当前位置:文档之家› 射频宽带放大器(D题)

射频宽带放大器(D题)

射频宽带放大器(D题)
射频宽带放大器(D题)

2013年全国大学生电子设计竞赛

射频宽带放大器(D题)

【本科组】

2013年9月7日

摘要

本系统以程控增益调整放大器AD603为核心,外加宽带放大器OPA690的配合,实现了高增益可调的射频宽带放大器。系统主要由六个模块构成:前置放大电路、一阶RC 高通滤波电路、可控增益放大电路、输出缓冲电路、直流稳压电源以及单片机显示控制模块。系统通过第一级OPA690两级级联电路放大20dB,再通过单片机程控两级级联的AD603实现-20~60dB的动态增益变化,从而满足电压增益Av在0~60dB范围内可调的要求。整个系统放大器可放大1mV有效值信号,增益可达80dB,通频带内增益起伏1dB,放大器在Av=60dB的时候,输出噪声电压峰-峰值为80mV,通过单片机控制可实现电压增益Av可预置并显示的功能。整个系统工作可靠、稳定,且成本低。

关键词:射频宽带放大;可控增益;AD603

目录

1系统方案论证 (1)

1.1方案比较与选择 (1)

1.1.1前置放大电路 (1)

1.1.2可控增益放大电路 (1)

1.1.3直流稳压电源 (2)

1.2方案描述 (2)

2理论分析与计算 (3)

2.1宽带放大器设计 (3)

2.2频带内增益起伏控制 (3)

2.3射频放大器稳定性 (3)

2.4增益调整 (3)

3电路与程序设计 (4)

3.1电路的设计 (4)

3.1.1前置放大电路 (4)

3.1.2可控增益放大电路 (4)

3.1.3输出缓冲电路 (5)

3.1.4自制直流稳压电源模块 (5)

3.2程序的设计 (5)

3.2.1程序功能描述与设计思路 (5)

3.2.2程序流程图 (6)

4测试方案与测试结果 (7)

4.1测试仪器 (7)

4.2放大器增益测试 (7)

4.3最大输出有效值测试 (8)

4.4通频带内增益起伏测试 (8)

4.5放大器噪声电压测试 (8)

4.6输入电阻与负载电阻阻值测试 (8)

附录1:源程序 (9)

射频宽带放大器(D题)

【本科组】

1系统方案论证

1.1方案比较与选择

1.1.1前置放大电路

方案一:使用分立元件三极管、电阻、电容、电感等构成前置放大电路。该电路在元件参数设置不精准的情况下,误差较大,且电路结构复杂,设计困难,调试繁琐,故不采用。

方案二:使用仪表放大电路。仪表放大器具有低输入失调电压、高共模抑制比、可用单电阻实现增益大范围调节等优点,但是专用的仪表放大器价格通常比较昂贵,所以不予采用。

方案三:采用OPA690运放电路。OPA690为低噪声、低直流零点漂移运放,且结构简单,调试容易,电路稳定,效果较好。

综合以上三种方案,选择方案三。

1.1.2可控增益放大电路

方案一:利用高速运放加数字电位器构造可程控放大器,通过控制数字电位器阻值来控制放大器增益。但数字电位器建立时间最快也需几us,加之数字电位器3db截止频率一般在几百KHz,当输入信号为MHz数量级下阻值准确性会产生失真,使得程控变得困难,而且高速运放在低频下的响应远不能满足要求。因此,此方案可行性较差。

方案二:采用可编程放大器的思想,将输入交流信号作为高速DAC的基准电压,用DAC的电阻网络构成运放反馈网络的一部分,通过改变DAC数字控制量实现增益控制。理论上讲,只要DAC的速度足够快、精度足够高就可以实现很宽范围的精密增益控制,但是控制的数字量和最后的20dB不成线性关系而成指数关系,造成增益调节不均匀,精度下降,因此不选用此方案。

方案三:选用两级集成可控增益放大器直接耦合作为增益控制,集成可控增益放大器的增益与控制电压成线性关系,控制电压由单片机控制DAC产生。单级集成可控增益放大器AD603具有-10dB到+30dBdB的增益控制范围,两级级联后理论上可达到-20dB 到+60dB的增益控制范围,精度达到0.5dB,带宽60MHz,可以满足题目基础部分指标要求。

综合以上三种方案,选择方案三集成可控增益放大器AD603实现增益控制,外围电路简单,便于调试,而且具有较高的增益调节范围和精度。

1.1.3直流稳压电源

方案一:线性稳压电源。串联型电路比较简单,效率较高,尤其是若采用集成三端稳压器,输出电压纹波很小,可靠性高,可为后级小信号放大电路输出波形不失真提供保障。

方案二:开关稳压电源。此方案效率高,但电路复杂, 开关电源的工作频率通常为几十~几百KHz ,基波与很多谐波均在本放大器通频带内,极容易对小信号高频放大电路带来干扰,使波形失真。

综合考虑采用方案一。

1.2方案描述

图1 系统方框图

最终确定的系统详细方框图如图1所示。系统增益调节范围为0~60dB 。前级放大电路增益为20dB,由两级OPA690构成,实现输入阻抗匹配,增大了后级输入电压。可控增益放大电路由两级AD603构成,实现了-20~60dB 的增益调节范围。再通过两个缓冲器BUF634并联,扩大输出电流,提升放大器的带负载能力。通过STC12LE5A60S2单片机来控制键盘和TFT 显示模块,实现电压增益手动连续调节功能和电压增益Av 显示功能。

输 出 输 入 输入缓冲两

级OPA690前置放大 两级AD603程控增益放大

输出缓冲Buf634扩流 A/D 电压采集

STC12LE5A 60S2 单片机

D/A TLC5615增益电压控制 键 盘 T F T

电 源 一阶RC 高通滤波电路

2理论分析与计算

2.1宽带放大器设计

宽带放大器由两级OPA690级联构成的输入缓冲放大电路、两级AD603级联构成的程控增益放大电路组成。输入部分先用电阻分压衰减,再由OPA690进行输入缓冲放大,后由AD603进行程控增益放大,且两个OPA690为双电源、交流耦合、G=+2电路接法,宽带为220MHz。由于两级放大电路幅频响应相同,所以当两级AD603串联后,带宽会有所下降,串联前各级带宽为90MHz左右,两级放大电路串联后总的3dB带宽对应着单级放大电路1.5dB带宽,根据幅频响应曲线可得出级联后的总带宽为60MHz。

2.2频带内增益起伏控制

AD603是一种低畸变、高增益精度的增益可调的集成运放,带内增益起伏0.5dB,设计中采用两级AD603串联后,带宽会有所下降,在这种连接方式下带宽远大于设计要求,所以可以保证通频带内电压增益起伏小于1dB的要求。OPA690在G=+2的情况下,带宽为220MHz,带宽远远大于题目要求的0.3~15MHz频率范围,所以系统保证了稳定的电压增益。

2.3射频放大器稳定性

放大器在工作时会出现自激,外部干扰等,影响放大器稳定的工作。当放大器深度负反馈时输出信号带有一定的纹波。此时需要在输出口加一个小电容,消除高频的纹波干扰。为抑制干扰,在放大器电源两端并接电容可以消除输出信号的干扰。在印制PCB 板时,走线敷铜,可以大大降低信号的干扰。尽量选用贴片元件减少走线长度减少寄生电容的影响。同时设计系统各个单元电路间的阻抗匹配,这样提高了系统的稳定性。将单片机的数字电源和模拟电路的电源隔开,同时数字地和模拟地电源地一点相连,防止数字系统的干扰进入模拟系统。

2.4增益调整

增益调整采用运放AD603,其内部由R-2R梯形电阻网络和固定增益放大器构成,加在其梯型网络输入端的信号经衰减后,由固定增益放大器输出,衰减量是由加在增益控制接口的参考电压决定;而这个参考电压可通过单片机进行运算并控制D/A芯片TLC5615输出控制电压得来,从而实现较精确的数控。此外AD603能提供由直流到30MHz 以上的工作带宽,单级实际工作时可提供30dB的增益,两级级联后即可得到60dB的增益,配合前级OPA690运放电路输出,在高频时也可提供超过60dB的增益。这种方法电路集成度高、条理较清晰、控制方便、易于数字化。

3电路与程序设计

3.1电路的设计

3.1.1前置放大电路

图2 前置放大电路图

前置放大电路由两级OPA690构成,第一级OPA690增益为10dB,3 dB宽带为220MHz,第二级与第一级接法相同,增益为10dB,3dB宽带为220MHz。

3.1.2可控增益放大电路

图3 可控增益放大电路

系统可控增益放大电路采用两级AD603级联实现,单级AD603采用宽频带模式接法,将VOUT与FDBK短路,有-10~30dB的增益调整范围,90MHz宽带。级联后两级级联后

理论上可达到-20dB到+60dB的增益控制范围,宽带为60MHz。

3.1.3输出缓冲电路

图4 输出缓冲电路

输出缓冲电路由两个缓冲器BUF634并联,扩大输出电流,提升放大器的带负载能力。

3.1.4自制直流稳压电源模块

图5 直流稳压电源电路

电源由变压部分、整流部分、滤波部分、稳压部分组成。为整个系统提供±5V或者3.3V电压,确保电路的正常稳定工作。这部分电路比较简单,都采用三端稳压管实现。

3.2程序的设计

3.2.1程序功能描述与设计思路

1、程序功能描述

根据题目要求软件部分主要实现键盘的设置和显示。

1)键盘实现功能:设置增益值。

2)显示部分:显示增益值。

2、程序设计思路

3.2.2程序流程图

1、主程序流程图

开始

初始化

按键子程序

自动增益控制

结束

图6主程序流程图

2、自动增益控制子程序流程图

Y N

V o>V?

增益减增益加

图7自动增益控制子程序流程图

3、按键子程序流程图

图3按键子程序流程图

4测试方案与测试结果

4.1测试仪器

测试仪器清单,如表 所示。

表1 测试仪器清单

序 号 仪 器 名 称 型 号 指 标

1 双踪示波器 LDS20210 200MHz 带宽 1GS/s 采样率

2 函数信号发生器 SG165

3 20Hz ~20MHz 3 数字万用表

UT55

3位半

4.2放大器增益测试

测试方案选择:通过函数发生器产生80MHz 以内有效值为10mV 的正弦波,通过双踪示波器分别观察系统输入和输出信号的大小。其放大器增益测试结果如表 。

key1=0?

Key2=0?

增益加

增益减

Dat>1187?

Dat<446?

Dat=1187

Dat=446

Y

Y

Y

Y

表2 放大器增益测试结果

100 KHz 2 MHz 20 MHz 20 dB 280V 140 mV 100 mV 40 dB 500mV 300mV 200mV 60 dB 3.56V

3V

680mV

4.3最大输出有效值测试

测试方案选择:在增益40dB 时,增大输入信号幅度,观察最大不失真输出信号幅度,得测试结果:

Vipp=10mV Vopp=1.2V

4.4通频带内增益起伏测试

测试方案选择:以1MHz 为基准,在增益为60dB 时,输入峰—峰值为20mV 信号,从0.3MHz ~15MHz 改变输入信号频率,测出输出信号幅度与放大60dB 时理论输出幅度之比。

测试结果为:0.3MHz ~15MHz 内:平均0.8dB 4.5放大器噪声电压测试

测试方案选择:在增益为60dB 时,将输入端与地短接,测出输端信号幅度。 测试结果:Uo=72mV

4.6输入电阻与负载电阻阻值测试

测试方案选择:输入电阻50Ω测量,将50Ω电阻与电路两端并联,测量50Ω电阻两端电压和电路两端电压是否相等,相等则输入电阻为50Ω。负载电阻50Ω测量,用万用表直接测量。

测试结果:输入阻抗=50Ω 输出阻抗=50Ω

参考文献

[1] 童诗白,华成英. 《模拟电子技术基础》[M]. 北京:高等教育出版社,2006年. [2] 张肃文. 《高频电子线路》[M]. 北京:高等教育出版社,2009年.

[3] 郭天祥. 《51单片机C 语言教程—入门、提高、开发、拓展全攻略》[M]. 北京:电子工业出版社,2009年.

[4] 高吉祥,唐朝京. 《全国大学生电子设计竞赛培训系列教程 模拟电子线路设计》[M]. 北京:电子工业出版社,2007年.

[5] 高吉祥,王晓鹏,宋克慧. 《全国大学生电子设计竞赛培训系列教程 2009年全国大学生电子设计竞赛试题剖析》[M]. 北京:电子工业出版社,2011年.

Fre Av

附录1:源程序

#include "stc12.h"

#include "gui.h"

#include "delay.h"

#include "r61505v.h"

#include "def.h" //宏定义常用函数

//#include "key.h"

#include "ad.h"

//#include "string"

#include "math.h"

//此数组用于显示数字0-9 数字来着于字符 zifu8x16.h

char asca1[10][2]={"0","1","2","3","4","5","6","7","8","9"};

sbit key1 =P4^0;

sbit key2 =P4^1;

sbit key3 =P4^2;

sbit key4 =P4^3;

void displaynum(long temp,unsigned int x,unsigned int y)

{

char a1=0,a2=0,a3=0,a4=0,a5=0,a6=0;

GUI_sprintf_ZMHZs(x,y," ",White,White); //六个空格

if(temp>99999)

{

a1=1;

GUI_sprintf_ZMHZs(x+(a1-1)*16,y,asca1

[temp%1000000/100000],Red,White);

}

if(temp>9999)

{ a2=1;

GUI_sprintf_ZMHZs(x+(a1+a2-1)*16,y,asca1[temp%100000/10000],Red,White);

}

if(temp>999)

{

a3=1;

GUI_sprintf_ZMHZs(x+(a1+a2+a3-1)*16,y,asca1[temp%10000/1000],Red,White);

}

if(temp>99)

{

a4=1;

GUI_sprintf_ZMHZs(x+(a1+a2+a3+a4-1)*16,y,asca1[temp%1000/100],Red,White) ;

}

if(temp>9)

{

a5=1;

GUI_sprintf_ZMHZs(x+(a1+a2+a3+a4+a5-1)*16,y,asca1[temp%100/10],Red,White );

}

a6=1;

GUI_sprintf_ZMHZs(x+(a1+a2+a3+a4+a5+a6-1)*16,y,asca1[temp%10],Red,White);

}

main()

{

float A,B=0;

int i=0,j=0, b,c;

Lcd_Init(); //tft初始化

LCD_CS =0; //打开片选使能

GUI_Clear(0xffff); //清屏

displaynum(101010,0,0);

// while(1)

{

delayms(2000);

A=GetADCResult(0);

B=GetADCResult(1);

displaynum(A*100,0,0);

displaynum(B*100,100,0);

}

// GUI_sprintf_ZMHZs(0,100,"长纤度为",Black,Cyan);

// GUI_sprintf_ZMHZs(0,200,"案件显示",Black,Cyan);

while(1);

}

大功率宽带射频脉冲功率放大器设计

大功率线性射频放大器模块广泛应用于电子对抗、雷达、探测等重要的通讯系统中,其宽频带、大功率的产生技术是无线电子通讯系统中的一项非常关键的技术。随着现代无线通讯技术的发展,宽频带大功率技术、宽频带跳频、扩频技术对固态线性功率放大器设计提出了更高的要求,即射频功率放大器频率宽带化、输出功率更大化、整体设备模块化。 通常情况下,在HF~VHF频段设计的宽带射频功放,采用场效应管(FET)设计要比使用常规功率晶体管设计方便简单,正是基于场效应管输入阻抗比较高,且输入阻抗相对频率的变化不会有太大的偏差,易于阻抗匹配,另外偏置电路比较简单,设计的放大电路增益高,线性好。 本文的大功率宽频带线性射频放大器是利用(MOSFET)来设计的,采取AB类推挽式功率放大方式,其工作频段为O 6M~10MHz,输出的脉冲功率为1200W。经调试使用,放大器工作稳定,性能可靠。调试、试验和实用时使用的测试仪器有示渡器、频谱分析仪、功率汁、大功率同轴衰减器、网络分析仪和射频信号发生器。 1 脉冲功率放大器设计 1.1 电路设计 设计的宽频带大功率脉冲放大器模块要求工作频段大于4个倍频程,而且输出功率大,对谐波和杂波有较高的抑制能力;另外由于谐波是在工作频带内,因此要求放大器模块具有很高的线性度。 针对设计要求,设计中射频功率放大器放大链采用三级场效应管,全部选用MOSFET。每级放大均采用AB类功率放大模式,且均选用推挽式,以保证功率放大器模块可以宽带工作。考虑到供电电源通常使用正电压比较方便,因此选用增强型MOS场效应管。另外为了展宽频带和输出大功率,采用传输线宽带匹配技术和反馈电路,以达到设计要求。 由于本射频功率放大器输出要求为大功率脉冲式发射,因此要求第一、二级使用的MOSFET应具备快速开关切换,以保证脉冲调制信号的下降沿和上升沿完好,减少杂波和谐波的干扰。设计中第一、二级功率放大选用MOSFET为IRF510和IRF530。最后一级功放要求输出脉冲功率达到1200W,为避免使用功率合成技术,选用MOSPRT MRFl57作为最后的功率输出级。所设计的射频脉冲功率放大器电路原理图如图1所示。

射频宽带放大器的设计方案

射频宽带放大器设计报告 摘要:本系统以AD公司生产的高速可控增益运放AD8330为核心,结合固定增益放大、可变增益放大、末级差分电路等主要部分,能实现放大倍数0~50dB 增益可调。前级放大采用一片AD8330实现可变增益放大,固定增益放大采用OPA847芯片实现10倍的固定增益放大,再经末级1片电流反馈型运放THS3001扩流,构建末级差分驱动负载。 关键词:宽带放大器高速运放 OPA847 AD8330

一、方案论证与选择 1、方案选择与比较 1.1 固定增益放大器比较 方案一:采用OPA820运放芯片作为固定增益放大,该芯片是一种高速运算放大器,在6 Hz~ 20 MHz 的通频带中可实现放大增益为43 dB, 具有带内波动小, 输出噪声低的特点。但是缺点是通频带不够宽。 方案二:采用OPA695电压反馈型高速运算放大器,在1400MHz频率下能实现两倍放大,符合本题要求,但在高频下,该运放易产生自激。 方案三:采用OPA847, 电压反馈型高速运算放大器,最大频带宽度达 3.9GHz,完全满足本题频带要求,输入电压噪声低,带内波动小,自激现象 少。 综上所述,本设计采用方案三。 1.1.2 可变增益放大器比较 方案一:采用可编程程控放大器AD603。该运放增益在-11~+30dB范围内可调,通过改变管脚间的连接电阻值可调节增益范围,易于控制。但该运放增益可调带宽为90MHz,不满足题目要求。 方案二:采用高增益精度的压控VGA芯片AD8330。该芯片可控增益带宽可达150MHz,增益可调范围0~70dB,符合本题指标要求. 因此,该电路采用方案二。 1.1.3 电压增益可调方案比较 方案一:基于单片机做步进微调。由单片机MSP430G2553及12位DA转换芯片TLV5616对AD8330进行程控,实现增益在可取范围内可调。但是,此设计只能步进调节,不能连续可调,此方案不可取。 方案二:基于精密电位器做连续可调。用一个精密电位器对+5V分压后输入AD8330 5脚VDBS,从而对电压增益实现连续可调。电路简单,节省成本。 经比较,本设计选择方案二。 2、方案描述 总体框图如图1所示。

射频宽带放大器

射频宽带放大器(D题) 摘要:本系统以可控增益放大器LMH6502为核心,外加宽带放大器OPA695的配合,实现了增益可调的射频宽带放大功能。系统主要由四个模块构成:前置固定放大电路模块、可控增益电路模块、后级固定放大电路模块和单片机控制显示模块。前置放大电路和后级放大电路以OPA695为核心器件,分别可提供约25.3dB 和23.5dB的固定增益;可控增益模块主要由LMH6502构成,可实现-50dB~20dB 的动态增益变化;单片机显示模块用于控制并显示可控增益电路模块的控制电压,使整个网络能够完成0~60dB的增益可调。本系统具有增益可调,频带宽,电路形式简单且调试方便的特点。经测试,系统完成了全部基本功能和部分发挥功能。 关键词:宽带放大器;可控增益;单片机控制;

一、系统方案: 1.1方案比较与选择: 方案一采用分立三极管或双栅场效应管,将每一级构成的可控放大器级联,分别对每一级增益进行控制。该方案灵活度相对较高,但电路稳定度低,不利于调节和控制。 图一方案一总体框图 方案二:用模拟开关构成电阻网络,由单片机控制以改变信号增益。这种方案存在的不足是模拟开关会导致导通电阻较大,信号会互相干扰,容易影响系统性能。而且电阻网络级数多,造成硬件电路复杂,且电阻网络的电阻选择也较为困难,很难做到高精度控制。 方案三:用多级固定增益的运算放大电路和电压增益控制运算放大器构成。集成可控增益放大器的增益与控制电压成严格线性关系,控制电压由单片机控制DAC 产生,精度高,可以满足题目指标要求,而且外围电路简单,便于调试,故采用此方案。 图二电路总体框图 1.2方案描述: 1.2.1总体框图:

一种增益可控的射频宽带放大器设计

一种增益可控的射频宽带放大器设计 射频宽带放大器是各类电子仪器与仪表里很常用、很重要的一个單元电路。为此,论述了一款增益可控的射频宽带放大器的设计选型的过程,给出了参数的计算过程和选型是要考虑的技术指标和功能。因此结论对模拟放大电路的设计具有一定的参考价值。 标签:射频;宽带放大器;参数计算;选型要求 doi:10.19311/https://www.doczj.com/doc/c45037016.html,ki.16723198.2017.09.088 1理论计算 1.1设计要求 根据用户对高频、大信号的放大要求,课题研究小组进过分析和研究,得出下列的具体设计参数: (1)被设计的放大器的电压增益A V≥52dB,增益可控52dB,输入信号电压的有效值Vi≤5mV,其输入阻抗、输出阻抗均为50欧姆,负载电阻50欧姆,且输出电压有效值V o≥2V,波形无明显失真; (2)在50MHz~160MHz频率范围内增益波动不大于2dB; (3)-3dB的通频带不窄于40MHz~200MHz,即fL≤40MHz和fH≥200MHz; (4)电压增益A V≥52dB,当输入信号频率f≤20MHz或输入信号频率f≥270MHz时,实测电压增益A V均不大于20dB; (5)放大器采用+12V单电源供电,所需其它电源电压自行转换。 通过对上述设计要求的分析可知,此课题对宽带放大器的参数选型提出了很高的要求,诸如:压摆率、增益带宽积、最大输出功率、高频高输出摆幅等都要进行严格的计算。只有做到科学计算,才能为正确的集成放大器选型打下坚实的基础,为后续设计提供科学保障。 1.2放大器的参数计算 (1)最小增益需要达到52dB(400倍),带宽200MHz,系统增益带宽积高达8*109MHz(*此处应注意多级放大和增益分配*); (2)输入电压有效值最大5mv,需要做小信号低噪声放大;

射频宽带放大器

电子系统设计 方案设计:增益可调的宽带放大器 团队成员: 指导教师: 提交时间:2015年12月11日

增益可调的宽带放大器 摘要:本设计以增益调整、带宽预置、单片机反馈调节为核心,制作一个射频宽带放大 器,要求具有0.3~100MHz 通频带,增益0~60dB 范围内可调,并且实现输入输出阻抗、最大输出正弦波有效值、指定频带内平坦度等功能指标要求。由于系统输入信号小,频率高,带宽要求大,可控增益范围宽,并且需要满足平坦度、输出噪声电压等指标。为此,采用高增益带宽运放组成频带预置、AD8367的压控增益放大系统完成增益调整、单片机实现反馈调节。除此之外,通过增加缓冲级、外加硬件保护措施有效地抑制了高频信号的噪声和自激振荡。经测试,系统对mV 1≤的输入信号实现了增益0~60dB 范围内可调,带宽0.3~100MHz ,并在1~80MHz 频带内增益起伏dB 1≤,且全程波形无明显失真。完成了题目所要求的所有基本要求以及绝大部分发挥部分的性能指标。

1.系统方案设计与论证 1.1总体方案设计与论证 分析该射频宽带放大器设计的指标,为达到题目所设定带宽与增益可调,并且能够满足在输入和输出阻抗=50Ω的情况下,最大输出正弦波电压有效值达到要求的目的,我们将整个系统分为前置缓冲级、带宽预置、增益调整、输出缓冲级、峰值检波等部分组成,主控器采用STC12系列单片机。系统整体框图如图1所示: 图1 系统框图 1.2前置缓冲级的方案论证与选择 前置缓冲电路使用电压跟随器实现,如图2所示。考虑到本系统的通频带为0.3~100MHz,且输入阻抗限定为50Ω,由正相输入电压跟随器的输入阻抗为Rj趋于无穷大,所以图2电 路的输入阻抗为 k k k k R R R R R R R R≈ + * = = j j j n i // 。则可令实际电路取Rk=50Ω以达到输入阻抗要求。 除此之外,此前置放大电路还具有缓冲、避免引入噪声等作用,起到了良好的隔离功能。其电压增益接近于1,运算放大器选用AD8005,此放大器的增益带宽积达到270MHz。 图2 前置缓冲级

宽带射频功率放大器设计

?阻抗变换器和阻抗匹配网络已经成为射频电路以及最大功率传输系统中的基本部件。为了使宽带射频功率放大器的输入、输出达到最佳的功率匹配,匹配电路的设计成为射频功率放大器的重要任务。要实现宽带内的最大功率传输,匹配电路设计非常困难。本文设计的同轴变换器电路就能实现高效率的电路匹配。同轴变换器具有功率容量大、频带宽和屏蔽好的特性,广泛应用于VHF/UHF波段。常见的同轴变换器有1:4和1:9阻抗变换,如图1所示。但是实际应用中,线阻抗与负载不匹配时,它们的阻抗变换不再简单看作1:4或1:9.本文通过建立模型,提出一种简化分析方法。 1 同轴变换器模型 同轴变换器有三个重要参数:阻抗变换比、特征阻抗和电长度。这里用电长度是为了分析方便。当同轴线的介质和长度一定时,电长度就是频率的函数,可以不必考虑频率。 1.1理想模型 理想的1:4变换器的输入、输出阻抗都匹配,每根同轴线的输入、输出阻抗等于其特征阻抗Z0,其等效模型如图2所示。

其源阻抗Zg与ZL负载阻抗变换比为: 图2和公式(1)表明:变换器的阻抗变换比等于输入阻抗与输出阻抗之比。 同轴变换器的输入阻抗等于同轴线的输入阻抗并联,输出阻抗等于同轴线的输出阻抗串联。 1.2通用模型 由于特征阻抗是实数,而源阻抗与负载阻抗一般都是复数,所以,就不能简单的用变换比来计算。阻抗匹配就是输入阻抗等于源阻抗的共轭,实现功率的最大传输。特征阻抗为Z0,电长度为E的无耗同轴线接复阻抗的电路如图3所示。 由于源阻抗与同轴线特征不匹配,电路的反射系数就不是负载反射系数。 由于同轴线是无耗的,进入同轴线的功率就等于负载消耗的功率。那就可以把电路简化只有一个负载Zin,又因为Zg与Zin都是复数且串联,就可以把Zg中的虚部等效到Zin中,最后得到反射系数为: 其中:

射频功率放大器宽带匹配如何解决

射频功率放大器宽带匹配如何解决 在很多远程通信、雷达或测试系统中,要求发射机功放工作在非常宽的频率范围。例如,工作于多个倍频程甚至于几十个倍频程。这就需要对射频功放进行宽带匹配设计,宽带功放具有一些显著的优点,它不需要调谐谐振电路,可实现快速频率捷变或发射宽的多模信号频谱。宽带匹配是宽带阻抗匹配的简称,是宽带射频功放以及最大功率传输系统的主要电路,宽带匹配的作用是,使射频功率放大管的输入、输出达到最佳的阻抗匹配,实现宽带内的最大功率放大传输。因此,宽带阻抗匹配网络的设计是宽带射频功放设计的主要任务。同轴电缆阻抗变换器简称同轴变换器,能实现有效的宽带匹配,可以为射频功率放大管提供宽频带工作的条件。同轴变换器具有功率容量大、频带宽和屏蔽性能好的特性,可广泛应用于HF/VHF/UHF波段。 1方案设计 同轴变换器及其组合是一种具有高阻抗变换比的宽带阻抗匹配网络,它能将射频功率放大管的较低的输入阻抗或输出阻抗有效匹配到系统的标准阻抗50 Ω。同轴变换器设计方案多选用1:1变比形式、1:4变比形式及其组合形式。 1.1 同轴变换器原理 同轴变换器是由套上铁氧体磁芯的一段同轴电缆或同轴电缆绕在铁氧体磁芯上构成,一般称为“巴伦”。“巴伦”的结构如图1(a)所示,其等效电路如图1(b)所示。

同轴变换器处于集中参数与分布参数之问。因此,在低频端,它的等效电路可用传统的低频变压器特性描述,而在较高频率时,它是特性阻抗为Zo的传输线。同轴变换器的优点在于寄生的匝间电容决定了它的特性阻抗,而在传统的离散的绕匝变压器中,寄生电容对频率性能的贡献是负面作用。 当Rs=RL= Zo时,“巴伦”可以认为是1:1的阻抗变换器。同轴变换器在设计使用上有两点必须注意:源阻抗、负载阻抗和传输线阻抗的匹配关系;输入端和输出端应在规定的连接及接地方式下应用。在大多数情况下,电缆长度不能超过最小波长的八分之一。为了保证低频响应良好,还必须有一定绕组长度,可以依据下列经验公式来估算在频率高端和频率低端时所需绕组的长度。 在高频端: lmax≤ 18 O00n/fh(cm) (1) (1)式中,fh为最高工作频率(MHz);n为常数,一般取为0.08左右。 在低频端: lmin≥ 50Rl / [ (1 u/uo ) × fl ] (2) (2)式中,fl为最低工作频率(MHz);u/uo为磁芯在时的相对磁导率。 磁芯的影响可以用等效电感来反应,等效电感决定了频段低段反射量的大小,计算为: L=uo ur n2 (S/J) (3)

2015年国赛D题-增益可控射频放大器

D 题增益可控射频放大器 电子科技大学 作者:谭文张育铭易嗣为

摘要 本系统由电流反馈型运算放大器AD8009,程控衰减器HMC307构建而成。系统前级通过级联四片AD8009实现46dB固定增益放大,由前级衰减器和中间级衰减器实现4dB~66dB总动态增益范围,后级由RF3827做功率级保证输出有效值2V 以上且波形不失真。系统各部分采用屏蔽盒进行电磁屏蔽,各个模块独立线性稳压电源供电,提高稳定性和抗干扰能力。经测试,本系统达到了题目的所有要求。 关键词:射频宽带放大器、HMC307、AD8009 Abstract This system consists of current feedback amplifier AD8009 and digital attenuator HMC307.The primary System achieve 46dB fixed gain by cascading 4 AD8009 and achieve 4dB~66dB gain dynamic rang with two digital attenuatores. To reach 2Vrms output without distortion,we use RF3827 as final amplifier . All parts of system are warped up by shielding box protected from EMI.Every module are supplyed by separate LDO to enhance system’s stability and anti-jamming capability.This system pass text andmeet all request of subject

2013射频宽带放大器设计报告材料

射频宽带放大器 摘要:本系统采用宽带电压反馈运放OPA690、压控增益放大器VCA810以及宽带电流反馈放大器THS3001结合的方式,实现了增益可调的射频宽带放大器。系统主要由四个模块构成:前置放大电路、压控增益放大电路、后级放大电路、单片机显示控制模块。压控增益放大电路以VCA810为核心,实现60dB的可调节围;使用THS3001等运放进行电压放大使最大有效值达到1V;整个电路波形稳定、无明显失真,噪声电压小,通频带增益平坦,较好得完成了基本部分和发挥部分的要求。 关键词:射频放大、宽带放大、压控增益、单片机控制

Abstract Adopting a combination of wideband voltage-feedback amplifier OPA690, voltage-controlled gain amplifier-VCA810, wideband current-feedback amplifier THS3001, the system can achieve a RF(RF-Radio frequency)broadband amplifier with adjustable gain. The system is consisted of four blocks: pre-amplifier circuit, voltage-controlled gain amplifier circuit, the latter amplifier circuit, MCU display control module. With a

射频宽带放大器(D题)..

2013年全国大学生电子设计竞赛 射频宽带放大器(D题) 【本科组】 2013年9月7日

摘要 本系统以程控增益调整放大器AD603为核心,外加宽带放大器OPA690的配合,实现了高增益可调的射频宽带放大器。系统主要由六个模块构成:前置放大电路、一阶RC 高通滤波电路、可控增益放大电路、输出缓冲电路、直流稳压电源以及单片机显示控制模块。系统通过第一级OPA690两级级联电路放大20dB,再通过单片机程控两级级联的AD603实现-20~60dB的动态增益变化,从而满足电压增益Av在0~60dB范围内可调的要求。整个系统放大器可放大1mV有效值信号,增益可达80dB,通频带内增益起伏1dB,放大器在Av=60dB的时候,输出噪声电压峰-峰值为80mV,通过单片机控制可实现电压增益Av可预置并显示的功能。整个系统工作可靠、稳定,且成本低。 关键词:射频宽带放大;可控增益;AD603

目录 1系统方案论证 (1) 1.1方案比较与选择 (1) 1.1.1前置放大电路 (1) 1.1.2可控增益放大电路 (1) 1.1.3直流稳压电源 (2) 1.2方案描述 (2) 2理论分析与计算 (3) 2.1宽带放大器设计 (3) 2.2频带内增益起伏控制 (3) 2.3射频放大器稳定性 (3) 2.4增益调整 (3) 3电路与程序设计 (4) 3.1电路的设计 (4) 3.1.1前置放大电路 (4) 3.1.2可控增益放大电路 (4) 3.1.3输出缓冲电路 (5) 3.1.4自制直流稳压电源模块 (5) 3.2程序的设计 (5) 3.2.1程序功能描述与设计思路 (5) 3.2.2程序流程图 (6) 4测试方案与测试结果 (7) 4.1测试仪器 (7) 4.2放大器增益测试 (7) 4.3最大输出有效值测试 (8) 4.4通频带内增益起伏测试 (8) 4.5放大器噪声电压测试 (8) 4.6输入电阻与负载电阻阻值测试 (8) 附录1:源程序 (9)

2013年电子设计竞赛D题射频宽带放大器(国家二等奖)

瑞萨杯2013全国大学生电子 设计竞赛 射 频 宽 带 放 大 器

摘要 本设计以低噪声、低功耗、的THS3001和增益可变放大器AD8330运算放大器为主控器件,放大器分别由前级放大、二级增益控制和稳压直流电源等模块。论文根据放大器系统的特点,结合相关的电路设计理论,设计出了几本符合要求的放大器,系统整体提高电压增益,使电压增益大于dB A V 20≥,放大器dB 3-BW 的下限截止频率≤L f 0.3Z MH ,上限截至频率≥H f 20Z MH ,并要求在1Z MH ~15Z MH 频带内增益起伏dB 1≤。 关键字:THS3001 AD8330 电压增益 截止频率 增益起伏

设计报告 一、总体方案的选取及确定 1.1 系统方案的确定 题目中要求电压增益大于dB A V 20≥,放大器dB 3-BW 的下限截止频率 ≤L f 0.3Z MH ,上限截至频率≥H f 20Z MH ,并要求在1Z MH ~15Z MH 频带内增益 起伏dB 1≤。我们从网上查到THS3001的单位增益宽带为420Z MH ,而且它的0.1dB 的平坦宽带为115Z MH ,因此我们首先采用THS3001来作为首级的电压增益,但是发挥部分要求dB A V 60≥,因此电压增益还需扩大,从手册中查到AD8330是一款DC 至150Z MH 的宽带可变增益放大器,适合要求完全低噪声、精确定义增益和适度低失真的应用,因此我们在第二级增益可控部分采用AD8330作为主控元件来控制电压放大的倍数,最后可直接驱动50欧姆的负载。系统方案框图见图1.1。 输入 输出 图 1.1 系统方案框图 1.2 各级电路方案的确定 1. 2.1 前置放大电路部分 方案一:采用场效应管或三极管设计增益放大电路,主要利用场效应管的可变电阻区或三极管的放大区可实现电压增益放大,但是本方案采用了大量的分立元件,电路复杂,在设计本放大器的高频功率条件下,可能会造成电路的稳定性很差,而且很容易受外界噪声等的因素影响,因此未选此方案。 方案二:根据题目要求,电压增益大于dB A V 20≥,放大器dB 3-BW 的下限截止频率≤L f 0.3Z MH ,上限截至频率≥H f 20Z MH ,我们查到THS3001的单位增益宽带为420Z MH ,而且它的0.1dB 的平坦宽带为115Z MH ,非常符合我们题中的要求,因此我们采用此方案来实现第一级放大电路的增益控制。 1.2.2 电压增益控制设计方案 经过前一级的放大,电压增益达不到题目的要求。只要信号和干扰比在设定的范围内,则可以实现在电压增益控制的同时保证输出信号的信噪比满足题目要求,我们查到AD8330具有特性完全差分信号通路,也可使用单端信号,线性dB 和线性幅度增益模式、低噪声、低失真等特点,可以作为该部分的主控元件。因此我们采用次方案来实现电压的增益控制。 前置增益放大电路 (THS3001) 二级增益可控 电路 (AD8330)

射频功率放大器RFPA概述

基本概念 射频功率放大器(RF PA)是发射系统中的主要部分,其重要性不言而喻。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大(缓冲级、中间放大级、末级功率放大级)获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。在调制器产生射频信号后,射频已调信号就由RF PA将它放大到足够功率,经匹配网络,再由天线发射出去。 放大器的功能,即将输入的内容加以放大并输出。输入和输出的内容,我们称之为“信号”,往往表示为电压或功率。对于放大器这样一个“系统”来说,它的“贡献”就是将其所“吸收”的东西提升一定的水平,并向外界“输出”。如果放大器能够有好的性能,那么它就可以贡献更多,这才体现出它自身的“价值”。如果放大器存在着一定的问题,那么在开始工作或者工作了一段时间之后,不但不能再提供任何“贡献”,反而有可能出现一些不期然的“震荡”,这种“震荡”对于外界还是放大器自身,都是灾难性的。 射频功率放大器的主要技术指标是输出功率与效率,如何提高输出功率和效率,是射频功率放大器设计目标的核心。通常在射频功率放大器中,可以用LC谐振回路选出基频或某次谐波,实现不失真放大。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 分类 根据工作状态的不同,功率放大器分类如下: 传统线性功率放大器的工作频率很高,但相对频带较窄,射频功率放大器一般都采用选频网络作为负载回路。射频功率放大器可以按照电流导通角的不同,分为甲(A)、乙(B)、丙(C)三类工作状态。甲类放大器电流的导通角为360°,适用于小信号低功率放大,乙类放大器电流的导通角等于180°,丙类放大器电流的导通角则小于180°。乙类和丙类都适用于大功率工作状态,丙类工作状态的输出功率和效率是三种工作状态中最高的。射频功率放大器大多工作于丙类,但丙类放大器的电流波形失真太大,只能用于采用调谐回路作为负载谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然接近于正弦波形,失真很小。 开关型功率放大器(Switching Mode PA,SMPA),使电子器件工作于开关状态,常见的有丁(D)类放大器和戊(E)类放大器,丁类放大器的效率高于丙类放大器。SMPA将有源晶体管驱动为开关模式,晶体管的工作状态要么是开,要么是关,其电压和电流的时域波形不存在交叠现象,所以是直流功耗为零,理想的效率能达到100%。 传统线性功率放大器具有较高的增益和线性度但效率低,而开关型功率放大器具有很高的效率和高输出功率,但线性度差。具体见下表: 电路组成 放大器有不同类型,简化之,放大器的电路可以由以下几个部分组成:晶体管、偏置及稳定电路、输入输出匹配电路。

全国电子设计大赛射频宽带放大器

全国电子设计大赛

射频宽带放大器(D题) 摘要 本设计以增益调整、带宽预置、单片机反馈调节为核心,制作一个射频宽带放大器,要求具有0.3~100MHz通频带,增益0~60dB范围内可调,并且实现输入输出阻抗、最大输出正弦波有效值、指定频带内平坦度等功能指标要求。由于系统输入信号小,频率高,带宽要求大,可控增益范围宽,并且需要满足平坦度、输出噪声电压等指标。为此,采用高增益带宽运放组成频带预置、AD8367的压控增益放大系统完成增益调整、单片机实现反馈调节。除此之外,通过增加缓冲级、外加硬件保护措施有效地抑制了高频信号的噪声和自激振荡。经测试,系统对mV ≤的输入信号实现了增益0~60dB范围内可调,带宽0.3~100MHz,并在1 1~80MHz频带内增益起伏dB 1 ≤,且全程波形无明显失真。完成了题目所要求的所有基本要求以及绝大部分发挥部分的性能指标。 关键字:带宽预置AD8367压控增益单片机

1. 系统方案设计与论证 1.1总体方案设计与论证 分析该射频宽带放大器设计的指标,为达到题目所设定带宽与增益可调,并且能够满足在输入和输出阻抗=50Ω的情况下,最大输出正弦波电压有效值达到要求的目的,我们将整个系统分为前置缓冲级、带宽预置、增益调整、输出缓冲级、峰值检波等部分组成,主控器采用STC12系列单片机。系统整体框图如图1所示: 图1 系统框图 1.2前置缓冲级的方案论证与选择 前置缓冲电路使用电压跟随器实现, 如图2所示。考虑到本系统的通频带为 0.3~100MHz ,且输入阻抗限定为50Ω,由 正相输入电压跟随器的输入阻抗为R j 趋 于无穷大,所以图2电路的输入阻抗为 k k k k R R R R R R R R ≈+*==j j j n i //。则可令实际 电路取R k =50Ω以达到输入阻抗要求。除 此之外,此前置放大电路还具有缓冲、避 图2 前置缓冲级 免引入噪声等作用,起到了良好的隔离功能。其电压增益接近于1,运算放大器选用AD8005,此放大器的增益带宽积达到270MHz 。 1.3带宽预置的方案论证与选择 方案一:通过对继电器L 1和L 2触点的控制实现系统通频带0.3~20MHz 和

(2013全国一等奖)射频宽带放大器..

2013年全国大学生电子设计大赛 2013年全国大学生电子设计大赛论文 【本科组】 射频宽带放大器系统设计报告 2013年9月7日

射频宽带放大器 摘要:本系统基于压控对数放大器设计,由前级放大模块,增益控制模块,(带宽预置),后级功率放大模块,键盘及显示模块组成。具有射频宽带数字程控功能。在前级放大中,用电压反馈型放大器OPA657,OPA2694和宽带压控放大器VCA820放大输入信号,输出放大一定倍数的电压,经后级OPA2694的放大电路达到大于1V的有效值输出,其中电流反馈型放大器OPA657的输入偏置电流比较小,对后级电路的调理起到简化作用,VCA820的使用方便了增益控制,可以手动和程控。经验证,本方案完成了全部基本功能和扩展功能。 关键词:压控对数放大器电压反馈放大器射频宽带放大 一、系统方案论证 1.可控增益放大器的方案论证 方案一:采用场效应管或三极管控制增益。主要利用场效应管可变电阻区(或三极管等效为压控电阻)实现增益控制,由于题目要求的频带较高。该方案采用大量分立元件,电路复杂,稳定性差。 方案二:采用多路选择器来来改变放大器跨接的电阻的值实现增益控制。该方案需求每一级放大器都要加多路选择器,不能实现连续调节,影响高频的频率特性,容易引起放大器的自激。 方案三:根据题目对放大电路增益可控的要求,考虑直接选取可调增益的运放实现(如VCA820)。其特点是以db为单位进行调节,可控增益±20dB,可以用单片机方便的预制增益。 综合比较,基于电路集成度高,条理清晰,控制方便,易于数字化单片机处理的考虑,选择方案三。 2.射频宽带放大器选择的方案论证 方案一:采用电压反馈放大器OPA846、OPA847、OPA657等电压放大器,该系列的运算放大器的增益带宽积很高,但该系列的去补偿的电压反馈放大器由于寄生电容过大会引起放大器的震荡,而手工焊接的板子不能够保证寄生电容很小,难于调试,用PCB电路板有益于电路调试。 方案二:采用电流反馈放大器OPA691,OPA2694,特别是OPA2694的电压压摆率高达4300V/us,在增益和大信号的调理中表现更好的带宽和失真度,但是输入失调电流比较高,题目要求的1db增益起伏难以实现。 综合比较,基于带宽和失真度的考虑,选择方案一中低失调电流的OPA657。 二、理论分析与计算 1.放大器带宽增益积 (1)电压反馈型(VFB)运算放大器的增益和带宽存在一定的关系:从对应的波特图上可以看出,从直流到由反馈环路的主极点决定的截止频率Fc之间,增益是恒定不变的,在该频率以上,如果频率升高一倍,增益就会减半。运算放大器的-3dB带宽就是Fc,增益越高,带宽越窄,带宽增益积BW·u A =常数,

实验九 线性宽带功率放大器实验

实验九线性宽带功率放大器 一、实验目的 了解线性宽带功率放大器工作状态的特点 二、实验内容 1.了解线性宽带功率放大器工作状态的特点 2.掌握线性功率放大器的幅频特性 三、实验原理及实验电路说明 1.传输线变压器工作原理 现代通信的发展趋势之一是在宽波段工作范围内能采用自动调谐技术,以便于迅速转换工作频率。为了满足上述要求,可以在发射机的中间各级采用宽带高频功率放大器,它不需要调谐回路,就能在很宽的波段范围内获得线性放大。但为了只输出所需的工作频率,发射机末级(有时还包括末前级)还要采用调谐放大器。当然,所付出的代价是输出功率和功率增益都降低了。因此,一般来说,宽带功率放大器适用于中、小功率级。对于大功率设备来说,可以采用宽带功放作为推动级同样也能节约调谐时间。 最常见的宽带高频功率放大 器是利用宽带变压器做耦合电路 的放大器。宽带变压器有两种形 式:一种是利用普通变压器的原 理,只是采用高频磁芯,可工作 到短波波段;另一种是利用传输 线原理和变压器原理二者结合的 所谓传输线变压器,这是最常用 的一种宽带变压器。 传输线变压器它是将传输线(双绞线、带状线或同轴电缆等)绕在高导磁芯上构成的,以传输线方式与变压器方式同时进行能量传输。图9-1为4:1传输线变压器。图9-2为传输线变压器的等效电路图。

普通变压器上、下限频率 的扩展方法是相互制约的。为 了扩展下限频率,就需要增大 初级线圈电感量,使其在低频 段也能取得较大的输入阻抗, 如采用高磁导率的高频磁芯和 增加初级线圈的匝数,但这样 做将使变压器的漏感和分布电容增大,降低了上限频率;为了扩展上限频率,就需要减小漏感和分布电容,如采用低磁导率的高频磁芯和减少线圈的匝数,但这样做又会使下限频率提高。 把传输线的原理应用于变压器,就可以提高工作频率的上限,并解决 带宽问题。传输线变压器有两种工作方式:一种是按照传输线方式来工作,即在它的两个线圈中通过大小相等、方向相反的电流,磁芯中的磁场正好相互抵消。因此,磁芯没有功率损耗,磁芯对传输线的工作没有什么影响。这种工作方式称为传输线模式。另一种是按照变压器方式工作,此时线圈中有激磁电流,并在磁芯中产生公共磁场,有铁芯功率损耗。这种方式称为变压器模式。传输线变压器通常同时存在着这两种模式,或者说,传输变压器正是利用这两种模式来适应不同的功用的。 当工作在低频段时,由于信号波长远大于传输线长度,分布参数很小, 可以忽略,故变压器方式起主要作用。由于磁芯的磁导率很高,所以虽然传输线段短也能获得足够大 的初级电感量,保证了传输 线变压器的低频特性较好。 当工作在高频段时,传 输线方式起主要作用,由于两根导线紧靠在一起,所以导线任意长度处的线间电容在整个线长上是均匀分布的,如图9-3所示。也由于两根等长的导线同时绕在一个高μ磁芯上,所以导线上每一线段△l 的电感也是均匀分布在整个线长上的,这是 一种分布参数电路,可以利用分布参数电路理论分析,这里简单说明其工 图9-3传输线变压器高频段等效电路图

04射频功率放大器

第四章射频功率放大器 本章介绍射频功率放大器RFPA 与射频匹配网络、射频功率合成技术4.1 引言 4.2 A类射频功率放大器 4.3 B类和C类射频功率放大器4.4 高效射频功率放大器 4.5 阻抗匹配网络与网络设计4.6 射频宽带功率合成 返回

4.1 引言 RFPA应用于发射机末级,将已调信号放大到所需功率值,送天线发射。 RFPA所带来的问题: ◆为输出大电流,输出级晶体管芯片面积增大,导致极间电容增加; ◆电路寄生参数影响较大; ◆晶体管等效输入输出阻抗小,且为复数;

◆指标与以前的 放大器不同: 输出功率P 0, 电源供给功率P D,管耗P T, 效率η 等。 ◆对功率管的要求: 最大击穿电压V (BR)CEO 、最大集电极电流I CM、最大管耗P CM及最高工作频率f max等 ◆多级功放的级间匹配网络设计计算; 一、RFPA的特点

二、RFPA的工作状态 为提高效率而设计成各种工作状态: 1.A类(甲类)工作状态: ◆输入正弦波的一周期内,功率管全导通。 ◆输入是正弦波,输出也是正弦波,且频率相同,因此是同频线性放大器。 2.B类(乙类)工作状态: ◆输入正弦波的一个周期内,功率管半个周期导通,半周期截止。 ◆形成半波失真输出,产生多次谐波。 ◆常用LC并联谐振回路选频:同频放大和倍频放大

3. C类(丙类)工作状态 ◆在输入正弦波的一周期内,功率管导通时间小于半个周 期。 ◆输出为小于半个周期的余弦脉冲,从而形成丰富的谐波输 出。 ◆同频放大和倍频放大 4. 高效功率放大 ◆为进一步提高效率,要求功率管处于开关状态。 ◆双管D类功放。 ◆单管E类功放。 ◆单管F类功放。

射频宽带放大器

射频宽带放大器(D题) 摘要 本设计以增益调整、带宽预置、单片机反馈调节为核心,制作一个射频宽带放大器,要求具有0.3~100MHz通频带,增益0~60dB范围内可调,并且实现输入输出阻抗、最大输出正弦波有效值、指定频带内平坦度等功能指标要求。由于系统输入信号小,频率高,带宽要求大,可控增益范围宽,并且需要满足平坦度、输出噪声电压等指标。为此,采用高增益带宽运放组成频带预置、AD8367的压控增益放大系统完成增益调整、单片机实现反馈调节。除此之外,通过增加缓冲级、外加硬件保护措施有效地抑制了高频信号的噪声和自激振荡。经测试,系统对mV ≤的输入信号实现了增益0~60dB范围内可调,带宽0.3~100MHz,并在1 1~80MHz频带内增益起伏dB 1 ≤,且全程波形无明显失真。完成了题目所要求的所有基本要求以及绝大部分发挥部分的性能指标。 关键字:带宽预置AD8367压控增益单片机

1. 系统方案设计与论证 1.1总体方案设计与论证 分析该射频宽带放大器设计的指标,为达到题目所设定带宽与增益可调,并且能够满足在输入和输出阻抗=50Ω的情况下,最大输出正弦波电压有效值达到要求的目的,我们将整个系统分为前置缓冲级、带宽预置、增益调整、输出缓冲级、峰值检波等部分组成,主控器采用STC12系列单片机。系统整体框图如图1所示: 图1 系统框图 1.2前置缓冲级的方案论证与选择 前置缓冲电路使用电压跟随器实现, 如图2所示。考虑到本系统的通频带为 0.3~100MHz ,且输入阻抗限定为50Ω,由 正相输入电压跟随器的输入阻抗为R j 趋 于无穷大,所以图2电路的输入阻抗为 k k k k R R R R R R R R ≈+*==j j j n i //。则可令实际 电路取R k =50Ω以达到输入阻抗要求。除 此之外,此前置放大电路还具有缓冲、避 图2 前置缓冲级 免引入噪声等作用,起到了良好的隔离功能。其电压增益接近于1,运算放大器选用AD8005,此放大器的增益带宽积达到270MHz 。 1.3带宽预置的方案论证与选择 方案一:通过对继电器L 1和L 2触点的控制实现系统通频带0.3~20MHz 和0.3~100MHz 两个范围的预置。可令系统默认选择0.3~20MHz 通频带,通过键盘选择通频带,使单片机对继电器进行操作,使系统实现了预置0.3~100MHz 的通

全国电子设计竞赛设计报告射频可控放大器

全国电子设计竞赛设计 报告射频可控放大器 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

2015年全国大学生电子设计大赛论文 【本科组】 增益可控射频放大器设计报告 2015年8月15日

摘要 本系统基于对压控增益放大器VCA824的控制,由前级压控模块,后级放大模块,键盘模块以及屏幕显示模块组成。此设计能实现对百兆信号的放大以及程控增益步进放大。前级由VCA824和DAC0832组成,单片机控制DAC0832输出电压变化改变VCA824的增益变化,由VCA824输出的信号经过后级放大20dB达到有效值大于2v的输出,并且后级使用增益带宽积达到的OPA657,可以实现通频带大于70M的要求。本系统还配备STC90C516单片机控制增益变化以及键盘和显示模块。经验证,本系统基本实现了题目的要求。 关键字:VCA824 DAC0832 电压反馈放大器射频宽带放大增益步进

一、系统方案论证 可控增益放大器的方案论证 方案一:采用多路开关选择器来选择所需放大倍数对应的运放的跨接电阻来实现增益控制。由于题目要求增益以4dB 变化,需要十几个个电阻才能达到要求,而多路选择器使电路复杂,影响高频的频率特性,容易引起放大器的自激。 方案二:采用场效应管或三极管控制增益。主要利用场效应管可变电阻区(或三极管等效为压控电阻)实现增益控制,但由于题目要求的频带较高较难实现,该方案又需要采用大量分立元件,电路复杂,稳定性差。 方案三:采用VCA824压控增益放大器,其特点是dB 为单位变化,可以通过单片机控制DAC0832,进而控制VCA824的增益变化。该方案连线简单,并且直观,智能并高效。 综上比较,为使电路直观,清晰,稳定,减少自激发生的可能性,采用数字化控制的VCA824. 射频放大器选择的方案论证 方案一:采用电压反馈放大器OPA698。由于该放大器的增益带宽积为 450MHz ,基本能满足要求,成本低。但由于本系统设计仅两级,固定放大器放大20dB ,因此不能满足通频带要求。 方案二:采用电流反馈放大器OPA691,OPA2694,特别是OPA2694的电压压摆率高达4300V/us ,在增益和大信号的调理中表现更好的带宽和失真度,但是输入失调电流比较高,题目要求的2dB 增益起伏难以实现。 方案三:采用电压反馈放大器OPA657,该放大器的增益带宽积高达,在20dB 的放大倍数下,依然能满足通频带的要求。但该放大器的去补偿的电压反馈放大器由于寄生电容过大会引起放大器的震荡,而手工焊接的板子不能够保证寄生电容很小,难于调试,用PCB 电路板有益于电路调试。 综上比较,为了满足通频带要求和尽量减少失真,选择方案三。 系统理论分析与计算 增益调整 系统的增益调整由VCA824实现,通过单片机控制DAC0832的输出电压变化控制VCA824的增益变化。DAC0832的参考电压REF V f 选用5v 直流源,则 DAC0832的输出电压: 输入的数字量)(256?=REF OUT V V VCA824的输出电压 : IN F G F IN G G F OUT V R R R R V V R R V ?+??=-)(1 式子中的F R 、G R 和1R 均为VCA824外接电阻,其中IN V 为输入信号,G V 为控制该芯片增益变化的电压。 经过理论计算,基本能实现本系统所需的-8dB 到20dB 的变化要求。 放大器增益带宽积

射频功率放大器(RF PA)概述复习课程

射频功率放大器(R F P A)概述

基本概念 射频功率放大器(RF PA)是发射系统中的主要部分,其重要性不言而喻。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大(缓冲级、中间放大级、末级功率放大级)获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。在调制器产生射频信号后,射频已调信号就由RF PA将它放大到足够功率,经匹配网络,再由天线发射出去。 放大器的功能,即将输入的内容加以放大并输出。输入和输出的内容,我们称之为“信号”,往往表示为电压或功率。对于放大器这样一个“系统”来说,它的“贡献”就是将其所“吸收”的东西提升一定的水平,并向外界“输出”。如果放大器能够有好的性能,那么它就可以贡献更多,这才体现出它自身的“价值”。如果放大器存在着一定的问题,那么在开始工作或者工作了一段时间之后,不但不能再提供任何“贡献”,反而有可能出现一些不期然的“震荡”,这种“震荡”对于外界还是放大器自身,都是灾难性的。 射频功率放大器的主要技术指标是输出功率与效率,如何提高输出功率和效率,是射频功率放大器设计目标的核心。通常在射频功率放大器中,可以用LC谐振回路选出基频或某次谐波,实现不失真放大。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 分类

根据工作状态的不同,功率放大器分类如下: 传统线性功率放大器的工作频率很高,但相对频带较窄,射频功率放大器一般都采用选频网络作为负载回路。射频功率放大器可以按照电流导通角的不同,分为甲(A)、乙(B)、丙(C)三类工作状态。甲类放大器电流的导通角为360°,适用于小信号低功率放大,乙类放大器电流的导通角等于180°,丙类放大器电流的导通角则小于180°。乙类和丙类都适用于大功率工作状态,丙类工作状态的输出功率和效率是三种工作状态中最高的。射频功率放大器大多工作于丙类,但丙类放大器的电流波形失真太大,只能用于采用调谐回路作为负载谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然接近于正弦波形,失真很小。 开关型功率放大器(Switching Mode PA,SMPA),使电子器件工作于开关状态,常见的有丁(D)类放大器和戊(E)类放大器,丁类放大器的效率高于丙类放大器。SMPA将有源晶体管驱动为开关模式,晶体管的工作状态要么是开,要么是关,其电压和电流的时域波形不存在交叠现象,所以是直流功耗为零,理想的效率能达到100%。 传统线性功率放大器具有较高的增益和线性度但效率低,而开关型功率放大器具有很高的效率和高输出功率,但线性度差。具体见下表: 电路组成

相关主题
文本预览
相关文档 最新文档