当前位置:文档之家› 焊接裂纹的处理

焊接裂纹的处理

焊接裂纹的处理
焊接裂纹的处理

槪述 焊接勲裂紋

焊接冷裂歎 点状窗裂 矯力腐蚀裂歎

焊接裂紋绦合今祈和判瞬

节节节节节节节

二三四妇A&

第第第第第第第

1、裂狡的今类用一嚴特征

次辖晶裂狡的形啟机理、影响?素,及曳防治措施M 焊接徐裂狡的形啟机理,

4、疝力薦楸裂仅形啟机理

5、层状新裂产或原0及防止、

5焊樓裂仗探合今斩及判斷, 貌

各种裂仗斷口形特征。

焊接辖构产丈裂狡経幣需要

,童者瞪咸焊接辖构報废,无该修升。更产塞瘩造啟爭故、人身伤亡。葩7%乡耳帝一敍刁万吨的矿石运输船在太年洋上航行时,瞬裂咸鬲段而沉没 ,在压力容器腻坏丰救屮,帝很多都是由孑焊接裂狡瞪咸。?此,解决罚究焊接裂紋已啟參当潇i要<&o

各种来同类鰹的裂杖

0藏鬻喰区强統贯穿裂杖?舛雉檬部裂狄

(2)强他屮倣向裂杖

② 强統上栈向裂次 ③ 熬影榆&做向裂狄 ④ 熬鬻喰g 横向裂杖 ⑤火口(孤漩J 裂杖

⑦强他爾梆晶间裂杖

⑥邓遣下製敌 ②强趾製敌

接霜蠹鬱

?5八

图6焊接搂头製缝分布形态示意图

爍接冶金當

1,按裂纹分布的走向分

①横向裂狡②孤向裂紋

③星形(孤形裂歎丿

纵向裂纹

2 按裂役安空部徵今

⑦焊縫金属屮裂汝

②勲彰响&屮裂紅

③焊縫勲彫响&贯穿裂紋

各种焊接裂纹成因特点及防止措施这条必须收藏了

各种焊接裂纹成因特点及防止措施,这条必须收藏了 焊接裂纹就其本质来分,可分为热裂纹、再热裂纹、冷裂纹、层状撕裂等。下面仅就各种裂纹的成因、特点和防治办法进行具体的阐述。1.热裂纹是在焊接时高温下产生的,故称热裂纹,它的特征是沿原奥氏体晶界开裂。根据所焊金属的材料不同(低合金高强钢、不锈钢、铸铁、铝合金和某些特种金属等),产生热裂纹的形态、温度区间和主要原因也各不相同。目前,把热裂纹分为结晶裂纹、液化裂纹和多边裂纹等三大类。(1)结晶裂纹主要产生在含杂质较多的碳钢、低合金钢焊缝中(含S,P,C,Si骗高)和单相奥氏体钢、镍基合金以及某些铝合金焊逢中。这种裂纹是在焊逢结晶过程中,在固相线附近,由于凝固金属的收缩,残余液体金属不足,不能及时添充,在应力作用下发生沿晶开裂。防治措施为:在冶金因素方面,适当调整焊逢金属成分,缩短脆性温度区的范围控制焊逢中硫、磷、碳等有害杂质的含量;细化焊逢金属一次晶粒,即适当加入Mo、V、Ti、Nb等元素;在工艺方面,可以通过焊前预热、控制线能量、减小接头拘束度等方面来防治。(2)近缝区液化裂纹是一种沿奥氏体晶界开裂的微裂纹,它的尺寸很小,发生于HAZ近缝区或层间。它的成因一般是由于焊接时近缝区金属或焊缝层间金属,在高温下使这些区域的奥氏体晶界上的低熔共晶组成

物被重新熔化,在拉应力的作用下沿奥氏体晶间开裂而形成液化裂纹。这一种裂纹的防治措施与结晶裂纹基本上是一致的。特别是在冶金方面,尽可能降低硫、磷、硅、硼等低熔共晶组成元素的含量是十分有效的;在工艺方面,可以减小线能量,减小熔池熔合线的凹度。(3)多边化裂纹是在形成多边化的过程中,由于高温时的塑性很低造成的。这种裂纹并不常见,其防治措施可以向焊缝中加入提高多边化激化能的元素如Mo、W、Ti等。2.再热裂纹通常发生于某些含有沉淀强化元素的钢种和高温合金(包括低合金高强钢、珠光体耐热钢、沉淀强化高温合金,以及某些奥氏体不锈钢),他们焊后并未发现裂纹,而是在热处理过程中产生了裂纹。再热裂纹产生在焊接热影响区的过热粗晶部位,其走向是沿熔合线的奥氏体粗晶晶界扩展。防治再热裂纹从选材方面,可以选用细晶粒钢。在工艺方面,选用较小的线能量,选用较高的预热温度并配合以后热措施,选用低匹配的焊接材料,避免应力集中。3.冷裂纹主要发生在高、中碳钢、低、中合金钢的焊接热影响区,但有些金属,如某些超高强钢、钛及钛合金等有时冷裂纹也发生在焊缝中。一般情况下,钢种的淬硬倾向、焊接接头含氢量及分布,以及接头所承受的拘束应力状态是高强钢焊接时产生冷裂纹的三大主要因素。焊后形成的马氏体组织在氢元素的作用下,配合以拉应力,便形成了冷裂纹。他的形成一般是穿晶或沿晶的。冷裂纹一般分

焊接缺陷分类及预防措施

一、焊接缺陷的分类 焊接缺陷可分为外部缺陷和内部缺陷两种 1.外部缺陷 1)外观形状和尺寸不符合要求; 2)表面裂纹; 3)表面气孔; 4)咬边; 5)凹陷; 6)满溢; 7)焊瘤; 8)弧坑; 9)电弧擦伤; 10)明冷缩孔; 11)烧穿; 12)过烧。 2.内部缺陷 1)焊接裂纹:a.冷裂纹;b.层状撕裂;c.热裂纹;d.再热裂纹。 2)气孔; 3)夹渣; 4)未焊透; 5)未熔合; 6)夹钨; 7)夹珠。 二、各种焊接缺陷产生原因、危害及防止措施 1、外表面形状和尺寸不符合要求 表现:外表面形状高低不平,焊缝成形不良,焊波粗劣,焊缝宽度不均匀,焊缝余高过高或过低,角焊缝焊脚单边或下凹过大,母材错边,接头的变形和翘曲超过了产品的允许范围等。 危害:焊缝成形不美观,影响到焊材与母材的结合,削弱焊接接头的强度性能,使接头的应力产生偏向和不均匀分布,造成应力集中,影响焊接结构的安全使用。

产生原因:焊件坡口角度不对,装配间隙不匀,点固焊时未对正,焊接电流过大或过小,运条速度过快或过慢,焊条的角度选择不合适或改变不当,埋弧焊焊接工艺选择不正确等。 防止措施:选择合适的坡口角度,按标准要求点焊组装焊件,并保持间隙均匀,编制合理的焊接工艺流程,控制变形和翘曲,正确选用焊接电流,合适地掌握焊接速度,采用恰当的运条手法和角度,随时注意适应焊件的坡口变化,以保证焊缝外观成形均匀一致。 2、焊接裂纹 表现:在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏形成的新界面所产生的缝隙,具有尖锐的缺口和大小的长宽比特征。按形态可分为:纵向裂纹、横向裂纹、弧坑裂纹、焊趾裂纹、焊根裂纹、热影响区再热裂纹等。 危害:裂纹是所有的焊接缺陷里危害最严重的一种。它的存在是导致焊接结构失效的最直接的因素,特别是在锅炉压力容器的焊接接头中,因为它的存在可能导致一场场灾难性的事故的发生,裂纹最大的一个特征是具有扩展性,在一定的工作条件下会不断的“生长”,直至断裂。 产生原因及防止措施: (1)冷裂纹:是焊接头冷却到较低温度下(对于钢来说是Ms温度以下)时产生的焊接裂纹,冷裂纹的起源多发生在具有缺口效应的焊接热影响区或有物理化学不均匀的氢聚集的局部地带,裂纹有时沿晶界扩展,也有时穿晶扩展。这是由于焊接接头的金相组织和应力状态及氢的含量决定的。(如焊层下冷裂纹、焊趾冷裂纹、焊根冷裂纹等)。 产生机理:钢产生冷裂纹的倾向主要决定于钢的淬硬倾向,焊接接头的含氢量及其分布,以及接头所承受的拘束应力状态。 产生原因: a.钢种原淬硬倾向主要取决于化学成分、板厚、焊接工艺和冷却条件等。钢的淬硬倾向越大,越易产生冷裂纹。 b.氢的作用,氢是引起超高强钢焊接冷裂纹的重要因素之一,并且有延迟的特征。高强钢焊接接头的含氢量越高,则裂纹的敏感性越强。 c.焊接接头的应力状态:高强度钢焊接时产生延迟裂纹的倾向不仅取决于钢的淬硬倾向和氢的作用,还决定于焊接接头的应力状态。焊接时主要存在的应力有:不均匀加热及冷却过程中所产生的热应力、金属相变时产生的组织应力、结构自身拘束条件等。

铝合金焊接接头产生裂纹特征及产生机理

铝合金焊接接头产生裂纹特征及产生机理 摘要 近几十年来,随着科学技术的不断进步,焊接技术也在不断进步,许多高效率和高性能的焊接方法得到了推广。铝及铝合金材料密度低,强度高,热电导率高,耐腐蚀能力强,无磁性,成形性好及低温性能好,具有良好的物理特性和力学性能,因而广泛应用于工业产品的焊接结构上。但国产化的铝合金和铝合金焊接材料均与国外还存在着一定的差距。虽然已经应用铝及其合金焊成许多重要产品,但铝及铝合金由于具有独特的理化性能,因此在焊接过程中会产生一系列的困难,主要的问题有:焊缝中的气孔、焊接热裂纹、接头“等强性”等。本文对铝合金焊接接头产生裂纹的特征及产生机理进行了分析,提出了几点防范措施。 关键词:铝合金;焊接接头;裂纹;机理;措施

Abstract In recent decades, with the improvement of science and technology, the welding technology also continued to make progress, many high efficiency and high performance welding method for promotion. Aluminum and aluminum alloy material low density, high strength, and thermal conductivity high, corrosion resistance, and a strong ability without magnetic, forming the gender is good and low temperature performance is good, have good physical properties and mechanical properties, and widely used in industrial products of welding structure. But the aluminum alloy and aluminum alloy localization of welding materials are abroad and a big gap between the still exist. Although has been used aluminum alloys welding into many important products, but aluminum and aluminum alloy with their unique physical and chemical properties, so the welding process of will produce a series of difficulties, the main problem: the porosity, welding seam hot cracking, joint "aggressive", etc. In this paper, the aluminum alloy welding joint crack characteristics and produce mechanism are analyzed, and puts forward some preventive measures. Key Words: aluminum alloy; Welding joint; Crack; Mechanism; measures

笔记本电脑外壳裂缝修复剂的制作技术

本技术公开了一种笔记本电脑外壳裂缝修复剂,涉及电脑外壳技术领域,有如下原料组分制成:乙烯醋酸共聚体、组合剂、薄荷提取物、矿物油、没食子酸丙脂、透明质酸、茶多酚、改性环氧酚醛复配树脂、阿拉伯胶、叶蜡石、蒎烯、月桂烯、醋酸溶液、苦荞麦黄铜、花生油、β葡聚糖、蔗糖乙酸酯异丁酸酯、活性白土、高枝化聚乙烯亚胺、二甲基二氯硅烷、十二烷基四聚甘油酯、棕榈酸异丙酯、1,2戊二醇;本技术所制备笔记本电脑外壳裂缝修复剂选用材料安全无毒,对环境、电脑外壳无污染,品质优良、粘合裂缝牢固坚实、使用持久、不腐蚀电脑外壳、使用残留痕迹少,修复剂不会变色,不变形、不影响外壳美观。 权利要求书 1.一种笔记本电脑外壳裂缝修复剂,其特征在于,有如下重量份数的原料制成: 乙烯-醋酸共聚体2-36份、组合剂2-34份、薄荷提取物3-19份、矿物油2-59份、没食子酸丙脂2-37份、透明质酸3-18份、茶多酚2-18份、改性环氧-酚醛复配树脂2-23份、阿拉伯胶2-17份、叶蜡石2-21份、蒎烯5-60份、月桂烯4-50份、醋酸溶液2-23份、苦荞麦黄铜2-16份、花生油3-34份、β-葡聚糖3-16份、蔗糖乙酸酯异丁酸酯1-6份、活性白土0.5-5份、高枝化聚乙烯亚胺1-9份、二甲基二氯硅烷0.5-7份、十二烷基四聚甘油酯0.5-3份、棕榈酸异丙酯2-9份、1,2-戊二醇1-5份。 2.根据权利要求1所述的笔记本电脑外壳裂缝修复剂,其特征在于:所述组合剂组成包括:水杨酸1-6份、甲酸钠2-13份、哈拉宗2-11份、过氧化苯甲酰2-16份、溴化十二烷基吡啶2-17份、甜杏仁油2-16份、薄荷提取物3-19份、大蒜提取物2-9份、壳聚糖1-23份、超支化季铵盐1-19份、乙醇2-30份;其制备方法为:称取2-17份溴化十二烷基吡啶置于1-6份无水乙醇中,蒸馏水为95:5(V/V)的溶液中,超声2h,加入2-16份过氧化苯甲酰,40-80℃下反应20-80min,用无水乙醇离心洗涤3-6次,然后烘干得改性溴化十二烷基吡啶;称取2-13份甲酸钠、哈拉宗2-11份、甜杏仁油2-16份、薄荷提取物3-19份,置于盛有蒸馏水的三角烧瓶中,加入过量PH为3-6的盐酸,经磁力搅拌器搅拌至生成沉淀为止;将溶液进行抽滤,保留其中的沉淀物,并用蒸馏水反复洗涤沉淀物,至洗液中呈中性为止,然后将得到沉淀放置在真空烘箱中

铸铁壳体裂纹快速修复方法

铸铁壳体裂纹快速修复 众所周知,铸铁件性脆且铸造过程中易产生气孔,在长期的震动和冲击下,易造成应力集中,导致壳体开裂。 一、裂纹位置及情况 某化工有限公司热电厂汽机车间12000汽轮机低压油动机,裂纹在壳体拐角处法兰附近。 设备名称:低压油动机; 设备材质:铸铁HT250; 损坏形式:壳体裂纹; 介质:液压油; 裂纹情况:非常严重; 裂纹长度:150mm; 最高压力:1.1MPa; 工作温度:50-60℃; 设备价值:3~4万元人民币。 该设备属于液压设备,在工作过程中承受较大的压力及振动力。由于设备材质为铸铁,铸造过程中难免存在不易发现的铸造缺陷,加上长时间满负荷运行,在壳体的薄弱部位极容易出现砂眼渗漏或裂纹渗漏,使设备无法正常工作,液压油的泄漏同时给现场工作环境造成极大的安全隐患,严重威胁企业的安全连续化生产。 在出现此类问题后,企业没有及时有效的解决手段,由于铸铁的焊接性能非常差,加上液压设备的密封性要求较高,传统的焊补工艺根本无法实现修复。而现场一般没有此类设备的备品备件,购买更换需要大量的停机时间。 福世蓝2211F高分子金属修复材料优良的机械性能及良好的粘接力、耐压性,使得该问题得以有效解决。施工过程简单快速可满足现场施工之要求,并可延长设备使用寿命、提高生产率。 二、2211F高分子金属修复材料施工工艺 根据现场情况,我们建议企业先用电焊把裂纹上下连接,焊接几个点用于加强壳体结构力。找到裂纹的终点位置,在终点处打4.2mm止裂孔防止裂纹的进一步延伸。用磨光机沿裂纹打磨干净,向两边扩展3cm 打磨。用无水乙醇清洗干净后调和2211F高分子金属修复材料配合901加强带对裂纹进行修复治理。

焊接裂纹的分析与处理

焊接裂纹的分析与处理 我们在厂修车体、车架、转向架构架时经常会遇到焊缝或母材的裂纹。我们已经讲过裂纹的判断,判断出裂纹以后就需要对裂纹进行处理。如果我们在处理之前对裂纹没有一个准确的分析,就不可能制定出最佳的处理方案。因此必须要对裂纹进行认真的分折。 根据焊接生产中采用的钢材和结构类型不同,可能遇到各种裂纹,裂纹多产生在焊缝上,如焊缝上的纵向裂,焊缝上的横向裂。也可以产生在焊缝两侧的热影响区,焊缝热影响区的纵向裂,焊接影响的横向裂纹,焊接热影响区的焊缝贯穿裂纹,有时产生在金属表面,有时产生在金属内部,如焊缝根部裂、焊趾裂,有的裂纹用肉眼可以看到,有的则必须借助显微镜才能发现,有的裂纹焊后立即出现,有的则是放置或运行一段时间之后才出现。 1.焊缝裂纹的分类 根据裂纹的本质和特征,可分为五种类型:即热裂纹、冷裂纹、再热裂纹、层状撕裂及应力腐蚀裂纹。 1.1热裂纹 热裂纹是在高温情况下产生的,而且是沿奥氏体晶界开裂,就目前的理解,把裂纹又分为结晶裂纹、液化裂纹、多边化裂纹三类。(1)结晶裂纹—结晶裂纹的形成期,是在焊缝结晶过程中且温度处在固相线附近的高温阶段,即处于焊缝金属的凝固末期固液共存阶段,由于凝固金属收缩时残存液相不足,致使沿晶开裂,故称结晶裂

纹,由于这种裂纹是在焊缝金属凝固过程中产生的,所以也称为凝固裂纹。 结晶裂纹的特征:存在的部位主要在焊缝上,也有少量的在热影响区,最常见的是沿焊缝中心长度方向上开裂,即纵向裂,断口有较明显的氧化色,表面无光泽,也是结晶裂纹在高温下形成的一个特征。(2)液化裂纹—焊接过程中,在焊接热循环峰值温度作用下,在多层焊缝的层间金属以及母材近缝区金属中,由于晶间层金属被重新熔化,在一定的收缩应力的作用下,沿奥氏体晶界产生的开裂,称为“液化裂纹”也称“热撕裂”。 液化裂的特征: ①易产生在母材近缝区中紧靠熔合线的地方(部分溶化区),或多层焊缝的层间金属中。 ②裂纹的走向,在母材近缝区中,裂纹沿过热奥氏体晶间发展;在多层焊缝金属中,裂纹沿原始柱状晶界发展,裂纹的扩展方向,视应力的最大方向而定,可以是横向或纵向;并在多层焊焊缝金属中,液化裂纹可以贯穿层间;在近缝区中的液化裂纹可以穿越熔合线进入焊缝金属中。 从被焊的材料上看,液化裂纹主要发生在含有铬、镍的高强度钢、奥氏体钢以及某些镍基合金等材料中。 (3)多边化裂纹--焊接时,焊缝或近缝区在固相线以下的高温区间,由于刚凝固的金属存在很多晶格缺陷(主要是位错和空位)和严重的物理及化学不均匀性,在一定的温度和应力作用下,由于晶格缺陷的

钢结构焊接裂纹的原因及防治措施

钢结构焊接裂纹的原因 及防治措施 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

钢结构焊接裂纹的原因及防治措施本文基于焊接产生裂纹的理论知识,通过实践经验,对钢结构裂纹产生的内外在原因进行了深入分析。 焊接裂纹是钢结构在制造过程出现的危害最严重的缺陷,我公司主要承担为安阳钢铁备件制造、安装及系统检修,在钢结构的制造过程中,有时焊缝会出现焊接裂纹,给工程施工带来一定的影响,具体表现在:裂纹能引起严重的应力集中,降低焊接接头的承载能力,任其发展的话最终会导致焊接结构的破坏,降低工程质量,缩短结构寿命,严重时可能造成安全事故,间接延误工期并增加施工成本,影响公司的形象,所以说裂纹在钢结构的制造过程中一经发现必须彻底清除,进行修补,确保产品质量.以下对钢结构制造过程中裂纹产生的原因及其防治措施进行分析。 1.内在原因分析及相应的预防措施 一般焊接裂纹按其产生的温度和时间分为热裂纹、冷裂纹和再热裂纹。 1.1.热裂纹 热裂纹是指在焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区时产生的裂纹,故又称为高温裂纹.其产生的原因是由于焊接熔池在结

晶过程中存在偏析现象,偏析出的物质多为低熔点共晶和杂质.它们在结 晶过程中以液态间层形式存在,凝固以后的强度也较低,当焊接应力足够 大时就会将液态间层或刚凝固不久的固态金属拉开形成裂纹.此外如果母材的晶界上也存在低熔点共晶和杂质,则在加热温度超过其熔点的热影响区,这些低熔点化合物将熔化而形成液态间层,在一定条件下,焊接应力足够大时也会被拉开形成所谓热影响区液化裂纹.总之,热裂纹的产生是冶 金因素和力学因素共同作用的结果.热裂纹特征是:多贯穿在焊缝表面,且断口被氧化成氧化色.它主要的表现形式:纵向裂纹、横向裂纹、根部裂纹、弧坑裂纹及热影响区裂纹.针对其产生的原因采取以下预防措施:a) 限制钢材和焊材中的硫、磷元素的质量分数.b)改善熔池金属的一次结晶,细化晶粒提高焊缝金属的抗裂性:广泛采用的方法是向焊缝金属中加入细化晶粒的元素.c)控制焊接工艺参数,适当提高焊缝成型系数:可采用多层多道焊法,避免中心线偏析,可防止中心线裂纹。 1.2.冷裂纹 冷裂纹是焊接接头冷却到较低温度时产生的焊接裂纹.它与热裂纹不同, 是在焊后较低温度下产生的,可以焊后立即出现,有时要经过一段时间才 能出现,这种拖后一段时间才能出现的裂纹也称为延迟裂纹.冷裂纹主要 发生在中碳钢、高碳钢、低合金钢或中合金钢中,产生的原因主要有三个因素:1)钢的淬硬倾向大;2)焊接接头受到的拘束应力;3)较多的扩散氢的存在和浓集.这三个条件同时存在时,就容易产生冷裂纹.在许多情况下,

焊接裂纹形成的原因及防止措施(2020年10月整理).pdf

焊接裂纹形成的原因及防止措施 焊接裂纹是在焊接应力及其它致脆因素共同作用下,材料的原子结合遭到破坏,形成新界面而产生的缝隙。它具有尖锐的缺口和长宽比大的特征,易引起较高的应力集中,而且有延伸和扩展的趋势,所以,也是最危险的焊接缺陷。 裂纹常有热裂纹、冷裂纹以及再热裂纹(消除应力处理裂纹)。 一、热裂纹形成及防止 常见的热裂纹有两种:结晶裂纹、液化裂纹。 结晶裂纹是焊接熔池初次结晶过程中形成的裂纹,是焊缝金属沿初次结晶晶界的开裂。而液化裂纹是紧靠熔合线的母材晶界被局部重熔,在收缩力的作用下而产生的裂纹。 结晶裂纹产生的原因: 焊接时,熔池在电弧热的作用下,被加热到相当高的温度,而受热膨胀,而母材却不能自由收缩,于是高温的熔池受到一定的压力。当熔池开始冷却时,就以半融化的母材为晶核开始处结晶。最先结晶的是纯度较高的的合金。最后凝固的是低熔点共晶体。低熔点共晶物的多少取决于焊缝金属中C、S、L等元素的含量。当含量较少时,不足以在初生晶粒间形成连续的液态膜。焊接熔池的冷却速度极快,低熔点共晶物几乎与初析相同时完成结晶。因此连续冷却的金属熔池虽然受到收缩应力的作用也不至于产生晶间裂纹。当低熔点共晶体量较多时,情况就不同了,初次结晶的偏析程度较大,并在初次结晶的晶体之间形成晶间液膜,当熔池冷却收缩时,被液膜分割的晶体边界就会被拉开就形成了裂纹。这是主要原因,另有两个其它原因:一是焊缝金属所经受的应变增加速度大于低熔点共晶物凝固的速度;另外,初生晶体的张大方向和残留低熔共晶体的相对位置的影响。 可见,关键的措施就是: 1、应严格控制焊缝金属中C、S、P和其它易形成低熔点共晶体的合金成分的含量,这些元素和杂质的含量越低,焊缝金属的抗裂纹能力越大。当焊缝中C>0.15%,S>0.04%就可能有裂纹出现,如果母材中含碳量很高,就要控制焊接材料的成分,以使混合后的碳含量降下来。 2、改变焊缝横截面的形状也就改变了焊接熔池的结晶方向,使之有利于将低熔点共晶体推向不易产生裂纹的位置。 液化裂纹产生的原因: 焊接时紧靠熔合线的母材区域被加热到接近钢熔点的高温,此时母材晶体本身未发生熔化,而晶界的

铝合金焊接接头产生裂纹特征及产生机理分析

虽然已经应用铝及其合金焊成许多重要产品,但实际焊接生产中并不是没有困难,主要的问题有:焊缝中的气孔、焊接热裂纹、接头“等强性”等。由于铝及其合金的化学活泼性很强,表面极易形成氧化膜,且多具有难熔性质(如Al 2 O3的熔点为2050℃,MgO熔点为2500℃),加之铝及其合金导热性强,焊接时容易造成不熔合现象。由于氧化膜密度同铝的密度极其接近,所以也容易成为焊缝金属中夹杂物。同时,氧化膜(特别是有MgO存在的,不很致密的氧化膜)可以吸收较多水分而常常成为焊缝气孔的重要原因之一。此外,铝及其合金的线胀系数大,导热性又强,焊接时容易产生翘曲变形。这些也都是焊接生产中颇感困难的问题。下面,对在试验过程中产生比较严重的裂纹进行深入的分析。 1铝合金焊接接头中的裂纹及其特征 在铝合金焊接过程中,由于材料的种类、性质和焊接结构的不同,焊接接头中可以出现各种裂纹,裂纹的形态和分布特征都很复杂,根据其产生的部位可分为以下两种裂纹形式:(1)焊缝金属中的裂纹:纵向裂纹、横向裂纹、弧坑裂纹、发状或弧状裂纹、焊根裂纹和显微裂纹(尤其在多层焊时)。 (2)热影响区的裂纹:焊趾裂纹、层状裂纹和熔合线附近的显微热裂纹。按裂纹产生的温度区间分为热裂纹和冷裂纹,热裂纹是在焊接时高温下产生的,它主要是由晶界上的合金元素偏析或低熔点物质的存在所引起的。根据所焊金属的材料不同,产生热裂纹的形态、温度区间和主要原因也各有不同,热裂纹又可分为结晶裂纹、液化裂纹和多边化裂纹3类。热裂纹中主要产生结晶裂纹,它是在焊缝结晶过程中,在固相线附近,由于凝固金属的收缩,残余液体金属不足不能及时填充,在凝固收缩应力或外力的作用下发生沿晶开裂,这种裂纹主要产生在含杂质较多的碳钢、低合金钢焊缝和某些铝合金;液化裂纹是在热影响区中被加热到高温的晶界凝固时的收缩应力作用下产生的。 在试验过程中发现,当填充材料表面清理不够充分时,焊接后焊缝中仍存在较多的夹杂和少量的气孔。在三组号试验中,由于焊接填充材料为铸造组织,其中夹杂为高熔点物质,焊接后在焊缝中仍将存在;又,铸造组织比较稀疏,孔洞较多,易于吸附含结晶水的成分和油质,它们将成为焊接过程中产生气孔的因素。当焊缝在拉伸应力作用下时,这些夹杂和气孔往往成为诱发微裂纹的关键部位。通过显微镜进一步观察发现,这些夹杂和气孔诱发的微观裂纹之间有明显的相互交汇的趋势。然而,对于夹杂物在此的有害作用究竟是主要表现为应力集中源从而诱发裂纹,还是主要表现为脆性相从而诱发裂纹,尚难以判断。此外,一般认为,铝镁合金焊缝中的气孔不会对焊缝金属的拉伸强度产生重大影响,而本研究试验中却发现焊缝拉伸试样中同时存在着由夹杂和气孔诱发微裂纹的现象。气孔诱发微裂纹的现象是否只是一种居次要地位的伴生现象,还是引起焊缝拉伸强度大幅度下降的主要因素之一,亦还有待进一步的研究。 2热裂纹产生的过程 目前关于焊接热裂纹理论,国内外认为较完善的是普洛霍洛夫理论。概括地讲,该理论认为结晶裂纹的产生与否主要取决于以下3方面:脆性温度区间的大小;在此温度区间内合金所具有的延性以及在脆性温度区间金属的变形率大小。 通常人们将脆性温度区间的大小及在此温度区间内具有的延性值称为产生焊接热裂纹的冶金因素,而把脆性温度区内金属的变形率大小称为力学因素。焊接过程是一系列不平衡的工艺过程的综合,这种特征从本质上与焊接接头金属断裂的冶金因素和力学因素发生重要的联系,如焊接工艺过程与冶金过程的产物即物理的、化学的与组织上的不均匀性、熔渣与夹杂物、气体元素与处于过饱和浓度的空位等。所有这些,都是与裂纹的萌生与发展有密切联系的冶金因素。从力学因素方面看,焊接热循环特定的温度梯度与冷却速度,在一定的拘束条件下,将使焊接接头处于复杂的应力-应变状态,从而为裂纹的萌生与发展提供必要的条件。 在焊接过程中,冶金因素和力学因素的综合作用将归结为两个方面,即是强化金属联系还是弱化金属联系。如果在冷却时,焊接接头金属中正在建立强度联系,在一定刚性拘束条件下能够顺从地应变,焊缝与近缝区金属能够承受外加拘束应力与内在残余应力的作用时,裂纹就不容易产生,焊接接头的金属裂纹敏感性低,反之,当承受不住应力作用时,金属中强度联 铝合金焊接接头产生裂纹特征及产生机理分析 谢辉 (广东省第二农机厂,广东广州512219) 摘要:近40年来,由于焊接技术的进步,高效率和高性能的焊接方法得到了推广,铝及铝合金在车辆、船舶、建筑、桥梁、化工机械、低温工程和宇航工业等各种结构方面的应用在不断扩大,但国产化的铝合金和铝合金焊接材料均还存在着一定的差距。对铝合金焊接接头产生裂纹的特征及产生机理进行了分析,提出了几点防范措施。 关键词:铝合金;焊接接头;裂纹;机理 —116—

焊接裂纹的形成机理与预防措施

焊接裂纹的形成机理与预防措施 1、产生焊接冷裂纹的原因 焊接冷裂纹在焊后较低的温度下形成。由于这种裂纹形成与氢有关,且有延迟开裂的特点,因此又称之为焊接氢致裂纹或延迟裂纹。 产生焊接冷裂纹的三个必要条件: (1)氢。氢的主要来源是焊材中的水分和焊接区域中的油污、铁锈、水以及大气中的水汽等。这些水、铁锈或有机物经焊接电弧的高温热作用分解成氢原子而进入焊接熔池中。在焊接过程中氢除向大气中扩散外,余下的在焊缝中呈过饱和状态,即在焊缝中存在着扩散氢。根据氢脆理论,这种扩散氢将向应变集中区(如微裂纹或缺口尖端附近)扩散,当该区的氢浓度达到某一临界值时,裂纹便继续扩展。 (2)应力。依据目前国内及国际的施工水平,在球罐的组装过程中总会存在或多或少的强力组对,所以在组装完成后便存在着内应力,这种应力在焊后整体热处理完成后也不可能完全消除。再加上球罐焊接是一个局部加热过程,在焊接过程中产生应力与应变的循环,因此球罐焊接后必然存在残余应力。

(3)组织。焊接热影响区组织中过硬的马氏体含量越多越容易产生冷裂纹。 3、防止产生焊接冷裂纹的措施 (1)尽量选用对冷裂纹不敏感的材料选用内在质量好的母材。即选用碳当量低的优质钢材,尤其是避免母材大型夹渣。所以在球壳板制造前必须对板材进行严格的超声波检查,对有严重夹层等缺陷的钢材不得使用。 (2)尽量减少氢的来源。第一,球罐的焊接选用低氢型焊条,必要时要采用超低氢型的焊条;第二,焊条使用前一定要按产品使用说明进行烘干,并贮存在100~150℃的恒温箱中,在使用时放入保温筒内并随用随取,在保温筒内存放时间不得超过4h,否则要按原烘干温度重新烘干,重复烘干不得超过两次;第三,要彻底去除焊接坡口表面及坡口两侧20mm范围内的油污、水分,、铁锈及其他杂物;第四,不在雨雪天及空气相对湿度大于90%时施焊;第五,采取有效的防风措施,以防止吹弧,使焊接熔池得到有效的隔离保护。 (3)选用适当的焊前预热温度和预热范围。适当的预热温度降低了焊缝冷却速度,可使氢更易从焊缝熔池向大气中扩散,减少了焊缝中扩散氢含量,并

焊接热裂纹的产生原因及防止方法

一、热裂纹产生的原因分析 1、焊缝中杂质和拉应力的存在 因为焊缝中的杂质在焊缝结晶过程中会形成低熔点结晶。原因是低熔点共晶物的存在.结晶时被推挤到晶界上,形成液态薄膜,凝固收缩时焊缝金属在拉应力作用下,液态薄膜承受不了拉应力而形成裂纹。热裂纹就轻易在焊缝金属中产生.所以要控制焊缝金属杂质的含量,减少低熔点共晶物的天生。同时由此可见结晶裂纹的产生是低熔点共晶体和焊接拉应力共同作用的结果,二者缺一不可。低熔点共晶体是产生结晶裂纹的内因,焊接拉应力是产生结晶裂纹的外因。 2、焊缝终端部位温度的变化 埋弧焊焊接时,当焊接热源靠近纵焊缝的终端部位时,焊缝端部正常的温度场将发生变化,越靠近终端其变化越大.由于引弧板的尺寸远比筒体小,其热容量也小得多,而熄弧板与筒体之间只靠定位焊连接,故可视为大部门不连续.所以终端焊缝部位的传热前提是很差的,致使该部位局部温度升高,熔池外形发生变化,熔深也将随之变大,同时熔池在高温下停留的时间也变长,熔池凝固的速度变慢,尤其当熄弧板尺寸过小、熄弧板与筒体之间的定位焊缝过短、过薄时更为明显. 焊缝外形对结晶裂纹的形成有显著的影响。熔宽与熔深比小易形成裂纹,熔宽与熔深比大抗结晶裂纹性较高。 3、焊接线能量的影响 因为埋弧焊所采用的焊接热输入量往往比其他焊接方法要大得多,焊接线能量的大小直接影响到焊缝的成形,而焊缝的成形外形又直接决定着焊缝凝固后的晶粒分布和低熔点共晶体的存在位置及受力情况,因而对结晶裂纹产生与否影响较大。另外,焊缝的横向收缩量远比间隙的张开量要小,使终端部位的横向拉伸力比其他焊接方法要大.这对开坡口的中厚板和不开坡口的较薄板尤为明显. 4、其他情况 如存在强制装配,装配质量不符合要求. 二、焊缝裂纹的性质及特点 终端裂纹形成的部位有时为终端,有时为距终端四周地区150mm范围内,有时为表面裂纹,有时为内部裂纹,而大多数情况是发生在终端四周的内部裂纹.裂纹与焊缝的波纹线相垂直,露在焊缝表面的有显著的锯齿外形。这些特征都是结晶裂纹的表现,除了结晶裂纹以外,其它类型的裂纹在低合金钢板自动埋弧焊时极为少见。在出产中我们发现低合金钢板自动埋弧焊结晶裂纹的产生有以下几个特点: 1、多泛起在第一遍焊接时。 2、厚度小于20mm的钢板的筒节纵缝的熄弧板处易产生结晶裂纹;而厚度大于20mm的低合金钢板在纵缝和环缝中都有可能无规律地泛起裂纹。 3、在钢板和焊剂的化学成分中碳及其它易产生热裂纹的有害合金成分偏上限或超过划定含量上限时易产生裂纹。 三、预防措施 从上述热裂纹产生原因分析可见,要克服埋弧焊热裂纹最主要的措施是: 1、减小焊接拉应力

焊接冷裂纹

焊接冷裂纹 1.前言 1.1焊接裂纹的简介 焊接裂纹是指金属在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区金属原子结合力遭到破坏所产生的缝隙。在焊接生产中由于钢种和结构的类型不同,可能出现各种裂纹,焊接裂纹产生的条件和原因各有不同。有些裂纹在焊后立即产生,有些在焊后延续一段时间才发生,有的在一定外界条件诱发下才产生;裂纹既出现在焊缝和热影响区表面,也产生在其内部。 焊接裂纹对焊接结构的危害有:①减少了焊接接头的工作截面,因而降低了焊接结构的承载能力②构成了严重的应力集中。裂纹是片状缺陷,其边缘构成了非常尖锐的切口应力集中,既降低结构的疲劳强度,又容易引发结构的脆性破坏。 ③造成泄漏。由于盛装或输送有毒且可燃的气体或液体的各种焊接储罐和管道,若有穿透性裂纹,必然发生泄漏。④表面裂纹能藏污纳垢,容易造成或加速结构的腐蚀。⑤留下隐患,使结构变得不可靠。由于延迟裂纹产生具有不定期性,微裂纹和内部裂纹易于漏检,这些都增加了焊接结构在使用中的潜在危险。 焊接裂纹是焊接结构最严重的工艺缺陷,直接影响产品质量,甚至引起突发事故,例如,焊接桥梁坍塌,大型海轮断裂,各种类型压力容器爆炸等恶性事故。随着现代钢铁、石油化工、船舶和电力等工业的发展,在焊接结构方面都趋向大型化、大容量和高参数方向发展,有的在低温、深冷或腐蚀介质下工作,都广泛采用各种低合金高强钢材料,而这些金属材料通常对裂纹十分敏感。因此,从焊接裂纹的微观形态、起源与扩展及影响因素等进行深入分析,对防止焊接裂纹和保证工程结构的质量稳定性是十分重要的。 1.2焊接裂纹分类 焊接裂纹按产生的机理可分为热裂纹、冷裂纹、再热裂纹、层状撕裂和应力腐蚀裂纹等。 (1)热裂纹 焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区产生的裂纹,它的特征是沿原奥氏体晶界开裂。根据所焊金属的材料不同,产生热裂纹的形态、温度区间和主要原因也不同。

焊条电弧焊中焊缝裂纹产生原因分析及预防措施

焊条电弧焊中焊缝裂纹产生原因分析及预防措施 摘要:在焊接结构施工过程中,焊缝裂纹是一种最危险的破坏形式,尤其在焊条电弧焊过程中更为突出,由于受工人操作水平、外界条件影响比较多,经常会在施工过程出现焊接裂纹,如不及时发现和返修,会对整个焊接结构产生很大的影响。 关键词:焊接焊缝裂纹产生原因防止措施 在焊接结构中,焊接裂纹是危险的破坏形式,他常常的生产带来巨大的经济损失。那么在焊接结构中常见的裂纹形式有哪些呢?产生的原因防止措施有哪些呢,焊接裂纹形成原因有哪些呢?现从以下几方面做一探讨。 在焊接结构中最常见焊接裂纹常见的有二大种类型:热裂纹、冷裂纹。 1、热裂纹 所有焊接热裂纹的特征都是沿原奥氏体晶界开裂,热裂纹的形态、产生热裂纹的温度区间和主要原因是不同的。所以,热裂纹又可进一步分类。通常,人们把热裂纹分为结晶裂纹、液化裂纹和多边化裂纹三类。 1.1 结晶裂纹 焊缝金属结晶过程中,在固相线附近,晶界残存低熔点的液态薄膜,在应力作用下形成的裂纹。 结晶裂纹主要发生在含(硫、磷、碳、硅等)杂质比较多的碳钢、低合金钢焊缝中,以及单相奥氏体钢、镍基合金以及某些铝合金的焊缝中。 1.2 液化裂纹 它的产生机理和结晶裂纹基本相同,只是产生部位不同。液化裂纹发生在近缝区或多层焊的层间部位,是在焊接热循环峰值温度作用下,由于被焊金属含有比较多的低熔点共晶而被重新熔化,在拉伸应力作用下,沿奥氏体晶界发生的开裂。 液化裂纹主要发生在含有铬、镍的高强钢、奥氏体钢、以及某些镍基合金的近缝区或多层焊层间部位。一般,母材和焊丝中硫、磷、碳、硅越高,液化裂纹倾向越高。 1.3 多边化裂纹 多边化裂纹大多发生在纯金属或单相奥氏体合金的焊缝中或近缝区。焊接时,在固相线稍下的高温区间,由于刚凝固的金属中存在很多晶格缺陷(主要是位错和空穴)以及严重的物理化学不均匀性,在一定的温度和应力作用下,这些晶格缺陷迁移聚集,就形成了类似晶界的二次边界,也就是所谓的“多边化边界”。因为边界上堆积了大量的晶格缺陷,所以它的组织性能脆弱,高温时的强度和塑性都很差,只要有轻微的拉伸应力,就会沿多边化的边界开裂,产生多边化裂纹。 三种裂纹中,结晶裂纹最为常见。通常所说的热裂纹,如果不特别说明的话,就是指结晶裂纹。有宏观裂纹一般必有微观裂纹,但有微观裂纹不一定有宏观裂纹。 影响热裂纹的因素主要有以下几面:首先结晶温度区的范围愈大,则增加脆性温度区,即增加裂纹倾向。结晶温度区大小与合金量有很大关系;即随着合金成份的增加,结晶温度区间也越大,热裂倾向也越大。其次碳当量愈大,则热纹倾向越大。各种元素对结晶裂纹的影响不同,例如严重影响结晶纹的元素有C,S,P,Cn,Ni。 2、冷裂纹 是在相当低的温度(即在钢的马氏体转变度附近,约200-300℃)由于约束应力,

焊接缺陷分类

焊接缺陷分类: ①从宏观上看,可分为裂纹、未熔合、未焊透、夹渣、气孔、及形状缺陷,又称焊缝金属表面缺陷或叫接头的几何尺寸缺陷,如咬边,焊瘤等。在底片上还常见如机械损伤(磨痕),飞溅、腐蚀麻点等其他非焊接缺陷。 ②从微观上看,可分为晶体空间和间隙原子的点缺陷,位错性的线缺陷,以及晶界的面缺陷。微观缺陷是发展为宏观缺陷的隐患因素。 宏观六类缺陷的形态及产生机理 ①气孔:焊接时,熔池中的气泡在凝固时未能逸出而残留下来所形成的空穴。气孔可分为条虫状气孔、针孔、柱孔,按分布可分为密集气孔,链孔等。 气孔的生成有工艺因素,也有冶金因素。工艺因素主要是焊接规范、电流种类、电弧长短和操作技巧。冶金因素,是由于在凝固界面上排出的氮、氢、氧、一氧化碳和水蒸汽等所造成的。 ②夹渣:焊后残留在焊缝中的溶渣,有点状和条状之分。产生原因是熔池中熔化金属的凝固速度大于熔渣的流动速度,当熔化金属凝固时,熔渣未能及时浮出熔池而形成。它主要存于焊道之间和焊道与母材之间。 ③未熔合:熔焊时,焊道与母材之间或焊道与焊道之间未完全熔化结合的部分;点焊时母材与母材之间未完全熔化结合的部分,称之。 未熔合可分为坡口未熔合、焊道之间未熔合(包括层间未熔合)、焊缝根部未熔合。按其间成分不同,可分为白色未熔合(纯气隙、不含夹渣)、黑色未熔合(含夹渣的)。 产生机理:a.电流太小或焊速过快(线能量不够);b.电流太大,使焊条大半根发红而熔化太快,母材还未到熔化温度便覆盖上去。C.坡口有油污、锈蚀;d.焊件散热速度太快,或起焊处温度低;e.操作不当或磁偏吹,焊条偏弧等。 ④未焊透:焊接时接头根部未完全熔透的现象,也就是焊件的间隙或钝边未被熔化而留下的间隙,或是母材金属之间没有熔化,焊缝熔敷金属没有进入接头的根部造成的缺陷。 产生原因:焊接电流太小,速度过快。坡口角度太小,根部钝边尺寸太大,间隙太小。焊接时焊条摆动角度不当,电弧太长或偏吹(偏弧) ⑤裂纹(焊接裂纹):在焊接应力及其它致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏而形成的新界面而产生缝隙,称为焊接裂纹。它具有尖锐的缺口和大的长宽比特征。按其方向可分为纵向裂纹、横向裂纹,辐射状(星状)裂纹。按发生的部位可分为根部裂纹、弧坑裂纹,熔合区裂纹、焊趾裂纹及热响裂纹。按产生的温度可分为热裂纹(如结晶裂纹、液化裂纹等)、冷裂纹(如氢致裂纹、层状撕裂等)以及再热裂纹。 产生机理:一是冶金因素,另一是力学因素。冶金因素是由于焊缝产生不同程度的物理与化学状态的不均匀,如低熔共晶组成元素S、P、Si等发生偏析、富集导致的热裂纹。此外,在热影响区金属中,快速加热和冷却使金属中的空位浓度增加,同时由于材料的淬硬倾向,降低材料的抗裂性能,在一定的力学因素下,这些都是生成裂纹的冶金因素。力学因素是由于快热快冷产生了不均匀的组织区域,由于热应变不均匀而导至不同区域产生不同的应力联系,造成焊接接头金属处于复杂的应力--应变状态。内在的热应力、组织应力和外加的拘束应力,以及应力集中相叠加构成了导致接头金属开裂的力学条件。 ⑥形状缺陷 焊缝的形状缺陷是指焊缝表面形状可以反映出来的不良状态。如咬边、焊瘤、烧穿、凹坑(内凹)、未焊满、塌漏等。 产生原因:主要是焊接参数选择不当,操作工艺不正确,焊接技能差造成。

焊接的收弧的时候产生裂纹

焊接的收弧的时候产生裂纹,是什么裂纹 1.短路过渡焊接 CO2电弧焊中短路过渡应用最广泛,主要用于薄板及全位置焊接,规范参数为电弧电压焊接电流、焊接速度、焊接回路电感、气体流量及焊丝伸出长度等。(1)电弧电压和焊接电流,对于一定的焊丝直径及焊接电流(即送丝速度),必须匹配合适的电弧电压,才能获得稳定的短路过渡过程,此时的飞溅最少。不同直径焊丝的短路过渡时参数如表: 焊丝直径(㎜)0.8 1.2 1.6 电弧电压(V)18 19 20 焊接电流(A)100-110 120-135 140-180 (2)焊接回路电感,电感主要作用: a 调节短路电流增长速度di/dt, di/dt过小发生大颗粒飞溅至焊丝大段爆断而使 电弧熄灭,di/dt 过大则产生大量小颗粒金属飞溅。 b 调节电弧燃烧时间控制母材熔深。 c 焊接速度。焊接速度过快会引起焊缝两侧吹边,焊接速度过慢容易发生烧穿和焊缝组织粗大等缺陷。 d 气体流量大小取决于接头型式板厚、焊接规范及作业条件等因素。通常细丝焊接时气流量为5-15 L/min,粗丝焊接时为20-25 L/min。 e 焊丝伸长度。合适的焊丝伸出长度应为焊丝直径的10-20倍。焊接过程中,尽量保持在10-20㎜范围内,伸出长度增加则焊接电流下降,母材熔深减小,反之则电流增大熔深增加。电阻率越大的焊丝这种影响越明显。 f 电源极性。CO2电弧焊一般采用直流反极性时飞溅小,电弧稳定母材熔深大、成型好,而且焊缝金属含氢量低。 2、细颗粒过渡。 (1)在CO2气体中,对于一定的直径焊丝,当电流增大到一定数值后同时配以较高的电弧压,焊丝的熔化金属即以小颗粒自由飞落进入熔池,这种过渡形式为细颗粒过渡。 细颗粒过渡时电弧穿透力强母材熔深大,适用于中厚板焊接结构。细颗粒过渡焊接时也采用直流反接法。 (2)达到细颗粒过渡的电流和电压范围: 焊丝直径(mm)电流下限值(A)电弧电压(V) 1.2 300 34- 35 1.6 400 2.0 500 随着电流增大电弧电压必须提高,否则电弧对熔池金属有冲刷作用,焊缝成形恶化,适当提高电弧电压能避免这种现象。然而电弧电压太高飞溅会显著增大,在同样电流下,随焊丝直径增大电弧电压降低。CO2细颗粒过渡和在氩弧焊中的喷射过渡有着实质性差别。氩弧焊中的喷射过渡是轴向的,而CO2中的细颗粒过渡是非轴向的,仍有一定金属飞溅。另外氩弧焊中的喷射过渡界电流有明显较变特征。(尤其是焊接不锈钢及黑色金属)而细颗粒过渡则没有。

裂纹分类

裂纹分类 凡是使金属的连续性被破坏的缺陷,而此种缺陷又具有一定的深度、长度和宽度,或直线或曲线状分布于钢材或工件表面或内部,即称裂纹。 裂纹的分类: 1. 按裂纹存在的形状和大小可分为:龟纹、“V型”纹、“y型”纹、“之状”裂纹、环状裂纹、鸡爪状裂纹、丝纹、发纹、裂纹、裂缝等宏观裂纹及微观裂纹。 2. 按裂纹存在于钢材或工件上的不同方向分为:纵裂纹、横裂纹即为定向裂纹等。 3. 按裂纹存在的不同部位分为:表皮裂纹、皮下裂纹、心部裂纹与钢锭的头部裂纹、中部裂纹、尾部裂纹及角部裂纹等。 4. 按裂纹产生的不同根源分为:铸造裂纹、锻造裂纹、轧制裂纹、拔制裂纹、研磨裂纹、淬火裂纹、焊接裂纹及疲劳裂纹等。 低倍组织结构内容 1. 偏析、疏松、气孔、树枝状结晶、缩孔、缩管、晶粒粗大、气泡翻皮、金属夹杂物、非金属夹杂物、裂纹等。 2. 在加热过程中产生的缺陷:过烧、氧化铁皮、脱碳层、晶粒粗大、斑疤、夹层、重皮、皱纹、裂纹、飞边、折叠、白点等。

3. 使用过程中产生的:疲劳断口、脆性断裂、裂口、分层等缺陷。 钢中低倍组织结构的检验方法 一、表面质量检验法: 1.目的: i. 避免因表面质量不良而造成在生产工艺上发生废品的损失、降低使用寿命; ii. 确定钢锭、钢坯、钢材及零件等是否必须经过中间清理或维修工序; iii. 查明表面缺陷的类别、特征、对质量危害的程度,从而分析其产生的原因,提供今后的改进质量的有效技术措施。 二、敲击检验法 视小铁锤回跳情况与工件发出声音的情况来判断是否有裂纹。 三、断口质量检验法 1.目的 i. 检验常存的一些缺陷:缩孔、非金属夹杂物、夹砂、斑点、晶粒粗大、晶粒不均、脱碳、气孔、带状组织、层状组织、白点等; ii. Cr-Ni,Cr-Ni-Mo,Cr和高碳钢中的白点; iii. 分析产生断裂的原因与断裂的性质。 四、冷热酸蚀检验法 1.热酸蚀法:将酸的水溶液(1:1盐酸)加热到70~80℃时把试样

相关主题
文本预览
相关文档 最新文档