当前位置:文档之家› 排序学习中的Ranking SVM算法研究

排序学习中的Ranking SVM算法研究

排序学习中的Ranking SVM算法研究
排序学习中的Ranking SVM算法研究

排序学习中的Ranking SVM算法研究

【摘要】本文详细分析了基于支持向量机的排序学习算法Ranking SVM,通过选取不同的惩罚参数在OHSUMED数据集进行实验,衡量了算法在评价准则MAP和NDCG@n下的性能。

【关键词】排序学习;排序支持向量机;算法

Researh of Ranking SVM Algorithm in Learning to Rank

DING Wei-min

(Weifang University,Weifang Shandong 261061,China)

【Abstract】The paper gives a detailed analysis about the algorithm of Ranking SVM.By experimenting with different penalty parameters on the data set of OHSUMED,the paper also gives the performance in the evaluation criteria of MAP and NDCG@n.

【Key words】Learning to rank;Ranking SVM;Algorithm

0 引言

目前,对于互联网上海量的资源,人们主要通过向搜索引擎提交查询请求获取所需要的信息。搜索引擎根据用户交互组件收到的请求对网页索引数据库检索并将结果交付排序组件进行排序处理,最终以网页排序列表的形式呈现给用户[1]。虽然网页排序列表集合仍十分巨大,实际上用户访问的网页数量却很少,如文献[2]通过分析用户点击数据的日志信息,得到用户点击网页排名的平均值基本在第六条记录左右。因此,如何将相关性强的网页排在列表的前面,而将相关性弱的网页排在后边是搜索引擎排序组件中排序算法需要解决的主要问题,本文在分析排序学习算法Ranking SVM基础上,通过在数据集OHSUMED进行实验,给出算法在评价准则MAP和NDCG@n下的性能。

1 排序学习与Ranking SVM算法[3,4]

排序学习的目的通过使用训练数据和机器学习技术自动创建排序模型。在排序学习中典型的设置是将特征向量和有序分类作为训练数据。通过在训练数据上进行学习得到排序模型,然应用到测试数据上。[5]

Ranking SVM算法是通过在训练集构造样本有序数据对的方式将排序问题转化为应用支持向量机方法解决的二分类问题。具体描述为:针对训练集合构造有序数据对集合S={(x■■,x■■),z■},x■■,x■■表示针对同一查询的返回文档,如果x■■,x■■组成顺序对,则z■值为+1表示。如果为逆序对,则z■值为

算法排序问题实验报告

《排序问题求解》实验报告 一、算法的基本思想 1、直接插入排序算法思想 直接插入排序的基本思想是将一个记录插入到已排好序的序列中,从而得到一个新的,记录数增1 的有序序列。 直接插入排序算法的伪代码称为InsertionSort,它的参数是一个数组A[1..n],包含了n 个待排序的数。用伪代码表示直接插入排序算法如下: InsertionSort (A) for i←2 to n do key←A[i] //key 表示待插入数 //Insert A[i] into the sorted sequence A[1..i-1] j←i-1 while j>0 and A[j]>key do A[j+1]←A[j] j←j-1 A[j+1]←key 2、快速排序算法思想 快速排序算法的基本思想是,通过一趟排序将待排序序列分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可对这两部分记录继续进行排序,以达到整个序列有序。 假设待排序序列为数组A[1..n],首先选取第一个数A[0],作为枢轴(pivot),然后按照下述原则重新排列其余数:将所有比A[0]大的数都排在它的位置之前,将所有比A[0] 小的数都排在它的位置之后,由此以A[0]最后所在的位置i 作为分界线,将数组A[1..n]分成两个子数组A[1..i-1]和A[i+1..n]。这个过程称作一趟快速排序。通过递归调用快速排序,对子数组A[1..i-1]和A[i+1..n]排序。 一趟快速排序算法的伪代码称为Partition,它的参数是一个数组A[1..n]和两个指针low、high,设枢轴为pivotkey,则首先从high 所指位置起向前搜索,找到第一个小于pivotkey 的数,并将其移到低端,然后从low 所指位置起向后搜索,找到第一个大于pivotkey 的数,并将其移到高端,重复这两步直至low=high。最后,将枢轴移到正确的位置上。用伪代码表示一趟快速排序算法如下: Partition ( A, low, high) A[0]←A[low] //用数组的第一个记录做枢轴记录 privotkey←A[low] //枢轴记录关键字 while low=privotkey do high←high-1 A[low]←A[high] //将比枢轴记录小的记录移到低端 while low

插入排序算法实验报告

算法设计与分析基础 实验报告 应用数学学院 二零一六年六月

实验一插入排序算法 一、实验性质设计 二、实验学时14学时 三、实验目的 1、掌握插入排序的方法和原理。 2、掌握java语言实现该算法的一般流程。 四、实验内容 1、数组的输入。 2、输入、输出的异常处理。 3、插入排序的算法流程。 4、运行结果的输出。 五、实验报告 Ⅰ、算法原理 从左到右扫描有序的子数组,直到遇到一个大于(或小于)等于A[n-1]的元素,然后就把A[n-1]插在该元素的前面(或后面)。 插入排序基于递归思想。 Ⅱ、书中源代码 算法InsertionSort(A[0..n-1]) //用插入排序对给定数组A[0..n-1]排序 //输入:n个可排序元素构成的一个数组A[0..n-1] //输出:非降序排列的数组A[0..n-1] for i ←1 to n-1 do v ← A[i] j ← i-1 while j ≥0and A[j] > v do A[j+1] ← A[j] j ← j-1 A[j+1] ← v

Ⅲ、Java算法代码: import java.util.*; public class Charu { public static void main(String[] args) { int n = 5; int a[] = new int[n]; int s = a.length; int i = 0, j = 0, v = 0; System.out.println("请输入若干个数字:"); Scanner sc = new Scanner(System.in); try { while (i < s) { a[i] = sc.nextInt(); i++; } for (i = 1; i = 0 && a[j] > v) { a[j + 1] = a[j]; j--; } a[j + 1] = v; } System.out.println("插入排序结果显示:"); for (i = 0; i < s; i++) { System.out.println(a[i]); } } catch (Exception es) { System.out.println(es); } } } Ⅳ、运行结果显示:

排序算法比较实验报告

信息学部算法分析 上机报告 学号0901******** 姓名陈龙 指导老师秦明 时间2011.11.1~11.23

一.上机实验题目 实验1 比较归并排序和快速排序的区别。 实验2 利用贪心算法对背包问题进行求解。 二.算法设计思路 归并排序: 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列,设定两个指针,最初位置分别为两个已经排序序列的起始位置,比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置,重复步骤直到某一指针达到序列尾,将另一序列剩下的所 有元素直接复制到合并序列尾。 快速排序: 设置两个变量I、J,排序开始的时候:I=0,J=N-1;以第一个数组元素作为关键数据,赋值给key,即key=A[0];从J开始向前搜索,即由后开始向前搜索(J=J-1),找到第一个小于key的值A[J],并与key交换;从I开始向后搜索,即由前开始向后搜索(I=I+1),找到第一个大于key的A[I],与key交换;重复第3、4、5步,直到I=J;(3,4步是在程序中没找到时候j=j-1,i=i+1,直至找到为止。找到并交换的时候i,j指针位置不变。另外当i=j这过程一定正好是i+或j-完成的最后另循环结束。) 背包问题: 用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]} 。可以压缩空间,f[v]=max{f[v],f[v-c[i]]+w[i]}

三. 源程序 归并排序 #include #include # define N 50 int b[N],a[N]; int n,i; void Merge (int low, int mid,int high) //合并 { int i; int l=low,h=mid+1,k=l; while ((l<=mid) && (h<=high)) //部分合并 { if (a[l]<=a[h]) b[k++]=a[l++]; else b[k++]=a[h++]; } if(l>mid) while (h<=high) b[k++]=a[h++]; //转储剩余部分 else while(l<=mid) b[k++]=a[l++]; for (i=0;i<=high;i++) //将b数组转储到a a[i]=b[i]; } int Merge2 (int l,int h) //分类 { for (i=0;i

数据结构课程设计报告---几种排序算法的演示(附源代码)

? & 数据结构课程设计报告 —几种排序算法的演示( ; 时间:2010-1-14 … 一需求分析

运行环境 Microsoft Visual Studio 2005 程序所实现的功能 对直接插入排序、折半插入排序、冒泡排序、简单选择排序、快速排序、堆排序、归并排序算法的演示,并且输出每一趟的排序情况。 程序的输入(包含输入的数据格式和说明) % <1>排序种类三输入 <2>排序数的个数的输入 <3>所需排序的所有数的输入 程序的输出(程序输出的形式) <1>主菜单的输出 <2>每一趟排序的输出,即排序过程的输出 " 二设计说明 算法设计思想 <1>交换排序(冒泡排序、快速排序) 交换排序的基本思想是:对排序表中的数据元素按关键字进行两两比较,如果发生逆序(即排列顺序与排序后的次序正好相反),则两者交换位置,直到所有数据元素都排好序为止。 <2>插入排序(直接插入排序、折半插入排序) % 插入排序的基本思想是:每一次设法把一个数据元素插入到已经排序的部分序列的合适位置,使得插入后的序列仍然是有序的。开始时建立一个初始的有序序列,它只包含一个数据元素。然后,从这个初始序列出发不断插入数据元素,直到最后一个数据元素插到有序序列后,整个排序工作就完成了。 <3>选择排序(简单选择排序、堆排序) 选择排序的基本思想是:第一趟在有n个数据元素的排序表中选出关键字最小的数据元素,然后在剩下的n-1个数据元素中再选出关键字最小(整个数据表中次小)的数据元素,依次重复,每一趟(例如第i趟,i=1,…,n-1)总是在当前剩下的n-i+1个待排序数据元素中选出关键字最小的数据元素,作为有序数据元素序列的第i个数据元素。等到第n-1趟选择结束,待排序数据元素仅剩下一个时就不用再选了,按选出的先后次序所得到的数据元素序列即为有序序列,排序即告完成。 <4>归并排序(两路归并排序) 两路归并排序的基本思想是:假设初始排序表有n个数据元素,首先把它看成是长度为

《数据结构》实验报告——排序.docx

《数据结构》实验报告排序实验题目: 输入十个数,从插入排序,快速排序,选择排序三类算法中各选一种编程实现。 实验所使用的数据结构内容及编程思路: 1. 插入排序:直接插入排序的基本操作是,将一个记录到已排好序的有序表中,从而得到一个新的,记录增一得有序表。 一般情况下,第i 趟直接插入排序的操作为:在含有i-1 个记录的有序子序列r[1..i-1 ]中插入一个记录r[i ]后,变成含有i 个记录的有序子序列r[1..i ];并且,和顺序查找类似,为了在查找插入位置的过程中避免数组下标出界,在r [0]处设置哨兵。在自i-1 起往前搜索的过程中,可以同时后移记录。整个排序过程为进行n-1 趟插入,即:先将序列中的第一个记录看成是一个有序的子序列,然后从第2 个记录起逐个进行插入,直至整个序列变成按关键字非递减有序序列为止。 2. 快速排序:基本思想是,通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。 假设待排序的序列为{L.r[s] ,L.r[s+1],…L.r[t]}, 首先任意选取一个记录 (通常可选第一个记录L.r[s])作为枢轴(或支点)(PiVOt ),然后按下述原则重新排列其余记录:将所有关键字较它小的记录都安置在它的位置之前,将所有关键字较大的记录都安置在它的位置之后。由此可以该“枢轴”记录最后所罗的位置i 作为界线,将序列{L.r[s] ,… ,L.r[t]} 分割成两个子序列{L.r[i+1],L.[i+2], …,L.r[t]}。这个过程称为一趟快速排序,或一次划分。 一趟快速排序的具体做法是:附设两个指针lOw 和high ,他们的初值分别为lOw 和high ,设枢轴记录的关键字为PiVOtkey ,则首先从high 所指位置起向前搜索找到第一个关键字小于PiVOtkey 的记录和枢轴记录互相交换,然后从lOw 所指位置起向后搜索,找到第一个关键字大于PiVOtkey 的记录和枢轴记录互相 交换,重复这两不直至low=high 为止。 具体实现上述算法是,每交换一对记录需进行3 次记录移动(赋值)的操作。而实际上,

数据结构课程设计排序算法总结

排序算法: (1) 直接插入排序 (2) 折半插入排序(3) 冒泡排序 (4) 简单选择排序 (5) 快速排序(6) 堆排序 (7) 归并排序 【算法分析】 (1)直接插入排序;它是一种最简单的排序方法,它的基本操作是将一个记录插入到已排好的序的有序表中,从而得到一个新的、记录数增加1的有序表。 (2)折半插入排序:插入排序的基本操作是在一个有序表中进行查找和插入,我们知道这个查找操作可以利用折半查找来实现,由此进行的插入排序称之为折半插入排序。折半插入排序所需附加存储空间和直接插入相同,从时间上比较,折半插入排序仅减少了关键字间的比较次数,而记录的移动次数不变。 (3)冒泡排序:比较相邻关键字,若为逆序(非递增),则交换,最终将最大的记录放到最后一个记录的位置上,此为第一趟冒泡排序;对前n-1记录重复上操作,确定倒数第二个位置记录;……以此类推,直至的到一个递增的表。 (4)简单选择排序:通过n-i次关键字间的比较,从n-i+1个记录中选出关键字最小的记录,并和第i(1<=i<=n)个记录交换之。 (5)快速排序:它是对冒泡排序的一种改进,基本思想是,通过一趟排序将待排序的记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。 (6)堆排序: 使记录序列按关键字非递减有序排列,在堆排序的算法中先建一个“大顶堆”,即先选得一个关键字为最大的记录并与序列中最后一个记录交换,然后对序列中前n-1记录进行筛选,重新将它调整为一个“大顶堆”,如此反复直至排序结束。 (7)归并排序:归并的含义是将两个或两个以上的有序表组合成一个新的有序表。假设初始序列含有n个记录,则可看成是n个有序的子序列,每个子序列的长度为1,然后两两归并,得到n/2个长度为2或1的有序子序列;再两两归并,……,如此重复,直至得到一个长度为n的有序序列为止,这种排序称为2-路归并排序。 【算法实现】 (1)直接插入排序: void InsertSort(SqList &L){ for(i=2;i<=L.length ;i++) if(L.elem[i]L.elem[0];j--) L.elem [j+1]=L.elem [j]; L.elem [j+1]=L.elem[0]; } } (2)折半插入排序:

sklearn SVM算法库小结

scikit-learn 支持向量机算法库使用小结 之前通过一个系列对支持向量机(以下简称SVM)算法的原理做了一个总结,本文从实践 的角度对scikit-learn SVM算法库的使用做一个小结。scikit-learn SVM算法库封装了libsvm 和liblinear 的实现,仅仅重写了算法了接口部分。 1. scikit-learn SVM算法库使用概述 scikit-learn中SVM的算法库分为两类,一类是分类的算法库,包括SVC, NuSVC,和LinearSVC 3个类。另一类是回归算法库,包括SVR, NuSVR,和LinearSVR 3个类。相关的类都包 裹在sklearn.svm模块之中。 对于SVC, NuSVC,和LinearSVC 3个分类的类,SVC和 NuSVC差不多,区别仅仅在于对 损失的度量方式不同,而LinearSVC从名字就可以看出,他是线性分类,也就是不支持各种低维 到高维的核函数,仅仅支持线性核函数,对线性不可分的数据不能使用。 同样的,对于SVR, NuSVR,和LinearSVR 3个回归的类, SVR和NuSVR差不多,区别也仅仅在于对损失的度量方式不同。LinearSVR是线性回归,只能使用线性核函数。 我们使用这些类的时候,如果有经验知道数据是线性可以拟合的,那么使用LinearSVC 去分类或者LinearSVR去回归,它们不需要我们去慢慢的调参去选择各种核函数以及对应参数, 速度也快。如果我们对数据分布没有什么经验,一般使用SVC去分类或者SVR去回归,这就需要 我们选择核函数以及对核函数调参了。 什么特殊场景需要使用NuSVC分类和 NuSVR 回归呢?如果我们对训练集训练的错误率或者说支持向量的百分比有要求的时候,可以选择NuSVC分类和 NuSVR 。它们有一个参数来控制这个百分比。 这些类的详细使用方法我们在下面再详细讲述。 2. 回顾SVM分类算法和回归算法 我们先简要回顾下SVM分类算法和回归算法,因为这里面有些参数对应于算法库的参数,如果不先复习下,下面对参数的讲述可能会有些难以理解。 对于SVM分类算法,其原始形式是: min12||w||22+C∑i=1mξi min12||w||22+C∑i=1mξi

数据结构课程设计报告---几种排序算法的演示(附源代码)

数据结构课程设计报告 —几种排序算法的演示 时间:2010-1-14 一需求分析 运行环境 Microsoft Visual Studio 2005

程序所实现的功能 对直接插入排序、折半插入排序、冒泡排序、简单选择排序、快速排序、堆排序、归并排序算法的演示,并且输出每一趟的排序情况。 程序的输入(包含输入的数据格式和说明) <1>排序种类三输入 <2>排序数的个数的输入 <3>所需排序的所有数的输入 程序的输出(程序输出的形式) <1>主菜单的输出 <2>每一趟排序的输出,即排序过程的输出 二设计说明 算法设计思想 <1>交换排序(冒泡排序、快速排序) 交换排序的基本思想是:对排序表中的数据元素按关键字进行两两比较,如果发生逆序(即排列顺序与排序后的次序正好相反),则两者交换位置,直到所有数据元素都排好序为止。 <2>插入排序(直接插入排序、折半插入排序) 插入排序的基本思想是:每一次设法把一个数据元素插入到已经排序的部分序列的合适位置,使得插入后的序列仍然是有序的。开始时建立一个初始的有序序列,它只包含一个数据元素。然后,从这个初始序列出发不断插入数据元素,直到最后一个数据元素插到有序序列后,整个排序工作就完成了。 <3>选择排序(简单选择排序、堆排序)

选择排序的基本思想是:第一趟在有n个数据元素的排序表中选出关键字最小的数据元素,然后在剩下的n-1个数据元素中再选出关键字最小(整个数据表中次小)的数据元素,依次重复,每一趟(例如第i趟,i=1,…,n-1)总是在当前剩下的n-i+1个待排序数据元素中选出关键字最小的数据元素,作为有序数据元素序列的第i个数据元素。等到第n-1趟选择结束,待排序数据元素仅剩下一个时就不用再选了,按选出的先后次序所得到的数据元素序列即为有序序列,排序即告完成。 <4>归并排序(两路归并排序) 两路归并排序的基本思想是:假设初始排序表有n个数据元素,首先把它看成是长度为1的首尾相接的n个有序子表(以后称它们为归并项),先做两两归并,得n/2上取整个长度为2的归并项(如果n为奇数,则最后一个归并项的长度为1);再做两两归并,……,如此重复,最后得到一个长度为n的有序序列。 程序的主要流程图

各种排序实验报告

【一】需求分析 课程题目是排序算法的实现,课程设计一共要设计八种排序算法。这八种算法共包括:堆排序,归并排序,希尔排序,冒泡排序,快速排序,基数排序,折半插入排序,直接插入排序。 为了运行时的方便,将八种排序方法进行编号,其中1为堆排序,2为归并排序,3为希尔排序,4为冒泡排序,5为快速排序,6为基数排序,7为折半插入排序8为直接插入排序。 【二】概要设计 1.堆排序 ⑴算法思想:堆排序只需要一个记录大小的辅助空间,每个待排序的记录仅占有一个存储空间。将序列所存储的元素A[N]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的元素均不大于(或不小于)其左右孩子(若存在)结点的元素。算法的平均时间复杂度为O(N log N)。 ⑵程序实现及核心代码的注释: for(j=2*i+1; j<=m; j=j*2+1) { if(j=su[j]) break; su[i]=su[j]; i=j; } su[i]=temp; } void dpx() //堆排序 { int i,temp; cout<<"排序之前的数组为:"<=0; i--) { head(i,N); } for(i=N-1; i>0; i--) {

temp=su[i]; su[i]=su[0]; su[0]=temp; head(0,i-1); } cout<<"排序之后的数组为:"<

数据结构 课程设计报告(排序算法比较)

数据结构课程设计报告 学院:计算机科学与工程 专业:计算机科学与技术 班级:09级班 学号: 姓名: 指导老师: 时间: 2010年12月

一、课程设计题目:1、哈夫曼编码的实现 2、城市辖区地铁线路设计 3、综合排序算法的比较 二、小组成员: 三、题目要求: 1.哈夫曼编码的实现 (1)打开若干篇英文文章,统计该文章中每个字符出现的次数,进一步统一各字符出现的概率。 (2)针对上述统计结果,对各字符实现哈夫曼编码 (3)对任意文章,用哈夫曼编码对其进行编码 (4)对任意文章,对收到的电文进行解码 2.某城市要在其各个辖区之间修建地铁来加快经济发展,但由于建设地铁的费用昂贵,因此需要合理安排地铁的建设路线。 (1)从包含各辖区的地图文件中读取辖区的名称和各辖区的直接距离 (2)根据上述读入的信息,给出一种铺设地铁线路的解决方案。使乘客可以沿地铁到达各个辖区,并使总的建设费用最小。 (3)输出应该建设的地铁路线及所需要建设的总里程信息。 3.综合排序算法的比较 各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大概的执行时间。试通过随机的数据比较各算法的关键字比较次数和关键字移动的次数。 (1)对以下各种常用的内部排序算法进行比较: 直接插入排序,折半插入排序,二路归并排序,希尔排序,冒泡排序,快速排序,简单选择排序,堆排序,归并排序,基数排序。 (2)待排序的表长不少于100,要求采用随机数。 (3)至少要用5组不同的输入数据做比较:比较的次数为有关键字参加的比较次数和关键字移动的次数 (4)改变数据量的大小,观察统计数据的变化情况。 (5)对试验统计数据进行分析。对各类排序算法进行综合评价。 四、项目安排: 1、小组内分工合作 分工:负责哈夫曼编码的实现,负责城市辖区地铁线路设计,负责综合排序算法的比较。 合作:组内,组外进行交流,组长帮助解决组员的在项目过程中的困难,并控制进度。 五、完成自己的任务:

算法排序问题实验报告

《排序问题求解》实验报告 一、算法得基本思想 1、直接插入排序算法思想 直接插入排序得基本思想就是将一个记录插入到已排好序得序列中,从而得到一个新得, 记录数增 1 得有序序列。 直接插入排序算法得伪代码称为InsertionSort,它得参数就是一个数组A[1、、n],包含了n 个待排序得数。用伪代码表示直接插入排序算法如下: InsertionSort (A) for i←2 ton do key←A[i]//key 表示待插入数 //Insert A[i] into thesortedsequence A[1、、i-1] j←i-1 while j>0 andA[j]>key do A[j+1]←A[j] j←j-1 A[j+1]←key 2、快速排序算法思想 快速排序算法得基本思想就是,通过一趟排序将待排序序列分割成独立得两部分,其中一 部分记录得关键字均比另一部分记录得关键字小,则可对这两部分记录继续进行排序,以达 到整个序列有序。 假设待排序序列为数组A[1、、n],首先选取第一个数A[0],作为枢轴(pivot),然后按照下述原则重新排列其余数:将所有比A[0]大得数都排在它得位置之前,将所有比 A[0]小得数都排在它得位置之后,由此以A[0]最后所在得位置i 作为分界线,将数组 A[1、、n]分成两个子数组A[1、、i-1]与A[i+1、、n]。这个过程称作一趟快速排序。通过递归调用快速排序,对子数组A[1、、i-1]与A[i+1、、n]排序。 一趟快速排序算法得伪代码称为Partition,它得参数就是一个数组A[1、、n]与两个指针low、high,设枢轴为pivotkey,则首先从high所指位置起向前搜索,找到第一个小于pivotkey得数,并将其移到低端,然后从low 所指位置起向后搜索,找到第一个大于pivotkey 得数,并将其移到高端,重复这两步直至low=high。最后,将枢轴移到正确得位置上。用伪代码表示一趟快速排序算法如下: Partition ( A,low,high) A[0]←A[low] //用数组得第一个记录做枢轴记录 privotkey←A[low] //枢轴记录关键字 while low<high //从表得两端交替地向中间扫描 while low=privotkey do high←high-1 A[low]←A[high] //将比枢轴记录小得记录移到低端 while low<high &&A[low]<=pivotkey)dolow←low+1 A[high]←A[low] //将比枢轴记录大得记录移到高端

几种排序算法的平均性能比较(实验报告)

实验课程:算法分析与设计 实验名称:几种排序算法的平均性能比较(验证型实验) 实验目标: (1)几种排序算法在平均情况下哪一个更快。 (2)加深对时间复杂度概念的理解。 实验任务: (1)实现几种排序算法(selectionsort, insertionsort,bottomupsort,quicksort, 堆排序)。对于快速分类,SPLIT中的划分元素采用三者A(low),A(high),A((low+high)/2)中其值居中者。(2)随机产生20组数据(比如n=5000i,1≤i≤20)。数据均属于围(0,105)的整数。对于同一组数据,运行以上几种排序算法,并记录各自的运行时间(以毫秒为单位)。 (3)根据实验数据及其结果来比较这几种分类算法的平均时间和比较次数,并得出结论。实验设备及环境: PC;C/C++等编程语言。 实验主要步骤: (1)明确实验目标和具体任务; (2)理解实验所涉及的几个分类算法; (3)编写程序实现上述分类算法; (4)设计实验数据并运行程序、记录运行的结果; (5)根据实验数据及其结果得出结论; (6)实验后的心得体会。 问题分析(包括问题描述、建模、算法的基本思想及程序实现的技巧等): 选择排序:令A[1…n]为待排序数组,利用归纳法,假设我们知道如何对后n-1个元素排序,即对啊[A…n]排序。对某个j,1<=j<=n,设A[j]是最小值。首先,如果就!=1,我们交换A[1]和A[j]。然后由假设,已知如何对A[2..n]排序,因此可对在A[2…n]中的元素递归地排序。可把递归改为迭代。算法程序实现如下: void SelectionSort(int *Array,int n,int &c) { int i,j,k; int aa; c=0; for(i=0;i

数据结构-多关键字排序课设报告

目录 一.设计题目 (2) 二.需求分析 (2) 1.程序设计问题描述 (2) 2.基本要求 (2) 3.流程图 (2) 三.详细设计 (3) 1.数据结构定义 (4) 2.主要算法设计 (5) 3.函数调用关系图 (8) 4.程序主要流程 (8) 四.调试分析 (13) 五.用户手册 (15) 六.测试结果 (19) 七.源代码(带注释) (21) 八.参考文献 (26)

一.设计题目 多关键字排序 二.需求分析 1.程序设计问题描述 多关键字的排序有其一定的实用范围。例如:在进行高考分数处理时,除了需对总分进行排序外,不同的专业对单科分数的要求不同,因此尚需在总分相同的情况下,按用户提出的单科分数的次序要求排出考生录取的次序。 2.基本要求 (1)假设待排序的记录数不超过10000,表中记录的关键字数不超过5,各个关键字的范围均为0至100。按用户给定的进行排序的关键字的优先关系,输出排序结果。 (2)约定按LSD法进行多关键字的排序。在对各个关键字进行排序时采用两种策略:其一是利用稳定的内部排序法,其二是利用"分配"和"收集"的方法。并综合比较这两种策略。 (3)测试数据由随机数生成器产生。 3.流程图

三.详细设计 本程序是对语文,数学,英语,体育,综合这5门成绩按照此顺序进行优先排序。各科分数为0~100。 由于本实验约定按LSD进行多关键字的排序。在对个关键字进行排序时采用两种策略:其一是利用稳定的内部排序法,其二是利用“分配”和“收集”的方法。所以在一个程序里实现了这两种排序方法。 第一种排序方法由于要使用稳定的排序方法,故参考书上的几种排序方法后,选用了冒泡排序和静态链表存储方式,每一趟排序后,找出最高分。第二种排序方法利用“分配”与“收集”的基数排序算法,用静态链表存储分数,在一趟排序中,将结点分配到相应的链

数据结构(C语言版)实验报告-(内部排序算法比较)

数据结构与算法》实验报告 一、需求分析 问题描述:在教科书中,各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大概执行时间。试通过随机数据比较各算法的关键字比较次数和关键字移动次数,以取得直观感受。 基本要求: (l )对以下 6 种常用的内部排序算法进行比较:起泡排序、直接插入排序、简单选择排序、快速排序、希尔排序、堆排序。 (2 )待排序表的表长不小于100000 ;其中的数据要用伪随机数程序产生;至少要用 5 组不同的输入数据作比较;比较的指标为有关键字参加的比较次数和关键字的移动次数(关键字交换计为 3 次移动)。 ( 3 )最后要对结果作简单分析,包括对各组数据得出结果波动大小的解释。数据测试:二.概要设计 1. 程序所需的抽象数据类型的定义: typedef int BOOL; typedef struct StudentData { } Data; typedef struct LinkList { Data Record[MAXSIZE]; int num; // 存放关键字 int Length; // 数组长度// 用数组存放所有的随机数 // 说明BOOL 是int 的别名 } LinkList int RandArray[MAXSIZE]; // 定义长度为MAXSIZE 的随机数组 void RandomNum() // 随机生成函数

void InitLinkList(LinkList* L) // 初始化链表 // 比较所有排序 2 . 各程序模块之间的层次(调用)关系: BOOL LT(int i, int j,int* CmpNum) // 比较 i 和 j 的大小 void Display(LinkList* L) // 显示输出函数 void ShellSort(LinkList* L, int dlta[], int t,int* CmpNum, int* ChgNum) void QuickSort (LinkList* L, // 快速排序 void HeapSort (LinkList* L, // 堆排序 void BubbleSort(LinkList* L, // 冒泡排序 void SelSort(LinkList* L, // 选择排序 int* CmpNum, int* ChgNum) int* CmpNum, int* ChgNum) int* CmpNum, int* ChgNum) * CmpNum, int* ChgNum) void Compare(LinkList* L,int* CmpNum, int* ChgNum) // 希尔排序

内部排序算法比较课程设计报告种基本排序

合肥学院 计算机科学与技术系 课程设计报告 2017?2018 学年第一学期 课程课程设计名称学生姓名学号数据结构与算法内部排序算法比较 操彦1504012027

指导教师 2017 年9 月

1、问题分析和任务定义 各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大概执行时间,存在一定的却缺陷。我们将通过随机的数据比较各算法的关键字比较次数和关键字移动次数,以取得直观感受。所设计的程序应能够将产生的随机数据同时用不同的内部排序算法排序,并列出关键字比较次数与移动次数,方便比较。待排序表的表长不少于100,为方便起见, 我们令表长等于100,用5组随机的数据排序的结果作比较。 2、数据结构的选择和概要设计 一.可能排序表的抽象数据类型定义: ADT OrderableList { 数据对象:D=個€ IntegerSet , i=1 , 2, ........... , n, n>0} 数据关系:R1= { 已:| 丘:—L,机| € D,i=2, n} 基本操作: Ini tList (n) 操作结果:构造一个长度为n,元素值依次为1, 2, ....... , n的有序表。 Ran domizeList(d,is In verseOrder) 操作结果:首先根据islnverseOrder 为True或False,将表置为逆序或正序,然后将表进 行d (0< d< 8)级随机打乱。d为0时表不打乱,d越大,打乱程度越高。 RecallList () 操作结果:恢复最后一次用Ran domizeList随机大乱的可排序表。 ListLe ngth () 操作结果:返回可排序的长度。 ListEmpty () 操作结果:若可排序表为空表,则返回True,否则返回False。 BubbleSort (&c, &s) 操作结果:进行冒泡排序,返回关键字比较次数c和移动次数s。 InsertSort (&c, &s) 操作结果:进行插入排序,返回关键字比较次数c和移动次数S。

快速排序实验报告

南京邮电大学通达学院 实验报告 实验名称:快速排序算法 课程名称:微型计算机原理与接口技术 姓名班级学号:钱煜中 142501 14250120 实验时间:2016.12.2

快速排序原理 一、实验原理: 快速排序算法quick sort主要是利用分治递归的思想进行排序的方法。它的原理是首先从待排序的原始序列a[p,…,r]中选取一个元素a[q]作为分界点(pivot),然后将序列分为两个子序列,左边子序列a[p,…,q-1]元素的值都小于分界点m,右边子序列a[q+1,…,r]元素值都大于分界点的值,此时得到的序列命名为a’,而a[q]应该处于其排好序后的正确位置。然后利用递归的思想,对左右两个子序列a[p,…,q-1]和a[q+1,…,r]再分别进行排序,直到子序列的长度为1结束,序列有序。 其中,选取a中的基准分界点的方式有多种,或者选择序列的首元素a[p],或者选择序列的尾元素a[r],或者选择序列中间位置的元素a[(p+r)/2],或者取这三个元素按照大小排序后的中间值。 例子: a = [38, 81, 22,48,13,69, 93, 14, 45, 58, 79, 72],取[(left+right)/2]处的元素作为分界点(pivot)的值。具体第一次分区过程如下:

因此,第一次分区,以69为分界点,结果为: a’= [14, 58, 22, 48, 13, 38, 45, 69, 93, 81, 79, 72]。 二、实验代码 #include int fast_sort(int *a,int i,int j,int *p,int **b) { int k,temp,f,g; g=*p; g=(12*g)-12; //intf("成功进入快速排序 g=%d\n",g); k=i; i++;

支持向量机(SVM)算法推导及其分类的算法实现

支持向量机算法推导及其分类的算法实现 摘要:本文从线性分类问题开始逐步的叙述支持向量机思想的形成,并提供相应的推导过程。简述核函数的概念,以及kernel在SVM算法中的核心地位。介绍松弛变量引入的SVM算法原因,提出软间隔线性分类法。概括SVM分别在一对一和一对多分类问题中应用。基于SVM在一对多问题中的不足,提出SVM 的改进版本DAG SVM。 Abstract:This article begins with a linear classification problem, Gradually discuss formation of SVM, and their derivation. Description the concept of kernel function, and the core position in SVM algorithm. Describes the reasons for the introduction of slack variables, and propose soft-margin linear classification. Summary the application of SVM in one-to-one and one-to-many linear classification. Based on SVM shortage in one-to-many problems, an improved version which called DAG SVM was put forward. 关键字:SVM、线性分类、核函数、松弛变量、DAG SVM 1. SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。 对于SVM的基本特点,小样本,并不是样本的绝对数量少,而是与问题的复杂度比起来,SVM算法要求的样本数是相对比较少的。非线性,是指SVM擅长处理样本数据线性不可分的情况,主要通过松弛变量和核函数实现,是SVM 的精髓。高维模式识别是指样本维数很高,通过SVM建立的分类器却很简洁,只包含落在边界上的支持向量。

拓扑排序课程设计报告

沈阳航空航天大学 课程设计报告 课程设计名称:数据结构课程设计 课程设计题目:拓扑排序算法 院(系):计算机学院 专业:计算机科学与技术(嵌入式系统方向) 班级:14010105班 学号:2011040101221 姓名:王芃然 指导教师:丁一军

目录 1 课程设计介绍 (1) 1.1课程设计内容 (1) 1.2课程设计要求 (1) 2 课程设计原理 (2) 2.1课设题目粗略分析 (2) 2.2原理图介绍 (2) 2.2.1 功能模块图 (2) 2.2.2 流程图分析 (3) 3 数据结构分析 (7) 3.1存储结构 (7) 3.2算法描述 (7) 4 调试与分析 (12) 4.1调试过程 (12) 4.2程序执行过程 (12) 参考文献 (14) 附录(关键部分程序清单) (15)

1 课程设计介绍 1.1 课程设计内容 由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。若在图一的有向图上人为的加一个表示V2<=V3的弧(“<=”表示V2领先于V3)则图一表示的亦为全序且这个全序称为拓扑有序,而由偏序定义得到拓扑有序的操作便是拓扑排序。在AOV网中为了更好地完成工程,必须满足活动之间先后关系,需要将各活动排一个先后次序即为拓扑排序。编写算法建立有向无环图,主要功能如下: 1.能够求解该有向无环图的拓扑排序并输出出来; 2.拓扑排序应该能处理出现环的情况; 3.顶点信息要有几种情况可以选择。 1.2 课程设计要求 1.输出拓扑排序数据外,还要输出邻接表数据; 2.参考相应的资料,独立完成课程设计任务; 3.交规范课程设计报告和软件代码。

实验四排序实验报告

数据结构实验报告 实验名称:实验四排序 学生姓名: 班级: 班内序号: 学号: 日期:2012年12月21日 1、实验要求 题目2 使用链表实现下面各种排序算法,并进行比较。 排序算法: 1、插入排序 2、冒泡排序 3、快速排序 4、简单选择排序 5、其他 要求: 1、测试数据分成三类:正序、逆序、随机数据。 2、对于这三类数据,比较上述排序算法中关键字的比较次数和移动次数(其中关键字交换计为3次移动)。 3、对于这三类数据,比较上述排序算法中不同算法的执行时间,精确到微秒(选作)。 4、对2和3的结果进行分析,验证上述各种算法的时间复杂度。

编写测试main()函数测试线性表的正确性。2、程序分析 2.1存储结构 说明:本程序排序序列的存储由链表来完成。 其存储结构如下图所示。 (1)单链表存储结构: (2)结点结构 struct Node {

int data; Node * next; }; 示意图: 2.2关键算法分析 一:关键算法 (一)直接插入排序void LinkSort::InsertSort() 直接插入排序是插入排序中最简单的排序方法,其基本思想是:依次将待排序序列中的每一个记录插入到一个已排好的序列中,直到全部记录都排好序。 (1)算法自然语言 1.将整个待排序的记录序列划分成有序区和无序区,初始时有序区为待排序记录序列中的第一个记录,无序区包括所有剩余待排序的记录; 2.将无须去的第一个记录插入到有序区的合适位置中,从而使无序区减少一个记录,有序区增加一个记录; 3.重复执行2,直到无序区中没有记录为止。 (2)源代码 void LinkSort::InsertSort() //从第二个元素开始,寻找前面那个比它大的

相关主题
文本预览
相关文档 最新文档