当前位置:文档之家› 基于matlab的图像高斯噪声和椒盐噪声的滤除

基于matlab的图像高斯噪声和椒盐噪声的滤除

基于matlab的图像高斯噪声和椒盐噪声的滤除
基于matlab的图像高斯噪声和椒盐噪声的滤除

基于matlab的图像高斯噪声和椒盐噪声的滤除

目录

摘要

第一章高斯平滑滤波的原理

第二章试验要求及试验步骤设计

2.1试验要求

2.2试验步骤设计

2.3 结论

参考文献

摘要

图像信号在产生、传输和记录的过程中,经常会受到各种噪声的干扰,噪声可以理解为妨碍人的视觉器官或系统传感器对所接收图像源信息进行理解或分析的各种元素。噪声对图像的输入、采集、处理的各个环节以及最终输出结果都会产生一定影响。图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等。我们平常使用的滤波方法一般有均值滤波、中值滤波和维纳滤波,他们分别对某种噪声的滤除有较好的效果,但对于同时存在高斯噪声和椒盐噪声的图像处理的效果可能不会太好,在这里我们分别用多种方法对图像噪声进行处理,对比

使用效果。

关键词:图像去噪、常见噪声、多种方法、使用效果。

绪论

20世纪20年代,图像处理首次得到应用。上个世纪60年代中期,随着计算机科学的发展和计算机的普及,图像处理得到广泛的应用。60年代末期,图像处理技术不断完善,逐渐成为一个新兴的学科。图像处理中输入的是质量低的图像,输出的是改善质量后的图像。为了改善图像质量,从图像中提取有效信息,必须对图像进行去噪预处理。根据噪声频谱分布的规律和统计特征以及图像的特点,出现了多种多样的去噪方法。经典的去噪方法有:空域合成法,频域合成法和最优合成法等,与之适应的出现了许多应用方法,如均值滤波器,中值滤波器,低通滤波器,维纳滤波器,最小失真法等。这些方法的广泛应用,促进数字信号处理的极大发展,显著提高了图像质量。一幅原始图像在获取和传输过程中会受到各种噪声的干扰,使图像质量下降,对分析图像不利。反映到图像画面上,主要有两种典型的噪声。一种是幅值基本相同,但出现的位置随机的椒盐噪声,另一种则每一点都存在,但幅值随机分布的随机噪声。为了抑制噪声、改善图像质量,要对图像进行平滑处理。图像平滑处理的方法多种多样,有邻域平均、中值滤波,高斯滤波、灰度最小方差的均值滤波等。

第一章高斯平滑滤波的原理

高斯滤波是根据高斯函数的形状来选择权值的线性平滑滤波器。高斯平滑滤波器对去除服从正态分布的噪声是很有效果的。一维零均值高斯函数为。其中,高斯分布参数决定了高斯滤波器的宽度。对图像来说,常用二维零均值离散高斯函数作平滑滤波器,函数表达式如下:

式(1)

高斯函数具有5个重要性质:

(1)二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度

是相同的。一般来说一幅图像的边缘方向是不知道的。因此,在滤波之前是无法确定一个方向比另一个方向上要更多的平滑的。旋转对称性意味着高斯滤波器在后续的图像处理中不会偏向任一方向。

(2)高斯函数是单值函数。这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点的权值是随着该点与中心点距离单调递减的。这一性质是很重要的,因为边缘是一种图像局部特征。如果平滑运算对离算子中心很远的像素点仍然有很大的作用,则平滑运算会使图像失真。

(3)高斯函数的傅立叶变换频谱是单瓣的。这一性质是高斯函数傅立叶变换等于高斯函数本身这一事实的直接推论。图像常被不希望的高频信号所污染,而所希望的图像特征,既含有低频分量,又含有高频分量。高斯函数傅立叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需要的信号。

(4)高斯滤波器的宽度(决定着平滑程度)是由参数σ表证的,而且σ和平滑程度的关系是非常简单的。σ越大,高斯滤波器的频带就越宽,平滑程度就越好。通过调节平滑程度参数σ,可在图像特征分量模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望突变量(欠平滑)之间取得折衷。

(5)由于高斯函数的可分离性,大高斯滤波器可以有效实现。通过二维高斯函数的卷积可以分两步来进行,首先将图像与一维高斯函数进行卷积,然后将卷积的结果与方向垂直的相同一维高斯函数进行卷积。因此,二维高斯滤波的计算量随滤波模板宽度成线性增长而不是成平方增长。这些性质使得它在早期的图像处理中特别有用,表明高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器。

高斯函数的可分离性很容易表示:

式(2)

式(3)

式(4)

在图像滤波中,常用的方法是线性滤波技术和非线性滤波技术,线性滤波以其完美的理论基础,数学处理简单、易于采用和硬件实现等优点,一直在图像滤波领域中占有重要地位。

第二章试验要求及试验步骤设计

2.1试验要求

高斯滤波实验结果,分析与总结

以下即为本课题研究的主要内容及要求:

a.使用imread()读入原始的彩色图像。

b.用imnoise()在灰度图像中加入椒盐噪声。

c.利用高斯滤波A1=fspecial('gaussian',k,n3)%生成高斯序列Y1=filter2(A2,g)/255用生成的高斯序列进行滤波。

d.显示滤波后的图像。

在MATLAB里运行程序:

Clear

Close all

A1=imread('F:/1.bmp');

A2=imnoise(A1,'salt & pepper',0.05);

n=input('请输入高斯滤波器的均值\n');k=input('请输入高斯滤波器的方差\n');A3=fspecial('gaussian',k,n3); %生成高斯序列Y1=filter2(A3,g)/255; %用生成的高斯序列进行滤波

2.2试验步骤设计

1.均值滤波对同时含有高斯和椒盐噪声的图像的处理:

I1=imread('Miss.bmp');

subplot(2,2,1);

imshow(I1);

title('原图');

k1=imnoise(I1,'salt & pepper',0.01);

I=imnoise(k1,'gaussian',0.01);

subplot(2,2,2);

imshow(I)

title('加入高斯和椒盐噪声以后');

[a,b]=size(I);

I2=zeros(a+2,b+2);

I3=zeros(a,b);

for n=1:a

for m=1:b

I2(n+1,m+1)=I(n,m);

end;

end;

for n=2:a

for m=2:b

I3(n-1,m-1)=[I2(n-1,m-1)+I2(n-1,m)+I2(n-1,m+1)+I2(n,m-1)+I2(n,m)+I2(n,m+1)+I 2(n+1,m-1)+I2(n+1,m)+I2(n+1,m+1)]/9;

end;

end;

subplot(2,2,3);

imshow(uint8(I3));

title('3*3均值滤波以后');

[a,b]=size(I);

I4=zeros(a+4,b+4);

I5=zeros(a,b);

for n=1:a

for m=1:b

I4(n+2,m+2)=I(n,m);

end;

for n=3:a

for m=3:b

I5(n-2,m-2)=[I4(n-2,m-2)+I4(n-2,m-1)+I4(n-2,m)+I4(n-2,m+1)+I4(n-2,m+2)+I4(n-1, m-2)+I4(n-1,m-1)+I4(n-1,m)+I4(n-1,m+1)+I4(n-1,m+2)+I4(n,m-2)+I4(n,m-1)+I4(n, m)+I4(n,m+1)+I4(n,m+2)+I4(n+1,m-2)+I4(n+1,m-1)+I4(n+1,m)+I4(n+1,m+1)+I4(n+ 1,m+2)+I4(n+2,m-2)+I4(n+2,m-1)+I4(n+2,m)+I4(n+2,m+1)+I4(n+2,m+2)]/25;

end;

end;

subplot(2,2,4);

imshow(uint8(I5));

title('5*5均值滤波以后');

图一:加入椒盐噪声处理前后的图像

图二:高斯噪声处理前后的图像

在图像处理过程中,消除图像的噪声干扰是一个非常重要的问题,本文利用matlab软件,采用高斯滤波的方式,对带有椒盐噪声的图像进行处理,经过滤波后的图像既适合人眼的视觉感觉又能够消除图像中的干扰影响。通过本次试验我们可以看到高斯滤波对于滤除图像的“椒盐”噪声非常有效,它可以做到既去除噪声又能保护图像的边缘,从而获得较满意的复原效果,尤其在滤除叠加白噪声和长尾叠加噪声方面显出极好的性能。

一、对于椒盐噪声,中值滤波效果比均值滤波效果好。

原因:

1、椒盐噪声是幅值近似相等但随机分布在不同的位置上,图像中有干净点也有污染点。

2、中值滤波是选择适当的点来代替污染点的值,所以处理效果好。

3、因为噪声的均值不为零,所以均值滤波不能很好地去除噪声点。

二、对于高斯噪声,均值滤波效果比中值滤波效果好。

原因:

1、高斯噪声是幅值近似正态分布,但分布在每点像素上。

2、因为图像中的每点都是污染点,所以中值滤波选不到合适的干净点。

3、因为正态分布的均值为零,所以均值滤波可以削弱噪声。

参考文献:

[1] 张志涌精通MATLAB 6.5版教程,北京航天航空大学出版社.2003(56)

[2] 胡鹏,徐会燕.基于matlab的图像去噪算法的研究与实现《福建电脑》.2009(12)

[3] 李彦军,苏红旗等.改进的中值滤波图像去噪方法研究《计算机工程与设计》.2009(12)

[4] 孙宏琦,施维颖,巨永峰.利用中值滤波进行图像处理《长安大学学报(自然科学版)》.2003(2)

[5] 周建兴,MATLAB从入门到精通. 人民邮电出版社. 2008(60)

起初收到课题时感到很无措,通过临时抱佛脚对matlab中的运用有了一些基本的的认识。由于现在大家都已经是大四的了,都在各自的忙着找工作或者考研,所以这次课程设计的时间也比较仓促,也未能做一些深入的了解,只是在老师的指导下和同学们的相互帮助之下,借助书籍和去网络上搜索的一些相关的文章才克服了很多困难最后完成课程。与此同时我也了解到自己所学的知识只不过是一些非常基本的东西,完成的设计也不过是一些最基础的而已。明白自己以后应该更加丰富自己。开阔自己的视野。

经过本次课程设计,我不仅仅在书上学到的知识得到了巩固,而且还在设计过程中拓展了其他没有学过的知识。这次的课程设计从查找资料,到确定方案,最后再到用软件仿真,我们组都团结协作,互相帮助,并且得到老师的关怀。我们以前学习的知识都渐渐离我们远去,甚至不知道、不清楚哪些知识该用到哪些地方,什么时候用。这次课程设计,通过小组的积极交流学习终于完成任务,也感觉到只有把所学的东西运用到实际时才会发现真心很难,也只有这样才真正理解所学知识。

基于Matlab基本图像处理程序

图像读入 ●从图形文件中读入图像 imread Syntax: A = imread(filename, fmt) filename:指定的灰度或彩色图像文件的完整路径和文件名。 fmt:指定图形文件的格式所对应的标准扩展名。如果imread没有找到filename所制定的文件,会尝试查找一个名为filename.fmt的文件。 A:包含图像矩阵的矩阵。对于灰度图像,它是一个M行N列的矩阵。如果文件包含 RGB真彩图像,则是m*n*3的矩阵。 ●对于索引图像,格式[X, map] = imread(filename, fmt) X:图像数据矩阵。 MAP:颜色索引表 图像的显示 ●imshow函数:显示工作区或图像文件中的图像 ●Syntax: imshow(I) %I是要现实的灰度图像矩阵 imshow(I,[low high],param1, val1, param2, val2,...) %I是要现实的灰度图像矩阵,指定要显示的灰度范围,后面的参数指定显示图像的特定参数 imshow(RGB) imshow(BW) imshow(X,map) %map颜色索引表 imshow(filename) himage = imshow(...) ●操作:读取并显示图像 I=imread('C:\Users\fanjinfei\Desktop\baby.bmp');%读取图像数据 imshow(I);%显示原图像 图像增强 一.图像的全局描述 直方图(Histogram):是一种对数据分布情况的图形表示,是一种二维统计图表,它的两个坐标分别是统计样本和该样本对应的某个属性的度量。 图像直方图(Image Histogram):是表示数字图像中亮度分布的直方图,用来描述图象灰度值,标绘了图像中每个亮度值的像素数。 灰度直方图:是灰度级的函数,它表示图像中具有某种灰度级的像素的个数,反映了图 像中某种灰度出现的频率。描述了一幅图像的灰度级统计信息。是一个二维图,横坐标为图像中各个像素点的灰度级别,纵坐标表示具有各个灰度级别的像素在图像中出现的次数或概率。 归一化直方图:直接反应不同灰度级出现的比率。纵坐标表示具有各个灰度级别的像

MATLAB实现频域平滑滤波以及图像去噪代码

用MATLAB实现频域平滑滤波以及图像去噪代码 悬赏分:50 - 解决时间:2008-11-8 14:21 是数字图象处理的实验,麻烦高人给个写好的代码,希望能在重要语句后面附上一定的说明,只要能在MATLAB上运行成功,必然给分。具体的实验指导书上的要求如下: 频域平滑滤波实验步骤 1. 打开Matlab 编程环境;

2. 利用’imread’函数读入图像数据; 3. 利用’imshow’显示所读入的图像数据; 4. 将图像数据由’uint8’格式转换为’double’格式,并将各点数据乘以 (-1)x+y 以便FFT 变换后的结果中低频数据处于图像中央; 5. 用’fft2’函数对图像数据进行二维FFT 变换,得到频率域图像数据; 6. 计算频率域图像的幅值并进行对数变换,利用’imshow’显示频率域图 像; 7. 在频率图像上去除滤波半径以外的数据(置0); 8. 计算频率域图像的幅值并进行对数变换,利用’imshow’显示处理过的 频域图像数据; 9. 用’ifft2’函数对图像数据进行二维FFT 逆变换,并用’real’函数取其实部,得到处理过的空间域图像数据; 10. 将图像数据各点数据乘以(-1)x+y; 11. 利用’imshow’显示处理结果图像数据; 12. 利用’imwrite’函数保存图像处理结果数据。 图像去噪实验步骤: 1. 打开Matlab 编程环境; 2. 利用’imread’函数读入包含噪声的原始图像数据; 3. 利用’imshow’显示所读入的图像数据; 4. 以3X3 大小为处理掩模,编写代码实现中值滤波算法,并对原始噪声 图像进行滤波处理; 5. 利用’imshow’显示处理结果图像数据; 6. 利用’imwrite’函数保存图像处理结果数据。 即使不是按这些步骤来的也没关系,只要是那个功能,能实现就OK,谢谢大家 %%%%%%%%spatial frequency (SF) filtering by low pass filter%%%%%%%% % the SF filter is unselective to orientation (doughnut-shaped in the SF % domain). [FileName,PathName,FilterIndex] = uigetfile ; filename = fullfile(PathName, FileName) ; [X map] = imread(filename, fmt); % read image L = double(X); % transform to double %%%%%%%%%%%%% need to add (-1)x+y to L % calculate the number of points for FFT (power of 2) fftsize = 2 .^ ceil(log2(size(L))); % 2d fft Y = fft2(X, fftsize(1), fftsize (2));

Matlab中关于图像处理、去噪分析以及有关散点连线画图等程序

算法程序 1.找到图片 addpath('C:\Documents and Settings\user\My Documents\My Pictures'); imshow('3.jpg') 2.将彩色图片处理成灰度图片 addpath('C:\Documents and Settings\user\My Documents\My Pictures'); A=imread('3.jpg'); I=rgb2gray(A); imshow(I) 3.改变图片大小 右键----编辑----属性-----输入想要的大小 4.两张图片相叠加(区分imadd和系数叠加) 直接把图像数据矩阵相加,可以设定叠加系数,如(系数可自由设定,按需要) img_tot = img1 * 0.5 + img2 * 0.5; %两个图像大小要一致 图像的矩阵我再那里能找到 img1 = imread('tupian.bmp'); 图片相加 addpath('C:\Documents and Settings\user\My Documents\My Pictures'); A=imread('2.jpg'); imshow(A) >> B=imread('3.jpg'); imshow(B) >> C=imadd(A,B); imshow(C) >> D=A*0.5+B*0.5; imshow(D) A图像

B图像 C图像 D图像 5.两张图片相减 addpath('C:\Documents and Settings\user\My Documents\My Pictures'); A=imread('2.jpg');

基于MATLAB的减少图像噪声

目录 第一章概述 (2) 第二章典型噪声介绍 (3) 第三章基于MATLAB的模拟噪声生成 (5) 第四章均值滤波处理方法 (7) 4.1均值滤波原理 (7) 4.2 均值滤波法对图像的处理 (9) 第五章中值滤波处理方法 5.1 中值滤波原理 (12) 5.2中值滤波法对图像的处理 (12) 第六章频域低通滤波法 (15) 6.1理想低通滤波器(ILPF)对图像的处理 (15) 6.2 巴特沃思低通滤波器(BLPF)对图像的处理 (18) 6.3 指数滤波器(ELPF)对图像的处理 (20) 6.4 梯形滤波器(TLPF)对图像的处理 (22) 6.5 构建二维滤波器对图像的处理 (24) 第七章总结与体会 (27) 参考文献 (28)

第一章概述 图像平滑主要有两个作用:一个是清除或减少噪声,改善图像质量;另一个是模糊图像,使图像看起来更柔和自然。图像噪声来自于多方面,有来自于系统外部的干扰,如电磁波或经电源窜进系统内部的外部噪声;也有来自于系统内部的干扰,如摄像机的热噪声,电器机械运动而产生的抖动噪声内部噪声。实际获得的图像都因受到干扰而有噪声,噪声产生的原因决定了噪声分布的特性及与图像信号的关系。减少噪声的方法可以在空间域或在频率域处理。空间域常用的方法有领域平均法、中值滤波法、多图像平均法等;在频域可以采用理想低通、巴特沃斯低通等各种形式的低通滤波器进行低通滤波。 图像平滑处理的主要目的是去噪声,而噪声有很多种,大体可分为两类:加性噪声和乘性噪声。加性噪声通常表现为椒盐噪声、高斯噪声等;乘性噪声的一个典型例子就是光照变化。图像中的噪声往往是和信号交织在一起的,尤其是乘性噪声,如果平滑不当,就会使图像本身的细节如边缘轮廓,线条等模糊不清,从而使图像降质。图像平滑总是要以一定的细节模糊为代价的,因此如何尽量平滑掉图像的噪声,又尽量保持图像的细节,是图像平滑研究的主要问题之一。 图像平滑主要是为了消除被污染图像中的噪声,这是遥感图像处理研究的最基本内容之一,被广泛应用于图像显示、传输、分析、动画制作、媒体合成等多个方面。该技术是出于人类视觉系统的生理接受特点而设计的一种改善图像质量的方法。

matlab图像去噪算法设计(精)

数字图像去噪典型算法及matlab实现 希望得到大家的指点和帮助 图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。实验一:均值滤波对高斯噪声的效果 I=imread('C:\Documents and Settings\Administrator\桌面\1.gif');%读取图像 J=imnoise(I,'gaussian',0,0.005);%加入均值为0,方差为0.005的高斯噪声 subplot(2,3,1);imshow(I); title('原始图像'); subplot(2,3,2); imshow(J); title('加入高斯噪声之后的图像'); %采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波 K1=filter2(fspecial('average',3),J)/255; %模板尺寸为3 K2=filter2(fspecial('average',5),J)/255;% 模板尺寸为5 K3=filter2(fspecial('average',7),J)/255; %模板尺寸为7 K4= filter2(fspecial('average',9),J)/255; %模板尺寸为9 subplot(2,3,3);imshow(K1); title('改进后的图像1'); subplot(2,3,4); imshow(K2); title('改进后的图像2');

最新图像去噪处理的研究及MATLAB仿真

图像去噪处理的研究及M A T L A B仿真

目录 引言 (1) 1图像去噪的研究意义与背景 (2) 1.1数字图像去噪研究意义与背景 (2) 1.2 数字图像去噪技术的研究现状 (3) 2 邻域平均法理论基础 (3) 2.1 邻域平均法概念 (3) 3 中值滤波法理论基础 (3) 3.1中值滤波法概念 (3) 3.2中值滤波法的实现 (4) 4中值滤波法去噪技术MATLAB仿真实现 (4) 4.1Matlab仿真软件 (4) 4.2中值滤波法的MATLAB实现 (5) 4.3邻域平均法的MATLAB实现 (6) 总结 (8) 全文工作总结 (8) 工作展望 (8) 参考文献 (9) 英文摘要 (10) 致谢语 (11)

图像去噪处理的研究及MATLAB仿真 电本1102班姓名:杨韬 指导老师:刘明军摘要:图像是生活中一种重要的信息来源,通过对图像的处理可以帮助我们了解信息的内在信息。数字图像去噪声涉及光学系统、微电子技术、计算机科学、数学分析等领域,是一门综合性很强的边缘科学,如今其理论体系非常完善,且其应用很广泛,在医学、军事、艺术、农业等都有广泛且充分的应用。MATLAB是一种高效的工程计算语言,在数值计算、数据处理、图像处理、神经网络、小波分析等方面都有广泛的应用。MATLAB是一种向量语言,它非常适合于进行图像处理。 本文概述了邻域平均法与中值滤波法去噪的基本原理。对这两种常用的去噪方法进行了分析比较和仿真实现。最后根据理论分析和实验结果,讨论了一个完整去噪算法中影响去噪性能的各种因素。为实际工作中的图像处理,去噪方法的选择和改进提供了数据参考和依据。 关键字:邻域平均法;中值滤波法;MATLAB 引言 图像因为一些原因总会被外界干扰,所以图像质量往往不是很好,而质量不好的图片又不容易进行进一步的处理。在对图像的地处理过程中,图像去噪是很重要的一个环节,所以想对图像进行进一步的处理,对图像的去噪就变得重要起来,所以很多研究人员对这一课题进行了比较全面的研究,图像的处理最传统的方法是在空域中的处理,也就是说在图像的空间范畴内对图像质量进行改善。也可以对图像进行平滑处理等,这属于第一类图像处理方法。 中值滤波法与邻域平均法是出现最早的去噪手段,而且由于其具备良好的空频特性,实际应用也非常广泛。其中图像的邻域平均去噪方法是众多空域图像去噪方法中效果最好的去噪方法。基本思想就是用邻近的像素平均值来代替噪声的像素,且图像尺寸越大,去噪

基于MATLAB的图像平滑算法实现及应用

目录 1.3 图像噪声 一幅图像在获取和传输等过程中,会受到各种各样噪声的干扰,其主要来源有三:一为在光电、电磁转换过程中引入的人为噪声;二为大气层电(磁)暴、闪电、电压、浪涌等引起的强脉冲性冲激噪声的干扰;三为自然起伏性噪声,由物理量的不连续性或粒子性所引起,这类噪声又可分成热噪声、散粒噪声等。一般在图像处理技术中常见的噪声有:加性噪声、乘性噪声、量化噪声、“盐和胡椒”噪声等。下面介绍两种主要的噪声。 1、高斯噪声 这种噪声主要来源于电子电路噪声和低照明度或高温 带来的传感器噪声,也称为正态噪声,是在实践中经常用到的噪声模型。高斯随机变量z 的概率密度函数(P D F )由下式给出: }2/)(ex p{2/1)(22σμσπ--=z z p 其中, z 表示图像像元的灰度值;μ表示z 的期望;σ表示z 的标准差。 2、椒盐噪声 主要来源于成像过程中的短暂停留和数据传输中产生 的错误。其P D F 为: ?????===其他0)(b z pb a z pa z p 如果b > a , 灰度值b 在图像中显示为一亮点,a 值显

示为一暗点。如果P a和图像均不为零,在图像上的表现类似于随机分布图像上的胡椒和盐粉微粒,因此称为椒盐噪声。当P a为零时,表现为“盐”噪声;当P b为零时,表现为“胡椒”噪声。 图像中的噪声往往是和信号交织在一起的尤其是乘性 噪声,如果平滑不当,就会使图像本身的细节如边缘轮廓‘线条等模糊不清,从而使图像质量降低。

第二章、图像平滑方法 2.1 空域低通滤波 将空间域模板用于图像处理,通常称为空间滤波,而空间域模板称为空间滤波器。空间域滤波按线性和非线性特点有:线性、非线性平滑波器。 线性平滑滤波器包括领域平均法(均值滤波器),非线 性平滑滤波器有中值滤波器。 2.1.1 均值滤波器 对一些图像进行线性滤波可以去除图像中某些类型的噪声,如采用邻域平均法的均值滤波器就非常适用于去除通过扫描得到的图像中的颗粒噪声。邻域平均法是空间域平滑技术。这种方法的基本思想是,在图像空间,假定有一副N ×N 个像素的原始图像f (x ,y ),用领域内几个像素的平均值去代替图像中的每一个像素点值的操作。经过平滑处理后得到一副图像 g (x ,y ), 其表达式如下: ∑∈=s n m n m f M y x g ),(),(/1),( 式中: x ,y =0,1,2,…,N -1;s 为(x ,y )点领域中点的坐标的集合,但不包括(x ,y )点;M 为集合内坐标点的总数。 领域平均法有力地抑制了噪声,但随着领域的增大,图像的模糊程度也愈加严重。为了尽可能地减少模糊失真,也可采用阈值法减少由于领域平均而产生的模糊效应。其公式如下: ?????>-=∑∑∈∈其他),(),(/1),(),(/1),(),(),(y x f T n m f M y x f n m f M y x g s n m s n m 式中:T 为规定的非负阈值。

图像去噪TV模型及Matlab实现

1.%% ROFdenoise 2.% 3.% Image -to denoise 4.% Theta - the parameter 5.% 6.% This denoising method is based on total-variation, originally proposed by 7.% Rudin, Osher and Fatemi. In this particular case fixed point iteration 8.% is utilized. 9.%------ 10.% For the included image, a fairly good result is obtained by using a 11.% theta value around 12-16. A possible addition would be to analyze the 12.% residual with an entropy function and add back areas that have a lower 13.% entropy, i.e. there are some correlation between the surrounding pixels. 14.%------ 15.% Code Provided By Li.J.Z 16.% Based on total-variation 17. 18.function A = ROFdenoise(Image, Theta) 19. 20.[Image_h Image_w] = size(Image); 21.g = 1; dt = 1/4; nbrOfIterations = 50; 22.Image = double(Image); 23. 24.p = zeros(Image_h,Image_w,2); 25.d = zeros(Image_h,Image_w,2); 26.div_p = zeros(Image_h,Image_w); 27. 28.for i = 1:nbrOfIterations 29. for x = 1:Image_w 30. for y = 2:Image_h-1 31. div_p(y,x) = p(y,x,1) - p(y-1,x,1); %backward difference 32. end 33. end 34. 35. for x = 2:Image_w-1 36. for y = 1:Image_h 37. div_p(y,x) = div_p(y,x) + p(y,x,2) - p(y,x-1,2); 38. end 39. end 40. 41. % Handle boundaries 42. div_p(:,1) = p(:,1,2);

小波变换图像去噪MATLAB实现

基于小波图像去噪的MATLAB 实现 一、 论文背景 数字图像处理(Digital Image Processing ,DIP)是指用计算机辅助技术对图像信号进行处理的过程。数字图像处理最早出现于 20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP 技术成为信息技术中最重要的学科分支之一。在现实生活中,DIP 应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。 然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。根据研究表明,当一图像信噪比(SNR)低于14.2dB 时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。 二、 课题原理 1.小波基本原理 在数学上,小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成:

())(1 ,a b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的积: ( )dx a b x a x f f x W b a b a )(1)(,,,-ψ= ψ=?+∞∞- (3) 与时域函数对应,在频域上则有: ())(,ωωa e a x j b a ψ=ψ- (4) 可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。这说明连续小波的局部是变化的,在高频时分辨率高,在低频时分辨率低,这便是它优于经典傅里叶变换的地方。总体说来,小波变换具有更好的时频窗口特性。 2. 图像去噪综述 所谓噪声,就是指妨碍人的视觉或相关传感器对图像信息进行理解或分析的各种因素。通常噪声是不可预测的随机信号。由于噪声影响图像的输入、采集、处理以及输出的各个环节,尤其是图像输入、采集中的噪声必然影响图像处理全过程乃至最终结果,因此抑制噪声已成为图像处理中极其重要的一个步骤。 依据噪声对图像的影响,可将噪声分为加性噪声和乘性噪声两大类。由于乘性噪声可以通过变换当加性噪声来处理,因此我们一般重点研究加性噪声。设

MATLAB图像滤波去噪分析及其应用

《MATLAB图像滤波去噪分析及其应用》,双线性滤波、Kirsch滤波、超限邻域滤波、逆滤波、双边滤波、同态滤波、小波滤波、六抽头滤波、约束最小平方滤波、非线性复扩散滤波、Lee滤波、Gabor滤波、Wiener 滤波、Kuwahara滤波、Beltrami流滤波、Lucy Richardson滤波、NoLocalMeans滤波等研究内容。 《MATLAB图像滤波去噪分析及其应用》全面而系统地讲解了MATLAB图像滤波去噪分析及其应用;结合算法理论,详解算法代码(代码全部可执行且验证通过),以帮助读者更好地学习本书内容。对于网上讨论的大部分疑难问题,本书均有涉及。 第1章图像颜色空间相互转换与MATLAB实现 1.1图像颜色空间原理 1.1.1RGB颜色空间 1.1.2YCbCr颜色空间 1.1.3YUV颜色空间 1.1.4YIQ颜色空间 1.1.5HSV颜色空间 1.1.6HSL颜色空间 1.1.7HSI颜色空间 1.1.8CIE颜色空间 1.1.9LUV颜色空间 1.1.10LAB颜色空间 1.1.11LCH 颜色空间 1.2颜色空间转换与MATLAB实现 1.2.1图像YCbCr与RGB空间相互转换及MATLAB实现 1.2.2图像YUV与RGB空间相互转换及MATLAB实现 1.2.3图像YIQ与RGB空间相互转换及MATLAB实现 1.2.4图像HSV与RGB空间相互转换及MATLAB实现 1.2.5图像HSL与RGB空间相互转换及MATLAB实现 1.2.6图像HSI与RGB空间相互转换及MATLAB实现 1.2.7图像LUV与RGB空间相互转换及MATLAB实现 1.2.8图像LAB与RGB空间相互转换及MATLAB实现 1.2.9图像LCH 与RGB空间相互转换及MATLAB实现 第2章图像噪声概率密度分布与MATLAB实现 2.1噪声概率密度分布函数 2.1.1均匀分布 2.1.2正态分布 2.1.3卡方分布 2.1.4F分布 2.1.5t分布 2.1.6Beta分布 2.1.7指数分布 2.1.8Gamma分布 2.1.9对数正态分布 2.1.10瑞利分布 2.1.11威布尔分布

数字图像去噪典型算法及matlab实现

图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。 实验一:均值滤波对高斯噪声的效果 代码 I=imread('C:\Documents and Settings\Administrator\桌面\1.gif');%读取图像 J=imnoise(I,'gaussian',0,0.005);%加入均值为0,方差为0.005的高斯噪声 subplot(2,3,1);imshow(I); title('原始图像'); subplot(2,3,2); imshow(J); title('加入高斯噪声之后的图像'); %采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波 K1=filter2(fspecial('average',3),J)/255; %模板尺寸为3 K2=filter2(fspecial('average',5),J)/255;% 模板尺寸为5

根据Matlab的图像去噪算法仿真

基于Matlab的图像去噪算法仿真 在信息化的社会里,图像在信息传播中所起的作用越来越大。所以,消除在图像采集和传输过程中而产生的噪声,保证图像受污染度最小,成了数字图像处理领域里的重要部分。 本文主要研究分析邻域平均法、中值滤波法、维纳滤波法及模糊小波变换法的图像去噪算法。首先介绍图像处理应用时的常用函数及其用法;其次详细阐述了四种去噪算法原理及特点;最后运用Matlab软件对一张含噪图片(含高斯噪声或椒盐噪声)进行仿真去噪,通过分析仿真结果得出: 一.均值滤波是典型的线性滤波,对高斯噪声抑制是比较好的; 二.中值滤波是常用的非线性滤波方法,对椒盐噪声特别有效; 三.维纳滤波对高斯噪声有明显的抑制作用; 四.对小波系数进行阈值处理可以在小波变换域中去除低幅值的噪声和不期望的信号。 本论文主要是从两方面展开,首先是图像去噪算法:简要说明了图像噪声的概念及分类,详细阐述了邻域平均法、中值滤波法、维纳滤波法及模糊小波变换法的去噪原理及特点。 其次是基于Matlab的图像去噪算法仿真:根据邻域平均法、中值滤波法、维纳滤波法及模糊小波变换法原理分析,运用Matlab仿真软件编写代码,对一张含噪图片(含高斯噪声或椒盐噪声)进行仿真去噪,并对结果分析讨论,比较几种方法的优缺点。 本论文仿真时选取一张彩色图片“2010-03-09-2.bmp”,并在图片中加入

两种噪声:高斯噪声和椒盐噪声。所谓高斯噪声是指它的概率密度函数服从高斯分布的一类噪声。椒盐噪声是由图像传感器、传输信道、解码处理等产生的黑白相间的亮暗点噪声,属于非平稳噪声。本章利用Matlab软件对含噪图像的去噪算法进行仿真,将应用邻域平均法、中值滤波法、维纳滤波法和模糊小波变换法对含有高斯噪声和椒盐噪声图像的去噪效果进行比较,从而得到相应结论。 1.1邻域平均法的仿真 本节选用邻域平均法对含有高斯噪声和椒盐噪声的图片进行去噪,并用Matlab软件仿真。 (1)给图像加入均值为0,方差为0.02的高斯噪声,选择3×3模板去噪Matlab部分代码: j=imnoise(x,'gaussian',0,0.02); h=ones(3,3); h=h/9; k=conv2(j,h); 仿真结果如图4-1所示。

matlab图像去噪程序

function varargout = jiemian(varargin) %返回从函数jiemian.m中得到的参数中变量的数目;传递一个参数中变量的数目给函数jiemian.m。 % JIEMIAN Application M-file for jiemian.fig % FIG = JIEMIAN launch jiemian GUI. % JIEMIAN('callback_name', ...) invoke the named callback. % Last Modified by shijiawei v2.5 24-May-2014 02:45:18 if nargin == 0 % LAUNCH GUI %nargin 显示输入变量 fig = openfig(mfilename,'reuse'); %打开包含在FIG文件filename.fig中的图形,确保它是可见的并且完全定位在屏幕上。 % Generate a structure of handles to pass to callbacks, and store it. handles = guihandles(fig); %返回一个结构,它包含图像中对象的句柄 guidata(fig, handles); %将变量handles存储到fig文件中 if nargout > 0 %如果输出变量大于0 varargout{1} = fig; %返回fig end elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK %如果varargin{1}是一个字符数组则返回逻辑真(1),否则返回逻辑假(0)。 try if (nargout) %显示用户提供的输出变量的个数 [varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard %varargout传递参数中的变量数目else feval(varargin{:}); % FEVAL switchyard %**feval函数的求值 end catch %如果出错开始执行catch块 disp(lasterr); %%%% lasterr函数查询出错原因。如果函数lasterr的运行结果为一个空串,则表明组命令1被成功执行了 %%%% disp 显示矩阵和文字内容 end end %| ABOUT CALLBACKS: %| GUIDE automatically appends subfunction prototypes to this file, and %| sets objects' callback properties to call them through the FEVAL %| switchyard above. This comment describes that mechanism. %| %| Each callback subfunction declaration has the following form: %| (H, EVENTDATA, HANDLES, VARARGIN) %| %| The subfunction name is composed using the object's Tag and the %| callback type separated by '_', e.g. 'slider2_Callback', %| 'figure1_CloseRequestFcn', 'axis1_ButtondownFcn'.

基于MATLAB的图像去噪实验报告

实验二图像去噪 一、实验目的 1、熟悉图像高斯噪声与椒盐噪声的特点; 2、掌握利用均值滤波与中值滤波去除图像噪声的方法。 二、实验内容 1、打开Matlab 编程环境。 2、读入图像,在图像上分别添加高斯噪声与椒盐噪声。 3、显示原图像与噪声图像。 4、对噪声图像进行均值滤波与中值滤波处理。 5、显示处理效果图。 三、实验程序及结果 1、实验程序 m=imread('pout、tif'); x=imnoise(m,'salt & pepper',0、02); y=imnoise(m,'gaussian',0,0、01); figure(1) subplot(311) imshow(m); subplot(312) imshow(x) subplot(313) imshow(y); q=filter2(fspecial('average',3),x); w=filter2(fspecial('average',3),y); n=medfilt2(m); figure(2) subplot(311) imshow(uint8(q)); subplot(312) imshow(uint8(w)); subplot(313) imshow(n); 2、实验结果

四、实验思考: 1、比较均值滤波与中值滤波的对高斯噪声与椒盐噪声图像的处理效果,分析原

理? 答:中值滤波对于椒盐噪声效果好,因为椒盐噪声就是幅值近似相等但随机分布在不同的位置上,图像中有干净点也有污染点。中值滤波就是选择适当的点来代替污染的点所以处理效果会更好。由于噪声的均值不为零,所以均值滤波不能很好的去除噪声点。 均值滤波对于高斯噪声效果好,因为高斯噪声的幅值近似于正态分布但就是却分布在每个点像素上。图像中的每个点都就是污染点,所以如果采用中值滤波会找不到合适的干净点,由于正态分布的均值为零,所以均值滤波可以削弱噪声。

MATLAB实现频域平滑滤波以及图像去噪代码

MATLAB实现频域平滑滤波以及图像去噪代码用MATLA实现频域平滑滤波以及图像去噪代码 悬赏分:50 - 解决时间 :2008-11-8 14:21 是数字图象处理的实验,麻烦高人给个写好的代码,希望能在重要语句后面附上一定的说明,只要能在 MATLAE t运行成功,必然给分。具体的实验指导书上的要求如下 : 频域平滑滤波实验步骤 1. 打开 Matlab 编程环境 ; 2. 利用’imread '函数读入图像数据; 3. 利用' imshow' 显示所读入的图像数据 ; 4. 将图像数据由' uint8 ' 格式转换为' double ' 格式,并将各点数据乘以 (-1)x+y 以便 FFT 变换后的结果中低频数据处于图像中央; 5. 用' fft2 ' 函数对图像数据进行二维 FFT 变换,得到频率域图像数据; 6. 计算频率域图像的幅值并进行对数变换,利用' imshow' 显示频率域图像; 7. 在频率图像上去除滤波半径以外的数据 (置 0); 8. 计算频率域图像的幅值并进行对数变换,利用' imshow' 显示处理过的 频域图像数据; 9. 用' ifft2 ' 函数对图像数据进行二维 FFT 逆变换,并用' real '函数取其实部,得到处理过的空间域图像数据; 10. 将图像数据各点数据乘以 (-1)x+y; 11. 利用' imshow' 显示处理结果图像数据; 12. 利用' imwrite '函数保存图像处理结果数据。 图像去噪实验步骤 : 1. 打开 Matlab 编程环境;

2. 利用' imread' 函数读入包含噪声的原始图像数据 ; 3. 利用' imshow' 显示所读入的图像数据 ; 4. 以 3X3 大小为处理掩模,编写代码实现中值滤波算法,并对原始噪声图像进行滤波处理 ; 5. 利用' imshow' 显示处理结果图像数据 ; 6. 利用' imwrite ' 函数保存图像处理结果数据。 即使不是按这些步骤来的也没关系,只要是那个功能,能实现就0K谢谢大家%%%%%%%%spatial frequency (SF) filtering by low pass filter%%%%%%%% % the SF filter is unselective to orientation (doughnut-shaped in the SF % domain). [FileName,PathName,FilterIndex] = uigetfile ; filename = fullfile(PathName, FileName) ; [X map] = imread(filename, fmt); % read image L = double(X); % transform to double %%%%%%%%%%%%% need to add (-1)x+y to L % calculate the number of points for FFT (power of 2) fftsize = 2 .A ceil(log2(size(L))); % 2d fft Y = fft2(X, fftsize(1), fftsize (2)); Y = fftshift(Y); % obtain frequency (cycles/pixel) f0 = floor([m n] / 2) + 1; fy = ((m: -1: 1) - f0(1) + 1) / m; fx = ((1: n) - f0(2)) / n; [mfx mfy] = meshgrid(fx, fy); % calculate radius SF = sqrt(mfx .A 2 + mfy .A 2);

基于MATLAB的图像去噪与边缘检测技术

. 《图像处理》 课程考核报告 基于MATLAB的数字图像处理与分析——图像去噪与边缘检测技术 系部: 专业班级: 姓名: 学号: 指导教师: 完成日期2013年12月

目录 1引言 (1) 2课程设计要求 (2) 2.1课程设计题目 (2) 2.2课程设计目的 (2) 2.3设计要求 (2) 3滤波器基本原理 (4) 3.1中值滤波器基本原理 (4) 3.2高斯滤波器基本原理 (4) 4边缘检测 (6) 4.1 边缘检测定义 (6) 4.2 图像边缘检测算法的研究内容 (6) 5图像处理结果与分析 (8) 5.1 椒盐噪声图像的去噪与边缘检测 (8) 5.2 添加高斯噪声的图像去噪和边缘检测 (8) 6体会与收获 (11) 参考文献 (12)

1引言 所谓数字图像处理就是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为。实质上是一段能够被计算机还原显示和输出为一幅图像的数字码。 21世纪是一个充满信息的时代,图像作为人类感知世界的视觉基础,是人类获取信息、表达信息和传递信息的重要手段。数字图像处理,即用计算机对图像进行处理,其发展历史并不长。数字图像处理技术源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约传输了一幅照片,采用了数字压缩技术。首先数字图像处理技术可以帮助人们更客观、准确地认识世界,人的视觉系统可以帮助人类从外界获取3/4以上的信息,而图像、图形又是所有视觉信息的载体,尽管人眼的鉴别力很高,可以识别上千种颜色,但很多情况下,图像对于人眼来说是模糊的甚至是不可见的,通过图象增强技术,可以使模糊甚至不可见的图像变得清晰明亮。另一方面,通过数字图像处理中的模式识别技术,可以将人眼无法识别的图像进行分类处理。通过计算机模式识别技术可以快速准确的检索、匹配和识别出各种东西。 实际图像在形成、传输的过程中,由于各种干扰因素的存在会受到噪声的污染。噪声被理解为妨碍人的视觉器官或系统传感器对所接收图像源信息进行理解或分析的各种因素。一般噪声是不可预测的随机信号,它需采用适当的方法去认识。对噪声的认识非常重要,它影响图像的输入、采集、处理的各个环节以及结果输出全过程,特别是图像的输入、采集过程中,若输入中含有大量噪声,必然影响处理全过程及输出结果。因此,一个良好的图像处理系统,无论是模拟处理还是计算机处理都把减少噪声作为主攻目标。本文采用小波分析、求平均值法、形态学滤波器以及中值滤波器等方法,对图像降低噪声进行了分析。 1

小波变换图像去噪MATLAB实现

小波变换图像去噪MATLAB实现

基于小波图像去噪的MATLAB 实现 一、 论文背景 数字图像处理(Digital Image Processing ,DIP)是指用计算机辅助技术对图像信号进行处理的过程。数字图像处理最早出现于 20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP 技术成为信息技术中最重要的学科分支之一。在现实生活中,DIP 应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。 然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。根据研究表明,当一张图像信噪比(SNR)低于14.2dB 时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。 二、 课题原理 1.小波基本原理 在数学上,小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成: ())(1 ,a b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的内积:

相关主题
文本预览
相关文档 最新文档