当前位置:文档之家› 维纳滤波器图像处理

维纳滤波器图像处理

维纳滤波器图像处理
维纳滤波器图像处理

维纳滤波器及其在图像处理中的应

摘要

图像由于受到如模糊、失真、噪声等的影响,会造成图像质量的下降,形成退化的数字图像。退化的数字图像会造成图像中的目标很难识别或者图像中的特征无法提取,必须对其进行恢复。所谓图像复原就是指从所退化图像中复原出原始清晰图像的过程。维纳波是一种常见的图像复原方法,该方法的思想是使复原的图像与原图像的均方误差最小原则恢复原图像。

本文进行了对退化图像进行图像复原的仿真实验,分别对加入了噪声的退化图像、运动模糊图像进行了维纳滤波复原,并给出了仿真实验效果以及结果分析。实验表明退化图像在有噪声时必须考虑图像的信噪比进行图像恢复,才能取得较好的复原效果。

关键词:维纳滤波;图像复原;运动模糊;退化图像

Abstract

Due to factors such as blurring distorting and noising, image quality deteriorated and led to degenerated digital images which is getting harder to discern the target image or extract the image features. Wiener Filter is often used to recover the degraded image. The principle of the method expects to minimize the mean square error between the recovered image and original image. This paper carried out a restoration simulation experiments on degraded image,restoration of motion blurredimages, and the result shows, SNR noise of the autocorrelation function for image restoration must be taken into consideration when restoring degraded images in a noise.

Key words:Wiener Filter; motion blurred;degraded image;imagerestoration

概述

图像在形成、传输和记录的过程中都会受到诸多因素的影响,所获得的图像一般会有所下降,这种现象称为图像“退化”。因此我们可以采取一些技术手段来尽量减少甚至消除图像质量的下降,还原图像的本来面目,这就是图像复原。引起图像模糊有很多种的原因,举例来说有运动引起的,高斯噪声引起的。

图像恢复过程需要根据指定的图像退化模型来完成,根据退化模型对在某种情况下退化了的图像进行恢复,以获取到原始的未经过退化的原始图像,从而复原图像的本来面目。图像恢复的处理过程实际是对退化图像品质的提升,以此来达到图像在视觉上的改善。

图像复原的算法:数字图像复原问题实际上是在一定的准则下,采用数学最优化方法从退化的图像去推测原图像的估计问题。不同的准则及不同的数学最优化方法就形成了各种各样的算法。常见的复原方法有,

逆滤波复原算法,维纳滤波复原算法,盲卷积滤波复原算法,约束最小二乘滤波复原算法等等。图像复原是图像处理中的重要技术,图像复原可以在某种意义上对图像进行改进,即可以改善图像的视觉效果,又能够便于后续处理。

其中维纳滤波是最典型的一种,20世纪40年代,维纳奠定了最佳滤波器研究的基础。即假定输入时有用信号和噪声信号的合成,并且它们都是广义平稳过程和他们的二阶统计特性都已知。维纳根据最小均方准则(即滤波器的输出信号与需要信号的均方值最小),求得了最佳线性滤波器的参数,这种滤波器被称为维纳滤波器。由于基于维纳滤波器的图像复原效果比较好,具有一定的抑制噪声能力,近年来被广泛的应用到图象复原领域,维纳滤波算法得到不断的改进发发展,现在,许多有效的图像复原算法都在此基础形成的。

维纳滤波的原理

维纳滤波复原算法是由 C.W.Helstrom 于 1967 年提出的基于最小均方误差方法,其基本思想是使原始图像和复原图像之间的均方误差最小的复原方法。

1、图像的退化模型

要尽可能地恢复出被退化的图像的原来面目,就必须知道这种图像退化的机理和过程,然后建立相应模糊过程的退化数学模型,最终找出一种相应的反演的方法进行对退化图像的复原。所以图像复原的关键问题是在于建立退化模型,假设输入图像f(x,y)经过某个退化系统h(x,y)后产生退化图像g(x,y)。在退化过程中,引进的随机噪声为加性噪声n(x,y),则图像的退化过程如图所示:

其中,f(x,y)表示原始图像,h(x,y)表示为冲击响应函数,n(x,y)表示加性噪声,g(x,y)表示退化模糊图像(或称观测图像)。这是一种简单的通用图像退化模型,输入图像f(x,y)经过一个退化系统或退化算子H后产生的退化图像g(x,y),我们可以表示为下面的形式。

[]),(

f

H

x

x

=

g+

y

y

n

,

)

x

(

)

(y

,

式中H为退化系统。这是连续形式下的表达。

在实际应用中,处理的都是数字图像,所以对上式进行离散化如下:

),(y x g e ∑∑-=-=+--=101

0),(),(),(M m e e e N n y x n n y m x h n m f

上式两边进行傅里叶变换得

=),(v u G ),(v u H ),(v u F ),(v u N +

式中G(u,v),F(u,v),H(u,v)和N(u,v)分别是g(x,y),f(x,y) ,h(x,y)和n(x,y)的二维傅里叶变换。

2、 维纳滤波进行图像恢复的原理

维纳滤波是一种有约束的复原恢复,它综合了退化图像和噪声统计特性两个方面进行了复原处理。

维纳滤波,它是使原图像f(x,y)及其恢复图像),(^

y x f 之间的均方差最小的复原方法,即:

min ),(),(2^=????????????????-y x f y x f E (4.27)

式中,{}.E 为数学期望算子。因此,维纳滤波器通常又叫最小均方差滤波器。

很容易推到出原始图像的傅里叶变换估计为:

)

,(),(),(^v u G v u H v u F w = ),(.)

,(),(),(),(.),(122v u G v u p v u p v u H v u H v u H f u

γ+=

上式也称作约束复原恢复通用的表达式,它的传递函数为:

),(.),(),(),(),(.),(1),(22

v u G v u p v u p v u H v u H v u H V U H f u

W γ+=

仿真分析

在仿真实验中,主要利用MATLAB 实验平台,在MATLAB 中可以按照维纳滤波的原理和公式来编写语句进行滤波,但由于此种方法较为复杂,同时MA TLAB 也有自带的维纳滤波器的函数,因此本课题中使用MATLAB 自带的函数进行维纳滤波。在MATLAB 中与维纳滤波有关的函数有wiener2()和deconvwnr(),这两个函数都能够完成维纳滤波的功能, deconvwnr()强调图象复原方面,wiener2()强调图像空间域锐化的作用。其中wiener2()函数只支持二维滤波,由于此处选的是一张彩色图片,如果使用wiener2()函数,需首先将所选的图片转化为灰度图。而deconvwnr()函数既能对彩色图片进行操作,又能实现对不同噪声的干扰和污染进行滤除

1.用维纳滤波器滤除高斯噪声

选取一张图片,将其存放在桌面上,其保存路径为'C:\Users\DELL\Desktop\Lenna.jpg' 首先用imread()函数读取一张彩色的图像,然后用rgb2gray ()将其转换为灰度图,并给原图

像添加均值为0,方差为0.01的高斯噪声。

在MATLAB中由程序得到的图像如图3-1所示:

图3-1

由仿真图可明显看出,加入高斯噪声后的图像变得不清晰。

再将加噪的图像通过wiener2()进行滤波,分别取滤波器窗口大小为[5 5]和[10 10]。

得到的恢复图像如图3-2所示:

图3-2

可见不同大小的滤波器的窗口得到的恢复图像的效果也不一样,因此应该选取合适的窗口大小来进行维纳滤波。

在MATLAB中的程序代码如下:

RGB=imread('C:\Users\DELL\Desktop\Lenna.jpg'); %读取一幅彩色图片

I=rgb2gray(RGB); %转化为灰度图像

figure(1);

subplot(2,2,1);

imshow(I);

title('原始图像');

J1=imnoise(I,'gaussian',0,0.01); %给图像加均值为0,方差为0.01的高斯噪声

subplot(2,2,2);

imshow(J1);

title('引入高斯噪声的图像');

x=J1(:,:,1);

K1=wiener2(x,[10 10]);

subplot(2,2,3);

imshow(K1);

title('进过维纳滤波器后的图像(窗口大小为[5 5])');

K2=wiener2(x,[20 20]);

subplot(2,2,4);

imshow(K2);

title('经过维纳滤波器后的图像(窗口大小为[10 10]');

2.用维纳滤波器对模糊加噪图像进行恢复

造成图像退化或模糊的原因有很多种,其中因为在摄像时相机和被摄景物之间有相对运动而造成的图像模糊则称为运动模糊。所得到图像中的景物往往会模糊不清,我们称之为运动模糊图像。在前面的分析中,我们假定退化图像的PSF是已知的,但在实际情况下PSF是未知的,在本课题中,我们使用MA TLAB中的fspecial()函数来创建一个确定类型的PSF,得到一张运动模糊图像。先按照1中所述方法得到带噪图像,接着对其进行长度len=50,角度theta=45的运动模糊。

在MATLAB中得到的图像如图3-3所示:

图3-3

直接使用deconvwnr()对模糊加噪图像进行维纳滤波,在MATLAB中的得到的图像如图3-4所示:

图3-4

由上图可以看出维纳滤波并没有很好的还原图像,我们需要在恢复过程中考虑噪声的影响,即估计信噪比。引入信噪比之后得到的滤波后的图像如图3-5所示:

图3-5

由仿真结果可以看出,引入信噪比之后的恢复图像得到了很好的改善。图像退化过程的先验知识在图像恢复技术中起着重要作用,对图像进行恢复操作时,知道的关于图像的统计信息越丰富,得到的复原结果就越好,由于此处引入了图像的信噪比,所以得到的复原图像明显优于不引入信噪比时的复原图像。

在MATLAB中的程序代码如下:

I= imread('C:\Users\DELL\Desktop\Lenna.jpg');

figure(1);

subplot(221);

imshow(I);

title('原始图像');

J1=imnoise(I,'gaussian',0,0.01);

subplot(222);

imshow(J1);

title('引入高斯噪声的图像');

PSF=fspecial('motion',50,45);

J2=imfilter(I,PSF,'circular','conv');

subplot(223);

imshow(J2);

title('运动模糊后的lena.bmp(角度为45)');

J3=imnoise(J2,'gaussian',0,0.01);

subplot(224);

imshow(J3);

title('加噪并模糊的lena.bmp');

J4=deconvwnr(J3,PSF);

figure(2);

subplot(121);

imshow(J4);

title('模糊噪声图像的维纳滤波复原');

noise=imnoise(zeros(size(I)),'gaussian',0,0.01);

NSR=sum(noise(:).^2)/sum(im2double(I(:)).^2);

J5=deconvwnr(J3,PSF,NSR);

subplot(122);

imshow(J5);

title('引入SNR的维纳滤波复原');

四.结论

通过MATLAB仿真实验,使我们更加深刻地了解到维纳滤波的原理及其在图像处理方面的应用。在图像恢复处理中使用的方法还有很多,应该根据具体情况做具体分析,维纳滤波是假设图像信号可以近似看成平稳随机过程的前提下,使输入图像和恢复图像之间的均方误差达到最小的准则函数来实现图像恢复的方法。如果已知图像的统计特性,那么用维纳滤波来进行图像处理的效果还是可观的。我们在上述实验过程中假定的噪声是高斯的且是加性的,噪声和信号相互独立,然而在实际测量中很多图像的噪声往往是非加性的,因此我们需要进一步将维纳滤波器推广到更复杂的情况中,由于时间和水平有限,在此就不加叙述。

参考文献

[1]杨鉴,梁虹.随机信号原理与实践.北京,科学出版社.2010.6

[2]张德丰.MATLAB数字图像处理.北京,机械工业出版社.2003,41~46

[3]陈友凎.基于MATLAB的维纳滤波器仿真研究.中国科技论文网

数字图像处理知

数字图像处理知识点总结

数字图像处理知识点总结 第一章导论 1.图像:对客观对象的一种相似性的生动性的描述或写真。 2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段), 按空间坐标和亮度的连续性(模拟和数字)。3.图像处理:对图像进行一系列操作,以到达预期目的的技术。 4.图像处理三个层次:狭义图像处理、图像分析和图像理解。 5.图像处理五个模块:采集、显示、存储、通信、处理和分析。 第二章数字图像处理的基本概念 6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0

称为采样。采样间隔和采样孔径的大小是两个 很重要的参数。采样方式:有缝、无缝和重叠。 9.将像素灰度转换成离散的整数值的过程叫量化。 10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。 11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。 12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分 辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图 像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小。但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度。例如对细节比较丰富的图像数字化。

数字图像处理之频率滤波

实验四、频域滤波 一、实验目的 1.了解频域滤波的方法; 2.掌握频域滤波的基本步骤。 二、实验内容 1.使用二维快速傅立叶变换函数fft2( )及其反变换函数ifft2( )对图象进行变换; 2.自己编写函数生成各种频域滤波器; 3.比较各种滤波器的特点。 三、实验步骤 1.图象的傅立叶变换 a.对图象1.bmp 做傅立叶变换。 >> x=imread(‘1.bmp’); f=fft2(x); imshow(real(f)) %显示变换后的实部图像 figure f1=fftshift(f); imshow(real(f1))

变换后的实部图像 中心平移后图像 b.对图象cameraman.tif 进行傅立叶变换,分别显示变换后的实部和虚 部图象。 思考:

对图象cameraman.tif 进行傅立叶变换,并显示其幅度谱|F(U,V)|。结果类似下图。 显示结果命令imshow(uint8(y/256)) 程序如下: x=imread('cameraman.tif'); f=fft2(x); f1=fftshift(f); y0=abs(f); y1=abs(f1); subplot(1,3,1),imshow(x) title('sourceimage') subplot(1,3,2),imshow(uint8(y0/256)) title('F|(u,v)|') subplot(1,3,3),imshow(uint8(y1/256)) title('中心平移')

2.频域滤波的步骤 a.求图象的傅立叶变换得F=fft2(x) b.用函数F=fftshit(F) 进行移位 c.生成一个和F 一样大小的滤波矩阵H . d.用F和H相乘得到G , G=F.*H e.求G的反傅立叶变换得到g 就是我们经过处理的图象。 这其中的关键就是如何得到H 。 3.理想低通滤波器 a.函数dftuv( )在文件夹中,它用生成二维变量空间 如:[U V]=dftuv(11,11) b.生成理想低通滤波器 >>[U V]=dftuv(51,51); D=sqrt(U.^2+V.^2); H=double(D<=15); Mesh(U,V,H) c.应用以上方法,对图象cameraman.tif进行低通滤波;

维纳滤波(带程序)

维纳滤波器的计算机实现 专业:信息与通信工程

实验一 维纳滤波器的计算机实现 一、 实验目的 1.MATLAB 编程实现加性干扰信号的维纳滤波。 2.仿真比较实验结果与理论分析结果,分析影响维纳滤波效果的各种因素,从而加深对维纳滤波的理解。 3.利用维纳预测方法实现对AR 模型的参数估计。 二、 实验原理及方法 维纳滤波实际上就是在最小均方误差条件下探索和确定滤波器的冲激响应h(n)或 系统函数H(z),也就是求解维纳-霍夫方程。假定一个随机信号x(n)具有以下形式: x (n ) = s (n ) + v (n ) 其中,s(n)为有用信号,v(n)为噪声干扰,将其输入一个单位脉冲响应为h(n)的线性系统, 则其输出为: ()()()()m y n s n h m x n m ∞ Λ =-∞ == -∑ 我们希望x (n )在经过系统h(n)后得到y (n ),即s (n )的估计值能尽可能接 近s (n ),按照最小均方误差准则,h(n)应满足下面的正则方程: ()()()xs xx m k h m k m φφ ∞ =-∞ = -∑ 其中,()xs k φ是x(n)与s(n)的互相关函数,()xx m φ是x(n)的自相关函数。 在h(n)满足因果性的条件下,,求解维纳-霍夫方程是一个典型的难题。虽然目前有几种求解h(n)的解析方法,但它们在计算机上实现起来非常困难。因此,本实验中,利用近似方法,即最佳FIR 维纳滤波方法,在计算机上实现随机信号的维纳滤波。 设h(n)为一因果序列,其长度为N ,则 1 ()()()N m y n h m x n m -==-∑ 同样利用最小均方误差准则,h(n)满足下面正则方程: xx xs R h r = xx R 为信号x(n)的N 阶自相关矩阵,xs r 为x(n)与s(n)的互相关函数向量。当xx R 为满秩矩阵 时,可得 1 xx xs h R r -=

维纳滤波器的设计及Matlab仿真实现

Wiener 滤波器的设计及Matlab 仿真实现 1.实验原理 在许多实际应用中,人们往往无法直接获得所需的有用信号,能够得到的是退化了或失真了的有用信号。例如,在传输或测量信号s(n)时,由于存在信道噪声或测量噪声v(n),接受或测量到的数据x(n)将与s(n)不同。为了从x(n)中提取或恢复原始信号s(n),需要设计一种滤波器,对x(n)进行滤波,使它的输出y(n)尽可能逼近s(n),成为s(n)的最佳 估计,即y(n) = )(?n s 。这种滤波器成为最优滤波器。 Wiener 滤波器是“理想”意义上的最优滤波器,有一个期望响应d(n),滤波器系数的 设计准则是使滤波器的输出y(n)(也常用)(?n d 表示)是均方意义上对期望响应的最优线性估计。Wiener 滤波器的目的是求最优滤波系数],,,,,,[,1,0,1, k o o o o w w w w w -=,从而 使])(?)([])([)(2 2 n d n d E n e E n J -==最小。 通过正交性原理,导出 )()(k r k i r w xd x i oi -=-∑∞ -∞ =, 2,1,0,1,-=k 该式称为Wiener-Hopf 方程,解此方程,可得最优权系数},2,1,0,1,,{ -=i w oi 。 Wiener-Hopf 方程的矩阵形式为xd o x r w R =,解方程求得xd x o r R w 1 -= 2.设计思路 下面我们通过具体的例子来说明Wiener 滤波器的设计方法: 考虑如下图所示的简单通信系统。其中,产生信号S(n)所用的模型为 )95.01/(1)(11-+=z z H ,激励信号为)3.0,0(~)(WGN n w 。信号s(n)通过系统函数为)85.01/(1)(12--=z z H 的信道,并被加性噪声)1.0,0(~)(WGN n v 干扰,v(n)与w(n)不相 关。确定阶数M=2的最优FIR 滤波器,以从接收到的信号x(n) = z(n) + v(n)中尽可能恢复发送信号s(n),并用MATLAB 进行仿真。

FIR维纳滤波的设计

FIR维纳滤波器的设计 在信号处理的许多实际应用中,人们往往不能直接获得所需要的有用信号,需要从噪声中提取信号。比如,在信号传输过程中,由于存在信道噪声等干扰,在接收端观测到的信号必然与原始信号不同。为了从观测数据中尽可能精确地重现原始信号,而最大成都地抑制噪声,需要设计一种滤波器,其输出尽可能逼近原始信号,成为原始信号的最佳估计。这种滤波器成为最佳滤波器。维纳(Wiener)滤波器就是用来解决这样一类问题的一种滤波器。本文将应用MATLAB并结合实例介绍FIR维纳滤波器的设计方法。 一、维纳滤波的原理 维纳滤波的本质是一种最佳估计问题,采用的是最小均方误差准则。一个线性系统,其单位样本响应为h(n),当输入一个随机信号) ( ) ( ) (n n s n xυ + =其中s(n)表示信号,) (n υ表示噪声,则输出y(n)为 ∑-= m m n x m h n y) ( ) ( ) ( (1) 系统是通过y(n)来估计s(n),因此将其称为s(n)的估计值,用) (?n s表示,即 ) (? ) (n s n y=(2) h(n) ) (? ) (n s n y= ) ( ) ( ) (n n s n xυ + = 图1 维纳滤波器基本框图 图1所示为维纳滤波器的基本框图。 式(1)为一卷积,可以理解为从当前和过去的观察值x(n),x(n-1),x(n-2)…x(n-m),…来估计信号的当前值) (?n s。维纳滤波器一般有三种用途。用当前的和过去的观察值x(n),x(n-1),x(n-2),…来估计当前的信号值) (? ) (n s n y=称为滤波;用过去的观察值来估计当前的或将来的信号值)0 )( (? ) (≥ + =N N n s n y称为预测;

数字图像处理高通滤波器精编版

数字图像处理高通滤波器 姓名:*** 学号:********** 高通滤波是常见的频域增强的方法之一。高通滤波与低通滤波相反,它是高频分量顺利通过,使低频分量受到削弱。这里考虑三种高通滤波器:理想高通滤波器、巴特沃斯高通滤波器和高斯高通滤波器。这三种滤波器涵盖了从非常尖锐(理想)到非常平坦(高斯)范围的滤渡器函数,其转移函数分别为: 1、理想高通滤波器(IHPF ) ),(),(10),(D v u D D v u D v u H >≤???= 2、巴特沃斯高通滤波器(BHPF ) n v u D D v u H 20),()12(11),(?? ????-+= 3、高斯高通滤波器(GHPF ) 2022/v ,u D 1),(D e v u H )(--= 一、数字图像高通滤波器的实验过程: 1、理想高通滤波器程序 clear all ;clc; image = imread('test.jpg'); gimage_15 = func_ihpf(image,15); gimage_30 = func_ihpf(image,30); gimage_80 = func_ihpf(image,80); figure subplot(221),imshow(image); title('Original'); subplot(222),imshow(gimage_15); title('d0=15'); subplot(223),imshow(gimage_30); title('d0=30'); subplot(224),imshow(gimage_80); title('d0=80'); %被调函数子函数G(u,v)=F(u,v)H(u,v) function gimage = func_ihpf(image,d0) image = double(image); f = fftshift(fft2(image)); [M,N]=size(f); a0 = fix(M/2);

维纳维纳滤波实现模糊图像恢复

维纳滤波实现模糊图像恢复 摘要 维纳滤波器是最小均方差准则下的最佳线性滤波器,它在图像处理中有着重要的应用。本文主要通过介绍维纳滤波的结构原理,以及应用此方法通过MA TLAB 函数来完成图像的复原。 关键词:维纳函数、图像复原 一、引言 在人们的日常生活中,常常会接触很多的图像画面,而在景物成像的过程中有可能出现模糊,失真,混入噪声等现象,最终导致图像的质量下降,我们现在把它还原成本来的面目,这就叫做图像还原。引起图像的模糊的原因有很多,举例来说有运动引起的,高斯噪声引起的,斑点噪声引起的,椒盐噪声引起的等等,而图像的复原也有很多,常见的例如逆滤波复原法,维纳滤波复原法,约束最小二乘滤波复原法等等。它们算法的基本原理是,在一定的准则下,采用数学最优化的方法从退化的图像去推测图像的估计问题。因此在不同的准则下及不同的数学最优方法下便形成了各种各样的算法。而我接下来要介绍的算法是一种很典型的算法,维纳滤波复原法。它假定输入信号为有用信号与噪声信号的合成,并且它们都是广义平稳过程和它们的二阶统计特性都已知。维纳根据最小均方准则,求得了最佳线性滤波器的的参数,这种滤波器被称为维纳滤波。 二、维纳滤波器的结构 维纳滤波自身为一个FIR 或IIR 滤波器,对于一个线性系统,如果其冲击响应为()n h ,则当输入某个随机信号)(n x 时, Y(n)=∑-n )()(m n x m h 式(1) 这里的输入 )()()(n v n s n x += 式(2) 式中s(n)代表信号,v(n)代表噪声。我们希望这种线性系统的输出是尽可能地逼近s(n)的某种估计,并用s^(n)表示,即 )(?)(y n s n = 式(3) 因而该系统实际上也就是s(n)的一种估计器。这种估计器的主要功能是利用当前的观测值x(n)以及一系列过去的观测值x(n-1),x(n-2),……来完成对当前信号值的某种估计。维纳滤波属于一种最佳线性滤波或线性最优估计,是一最小均方误差作为计算准则的一种滤波。设信 号的真值与其估计值分别为s(n)和)(?n s ,而它们之间的误差 )(?)()(e n s n s n -= 式(4) 则称为估计误差。估计误差e(n)为可正可负的随机变量,用它的均方值描述误差的大小显然

数字信号处理实验——维纳滤波器设计..

实验一 维纳滤波 1. 实验内容 设计一个维纳滤波器: (1) 产生三组观测数据,首先根据()(1)()s n as n w n =-+产生信号()s n ,将其加噪,(信噪比分别为20,10,6dB dB dB ),得到观测数据123(),(),()x n x n x n 。 (2) 估计()i x n ,1,2,3i =的AR 模型参数。假设信号长度为L ,AR 模型阶数为N ,分析实验结果,并讨论改变L ,N 对实验结果的影响。 2. 实验原理 滤波目的是从被噪声污染的信号中分离出有用的信号来,最大限度地抑制噪声。对信号进行滤波的实质就是对信号进行估计。滤波问题就是设计一个线性滤波器,使得滤波器的输出信号()y n 是期望响应()s n 的一个估计值。下图就是观测信号的组成和信号滤波的一般模型。 观测信号()()()x n s n v n =+ 信号滤波的一般模型 维纳滤波解决从噪声中提取信号的滤波问题,并以估计的结果与真值之间的误差均方值最小作为最佳准则。它根据()()(),1, ,x n x n x n m --估计信号的当前 值,它的解以系统的系统函数()H z 或单位脉冲()h n 形式给出,这种系统常称为最佳线性滤波器。 维纳滤波器设计的任务就是选择()h n ,使其输出信号()y n 与期望信号()d n 误差的均方值最小。

假设滤波系统()h n 是一个线性时不变系统,它的()h n 和输入信号都是复函数,设 ()()()h n a n jb n =+ 0,1, n = 考虑系统的因果性,可得到滤波器的输出 ()()()()()0 *m y n h n x n h m x n m +∞ ===-∑ 0,1, n = 设期望信号()d n ,误差信号()e n 及其均方误差()2 E e n ???? 分别为 ()()()()()e n d n y n s n y n =-=- ()()()()()()22 2 0m E e n E d n y n E d n h m x n m ∞=?? ????=-=--????? ????? ∑ 要使均方误差为最小,需满足: ()() 2 0E e n h j ?????=? 整理得()()0E x n j e n *??-=??,等价于()()0E x n j e n * ??-=?? 上式说明,均方误差达到最小值的充要条件使误差信号与任一进入估计的输入信号正交,这就是正交性原理。 将()()0E x n j e n * ??-=??展开,得 ()()()()00m E x n k d n h m x m +∞ *** =????--=?? ???? ?∑ 整理得 ()()()0 dx xx m r k h m r m k +∞ *=-=-∑ 0,1,2, k = 等价于()()()()()0 dx xx xx m r k h m r k m h k r k +∞ ==-=*∑ 0,1,2, k = 此式称为维纳-霍夫(Wiener-Holf )方程。解此方程可得到最优权系数 012,,, h h h ,此式是Wiener 滤波器的一般方程。 定义

维纳滤波原理及其matlab实现-(

维纳滤波 滤波技术是信号分析、处理技术的重要分支,无论是信号的获取、传输,还是信号的处理和交换都离不开滤波技术,它对信号安全可靠和有效灵活地传递是至关重要的。信号分析检测与处理的一个十分重要的内容就是从噪声中提取信号,实现这种功能的有效手段之一是设计一种具有最佳线性过滤特性的滤波器,当伴有噪声的信号通过这种滤波器的时候,它可以将信号尽可能精确地重现或对信号做出尽可能精确的估计,而对所伴随噪声进行最大限度地抑制。维纳滤波器就是这种滤波器的典型代表之一。 1.维纳滤波概述 维纳(Wiener )是用来解决从噪声中提取信号的一种过滤(或滤波)方法。这种线性滤波问题,可以看做是一种估计问题或一种线性估计问题。 一个线性系统,如果它的单位样本响应为)(n h ,当输入一个随机信号)(n x ,且 )()()(n v n s n x += (1) 其中)(n x 表示信号,)(n v )表示噪声,则输出)(n y 为 ∑-= m m n x m h n y )()()( (2) 我们希望)(n x 通过线性系统)(n h 后得到的)(n y 尽量接近于)(n s ,因此称)(n y 为)(n s 的估计值,用^ )(n s 表示,即 ^ )()(n s n y = (3) 则维纳滤波器的输入—输出关系可用下面图1表示。 图1 实际上,式(2)所示的卷积形式可以理解为从当前和过去的观察值)(n x ,)1(-n x ,

)2(-n x …)(m n x -,…来估计信号的当前值^ )(n s 。因此,用)(n h 进行过滤问题实际上是 一种统计估计问题。 一般地,从当前的和过去的观察值)(n x ,)1(-n x ,)2(-n x …估计当前的信号值 ^ )()(n s n y =成为过滤或滤波;从过去的观察值,估计当前的或者将来的信号值)0)(()(^ ≥+=N N n s n y 称为外推或预测;从过去的观察值,估计过去的信号值 )1)(()(^>-=N N n s n y 称为平滑或内插。 因此维纳滤波器又常常被称为最佳线性过滤与预测或线性最优估计。这里所谓的最佳与最优是以最小均方误差为准则的。 如果我们分别以)(n s 与^ )(n s 表示信号的真实值与估计值,而用)(n e 表示他们之间的误差,即 )()()(^ n s n s n e -= (4) 显然)(n e 可能是正值,也可能是负值,并且它是一个随机变量。因此,用它的均方误差来表达误差是合理的,所谓均方误差最小即它的平方的统计期望最小: min )]([)(2 ==n E n e ξ (5) 采用最小均方误差准则作为最佳过滤准则的原因还在于它的理论分析比较简单,不要求对概率的描述。 2.维纳-霍夫方程的求解 为了按(5)式所示的最小均方误差准则来确定维纳滤波器的冲激响应)(n h ,令) (n ξ对)(j h 的导数等于零,即可得 m i m R i h m R i xx xs ?-= ∑,)()()( (6) 式中,)(m R xs 是)(n s 与)(n x 的互相关函数,)(m R xx 是)(n x 的自相关函数,分别定义为 )]()([m n s n x E R xs +=

基于matlab的图像处理滤波器设计

数字信号处理课程设计任务书 2011-2012学年第一学期第 15 周- 19 周 题目基于matlab的图像处理滤波器设计 内容及要求: 1、设计一个低通FIR滤波器和一个低通IIR滤波器; 2、分析比较上述两种滤波器的优劣; 3、分析上述两个模型的幅频特性、相频特性、相延迟、群延迟。 进度安排: 1、任务分配、查阅资料 2天 2、方案论证 3天 3、分析、设计、调试程序 5天 4、书写、整理实验报告和小结 3天 成员组成:09044106苏青文 08陈舒龙(组长) 09方雪松 指导时间:指导地点: F 618 任务下达2011年12 月 16 日任务完成2012年1月 6日考核方式 1.评阅□ 2.答辩□ 3.实际操作□ 4.其它□ 指导教师汪传忠系(部)主任王长坤 注:1、此表一组一表二份,课程设计小组组长一份;任课教师 授课时自带一份备查。 2、课程设计结束后与“课程设计小结”、“学生成绩单”一 并交院教务存档。

目录 摘要 (3) 一、课程设计目的及要求 (4) 二、课程设计内容及任务安排 (4) 三、设计原理及设计方法 (5) 3.1 FIR数字滤波器 (5) 3.2 IIR数字滤波器 (7) 四、与设计相关的知识 (8) 五、设计过程 (14) 5.1图像加噪处理及功率密度谱对比 (14) 5.2 FIR滤波器的设计 (22) (1)布莱克曼窗 (22) (2)海明窗 (26) (3)汉宁窗 (28) (4)多尔夫-切比雪夫窗 (32) (5)巴特利特窗 (35) 5.3 IIR 数字滤波器设计 (38) (1)巴特沃兹 (38) (2)切比雪夫1 (41) (3)切比雪夫2……………………………………… .43 (4)椭圆滤波 (45) 六、FIR和IIR的比较 (47) 七、个人设计总结 (49) 附录 (50)

维纳滤波器

西安电子科技大学 统计与自适应信号处理仿真 学院: 班级: 学号: 姓名: 2013年12月

FIR 维纳滤波器 1维纳滤波原理概述 维纳(Wiener )是用来解决从噪声中提取信号的一种过滤(或滤波)方法。这种线性滤波问题,可以看做是一种估计问题或一种线性估计问题。一个线性系统,如果它的单位样本响应为)(n h ,当输入一个随机信号)(n x ,且 )()()(n v n s n x += (1) 其中)(n x 表示信号,)(n v )表示噪声,则输出)(n y 为 ∑-= m m n x m h n y )()()( (2) 我们希望)(n x 通过线性系统)(n h 后得到的)(n y 尽量接近于)(n s ,因此称 )(n y 为)(n s 的估计值,用^ )(n s 表示,即 ^ )()(n s n y = (3) 则维纳滤波器的输入—输出关系可用下面图1表示。 图1 维纳滤波器的输入—输出关系 实际上,式(2)所示的卷积形式可以理解为从当前和过去的观察值)(n x , )1(-n x ,)2(-n x …)(m n x -,…来估计信号的当前值^ )(n s 。因此,用)(n h 进行 过滤问题实际上是一种统计估计问题。 一般地,从当前的和过去的观察值)(n x ,)1(-n x ,)2(-n x …估计当前的信号值^ )()(n s n y =成为过滤或滤波;从过去的观察值,估计当前的或者将来的信号值)0)(()(^ ≥+=N N n s n y 称为外推或预测;从过去的观察值,估计过去的信号值 )1)(()(^ >-=N N n s n y 称为平滑或内插。因此维纳滤波器又常常被称为最佳线性 过滤与预测或线性最优估计。这里所谓的最佳与最优是以最小均方误差为准则的。 如果我们分别以)(n s 与^ )(n s 表示信号的真实值与估计值,而用)(n e 表示他们

数字图像处理基础知识总结

第一章数字图像处理概论 *图像是对客观存在对象的一种相似性的、生动性的描述或写真。 *模拟图像 空间坐标和明暗程度都是连续变化的、计算机无法直接处理的图像 *数字图像 空间坐标和灰度均不连续的、用离散的数字(一般整数)表示的图像(计算机能处理)。是图像的数字表示,像素是其最小的单位。 *数字图像处理(Digital Image Processing) 利用计算机对数字图像进行(去除噪声、增强、复原、分割、特征提取、识别等)系列操作,从而获得某种预期的结果的技术。(计算机图像处理) *数字图像处理的特点(优势) (1)处理精度高,再现性好。(2)易于控制处理效果。(3)处理的多样性。(4)图像数据量庞大。(5)图像处理技术综合性强。 *数字图像处理的目的 (1)提高图像的视感质量,以达到赏心悦目的目的 a.去除图像中的噪声; b.改变图像的亮度、颜色; c.增强图像中的某些成份、抑制某些成份; d.对图像进行几何变换等,达到艺术效果; (2)提取图像中所包含的某些特征或特殊信息。 a.模式识别、计算机视觉的预处理 (3)对图像数据进行变换、编码和压缩,以便于图像的存储和传输。 **数字图像处理的主要研究内容 (1)图像的数字化 a.如何将一幅光学图像表示成一组数字,既不失真又便于计算机分析处理 b.主要包括的是图像的采样与量化 (2*)图像的增强 a.加强图像的有用信息,消弱干扰和噪声 (3)图像的恢复 a.把退化、模糊了的图像复原。模糊的原因有许多种,最常见的有运动模糊,散焦模糊等(4*)图像的编码 a.简化图像的表示,压缩表示图像的数据,以便于存储和传输。 (5)图像的重建 a.由二维图像重建三维图像(如CT) (6)图像的分析 a.对图像中的不同对象进行分割、分类、识别和描述、解释。 (7)图像分割与特征提取 a.图像分割是指将一幅图像的区域根据分析对象进行分割。 b.图像的特征提取包括了形状特征、纹理特征、颜色特征等。 (8)图像隐藏 a.是指媒体信息的相互隐藏。 b.数字水印。 c.图像的信息伪装。 (9)图像通信

维纳滤波基本概念

Wiener滤波概述 Wiener滤波器是从统计意义上的最优滤波, 它要求输入信号是宽平稳随机序列, 本章主要集中在FIR结构的Wiener滤波器的讨论。 由信号当前值与它的各阶延迟 )} 1 ( , ),1 ( ), ( {+ - -M n x n x n xΛ ,估计一个期望信号 ) (n d,输入信号) (n x 是 宽平稳的, ) (n x 和 ) (n d是联合宽平稳的, 要求这个估计的均方误差最小。 在本章中,不特别说明, 假设信号是零均值. Wiener滤波器的几个实际应用实例如下:①通信的信道均衡器。 图1. 信道均衡器的结构示意②系统辨识: 图2. 线性系统辨识的结构 ③一般结构:

图3. Wiener 滤波器的一般结构 Wiener 滤波器的目的是求最优滤波器系数 o w ,使 ??????-==2 2 )(?)(]|)([|)(n d n d E n e E n J 最小。 §3.1 从估计理论观点导出Wiener 滤波 FIR 结构(也称为横向)的Wiener 滤波器的核心结构如图4所示. 图4. 横向Wiener 滤波器 FIR 结构的Wiener 是一个线性Beyesian 估计问题. 为了与第2讲中估计理论一致,假设信号,滤波器权值均为实数 由输入 )(n x 和它的1至(M-1)阶延迟,估计期望信号)(n d ,确定权系数}1,0,{-=M i w i Λ使估计误差均方值

最小,均方误差定义为: 这里估计)(?n d 写为: ∑-=-=10 )()(?M k k k n x w n d 除了现在是波形估计外,与线性Bayesian 估计一一对应。 xx R R (零均值假设) 这里 )])()([)((n d k n x E k r xd -=-, Wiener 滤波与线性Bayesian 估计变量之间具有一一对应关系, 设最优滤波器系数 为 0w ,由线性Bayesian 估计得到Wiener 滤波器系数对应式: 上式后一个方程称为Wiener-Hopf 方程, 或 xd x xx r R R R 1 01 --=?=w θ a

数字图像处理试题及答案

一、填空题(每题1分,共15分) 1、列举数字图像处理的三个应用领域 医学 、天文学 、 军事 2、存储一幅大小为10241024?,256个灰度级的图像,需要 8M bit 。 3、亮度鉴别实验表明,韦伯比越大,则亮度鉴别能力越 差 。 4、直方图均衡化适用于增强直方图呈 尖峰 分布的图像。 5、依据图像的保真度,图像压缩可分为 无损压缩 和 有损压缩 6、图像压缩是建立在图像存在 编码冗余 、 像素间冗余 、 心理视觉冗余 三种冗余基础上。 7、对于彩色图像,通常用以区别颜色的特性是 色调 、 饱和度 亮度 。 8、对于拉普拉斯算子运算过程中图像出现负值的情况,写出一种标定方法: m i n m a x m i ((,))*255/()g x y g g g -- 二、选择题(每题2分,共20分) 1、采用幂次变换进行灰度变换时,当幂次取大于1时,该变换是针对如下哪一类图像进行增强。 ( B ) A 图像整体偏暗 B 图像整体偏亮 C 图像细节淹没在暗背景中 D 图像同时存在过亮和过暗背景 2、图像灰度方差说明了图像哪一个属性。( B ) A 平均灰度 B 图像对比度 C 图像整体亮度 D 图像细节 3、计算机显示器主要采用哪一种彩色模型( A ) A 、RG B B 、CMY 或CMYK C 、HSI D 、HSV 4、采用模板[-1 1]T 主要检测( A )方向的边缘。 A.水平 B.45? C.垂直 D.135? 5、下列算法中属于图象锐化处理的是:( C ) A.低通滤波 B.加权平均法 C.高通滤波 D. 中值滤波 6、维纳滤波器通常用于( C ) A 、去噪 B 、减小图像动态范围 C 、复原图像 D 、平滑图像 7、彩色图像增强时, C 处理可以采用RGB 彩色模型。 A. 直方图均衡化 B. 同态滤波 C. 加权均值滤波 D. 中值滤波 8、__B__滤波器在对图像复原过程中需要计算噪声功率谱和图像功率谱。 A. 逆滤波 B. 维纳滤波 C. 约束最小二乘滤波 D. 同态滤波 9、高通滤波后的图像通常较暗,为改善这种情况,将高通滤波器的转移函数加上一常数量以便引入 一些低频分量。这样的滤波器叫 B 。 A. 巴特沃斯高通滤波器 B. 高频提升滤波器 C. 高频加强滤波器 D. 理想高通滤波器 10、图象与灰度直方图间的对应关系是 B __ A.一一对应 B.多对一 C.一对多 D.都不 三、判断题(每题1分,共10分)

基于matlab数字图像处理之高通滤波器

实践二:理想高通滤波器、Butterworth高通滤波器、高斯高通滤波器 2.1.1理想高通滤波器实践代码: I=imread(''); subplot(221),imshow(I); title('原图像'); s=fftshift(fft2(I)); subplot(223), imshow(abs(s),[]); title('图像傅里叶变换所得频谱'); subplot(224), imshow(log(abs(s)),[]); title('图像傅里叶变换取对数所得频谱'); [a,b]=size(s); a0=round(a/2); b0=round(b/2); d=10; p=;q=; fori=1:a forj=1:b distance=sqrt((i-a0)^2+(j-b0)^2); ifdistance<=dh=0; elseh=1; end; s(i,j)=(p+q*h)*s(i,j); end; end; s=uint8(real(ifft2(ifftshift(s)))); subplot(222), imshow(s);title('高通滤波所得图像'); I=imread(''); [f1,f2]=freqspace(size(I),'meshgrid'); Hd=ones(size(I)); r=sqrt(f1.^2+f2.^2); Hd(r<=0; figure surf(Hd,'Facecolor','interp','Edgecolor','none','Facelighting','phong');%画三维曲面(色)图 2.1.2理想高通滤波器实践结果截图: 2.2.1Butterworth高通滤波器实践代码: I1=imread(''); subplot(121),imshow(I1);

维纳滤波原理及其matlab实现

摘要 本文介绍了维纳滤波的原理及其matlab 实现,以案例的形式展示FIR 维纳滤波的特性。 关键字:FIR 维纳滤波 Matlab 1.引言 滤波技术是信号分析、处理技术的重要分支,无论是信号的获取、传输,还是信号的处理和交换都离不开滤波技术,它对信号安全可靠和有效灵活地传递是至关重要的。信号分析检测与处理的一个十分重要的内容就是从噪声中提取信号,实现这种功能的有效手段之一是设计一种具有最佳线性过滤特性的滤波器,当伴有噪声的信号通过这种滤波器的时候,它可以将信号尽可能精确地重现或对信号做出尽可能精确的估计,而对所伴随噪声进行最大限度地抑制。维纳滤波器就是这种滤波器的典型代表之一。 2.维纳滤波概述 维纳(Wiener )是用来解决从噪声中提取信号的一种过滤(或滤波)方法。这种线性滤波问题,可以看做是一种估计问题或一种线性估计问题。 一个线性系统,如果它的单位样本响应为)(n h ,当输入一个随机信号)(n x ,且 )()()(n v n s n x += (1) 其中)(n x 表示信号,)(n v )表示噪声,则输出)(n y 为 ∑-= m m n x m h n y )()()( (2) 我们希望)(n x 通过线性系统)(n h 后得到的)(n y 尽量接近于)(n s ,因此称)(n y 为)(n s 的估计值,用^ )(n s 表示,即 ^ )()(n s n y = (3) 则维纳滤波器的输入—输出关系可用下面图1表示。 图1 实际上,式(2)所示的卷积形式可以理解为从当前和过去的观察值)(n x ,)1(-n x , )2(-n x …)(m n x -,…来估计信号的当前值^ )(n s 。因此,用)(n h 进行过滤问题实际上是 一种统计估计问题。 一般地,从当前的和过去的观察值)(n x ,)1(-n x ,)2(-n x …估计当前的信号值

数字图像处理之彩色图像的处理

实验六彩色图像的处理 一、实验目的 1、掌握matlab中RGB图像与索引图像、灰度级图像之间转换函数。 2、了解RGB图像与不同颜色空间之间的转换。 3、掌握彩色图像的直方图处理方法。 二、实验内容及步骤 1、RGB图像与索引图像、灰度级图像的转换。 close all RGB=imread('flowers.tif'); [R_i,map]=rgb2ind(RGB,8);%RGB图像转换为8色的索引图像 figure imshow(R_i,map) [R_g]=rgb2gray(RGB);%RGB图像转换为灰度级图像 figure imshow(R_g)

思考: 将RGB 图像’flowers.tif ’分别转换为32色、256色、1024色索引图像,是否调色板所表示的颜色值越多图像越好? close all

RGB=imread('flowers.tif'); [R_i1,map]=rgb2ind(RGB,8);%RGB图像转换为8色的索引图像 [R_i2,map]=rgb2ind(RGB,32);%RGB图像转换为32色的索引图像 [R_i3,map]=rgb2ind(RGB,256);%RGB图像转换为256色的索引图像 [R_i4,map]=rgb2ind(RGB,1024);%RGB图像转换为1024色的索引图像 Subplot(221);imshow(R_i1,map);title('8色的索引图像'); Subplot(222);imshow(R_i2,map);title('32色的索引图像'); Subplot(223);imshow(R_i3,map);title('256色的索引图像'); Subplot(224);imshow(R_i4,map);title('1024色的索引图像'); 结论:随着索引值的增加图像的质量也有增加,更加清晰,色彩也更加鲜明。但不是不是颜色值越多越好。当索引值过高时,会出现无法识别而致模糊的情况出现。 2、RGB图像与不同颜色空间的转换。 (1) RGB与HSI颜色空间的转换 HSI应用于彩色图像处理。实验六文件夹中rgb2hsi( )函数将RGB颜色空间转换为HSI 空间并显示各分量,hsi2rgb( )函数是将HSI颜色空间转换为RGB颜色空间。 close all

维纳滤波器 matlab实现

实验报告册 数字图形图像处理 维纳滤波器matlab实现 学院:人民武装学院学院 专业:计算机科学与技术 班级: 11级计科班 学号: 1120070544 学生姓名:苏靖 指导教师:

维纳滤波的原理及其matlab 实现,以案例的形式展示FIR 维纳滤波的特性。 2.维纳滤波概述 维纳(Wiener )是用来解决从噪声中提取信号的一种过滤(或滤波)方法。这种线性滤波问题,可以看做是一种估计问题或一种线性估计问题。 一个线性系统,如果它的单位样本响应为)(n h ,当输入一个随机信号)(n x ,且 )()()(n v n s n x += (1) 其中)(n x 表示信号,)(n v )表示噪声,则输出)(n y 为 ∑-=m m n x m h n y )()()( (2) 我们希望)(n x 通过线性系统)(n h 后得到的)(n y 尽量接近于)(n s ,因此称)(n y 为)(n s 的估计值,用^ )(n s 表示,即 ^)()(n s n y = (3) 则维纳滤波器的输入—输出关系可用下面图1表示。 图1 实际上,式(2)所示的卷积形式可以理解为从当前和过去的观察值)(n x ,)1(-n x ,)2(-n x …)(m n x -,…来估计信号的当前值^)(n s 。因此,用)(n h 进行过滤问题实际上是一种统计估计问题。 一般地,从当前的和过去的观察值)(n x ,)1(-n x ,)2(-n x …估计当前的信号值^ )()(n s n y =成为过滤或滤波;从过去的观察值,估计当前的或者将来的信号值)0)(()(^≥+=N N n s n y 称为外推或预测;从过去的观察值,估计过去的信号值)1)(()(^>-=N N n s n y 称为平滑或内插。因此维纳滤波器又常常被称为最佳线性过滤与预测或线性最优估计。这里所谓的最佳与最优是以最小均方误差为准则的。 如果我们分别以)(n s 与^)(n s 表示信号的真实值与估计值,而用)(n e 表示他们之间的误差,即 )()()(^n s n s n e -= (4) 显然)(n e 可能是正值,也可能是负值,并且它是一个随机变量。因此,用它的均方误差来

数字图像处理知识点总结

数字图像处理知识点总结 第一章导论 1.图像:对客观对象的一种相似性的生动性的描述或写真。 2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段), 按空间坐标和亮度的连续性(模拟和数字)。 3.图像处理:对图像进行一系列操作,以到达预期目的的技术。 4.图像处理三个层次:狭义图像处理、图像分析和图像理解。 5.图像处理五个模块:采集、显示、存储、通信、处理和分析。 第二章数字图像处理的基本概念 6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0

数字图像处理高通滤波器

数字图像处理高通滤波器 姓名:*** 学号:********** 高通滤波就是常见的频域增强的方法之一。高通滤波与低通滤波相反,它就是高频分量顺利通过,使低频分量受到削弱。这里考虑三种高通滤波器:理想高通滤波器、巴特沃斯高通滤波器与高斯高通滤波器。这三种滤波器涵盖了从非常尖锐(理想)到非常平坦(高斯)范围的滤渡器函数,其转移函数分别为: 1、理想高通滤波器(IHPF) ),(),(10),(D v u D D v u D v u H >≤???= 2、巴特沃斯高通滤波器(BHPF) n v u D D v u H 20),()12(11),(?? ????-+= 3、高斯高通滤波器(GHPF) 2022/v ,u D 1),(D e v u H )(--= 一、数字图像高通滤波器的实验过程: 1、理想高通滤波器程序 clear all ;clc; image = imread('test 、jpg'); gimage_15 = func_ihpf(image,15); gimage_30 = func_ihpf(image,30); gimage_80 = func_ihpf(image,80); figure subplot(221),imshow(image); title('Original'); subplot(222),imshow(gimage_15); title('d0=15'); subplot(223),imshow(gimage_30); title('d0=30'); subplot(224),imshow(gimage_80); title('d0=80'); %被调函数子函数G(u,v)=F(u,v)H(u,v) function gimage = func_ihpf(image,d0) image = double(image); f = fftshift(fft2(image)); [M,N]=size(f); a0 = fix(M/2); b0 = fix(N/2); for i=1:M for j=1:N

相关主题
文本预览
相关文档 最新文档