手螺旋定理知,方向沿图面竖直向上。

13-16,一截面形状为矩形,面积为S 的直金属条中通有电流I ,金属条放在磁感应强度为B 的均匀磁场中,B 的方向垂直金属条的左右侧面,如图所示。则金属条的上侧面将积累电荷,载流子所受的洛伦兹力m F = nS IB 。(设单位体积的载流子数为n ) 解:此题中,pvB F m =,nqvS I =,所以,结合两式可得:nS IB F m =。 13-29,如图所示,一带电量为q 的粒子,以速度v 平行于一均匀带电长直导线运动。设导线单位长度带电量为λ,并载有传导电流I 。粒子应以多大速度运动,才能使其保持在一条与导线距离为a 的平行直线上? λ v I q 解:分析题意可知,导体周围有电场和磁场,且二者相等时符合题意。 qE F e =方向沿径向向外 q v B F B = 方向沿径向向内 且有: a E 02πελ= a I B πμ20= 所以由二者相等可得,I v 00μελ=

【评分细则】《广东工业大学轻工化工学院2018年度龙慧创新创业奖学金评选办法》

广东工业大学轻工化工学院“龙慧创新创业奖学金”评审办法为支持学校教育事业,鼓励学生的创新创业能力,龙慧贸易有限公司自2015年起,每年捐赠人民币3万元,共三年,设立“龙慧创新创业奖学金”,奖励轻工化工学院品学兼优,在创新创业方面有突出表现的研究生、本科生,双方根据协议制定本评审办法。 一、奖励对象 龙慧创新创业奖学金用于奖励品德兼优,在创新创业方面有突出表现的、学习满一年的在册优秀研究生、本科生。 二、奖学金奖项及金额设置 注:若本科(研究生)某个奖项评奖名额不足额(即报名候选人中符合条件者少于该项名额),则剩余的名额授予符合该奖项的研究生(本科)候补人员。

三、评审条件 1.热爱祖国,拥护中国共产党领导 2.遵守宪法和法律,遵守学校各项规章制度 3. 本科生要求学习成绩优秀,无不及格科目,上一学年度综合测评排名位于同级本专业的前50%以内;研究生要求在读期间无黄牌警告; 4.在社会实践、创新能力、综合素质等方面表现突出; 5.在创新创业相关比赛中有突出贡献的同学优先考虑。 四、评选细则 1.本奖学金的特等奖以项目为单位进行评选,不参与积分计算;其他奖项以个人为单位进行评选,以积分计算排序;若参评者参加了集体项目获奖,积分只能累计在所在项目的第一作者身上,且只奖励第一作者为轻工化工学院的作品; 2.若是集体项目,以项目为单位进行奖励,只奖励第一作者为轻工化工学院的作品; 3.同一个项目参加同一个比赛,只按最终获奖级别最高的成绩计算; 4.某一年度的龙慧创新创业奖学金,时间范围从该年度1月1日起至该年度12月31日; 5.本奖学金以积分计算,达到以下要求可以申请对应的奖项,如

电气工程及自动化考研

电气工程及其自动化考研总况 一、全国电气工程及其自动化专业学校排名 1.清华大学 2.西安交通大学 3.华中科技大学 4.浙江大学 5.重庆大学 6.天津大学 7.哈尔滨工业大学 8.上海交通大学 9.华北电力大学10.东南大学11.西南交通大学12.沈阳工业大学13.中国矿业大学14.华南理工大学15.南京航空航天大学16.北京交通大学17.武汉大学18.哈尔滨理工大学19.四川大学20.河海大学21.哈尔滨工程大学22.郑州大学23.广西大学24.陕西科技大学 二,电气工程与自动化专业 (1)业务培养目标: 业务培养目标:本专业培养在工业与电气工程有关的运动控制、工业过程控制、电气工程、电力电子技术、检测与自动化仪表、电子与计算机技术等领域从事工程设计、系统分析、系统运行、研制开发、经济管理等方面的高级工程技术人才。 业务培养要求:本专业学生主要学习电工技术、电子技术、自动控制理论、信息处理、计算机技术与应用等较宽广领域的工程技术基础和一定的专业知识。学生受到电工电子、信息控制及计算机技术方面的基本训练,具有工业过程控制与分析,解决强弱电并举的宽口径专业的技术问题的能力。

(2)主干课程: 主干学科:电气工程、控制科学与工程、计算机科学与技术 主要课程:电路原理、电子技术基础、计算机原理及应用、计算机软件基础、控制理论、电机与拖动、电力电子技术、信号分析与处理、电力拖动控制系统、工业过程控制与自动化仪表等。高年级可根据社会需要设置柔性的专业方向模块课及选修课。 主要实践性教学环节:包括电路与电子基础实验、电子工艺实习、金工实习、专业综合实验、计算机上机实践、课程设计、生产实习、毕业设计。 主要实验:运动控制实验、自动控制实验、计算机控制实验、检测仪表实验、电力电子实验等 (3)修业年限: 四年 (4)授予学位: 工学学士 (5)相近专业: 微电子学自动化电子信息工程通信工程计算机科学与技术电子科学与技术生物医学工程电气工程与自动化信息工程信息科学技术软件工程影视

广东工业大学传感与检测技术基础复习思考题带答案

第一章传感与检测技术基础 [例题分析] 例题1 一台精度为0.5级、量程范围600~1200℃的温度传感器,它最大允许绝对误差是多少?检验时某点最大绝对误差是4℃,问此表是否合格? 解: 根据精度定义表达式100.??=S F Y A A %,并由题意已知A=0.5%,YF.S=(1200-600)℃,得最多允许误差 △ A=A·YF.S=0.5%×(1200-600)=3℃ 此温度传感器最大允许误差位3℃。检验某点的最大绝对误差为4℃,大于3℃,故此传感器不合格。 [思考题与习题] 1-1 何为传感器静态特性?静态特性主要技术指标有哪些? 1-2 何为传感器动态特性?动态特性主要技术指标有哪些? 1-3 传感器的线性度的定义?怎样确定? 1-4 传感器的回程误差是怎么定义的?用数学式如何表示? 1-5 何为准确度、精密度、精确度?并阐述其与系统误差和随机误差的关系。 1-6 鉴定2.5级(即满量程误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该表是否合格? 1-7 为什么在使用各种指针表时,总希望指针偏转在全量程的2/3以上范围使用? 1-8 已知某一位移传感器的测量范围为0~30mm ,静态测量时,输入值与输出值的关系如表1.1所示,试求传感器的线性度和灵敏度。 表1.1输入值与输出值的关系 第二章电阻式传感器 [例题分析] 例题2-1 如果将100Ω电阻应变片贴在弹性试件上,若试件受力横截面积S = 0.5

×10-4 m 2,弹性模量E =2×1011 N/m 2 ,若有F=5×104 N 的拉力引起应变电阻变化为1Ω。试求该应变片的灵敏度系数? 解:由题意得应变片电阻相对变化量100 1 =?R R 根据材料力学理论可知:应变E σ ε= (σ为试件所受应力,S F = σ),故应变 005.0102105.010511 44 =????=?=-E S F ε 应变片灵敏度系数 2005 .0100 /1/== ?= ε R R K 例题2-2 一台用等强度梁作为弹性元件的电子秤,在梁的上、下面各贴两片相同的电阻应变片(K=2)如图2-1(a)所示。已知l =100mm 、b=11mm 、t=3mm ,E=2×104N/mm 2。现将四个应变片接入图(b )直流电桥中,电桥电压U=6V 。当力F=0.5kg 时,求电桥输出电压U 0=? 解: 由图(a )所示四片相同电阻应变片贴于等强度梁上、下各两片。当重力F 作用梁端部后,梁上表面R 1和R 3产生正应变电阻变化而下表面R 2和R 4则产生负应变电阻变化,其应变绝对值相等,即 E bt Fl 242316= =-=-==εεεεε 电阻相对变化量为 ε?=?=?-=?-=?=?K R R R R R R R R R R 44223311 现将四个应变电阻按图(b )所示接入桥路组成等臂全桥电路,其输出桥路电压为 m V V E bt Fl K U K U R R U 8.170178.010 23111008.95.06264 220==????????=??=?=??= εε

广东工业大学工《工程化学》套题和重点

一.名词解释 (1)金属键:金属元素的原子电离能教低,他的价电子可脱离原子,且不固定在某 一离子附近,即在整个晶格自由运动,这些自由电子吧金属原子和离 子结合在一起,我们称这种作用为金属键。金属键没有方向性和饱和 性。 (2)热力学第一定律:热力学第一定律又称为能量守恒与转化定律,他可以表述为: 能量的形式可以相互转化,但不会凭空产生,也不会凭空消 失。 △U=U2 —U1=Q+W U1、U2分别表示系统变化前后两个状态的热力学能;Q表示变 化过程中系统所吸收的热;W表示环境对系统所做的功。 (3)熵:熵S是介观粒子即原子和分子等原子结合态单元的混乱度在宏观上的一种度量,熵值的变化△S是介观离子混乱度变化在宏观上的表现。 在统计人力学中,把介观粒子的状态数用Ω表示。 一个系统中,介观粒子的状态数(用Ω表示)越多,他们的运动显得混乱, 所以Ω又称混乱度。 (4)同离子效应:在弱酸或弱碱等弱电解质溶液中,加入与弱酸或弱碱解离后具有 相同离子的易溶强电解质,使弱电解质解离度降低的现象称同离 子效应。 (5)范德华力:在小分子中的分子间作用力被称为范德华力,可分为取向力、诱导 力、和色散力三种。 极性分子:分子中正负电荷中心不重合,从整个分子来看,电荷的分布是不均 匀的,不对称的,这样的分子为极性分子,以极性键结合的双原子 分子一定为极性分子,极性键结合的多原子分子视结构情况而定如 CH4就是非极性分子。 极性键:在化合物分子中,不同种原子形成的共价键,由于两个原子吸引电 子的能力不同,共用电子对必然偏向吸引电子能力较强的原子一 方,因而吸引电子能力较弱的原子一方相对的显正电性,这样的共 价键叫做极性共价键,简称极性键。 偶极:表示分子的极性。 取向力:由于极性分子具有偶极,因此两个极性分子相互接近时,同极相斥, 异性相吸,使分子发生相对转动,这叫做取向。在已取向的偶极分 子之间,由于静电引力使之相互吸引,当接近到一定距离后,排斥 和吸引达到相对平衡,从而使体系的能量达到最小值。这种靠永久 偶极产生的相互作用力,叫做取向力。 诱导力:在极性分子和非极性分子之间以及极性分子和极性分子之间都存在 诱导力。非极性分子由于受到极性分子偶极电场的影响,使正、负 电荷重心发生位移,从而产生诱导偶极。诱导偶极同极性分子的永 久偶极间的作用力叫做诱导力。诱导力也会出现仔离子和分子以及 离子和离子之间。 色散力:由于分子中的电子在核周围的高速运动和核的振动,使任何一个分 子包括非极性分子都在不停地发生着瞬间的正、负电荷重心的相对 位移,从而产生“瞬间偶极”。这种由于存在“瞬间偶极”而产生 的相互作用力称为色散力。

广工华立离散数学期末考试试题(配答案)

一、填空20%(每空2分): 1.若对命题P 赋值1,Q 赋值0,则命题Q P ?(?表示双条件)的真值为 0 。 2.命题“如果你不看电影,那么我也不看电影”(P :你看电影,Q :我看电影)的符号化为 ?P →?Q 资料个人收集整理,勿做商业用途3.公式))(()(S Q P Q P ?∧?∨∧∨?的对偶公式为___?(P ∧Q )∨(P ∧?(Q ∨?S ))____。 4.图 的对偶图为 5.若关系R 是等价关系,则R 满足______自反性,对称性,传递性_____________________________。 6.代数系统>*<,A 是群,则它满足____结合律,有幺元 ,每个元素都有递元______。 7.若连通平面图>=| x ≡y (mod3)},则[1]=___ {……,-2,1,4,……}____ 。10.代数系统>?+<,,A 是环,若对运算“· ”还满足a ,b ∈R ,使得a ?b ≠0,可换,含幺元 则>?+<,,A 是整环。二、选择10%(每小题2分) 1.集合},2{N n x x A n ∈==对( )运算封闭。

A 、加法; B 、减法; C 、乘法; D 、y x - 。 2.设I 为整数集合,m 是任意正整数,m Z 是由模m 的同余类组成的同余类集合,在m Z 上定义 运算]mod )[(][][m j i j i ?=?,则代数系统>?<,N 是偏序格,其中N 是自然数集合,“≤”是普通的数间“小于等于” 关系,则 N b a ∈?,有=∨b a ( ) 。A 、a ; B 、b ; C 、max(a ,b) ; D 、min(a ,b)。 4.连通非平凡的无向图G 有一条欧拉回路当且仅当图G ( )。 A 、只有一个奇度结点; B 、只有两个奇度结点; C 、只有三个奇度结点; D 、没有奇度结点。 5.设无向图>=< E V G ,是连通的且m E n V ==, 若( )则G 是树。 A 、m=n+1 ; B 、n=m+1 ; C 、63-≤n m ; D 、63-≤m n 。 三、12%符号化语句:“有些病人相信所有的医生,但是病人都不相信骗子,所以医生都不是骗子”。并推证其结论。解: 设A(x):x 是病人,B(x):x 是医生,C(x):x 是骗子,D(x,y):x 相信y 前提:?(x)(A(X)∧(?y)(B(y)→D(x,y))) (?x)(?y)(A(x)∧((y)→?D(x,y)) 结论:(?x)(B(x)→?C(x)) 制表如下: 编号 公式 依据 (1) (?x)(A(x)∧(?y)(B(y)→D(x,y))) 前提 (2) A(a)∧(?y)(B(y)→D(a,y)) (1),Es (3) A(a),(?y)(B(y)→D(a,y)) (2) (4) (?x)(?y)(A(x)∧C(y)→?D(x,y)) 前提 (5) (?y)(A(a)∧C(y)→?D(a,y)) (4),Us (6) A(a)→(?y)(C(y)?D(a,y)) (5) (7) (?y)((C(y)→?D(a,y)) (3)(6) (8) B(d)→D(a,d) (3),Us

广东工业大学本科生毕业设计(论文)手册

广东工业大学本科生毕业设计(论文)手册 目录(请点击以下相应项目) 广东工业大学本科生毕业设计(论文)规定 (1) 广东工业大学毕业设计(论文)创新奖实施办法(试行) (5) 广东工业大学本科生毕业设计(论文)基本要求 (6) 广东工业大学毕业设计(论文)任务书 (12) 广东工业大学毕业设计(论文)选题审批表 (14) 广东工业大学毕业设计(论文)评分表 (15) 毕业设计(论文)答辩评审标准 (16) 广东工业大学毕业答辩记录 (17) 广东工业大学毕业设计(论文)考核评议表 (18) 教育部专家使用的毕业设计(论文)质量评价系统 (19) 毕业设计(论文)创新奖申报表 (21) 广东工业大学本科生毕业设计(论文)规定 第一条毕业设计(论文)是大学生在校学习的最后一个重要环节,既是对学生学习、实践与研究的全面总结,又是对学生素质与能力的一次综合检验,还是学生毕业资格与学位资格认证的重要依据。为保证我校本科生毕业设计(论文)质量,特制定本规定。 第二条毕业设计(论文)教学目的是培养学生综合运用所学的基础理论、专业知识和基本技能进行分析与解决实际问题的能力,培养学生的创新精神。具体应注重以下方面能力的培养: 一、调查研究、查阅中外文献和收集资料的能力。 二、理论分析、制定设计或试验方案的能力。 三、设计、计算和绘图的能力。 四、实验研究和数据处理的能力。 五、综合分析、总结提高、编制设计说明书及撰写科技论文的能力。 六、外语、计算机应用能力。 第三条拟题 一、毕业设计(论文)题目由指导教师拟定。指导教师在拟题时应遵循以下原则: 1.符合专业培养目标,达到毕业设计(论文)教学大纲的基本要求。 2.体现教学与生产、科研、文化和经济相结合的原则。在符合毕业设计(论文)教学要求的前提下,尽可能结合生产实际、科学研究、现代文化、经济建设的任务进行,以利于增强学生面对实际的意识,也有利于调动学生的积极性,增强责任感和紧迫感。 3.贯彻因材施教的原则,使学生在原有的水平和能力方面有较大的提高,并鼓励学生有所创

广东工业大学-离散数学试卷和答案A(可编辑修改word版)

广东工业大学考试试卷 ( A ) 课程名称: 离散数学 考试时间: 2007 年 1 月 26 日 ( 第 21 周 星 期五 ) 题 号 一 二 三 四 五 六 七 八 九 十 总分 评卷得分 评卷签名 复核得分 复核签名 一、单项选择题(本大题共 8 小题,每小题 2 分,共 16 分) 1、设 p:天下大雨,q:小王乘公共汽车上班,命题“只有天下大雨,小王才乘 公共汽车上班”的符号化形式为 [ B ] A. p →q B. q →p C .p →┐q D. ┐p →q 2、设解释 I 如下,个体域 D={a,b}, F(a,a)= F (b,b)=0, F(a,b)=F(b,a)=1,在 解释 I 下, 下列公式中真值为 1 的是 [ A ] A. Vx ヨ yF(x,y) B. ヨ xVyF(x,y) C. VxVyF(x,y) D. ┐ヨ x ヨ yF(x,y) 3、设 R 1、R 2 为集合 A 上的任意关系,下列命题为真的是 [C ] A 若 R 1、R 2 反自反,则 R 1 R 2 反自反 B 若 R 1、R 2 传递,则 R 1 R 2 传递 C 若 R 1、R 2 自反,则 R 1 R 2 自反 D 若 R 1、R 2 对称,则 R 1 R 2 对称 4、设 G 为完全二部图 K2,3,下面命题中为真的是 [ C ] A. G 为欧拉图 B. G 为哈密尔顿图 C. G 为平面图 D. G 为正则图 5、对于任意集合 X, Y, Z , 则 [ D ] A. X ∩Y=X ∩Z =>Y=Z B. X ∪Y=X ∪Z =>Y=Z 广东工业大学试卷用纸,共 2 页,第 1 页 +- 学 院: 专 业: 号 姓 名 学 装 订 线

广工学生版2019届毕业答辩及后续工作的通知

关于2019届毕业设计(论文) 答辩安排及后续工作的通知 各毕业班学生: 一、毕业设计答辩安排 我院2019届毕业设计(论文)小组答辩及公开答辩安排已落实好,具体安排请大家查看各系安排表(见附件3-6)(此处注意:附件是以指导老师所在系分组的,请按照指导老师所在系查询,不要按照学生所在系查询)。 二、答辩期间相关工作 1.毕业设计成果视频的完善 请各位学生在答辩之前就做好一个不超过3分钟的毕业设计成果的视频,里面加语音解说,用于答辩时展示(此视频不能代替答辩时的PPT)。答辩之后,将此视频与论文电子版一起刻录光盘送学院存档。 2.《答辩记录表》的填写 请各位学生在答辩现场问清楚自己的答辩小组成员、答辩记录人的姓名,以备完整填写《答辩记录表》(注意:1.填写答辩成员时只需填写除自己指导老师以外的其他成员,不要填写自己的指导老师;2.参加公开答辩的学生只需填写公开答辩时的成员,不需填写小组答辩时的成员)。 3.组织学生上传材料 (1)学生上传答辩PPT(选做)(5月30日前) 论文系统提供上传答辩PPT功能,该功能可为学生在答辩现场在线直接提取个人的PPT使用(可以不需要自带U盘等),答辩时教师也可以随时在线阅读学生论文信息等。 (2)学生上传最终版本的毕业设计及翻译(论文原文电子版本 doc,docx)到教务系统。(必做)(6月8日前)

(3)2019届毕业生在毕业设计(论文)答辩后,按照答辩小组和指导老师的意见作最终修改,经指导老师审阅后,由学生将最终稿上传“维普论文检测系统”以作电子档案保管。具体操作流程如附件7。(6月8日前) 4.指导教师提交论文成绩及填写本科毕业设计评分表(电子版)(6月10日前) 答辩工作结束后,指导教师登陆论文系统检查所指导学生上传论文情况,给予学生毕业设计(论文)成绩,成绩为五级记分制:优秀、良好、中等、及格、不及格,请在填写成绩时注意格式(注意:优秀率≤15%,优良率≤65%)。同时,另外填写《本科毕业设计评分表(电子版)》。 5.完成系统各类表格的填写(6月10日前) 按相关要求,系统完成《广东工业大学本科生毕业设计(论文)任务书》、《广东工业大学本科生毕业设计(论文)中期检查表》、《广东工业大学本科生毕业设计(论文)评议表(一)》、《广东工业大学本科生毕业设计(论文)评议表(二)》等表格填写。 三、答辩后续工作安排 (一)论文的打印及装订 1.6月11日前学生将论文及外文翻译的最终版(PDF版)交给班长,由班长统一拷到一个U盘中。文件格式统一按照以下方法:a.每个班所有同学的论文在同一个件夹里面,每位学生的论文文件以“学号+姓名”命名;b.译文也是每班所有的同学放在同一个文件夹里面,每位学生的译文文件也是以“学号+姓名”命名。例如:“12345678张三”。(注意:论文及外文翻译的格式、内容顺序严格按照《论文手册》(见附件1)的要求排版) 2.6月12日由班长以班为单位统一送到打印室打印、装订。为打印格式统一、规范。现推荐到理学馆一楼正门处打印室给肖老师打印、装订,费用为自费。由班长统一收齐,交给肖老师(因之前学院已将毕业设计费发放至每位学生)。 3.6月14日左右(具体时间问打印室)去打印室搬回自己班级的已装

(完整word版)广东工业大学-离散数学试卷和答案A

广东工业大学试卷用纸,共 2 页,第1 页+-

广东工业大学试卷用纸,共 2 页,第 2 页 6、下面等式中唯一的恒等式是 [ D ] A. (A ∪B ∪C)-(A ∪B)=C B. A ⊕A=A C. A-(B×C)=(A-B)×(A-C) D. A×(B-C)=(A×B)-(A×C) 7、设R 为实数集,定义* 运算如下:a*b=|a+b+ab|,则 * 运算满足 [ B ] A. 结合律 B. 交换律 C. 有幺元 D. 幂等律 8、对于集合A ={0、1、2、3、4、5、6、7、8、9、10},不封闭的二元运算是[ B ] A x*y=max(x,y) B x*y=x -y C x*y=(x+y)mod 9 D x*y=min(x,y) 二、填空题(本大题共10小题,每空3分,共24分) 9、含n 个命题变项的重言式的主合取范式为__________无_______________。 10、设个体域为整数集合Z ,命题Vx ヨy(x+y=3)的真值为_______1____。 11、以1,1,1,2,2,3为度数序列的非同构的无向树共有______2_____棵。 12、已知n 阶无向简单图G 有m 条边,则G 的补图G 有___OK_______条边。 13、设R={<{1}, 1>,<1, {1}>,<2, {3}>,<{3}, {2}>},则domR ⊕ranR=_________OK__写成集合的形式__________。 14. 设A={1, 2, 3, 4},则A 上有______24______个不同的双射函数。 15. 设σ=(1345)(2678)是8元置换,则σ-1=____*_______。 16、集合A ={1、2、3、4}上的恒等关系是_______OK__________________。 三、 简答及证明(本大题共6小题,每小题10分,共60分) 17、(10分)设G 为n(n ≥3)阶无向简单图,证明G 或G 的补图必连通。 18、(10分)设A ,B ,C 为集合,证明: A ∩( B -C)=(A -C)∩(B -C) 19、(10分)右图是偏序图的哈斯图 1)X 和≤的集合表达式 2)指出偏序集的极大元、极小元、最大元、最小元 20、(10分)设Z 为整数集,在Z 上定义二元运算*如下: ?x ,y ∈Z ,x*y =x +y -2 请证明(Z ,*) 是群。 21、(10分)在命题逻辑中构造下面推理的证明。 前提:p →s ,q →r ,┐s ,p ∨q 结论:r 22、(10分) 用狄克斯特洛算法求下图中从a 到f 的最短 通路。(写出求解过程) 第19题图 1 6 3 2 3 3 5 1 6 a d c e b f

相关主题
文本预览
相关文档 最新文档