当前位置:文档之家› 网络通信技术在变电站综合自动化系统中的应用

网络通信技术在变电站综合自动化系统中的应用

网络通信技术在变电站综合自动化系统中的应用
网络通信技术在变电站综合自动化系统中的应用

第24卷 第2期

2008年1月

甘肃科技

Gansu Science and Technology

V ol.24 N o.2J an. 2008

网络通信技术在变电站综合自动化系统中的应用

王朝辉

(平顶山煤业集团电务厂,河南平顶山467000)

摘 要:网络通信技术是变电站综合自动化系统的关键组成部分,它直接影响着综自系统的网络传输性能。文章介绍了平煤集团各变电站综自系统通信网络的现状,分析并对比了常用的通信结构的优缺点,从组网方式、通信规约等方面分析了其中通信基本单元的实现方式。最后提出根据变电站电压等级和变电站规模的不同,来灵活配置通信网络,满足变电站综自系统网络通信实时性、高效性、可靠性的要求。关键词:通信技术;自动化系统;网络层中图分类号:TP274

1 引言

变电站自动化技术自从上世纪90年代初在国

内应用以来,在中、低压甚至超高压变电站中已经得到了广泛应用,并且取得了不错的运行效果。目前平煤集团矿区供电网络各变电站也正按照综合自动化系统的要求进行新建和改建。由于平煤集团各变电站电压等级多为35KV ~110KV ,同时为适应煤矿供电可靠性的要求,综自系统一般选用双网结构和以太网通信技术。本文着重介绍了网络通信技术在变电站综合自动化系统中的应用和技术对比。

2 通信网络结构

2.1 通信网络要求

由于数据通信在变电站自动化系统内的重要

性,经济、可靠的数据通信成为系统的技术核心,而由于变电站的特殊环境和自动化系统的要求,变电站自动化系统内的数据网络应满足下列要求:(1)快速的实时响应能力;(2)很高的可靠性;(3)优良的电磁兼容性能;(4)分层式结构。2.2 通信网络结构组成一个典型的变电站综合自动化系统一般包括三个部分(图1),分别是:(1)间隔层。用于和现场一次设备的信号和控制相连,包括保护装置、测控装置、自动装置、操作切换装置和其它的智能设备和附属设备等;(2)网络层。构建间隔层和变电站层之间的网络数据传输通道,完成各种数据的传输;(3)变电站层。完成相应的SCADA 及变电站管理功能以及其它相应的辅助功能,为变电站运行人员、电网调度人员提供变电站监视、控制和管理功能。由图1

可见,网络层在系统中起着举足轻重的作用。

图1 综自系统通信网络结构图

2.3 通信技术2.

3.1 串行总线技术

早期的变电站自动化系统中,广泛采用串行通信技术来实现站内通信,在工程实践中暴露出以下问题:

通信速率低,一般不超过9.4Kbp s ,在需实时传输大量数据时力不从心。

在采用星型拓扑结构时系统站点和功能的扩展困难。

若使用总线型拓扑结构,由于不能实现平衡传输,不能实现多主站共享网络资源。只能运行pol 2ling 规约,开销大,效率低。

只能在通信网中设置一个主机,因而不能享有多主机技术带来的各种优越性能。由于性能低下,要实现完整的功能,通信网设计比较复杂,规模比较庞大。随着用户对变电站自动化系统功能和性能不断提出新的需要,串行通信技术已经不能满足要求,各生产厂商把目光转向现场总线技术。2.3.2 现场总线技术

由于基于网络技术的现场总线在通信速率、实时性、可靠性和组网的灵活性上均远高于简单的串行通信技术,在很短时间内便成为变电站自动化系

统主流通信技术,但现场总线技术自身的诸多的自身局限性,又一次成为变电站自动化系统网络通信技术发展的瓶颈。

V变电站通信节点超过一定数量时,网络性能迅速下降,不能适应大型变电站对通信的要求。

有限的带宽不能满足通信速率的要求。

总线型拓扑结构在网络的任一点故障时均可能导致网络通信中断,且难以诊断故障点。

2.3.3 以太网技术

随着信息互通、共享的需要,网络技术得到迅速发展,以以太网为代表的局域网技术和以TCP/IP 为代表的互联网、广域网技术已经成为当今世界两大网络技术主流。以太网以其先进的网络竞争机制、成熟的应用环境、低廉的价格和开放的协议,使其在局域网应用领域成为唯一占主导作用的网络,在全世界得到了广泛应用,并且已经成为局域网的应用标准,是变电站自动化系统站内局域网通信必然发展趋势。TCP/IP协议被誉为把互联网召集在一起的黏合剂,凸显了其在网络通信中的地位。所以TCP/IP协议与以太网的完美结合,使得基于TCP/IP协议的互联网和以太网被誉为当今网络通信技术的两驾马车。

2.3.4 双网通信的选择

1)网络拓扑结构

网络通信拓扑结构主要有星型拓扑、总线型拓扑、环型拓扑以及它们的混合型。在星型拓扑结构中,任何一个连接只涉及网络集线器Hub和一个站点,访问控制介质的方法很简单,因而访问协议也十分简单。同时,单个站点的故障只影响一个站点,不会影响全网,容易检测和隔离故障,重新配置网络也十分方便。因此变电站网络通信拓扑结构主要采用星型拓扑。但星型拓扑对Hub的可靠性要求很高,一旦Hub发生故障,全网将不能工作,为了提高通信可靠性,双网通信己逐渐成为变电站内网络通信的标准。

2)常规双网通信在变电站中的应用

目前无论是在网络传输层还是网络应用层都没有标准的双网通信规约,国内外厂家的双网装置主要采用双网冗余传送方式,在传输层使用UDP协议,应用层使用DN P3.0协议,数据在双网上同时发送。其它设备接收双网数据时有两种方式可避免冗余重复处理:

(1)收到数据后,需先与缓存的已处理的数据进行比较,如果缓存中没有则继续处理,否则将其丢弃。该方式不但消耗接收设备的CPU资源和缓冲区空间,而且增加了数据处理时间,影响数据实时性。(2)只处理其中A网数据,将B网所有数据丢弃,B网处于备用状态。当A网出现中断或严重拥塞,数据接收超过规定时间后,再切换网络,同时处理B网数据,使A网处于备用状态。由于接收设备在等待数据超时的过程中并不处理另一网络通信,因此在网络切换过程中可能会造成数据丢失。

3 通信规约

鉴于变电站自动化系统通信数据的特点和采用以太网方式,采用IEC60870252l03协议和IEC60870252l04协议是目前变电站自动化系统的站内通信协议的最为合理的一种选择。它们既能满足继电保护故障信息和SCADA监控信息的传输要求,又有标准协议的好的兼容性。另外,l03协议和l04(101)协议同属IEC6087025系列标准的配套标准,它们共享相同的应用数据结构和应用信息元素的定义与编码,会给通信数据的处理带来极大的方便。由于继电保护装置的RS485串行通信接口采用l03协议,所以,在以太网上传输继电保护故障信息管理主站的通信信息时,在应用层采用l03协议是最好的选择———RS485串行接口和以太网在应用层上是透明的。l03协议应用层ASDU与TCP/IP 的网络组合方式,完全采用l04协议组合l0l协议的ASDU的方式后,可以很好地保证协议的标准化和通信的可靠性。

另外,厂家的内部规约相比国际、国内标准的通信协议,其成熟度比较差。从目前的趋势来看,IEC 的一系列标准最具有代表性,得到了更广泛的支持,必将成为最终通行的国际和国家标准。所以,变电站自动化系统通信规约采用国际标准通信规约是今后的发展趋势,是提高变电站综合自动化系统的站内局域网的通信开放性、兼容性和可靠性的根本途径。

参考文献:

[1] 黄益庄.变电站综合自动化技术[M].北京:中国电力

出版社,2000

[2] 林健.以太网在变电站自动化中的应用[J].机电信息,

2004,(8):32—34

[3] 廖泽友,蔡运清.IEC60870252103和IEC60870252104协

议应用经验[J].南京:电力系统自动化,2003,27(4) [4] 孙军平,盛万兴,王孙安.新一代变电站自动化网络通信

系统研究[J].中国电机工程学报,2003,23(3):16-19

24 甘 肃 科 技 第24卷

220kV智能变电站继电保护及自动化分析 吴宗俞

220kV智能变电站继电保护及自动化分析吴宗俞 发表时间:2018-06-27T09:41:38.153Z 来源:《电力设备》2018年第6期作者:吴宗俞吕日龙 [导读] 摘要:智能变电站是集先进、可靠、集成和环保于一体的智能设备,能实现信息数字化、通信平台网络化和信息共享标准化的要求。 内蒙古电力(集团)有限责任公司巴彦淖尔电业局内蒙古自治区巴彦淖尔市 015000 摘要:智能变电站是集先进、可靠、集成和环保于一体的智能设备,能实现信息数字化、通信平台网络化和信息共享标准化的要求。从智能变电站继电保护相关介绍入手,重点阐述分析220kV智能变电站继电保护及自动化。220kV智能变电站继电保护高效、有效,在满足供电需求的同时,逐步完善电力系统。 关键词:220kV智能变电站;继电保护;自动化 1、220kV智能变电站的继电保护及自动化系统设计实例 变电站是国家电网建设的一个重要组成部分,如今我国的智能变电站建设工作已经得到了快速地发展。在变电站的建设过程中,想要实现系统的稳定运行,提升系统建设效率,就需要制定一个继电保护和自动化系统的设计方案。文章以某市的智能变电站为例,对智能变电站的系统设计方案进行探讨。 1.1工程基本情况概述 L市计划建设一个智能变电站,既有220kV变电站的情况是有3台主变,每台主变的容量为180MVA;其中220kV出线4回、66kV出线10回。L市打算进行智能变电站的建设,变电站建成之后有4台主变,并且它们每台的容量要达到240MVA;并且要求220kV出线8回、66kV出线26回。 1.2智能变电站继电保护及自动化系统设计方案分析 进行设计方案确定之前,要求工作人员明确该智能变电站的设计原则,在实际的工作中需要坚持标准一致、安全第一、技术过硬等原则。在工作开展中需要按照设计方案开展工作,并且要注重各类先进技术的使用,保障智能变电站的智能化程度。 L市智能变电站在设计中首先明确的就是变电站的总体结构。该220kV的智能变电站主要分为三个结构层次:①过程层。这一部分的结构主要负责三个工作,分别是设备的运行状态监测、电器运行实时监测以及控制操作的驱动和执行。这是智能变电站设备实现自动化运行的基础和前提;②间隔层。该机构的设计运行后的功能主要是对于各类数据进行收集,并且对系统的运行数据进行收集和控制。实际上,这一结构的就是承上启下,接受各类系统信息,然后进行设备的指挥操作;③变电层。变电层的工作任务就是将整体变电站的信息进行总汇之后,将其发送到电网指挥中心。同时变电层还可以接收各类指令,完成人们给系统下达的工作。这个系统主要应用的是电子信息技术、电气自动化技术、以及网络通信技术等。 2、220kV智能变电站的继电保护 2.1要求 例举220kV智能变电站中,继电保护的基本要求,如: 2.1.1可靠性 继电保护的范围内,准确、可靠的检测220kV智能变电站的运行,辅助规划出故障的范围及故障点。 2.1.2灵敏性 继电保护检测220kV智能变电站的故障时,要具备足够的灵敏度,围绕故障特征,给与及时的保护反馈,预防220kV智能变电站失控。 2.1.3检测性 220kV智能变电站的继电保护,其检测性的特征,目的是可以合理的判断系统故障,缩小故障影响的范围,以便准确的切除故障。 2.2原理 220kV智能变电站继电保护的运行原理方面,表现出综合性的特征,继电保护全面检测智能变电站的运行,通过点流量、电压以及功率等特征,判断智能变电站的故障信息,及时提示报警信息,识别相关的故障。例如:220kV智能变电站运行期间,继电保护分析智能变电站的点流量,进而执行相关的跳闸保护,也就是反时限保护,智能变电站的电流量增大,跳闸的速度越快,除此以外,继电保护还可以实行定时间保护,检测超出规范标准的电流量,特定的时间中,有跳闸动作,220kV智能变电站继电保护,在温度、瓦斯方面的保护,汇总为非电量保护。变电站继电保护原理中,设置了比较固定的可靠性系统,其为继电保护的经验值,按照系数计算,决定继电保护的动作值。 2.3职能 220kV智能变电站中的继电保护,负责故障维护,变电站正常运行期间,继电保护没有任何动作,如有故障问题,继电保护及时、快速的动作,反馈智能变电站系统、元件等的故障信息,表现为跳闸的状态,提示管理人员对智能变电站进行检修。继电保护的断路器迅速断开,防止220kV智能变电站的电气元件损坏,避免影响其它的元件应用。 2.4分类 例举220kV智能变电站继电保护的分类,如: 2.4.1变压器保护 继电保护检测变压器的接线、接地灯,利用电流、电压以及负荷检测,完成保护工作,进而解决了变压器的风险问题。 2.4.2电容器保护 此项结构容易发生内部故障,导致连线短路,继电保护在电容器组内,通过过电压检测,实行保护工作。 2.4.3电动机保护 运行时容易有低电压、过负荷的故障,同步电动机的继电保护中,运用非同步冲击电流等方法进行保护。 2.4.4线路保护 继电保护根据220kV智能变电站的电压等级、接地方式以及运输过程,展开接地类型的故障维护。

变电站综合自动化系统

该系统是一种结合变电站自动化最新技术和发展方向,采用先进的计算机技术、嵌入式微处理器技术、DSP数字信号处理技术、以太网技术,研发出的新一代高度集成、结构紧凑、功能强劲并充分优化的变电站自动化系统。 系统适用于220kV及以下各种电压等级的升压或降压变电站,通过系统内各设备间相互交换信息,数据共享,完成变电站运行监视和控制任务。变电站自动化系统以计算机技术为基础, 以数据通讯为手段,以信息共享为目标,提供了测量、控制、监视、保护、录波、通信、报表、小电流接地选线、电压无功自动补偿、五防、故障分析及其他自动化功能,在提高变电站安全稳定运行水平、降低运行维护成本、提高经济效益、向用户提供高质量电能等方面发挥了重要作用。 变电站综合自动化系统由站控层、通信层和间隔层组成。 1.站控层:包括操作员工作站、工程师工作站、五防工作站、Web工作站、GPS卫星对时系统,站控层设备采用100M工业以太网连接,根据厂站规模和用户需求可以增加工作站或减少部分工作站。 2.通信层:主要由光纤网线双绞线等通信介质、以太网交换机、通信管理机等设备组成,根据不同的厂站规模和用户需求,可自由选择RS485工业总线、星型以太网、双以太网、

光纤环网等不同的组网模式,系统开放性好,组网灵活。 3.间隔层:以一次设备为对象,采用单元式配置,根据厂站规模和用户需求,可选择采用保护测控一体化设备,或者选择采用保护和测控相互独立的设备。各单元独立性强,系统组态灵活,具有高可靠性、高扩展性。装置维护简单方便。 变电站综合自动化系统拥有如下优点: 1、完整的变电站自动化系统解决方案,以高性能的子系统构造优异的变电站自动化系统; 2、系统扩展方便、功能灵活,满足变电站设备的增加及系统功能增加的需求; 3、面向变电站的整体设计,将保护、测量、控制、通讯融为一体,全方位思维,大大减少了用户现场的调试量; 4、采用先进的现场总线通信方式,标准的IEC60870-5-103通讯规约,大大提高了通讯速率及系统的可靠性; 5、间隔层可集中组屏也可按站内一次设备分布式布置,直接安装于开关柜上,既相对独立,又节省投资; 6、间隔层采用32位DSP技术,使产品的稳定性和运算速度得到保证; 7、继电保护功能独立,完全不依赖于通讯网,仅通过通信层交换信息; 8、友好的人机界面,全汉化菜单操作,使用户操作更简单。

数字化变电站过程层网络通信流量计算

过程层网络流量分析 1. 采样值网络流量分析 1.1采样值网络概述 采样值传输采用IEC61850-9-2标准,合并单元和二次设备均连在交换机网络上。220kv线路间隔配置成一个独立的网段,考虑采用独立的交换机。主变三侧作为一个大间隔,配置成一个独立的网段,采用独立的交换机。每一个电压等级配一台公共交换机,连接该电压等级对应的母线保护、PT合并单元,各 间隔对应的交换机也通过级联端口连到该公共交换机。 采用组播过滤技术来解决网络阻塞的问题,接收端口只收到预订的MAC地 址对应的9-2报文,降低了网络的流量。 PT并列考虑在PT合并器实现,PT切换在间隔合并器实现。因此,对于主变保护和线路保护而言,不需要在网路上预订PT合并器的9-2报文,但母线保 护需要预订PT合并器的报文。 1.2IEC61850-9-2帧格式说明 1.2.11SO/IEC 8802-3以太网帧结构 IEC 61850-9-2LE采样值报文在链路层传输都是基于ISO/IEC 8802-3的以太网帧结构。帧结构定义如下图所示:

方法。 (2) 帧起始分隔符字段(Start-of-Frame Delimiter ) 知道导入帧,并且该字段提供了同步化接收物理层帧接收部分和导入比特流的 格式说

帧起始分隔符字段,1字节。字段中1和0交互使用。 (3)以太网mac地址报头 以太网mac地址报头包括目的地址(6个字节)和源地址(6个字节)。目的地址可以是广播或者多播以太网地址。源地址应使用唯一的以太网地址。 IEC 61850-9-2 多点传送采样值,建议目的地址为 01-0C-CD-04-00-00 到 01-0C-CD-04-01-FF。 (4)优先级标记(Priority tagged) 为了区分与保护应用相关的强实时高优先级的总线负载和低优先级的总线 负载,采用了符合IEEE 802.1Q的优先级标记。 优先级标记头的结构: TPID 值:0x8100 User priority :用户优先级,用来区分采样值,实时的保护相关的GOOSE 报文和低优先级的总线负载。高优先级帧应设置其优先级为4?7,低优先 级帧则为1?3,优先级1为未标记的帧,应避免采用优先级 0,因为这会引起正常通信下不可预见的传输时延。 采样值传输优先级设置建议为最高级7。 CFI:若值为1,则表明在ISO/IEC 8802-3标记帧中,Length/Type域后接 着内嵌的路由信息域(RIF),否则应置0。 VID :虚拟局域网标识,VLAN ID。 (5)以太网类型Ethertype 由IEEE著作权注册机构进行注册,可以区分不同应用

智能变电站通信网络技术方案

智能变电站通信网络技术方案 1 智能变电站通信网络总体结构 智能变电站通信网络采用IEC 61850国际标准,IEC 61850标准将变电站在结构上划分为变电站层、间隔层和过程层,并通过分层、分布、开放式网络系统实现连接。 变电站层与间隔层之间的网络称为变电站层网络,间隔层与过程层之间的网络称为过程层网络。 变电站层网络和过程层网络承载的业务功能截然不同。为了保证过程层网络的实时性、安全性,在现有的技术条件下,变电站层网络应与过程层网络物理分开,并采用100M及以上高速以太网构建。 通讯在线保护及故障系统服务器系统服务器GOOSE视频监视终端信息管理兼操作员站2兼操作员站1远动远动联动服务器子站工作站1工作站2变电站层 MMS/GOOSE网变电站层网络 超五类屏蔽 双绞线 其他智能电能保护故障间隔层设备计量测控录波 SMV网光缆过程层网络GOOSE网 合并智能单元单元过程层 光缆电缆

电子式开关设备 互感器(主变、断路器、刀闸) 智能变电站通信网络基本构架示意图 2 变电站层网络技术方案 功能: 变电站层网络功能和结构与传统变电站的计算机监控系统网络基本类似,全站信息的汇总功能(包括防误闭锁)可依靠MMS/GOOSE网络实现。 拓扑结构选择: 环形和星形拓扑结构相比,其网络可用率有所提高(单故障时两者均不损失功能,少数的复故障环形网可以保留更多的设备通信),但是支持环网的交换机和普通星型交换机相比价格大大提高。 国内经过多年的技术积累,装置普遍具备2~3个独立以太网口, 星型网络在变电站实际应用有着更加丰富的使用经验。 国内220kV及以上变电站层网络一般采用双星型拓扑结构;110kV及以下变电站层网络一般采用单星型拓扑结构。 变电站层双星型网络结构示意图 系统服务器兼操作员站远动工作站变电站层 变电站层网络变电站层交换机2 变电站层交换机1

变电站综合自动化系统解决方案

变电站综合自动化解决方案 三旺变电站综合自动化系统是利用先进的计算机技术、 现代电子技术、 通信技术和信息 处理技术等实现对变电站二次设备(包括继电保护、控制、测量、信号、故障录波、自动装 置及远动装置等)的功能进行重新组合、 优化设计,对变电站全部设备的运行情况执行监视、 测量、 控制和协调的一种综合性的自动化系统。 通过变电站综合自动化系统内各设备间相互 交换信息、数据共享,完成变电站运行监视和控制任务。变电站综合自动化替代了变电站常 规二次设备,简化了变电站二次接线。变电站综合自动化是提高变电站安全稳定运行水平、 降低运行维护成本、提高经济效益、向用户提供高质量电能的一项重要技术措施。
变电站综合自动化需求>> > 测控装置的串口信号要求能连接到以太网, 用于本地和远程控制站点高级管理和同 步化 > 适应变电站恶劣环境 > 保证变电站重要数据传输的优先性和稳定 > 设备种类繁多, 要求通信设备符合电力 IEC61850 规约, 兼容变电站各种智能设备 方案优势>> > 符合 IEC61850 标准的串口服务器与工业交换机完美结合 > 产品优于 IEC61850-3 标准的 EMI 抗性,工业四级设计能在严酷的环境下可靠、 稳定工作 > 交换机支持 QOS、 VLAN 等网络技术, 保障变电站重要数据的传输优先性和独立性 > 设备设计符合 IEC61850 规约,能兼容变电站任何智能设备

<<关键产品>> ◎支持接口类型可根据需要搭配 ◎支持 SW-Ring 环网冗余专利技术,网络故障自愈时间<20ms ◎支持 802.1X、密码管理、端口镜像、端口汇聚 ◎支持支持 DC110~220V 或 AC100~240V 三位端子电源输入 ◎无风扇设计,工业级设计,-25~70℃温度工作范围 ◎IP30 防护等级,19 寸标准机架安装方式 IES5024 系列
? 支持 RS-232/RS-485/RS-422 三种串口形式 ? 支持 300bps~115200bps 线速无阻塞通信 ? 支持虚拟串口驱动访问模式和网络中断自动恢复连接功能
NP316 系列

变电站通信网络和系统(IEC 61850)标准概述

变电站通信网络和系统(IEC 61850)标准概述 由于现有的规约五花八门、缺乏统一性,数字化(智能化)变电站成为发展方向,性能和速度已不再是问题,因此产生了IEC 61850标准。 IEC 61850系列标准吸收国际先进新技术,并且大量引用了目前正在使用的多个领域内的其它国际标准作为61850系列标准的一部分。所以它是一个十分庞大的标准体系,确切地说,它是一种新的变电站自动化的设计、工程、维护、运行方法准则。 IEC 61850系列标准的全称:变电站通信网络和系统(Communication Networks and Systems in Substations),它规范了变电站内智能电子设备(IED)之间的通信行为和相关的系列要求。 IEC 61850的关键技术: 1)变电站三层接口 2)采用模型思想进行对变电站统一建模 3)抽象通信服务和特定通信服务 4)统一的配置描述语言 5)IEC 61850标准包括10个部分: 6)IEC 61850-1基本原则,包括了适用范围和目的,定义了变电站内IED(电 子式互感器Intelligent Electronic Device)之间的通信和相关系统要求, 并论述了制定一个适合标准的途径和如何对待通信技术革新等问题。 7)IEC 61850-2术语,给出了IEC 61850文档中涉及的关于变电站自动化系 统特定术语及其定义。 8)IEC 61850-3总体要求,详细说明系统通信网络的总体要求,重点是质量 要求(可靠性、可用性、可维护性、安全性、数据完整性以及总的网络 要求),还涉及了环境条件(温度、湿度、大气压力、机械振动、电磁 干扰等)和供电要求的指导方针,并根据其他标准和规范对相关的特定 要求提出了建议。 9)IEC 61850-4系统和项目管理,描述了对系统和项目管理过程的要求以及 对工程和试验所用的专用调度要求。主要包括:工程过程及其支持工具,,

变电站综合自动化系统设计方案

变电站综合自动化系统设计方案 1.1.2 研究现状 变电站综合自动化系统是利用先进的计算机技术、现代电子技术、通信技术和信息处理技术等实现对变电站二次设备(包括继电保护、控制、测量、信号、故障录波、自动装置及远动装置等)的功能进行重新组合、优化设计,对变电站全部设备的运行情况执行监视、测量、控制和协调的一种综合性的自动化系统。通过变电站综合自动化系统内各设备间相互交换信息,数据共享,完成变电站运行监视和控制任务。变电站综合自动化替代了变电站常规二次设备,简化了变电站二次接线。变电站综合自动化是提高变电站安全稳定运行水平、降低运行维护成本、提高经济效益、向用户提供高质量电能的一项重要技术措施。 如今变电站综合自动化已成为热门话题,研究单位和产品也越来越多,国内具有代表性的公司和产品有:北京四方公司的CSC 2000系列综合自动化系统,南京南瑞集团公司的BSJ2200计算机监控系统,南京南瑞继电保护电气有限公司的RCS一9000系列综合自动化系统,国电南自PS 6000系列综合自动化系统、武汉国测GCSIA变电站综合自动化系统、许继电气公司的CBZ一8000系列综合自动化系统。国外具有代表性的公司和产品有:瑞典ABB的MicroSCADA自动化系统等。现在的变电站自动化系统将站内间隔层设备(包括微机继电保护及自动装置、测控、直流系统等)以互联的方式与主机实现数据交换与处理,从而构成一种服务于电网安全与监测控制,全分散、全数字化和可操作的自动控制系统。 本系统站控层用的软件工具是瑞典ABB公司开发的用于变电站自动化系统的MicroSCADA和COM500,COM500作为前置机,它是整个系统数据采集的核心,MicroSCADA用于后台监控;间隔层测控装置用的主要是芬兰ABB公司生产的是REF54_系列和瑞典ABB公司生产的REC561等自动化产品,远动装置用的是浙江创维自动化工程有限公司自主研发CWCOM200。

变电站综合自动化系统的通信技术

变电站综合自动化结业论文变电站综合自动化系统通信 系部:电力工程系 班级:供用电12-4 姓名:豆鹏程 学号:2012231026

【摘要】 变电站综合自动化功能的实现,离不开站内工作可靠、灵活性好、易于扩展的通信网络,以来满足各种信息的传送要求。在变电站综合自动化系统中,通信网络是一个重要的环节。本文对通信网络的要求和组成、信息的传输和交换及通信的功能作了有详细的介绍。 【关键字】 变电站综合自动化系统;信息传输;数据通信

变电站综合自动化系统的通信 引言 变电站综合自动化系统实质上是由多台微机组成的分层分布式的控制系统,包括监控、继电器保护、电能质量自动控制系统等多个子系统。在各个子系统中,往往又由多个智能模块组成,例如微机保护子系统中,有变压器保护、电容器保护和各种线路保护等。因此在综合自动化系统内部,必须通过内部数据通信,实现各子系统内部和各子系统间信息交换和实现信息共享,以减少变电站二次设备的重复配置和简化各子系统间的互连,提高整体的安全性。[2、5] 另一方面,变电站是电力系统中电能传输、交换、分配的重要环节,它集中了变压器、开关、无功补偿等昂贵设备。因此,对变电站综合自动化系统的可靠性、抗干扰能力、工作灵活性和可扩展性的要求很高,尤其是无人值班变电站。综合自动化系统中各环节的故障信息要及时上报控制中心,同时也要能接受和执行控制中心下达的各种操作和调控命令。[2] 因此,变电站综合自动化系统的数据通信包括两方面的内容:一是综合自动化系统内部各子系统或各种功能模块间的信息交换;而是变电站与控制中心的通信。 一、变电站内的信息传输[2、3、5] 现场的综合自动化系统一般都是分层分布式结构,传输的信息有以下几种: (一)现场一次设备与间隔层间的信息传输 间隔层设备大多需从现场一次设备的电压和电流互感器采集正常情况和事故情况下的电压值和电流值,采集设备的状态信息和故障诊断信息,这些信息主要是:断路器、隔离开关位置、变压器的分接头位置、变压器、互感器、避雷针的诊断信息以及断路器操作信息。 (二)间隔层的信息交换

变电站综合自动化系统的组成和主要功能

变电站综合自动化系统的组成和主要功能; 系统概述; 本次设计采用YH-B2000变电站综合自动化系统,其系统是面向110KV及以下电压等级变电站的成套自动化设备其是陕西银河网电科技有限公司开发研制的新型设备,该系统是在总结我国微机变电站运行经验基础上,根据国内外新的发展趋势,以提高电网的安全经济运行为宗旨,以方便现场安装调试、无人值守为目的,向智能化迈进的全新概念综合自动化系统。 其设备从变电站整体出发,统一考虑保护、监测、控制、远动、直流和五防等功能,避免了功能装置重复备置等弊病,及减少投资,又有利于变电站运行管理和维护。 YH-B2000变电站综合自动化系统组成结构如下图;

该系统在我国首次集微机保护和远动为一体,并率先把这种装置直接安装于高压开关柜上,系统总体结构设计是以单元分散型嵌入式为指导思想,系统装置中每个单元的结构、外观和尺寸是完全一致的。其可把各个单元分散安装在一次设备上,或集中组屏按装。相比两者具有明显的优点;可以大大减少连接开关柜控制屏及控制室的各种电缆,减少控制室面积,从而节省了变电站综合造价,简化了施工,方便了维护,并且提高了变电站的可控性,可扩展性和灵活性有了很大提高。消除了因设备之间错综复杂的二次电缆引线接错造成的问题,提高可靠性 YH-B2000变电站综合自动化系统是面向对象设计的。系统中每一种单元都面向变电站内的各种一次设备。如线路单元,就是面向开关柜设计的,它包含了对该开关柜的控制、测量、事故记录和线路的各种保护等;电容器单元也像线路单元一样,它是面向电容器组的;变压器是变电站的核心设计,YH-B2000型变电站综合自动化系统对变压器设计了三种面向它的完全独立的功能单元。第一是主保护单元,它主要完成变压器差动保护等。第二是后备保护,它主要完成变压器的过流保护等。第三是变压器的测控单元,主要完成主变的有载调压控制和电气量的测量。备自投单元是完成变电站两路电源的自动投切功能的。直流子系统也被YH-B2000型变电站综合自动化系统纳入了整体成套范围,作为系统的一个单元整体规划设计。 YH-B2000型变电站综合自动化系统无论是以何种方式安装,所有单元均通过一梗三芯通讯电缆同后台总控单元实现实时数据交换。

变电站通信网设计要求

4.6.4 变电站通信网的基本设计原则 变电站通信的内容包括变电站综合自动化系统当地采集控制单元与变电站或电厂主控室监控管理层之间的通信,变电站综合自动化系统与远方调度中心之间的通信。系统通信网架的设计是十分关键的,可从以下方面考虑: 1)电力系统的连续性和重要性,通信网的可靠性是第一位的。 2)系统通信网应能使通信负荷合理分配,保证不出现“瓶颈”现象,保证通信负荷不过载,应采用分层分布式通信结构。此外应对站内通信网的信息性能合理划分,根据数据的特征是要求实时的,还是没有实时性要求以及实时性指标的高低进行处理。另外,系统通信网设计应满足组合灵活、可扩展性好、维修调试方便的要求。 3)应尽量采用国际标难的通信接口,技术上设计原则是兼容目前各种标准的通信接口,并考虑系统升级的方便。 4)应考虑针对不同类型的变电所的实际情况和具体特点,系统通信网络的拓扑结构是灵活多样的且具有延续性。 5)系统通信网络应采用符合国际标准的通信协议和通信规约。 6)对于通信媒介的选用、设计原则是在技术要求上支持采用光纤,但实际工程中也考虑以屏蔽电缆为主要的通信媒介。 7)为加速产品的开发,保持对用户持续的软件支持,对用户提出的建议及要求的快速响应,就要求摆脱小作坊式的软件开发模式,使软件开发从“小作坊阶段”进入“大生产阶段”,采用先进的通信处理器软件开发平台实时多任务操作系统RTOS,并开发应用于其之上的通信软件平台。 4.6.5 通信网的软硬件实现 1.硬件的选择 为了保证通信网的可靠性,通信网构成芯片必须保证在工业级以上,以满足湿度、温度和电磁干扰等环境要求。通信CPU可采用摩托罗拉公司或西门子公司的工控级芯片,通信介质选择屏蔽电缆或光纤。 2.接口程序 采用国际标准的通信接口,技术上设计原则是兼容目前各种标准的通信接口,并考虑系统升级的方便。装置通信CPU除保留标淮的RS-232/485接口用于系统调试维护外,其他各种接口采用插板式结构,设计支持以下三类共七种方式:标准RS-485接口,考虑双绞线总线型和光纤星形耦合型;标准Profibus MMS

智能变电站自动化系统

智能变电站自动化系统 1 智能变电站简介 智能变电站作为智能电网的物理基础,同时作为高级调度中心的信息采集和命令执行单元,是智能电网的重要组成部分。作为智能电网当中的一个重要节点,智能变电站以变电站一、二次设备为数字化对象,以高速网络通信平台为基础,通过对数字化信息进行标准化,实现站内外信息共享和互操作,并以网络数据为基础,实现测量监视、控制保护、信息管理等自动化功能的变电站。智能变电站既是下一代变电站的发展方向,又是建设智能电网的物理基础和要求。为了实现智能化电网的目标,智能变电站的研究和建设具有重要的意义。 1.1智能变电站的特点及功能 随着智能电网的提出和建立,变电站将由数字化演变为智能化,更突出“智能”的特点。智能化变电站在数字化变电站的基础之上,赋予了以下十二个“智能特征”或“智能化功能”。 1.1.1 一次设备智能化 与数字化变电站描述的一次设备智能化相比,智能变电站加大了一次设备信息化,可监测更多自身状态信息,也可通过网络获知系统及其他设备的运行状态等信息。自动化程度更高,具有比常规自动化设备更多、更复杂的自动化功能。具备互动化能力,与上级监控设备、系统及相关设备、调度及用户等及时交换信息,分布协同操作。 1.1.2 信息建模统一化 除了基于 IEC61850 标准的建模外,智能变电站能实时监测辖区电网的运行状态,自动辨识设备和网络模型,从而为控制中心提供决策依据。 1.1.3 数据采集全景化 智能变电站利用对时系统,同步区域和站内时钟,完善和标准化站内设备的静态和动态信息模型,向智能电网提供统一断面的全景数据。采用新型传感技术、同步测量技术、状态检测技术等逐步提高数字化程度,逐步实现潮流数据的精确时标,实时信息共享、支撑电网实时控制和智能调节,支撑各级电网的安全稳定运行和各类高级应用。 1.1.4 设备检修状态化 全面采集能够反映系统主设备运行的电脉冲、气体生成物、局部过热等各种特征量。智能变电站配置用于监测系统主设备的传感器,或者由智能一次设备直接提供其功能。利用 DL/T860 提供的建模方法,建立设备状态检修的信息模型,构建具备较为可靠实用的状态监测预警算法和机制、支撑状态检修实践的专家系统。 1.1.5 控制操作自动化 程序化操作。智能变电站具备程序化操作功能,除站内的一键触发,还可接收和执行监控中心、调度中心和当地后台系统发出的操作指令,自动完成相关运行方式变化要求的设备操作。程序化操作具备直观的图形界面,在站层和远端均可实现可视化的闭环控制和安全校验,且能适应不同的主接线和不同的运行方式,满足无人值班及区域监控中心站管理模式的要求。

变电站自动化系统调试方案

变电站监控系统调试方案 批准: 审核: 编制: 正泰电气股份有限公司 海南矿业110kV铁矿变电站工程 2014年7月13日

目录 1. 工程概况及适用范围 (1) 2. 编写依据 (1) 3. 作业流程 (2) 5. 作业方法 (3) 6. 安健环控制措施 (7) 7. 质量控制措施及检验标准 (8)

1. 工程概况及适用范围 本作业指导书适应于变电工程监控系统调试作业。 2. 编写依据

3. 作业流程 3.1 作业(工序)流程图 4. 作业准备

5. 作业方法 5.1开始 5.1.1检查屏柜安装完毕,符合试验条件。 5.1.2检查工作票完善,工作安全措施完善,二次措施单编写内因符合作业安全标准。 5.1.3试验人员符合要求,熟悉相关资料和技术要求。 5.2通电前检查: 5.2.1核对各屏柜配置的连片、压板、端子号、回路标注等,必须符合图纸要求。 5.2.2核对保护装置的硬件配置、标注及接线等,必须符合图纸要求。 5.2.3保护装置各插件上的元器件的外观质量、焊接质量应良好,所有芯片应插紧,型号正确, 芯片放置位置正确。 5.2.4检查保护装置的背板接线有无断线、短路和焊接不良等现象,并检查背板上抗干扰元件的焊接、连线和元器件外观是否良好。 5.2.5检查试验设备是否符合要求,试验设备是否完好。 5,2,6检查回路接线是否正确。 5.2.7检查保护装置电压是否与实际接入电压相符。 5.2.8检查保护装置所配模块与实际配置的PT、CT相符合。

5.2.9保护屏接地是否符合要求。 5.3绝缘检查 5.3.1分组回路绝缘检查:将装置CPU插件拔出,在屏柜端子排处分别短接交流电压回路,交流电流回路、操作回路、信号回路端子;用1000V兆欧表轮流测量以上各组短接端子间及各组对地绝缘。其阻值应大于10MΩ。 5.3.2整组回路绝缘检查:将各分组回路短接,用1000V兆欧表测量整组回路对地绝缘。其阻值应大于1MΩ。 5.4通电检查 5.4.1核对屏柜元件配置是否与设计图纸和技术规范相符。 5.4.2检查保护装置版本信息经厂家确认满足设计要求。 5.4.3按键检查:检查装置各按键,操作正常。 5.4.4装置自检正确,无异常报警信号。 5.4.5打印机与保护装置的联机试验:进行本项试验之前,打印机应进行通电自检。 5.5单机校验 5.5.1零漂检查 进行零漂检查时,应对电压端子短接,电流回路断开防止感应引起误差,应在装置上电10min以后,零漂值要求在一段时间(几分钟)内保持在规定范围内;电流回路零漂在-0.05~+0.05A范围内(额定值为5A),电压回路在0.05V以内。 5.5.2通道采样及线性度检查 在各模拟量通道分别按规范加量,装置采样应正确,同时加入三相对称电流、三相对称电压,查看装置采样,检查电流、电压相角正常。功率显示正确。 5.5.3 时钟的整定与核对检查:调整时间,装置正常,GPS对时已完善,核对各装置时间显示一致,并与后台计算机显示相符。 5.5.4装置自检正确,无异常报警信号。 5.5.5遥信输入检查:短接开关量输入正电源和各开关量输入端子,对照图纸和说明书,核对开关量名称,装置显示屏显示各开关量名称与实际一致。 5.5.6遥控、遥调接点检查:在监控装置模拟遥控、遥调信号,用万用表测量各输出接点正确。 5.5.7监控系统同期功能检查:分别按检同期、检无压和不检方式进行模拟调试,在检同期方式下输入母线电压和线路电压,分别改变两电压间的相角、幅值、频率使之

智能变电站自动化系统体系结构探索

智能变电站自动化系统体系结构探索 摘 要:智能变电站一体化监控系统是按照全站信息 数值化、通信平台网络化、信息共享标准化的基础要求,通 过系 统集成优化,实现全站信息的统一接入、统一存储和统 展示,实现运行监视、操作与控制、综合信息分析与智能 告 警、运行管理和辅助应用等高级应用功能。是大运行体系 建设的 基础,是备用调度体系建设的基础。本文通过全面解 析智能变电 站一体化监控系统,为日后的运行管理提供借 鉴。 关键词:智能电网;变电站;一体化系统;体系结构 1674-7712 ( 2014) 06-0000-02 智能电网是当今世界电力乃至能源产业发展变革的最 新动向,代表着未来发展的方向和社会的进步。智能变电站 是智能电网的重要环节,随着变电站自动化系统技术的发展 和硬件水平的不断提高,变电站自动化系统,一直朝设备集 成度越来越多,模拟电缆越来越少的过 程。智能变电站自动 化系统是变电站的核心部分,它由一体化监控系统和输变电 设备状态监测、辅助设备、时钟同步、计算等共同构成,它 是运行、保护和监视变电站一次设备系统,完成变电站的设中图分类 t=r. 号: TM63 ;TM76 文献标识码: A 文章编号:

备及其反馈线监视、控制、保护等功能。一体化监控系统是智能电网调度控制和生产管理的基础。 、智能变电站自动化系统结构一)网络总体结构 变电站自动化系统是运行、保护和监视变电站一次设备 的系统,完成变电站的设备及其馈线监视、控制、保护等功能。变电站自动化系统采用开放式分层分布结构,由“三层 网”构成。 二)站控层 站控层德主要功能是为变电站提供运行、管理、工程配 置的界面,并记录变电站内的所有相关信息,具体如下:(1) 汇总全站的实时数据信息,不断刷新实时数据库,按时登陆、填写历史数据库。(2)按既定规约将有关数据信息送向调度 或控制中心,接受调度或控制中心有关控制命令并转间隔层、过程层执行。(3)监控系统和远动通信服务器采用一体 化数据库配置方式,生成监控数据库的同时即可完成远动通信服务器的数据库、功能及逻辑的配置,提高变电站的维护效率。(4)具体在线可编程的全站操作闭锁控制功能;站控层、间隔层共用一套防误规则库,防误规则库可由后台监控生成并通过网络下载到测控装置,并可在后台监控上模拟、预演、校验测控装置的防误逻辑,有效的提高了系统的可靠性与维护效率。(5)具体站内当地监控,人机联系功能,如

变电站通信网设计要求

4.6.4 变电站通信网的基本设计原则变电站通信的内容包括变电站综合自动化系统当地采集控制单元与变电站或电厂主控室监控管理层之间的通信,变电站综合 自动化系统与远方调度中心之间的通信。系统通信网架的设计是十分关键的,可从以下方面考虑: 1)电力系统的连续性和重要性,通信网的可靠性是第一位的。 2)系统通信网应能使通信负荷合理分配,保证不出现“瓶颈”现象,保证通信 负荷不过载,应采用分层分布式通信结构。此外应对站内通信网的信息性能合理划分,根据数据的特征是要求实时的,还是没有实时性要求以及实时性指标的高低进 行处理。另外,系统通信网设计应满足组合灵活、可扩展性好、维修调试方便的要求。 3)应尽量采用国际标难的通信接口,技术上设计原则是兼容目前各种标准的通信接口,并考虑系统升级的方便。 4)应考虑针对不同类型的变电所的实际情况和具体特点,系统通信网络的拓扑结构是灵活多样的且具有延续性。 5)系统通信网络应采用符合国际标准的通信协议和通信规约。 6)对于通信媒介的选用、设计原则是在技术要求上支持采用光纤,但实际工程 中也考虑以屏蔽电缆为主要的通信媒介。 7)为加速产品的开发,保持对用户持续的软件支持,对用户提出的建议及要求 的快速响应,就要求摆脱小作坊式的软件开发模式,使软件开发从“小作坊阶段”进入“大生产阶段” ,采用先进的通信处理器软件开发平台实时多任务操作系统RTOS,并开发应用于其之上的通信软件平台。 4.6.5 通信网的软硬件实现 1.硬件的选择 为了保证通信网的可靠性, 通信网构成芯片必须保证在工业级以上, 以满足湿度、温度和电磁干扰等环境要求。通信CPU 可采用摩托罗拉公司或西门子公司的工控级 芯片,通信介质选择屏蔽电缆或光纤。 2.接口程序采用国际标准的通信接口,技术上设计原则是兼容目前各种标准的通信接 口,并考虑系统升级的方便。装置通信CPU除保留标淮的RS-232/485接口用于系统 调试维护外,其他各种接口采用插板式结构, 设计支持以下三类共七种方式:标准 RS-485 接口,考虑双绞线总线型和光纤星形耦合型;标准Profibus MMS 接口,考虑双绞线总线型、光纤环网、光纤冗余双环网;标难Ethernet,考虑双

智能变电站继电保护及自动化系统

智能变电站继电保护及自动化系统 发表时间:2019-03-26T11:07:03.680Z 来源:《电力设备》2018年第28期作者:辛虎军 [导读] 摘要:随着社会的快速发展以及技术水平的提升,信息化、智能化技术得到了广泛的应用。 (南瑞集团有限公司(国网电力科学研究院有限公司)江苏南京 210000; 国电南瑞科技股份有限公司江苏南京 210000) 摘要:随着社会的快速发展以及技术水平的提升,信息化、智能化技术得到了广泛的应用。对于变电站来说,随着智能化技术的应用已经从常规的变电站转变成为了智能变电站。而继电保护是智能变电站系统中最为重要的组成部分之一,对于确保整个电力系统安全运行起着非常关键的作用。相对于常规变电站来说,智能变电站在软硬件方面都有了很大的改变,所以继电保护方面也存在着很大的差异,需要通过更加自动化的措施来确保其正常运行。所以为了能够有效适应新技术在智能变电站中的应用,对于智能变电站继电保护和自动化技术进行研究具有非常现实的意义。 关键词:智能变电站;继电保护;自动化系统 1智能变电站继电保护的特点 智能变电站是基于光电信息、微电子集成和网络通信技术的智能化自动管理的变电站。变电站中的继电保护装置自动化主要是针对电力故障、线路设备等异常行为进行及时自动预警的一种系统装置。通过及时自动断电、故障分离和切除,有效对变电站进行保护。智能变电站继电保护系统构成主要有:电子式互感设备+合并单元+交换机+网络接口等。智能变电站继电保护装置使数据信息提供的来源变得更加广阔,同时灵活性不断提高,因此技术人员可以通过对继电保护的特点进行分析,实现智能变电站继电保护装置能力的最大化。智能变电站继电保护系统操作相比传统变电站,更加灵活,操作方便。 2智能变电站继电保护系统 2.1智能变电站继电保护系统结构 基于智能变电站不同的采样与跳闸方式,可以将其分为以下几种较为典型的系统结构:①直采直跳。这种模式主要是继电保护设备能够通过光纤直流的方式来实现跳闸与采样,但是大多存在于部分的电网支路中。②网采直跳。所谓网采直跳主要是有SC和GOOSE两者共同或者独立形成的组网。③直采网跳。智能变电站继电保护系统的设备可以进行直接式的采样,然后经由GOOSE的方式来实现网络跳闸。 ④网采网跳。这种模式是打破了传统的采样与跳闸方式,而是将两者目标皆由Goose以及SV来完成,实现网络自动化的控制。 2.2智能变电站继电保护的元件 智能变电站继电保护系统中的构成元件主要会涉及到交换机、电子互感器、合并单元等。①互感器方面,传统的模式是通过电磁互感器来实现,而现在则是使用电子互感器来进行替代。它具有测量准确、小巧轻便等特点,可以根据传感电源的差异将其分为无源型与有源型。②合并单元则是实现过程层的信息传输,以接收时间的方式来标记电子互感器传输的信息,并将其转移到继电保护设备中,这样不仅精简了过去复杂的接线工作,也达到了节约成本的目的,并最终实现数据信息的网络共享。另外,交换机主要是将其作为智能以太网络的运行节点,在链路层中实现数据帧的交换。在当前交换机设备以及相关技术逐步更新的背景下,信息传递的效率在逐步提高,使得相互通信的效率也在不断的更新,确保了智能电网运作的稳定性。 3智能变电站继电保护分析 从智能变电站继电保护的情况来看,站控层和过程层网络稳定程度以及所具有的实效性起着最为重要的作用,其中站控层网络主要对整定值以及文件实施传输,并且需要修改、录播以及召唤相应文件;过程层网络主要对采样值、开关运行情况、跳闸信号等信息进行传输。智能变电站在运行过程中,尤其是在进行继电保护采样值或者命令信号进行传输过程中,大都会通过以太网数据帧的方式进行,所以对于智能变电站继电保护来说最为重要的就是过程层网络。因此,一定要对其进行合理的规划和调度,从而保证智能变电站继电保护的正常运行。 过程层继电保护主要配置快速跳闸的主保护功能,例如线路纵联保护、变压器差动保护、母线差动保护等等,而将后备保护功能转移到变电站层的集中式保护装置当中。此种配置方式能够简化过程层的保护设计,对于主保护功能进行主要设置,而后备保护简化配置即可,这样就能够对硬件设计进行简化。同时,主保护的定值整定较为固定,并不会随着电力系统运行方式的转变而改变。但是受到保护独立方面的制约,在对继电保护功能和一次设备进行集成之后,如果需要同时进行线路保护以及母线保护,那么需要将硬件进行单独设置,可以设计成为独立的功能模件形式。 (1)线路保护。线路保护直接采样、直接跳断路器;通过GOOSE网络重新实现断路器失灵以及重合闸等方面的功能;对于线路间隔内保护测控装置来说,不但要和GOOSE网络实现信息的交换,同时也可通过点对点连接以及传输方式直接连接合并单元以及智能终端;对于保护测控装置和合并单元的连接以及数据传输来说,不需要利用GOOSE网络就能够实现直接的采样,同时保护测控装置和智能终端的连接也可以不同GOOSE网络就能够实现直接跳闸的功能;设置在线路以及母线之上的电子式互感器在得到电流电压信号之后,首先要接入到合并单元,完成数据的打包之后可以通过光纤传输到SV网络以及保护测控装置当中;可以通过GOOSE网络传输的方式将跨间隔信息接入到保护测控装置。 (2)变压器的保护。智能变压器保护装置的过程层主要采用的是分布式配置,可以实现差动保护的功能,而后备的保护可以采取集中式的安装方式。对于非电量保护来说,可以进行单独的安装,利用电缆等直接引入断路器跳闸,并且可以利用光缆将跳闸命令引入到采样和GOOSE的共同网络之上。 (3)母联(分段)的保护。分段保护的实施方案和线路保护的方案类似,但是具有更加简单的结构。将分段保护装置和合并单元以及智能终端进行连接就能够分别实现直接采样(不利用网络数据)以及直接跳闸的功能。另外,相应设备(例如合并单元、保护装置、智能终端等)都可以利用相对独立的GOOSE网络以及SV网络实现信号的跨间隔传输。 4智能变电站继电保护自动化分析 4.1接线技术注意事项 设备间的接线以及设备内部接线工作尤为重要,接线工作是继电保护自动化施行前必须做好的工作,决定着继电保护设施能否正常运作。在接线时必须保证接点的准确,使用方式科学合理,操作流程要符合相关行业规范。接线过多不利于智能变电站的运行,也不利于实

自动化技术在智能变电站自动化系统中的应用

自动化技术在智能变电站自动化系统中的应用 摘要:随着智能电网建设,智能变电站、配电自动化技术和调度自动化系统的 不断完善,使得各种智能电网技术逐步实现技术的融合,从而加强电网配置资源 的能力,提高电网安全运行水平。基于此,本文就智能变电站自动化系统中自动 化技术应用方面的内容进行了分析探讨,以供参阅。 关键词:自动化技术;智能变电站自动化系统;应用 1智能变电站 智能变电站是指采用先进、可靠、集成、低碳、环保的智能设备,以全站信 息数字化、通信平台网络化、信息共享、标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和监测等基本功能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级功能的变电站。智能变电站如同 智能电网一样,他们的发展在全世界还处于起步阶段.但发展智能电网已经逐渐成 为世界各地区电力行业的共识,本世纪初,实时性和可靠性满足保护功能要求的 网络通信技术,以及适应互感器、开关等过程层设备恶劣环境的电子技术己基本 成熟,以及光纤通信技术的大步发展,实现间隔层信息交换数字化、过程层设备 数字化以及间隔层与过程间信息交换数字化的全数字化变电站成为变电站技术发 展的热点。 2自动化技术在智能变电站中的应用意义 智能变电站是由先进的智能化设备构成,以互联网通信技术为依托,高效传 输变电站的各项数据,实现数据的收集与测量,通过数据实现对变电站中故障的 智能化分析,并给出解决意见。如果变电站发生故障,自动化系统会采取一定的 措施“告知”工作人员,使工作人员能及时发现问题、解决问题。数字化变电站强 调的是过程,而智能变电站强调的则是目的。与传统的变电站相比,智能变电站 中的自动化系统能够对整个变电站实施全过程监控,减轻变电站的负荷,提升变 电站的运行效率,进而提高电力公司的经济效益。因此,自动化系统在智能变电 站中的有效运用,在推动我国电力系统与整个电网的发展中发挥着极其重要的作用。 3智能变电站的自动化系统结构 现在在变电站自动化设计发展中,光电式互感器机电一体化设备的出现、智 能开关的使用、以及智能化电气的发展,使智能变电站自动化技术得到了更快的 改变。在除中低压之外懂得变电站中,装置一些保护装置、测控装置以及像控制 操作回路、A/D变换、光隔离器件等的自动装置,它们都可以作为智能变电站 中一次设备的一部分。另一方面,智能变电站中常规继电保护装置也被采用了数 字化传感器、测控、控制回路的一次设备所代替了;而中低压变电站也可以实现 机电一体化,只是需要将保护和监控装置以完整性、小型化、紧凑化地安装即可。在物理结构上,可将智能化变电站系统分为两个类型,其为智能化的一次设备和 网络化的二次设备。在逻辑结构上,可将智能化变电站系统分为三个层次,这三 个层次分别为过程层、间隔层、站控层。(1)过程层:是智能化的一次设备和 网络化二次设备的结合面,也可以理解为过程层作为智能化部分在智能化电气设 备中。其主要功能有三种:第一,在电力运行时,进行实时检测;第二,对运行 设备的状态进行检测;第三,对操作控制进行执行与驱动。(2)间隔层:其主 要功能是对数据采集、统计运算及控制命令的发出具有优先级别的控制;承上启

相关主题
文本预览
相关文档 最新文档