当前位置:文档之家› 组合,时序逻辑

组合,时序逻辑

组合,时序逻辑
组合,时序逻辑

组合逻辑电路:是指数字电路在任何时刻的输出仅仅取决与该时刻数字电路输入,而与电路原来的状态无关。、

时序逻辑电路:是指数字电路在任何时刻的输出不仅取决与当时的输入信号,而且还取决于电路原来的状态,或者说和以前的输入有关。

上面的话很好记,反映到实际情况中查了好些资料才算理解。

对于从事FPGA工作的,区分组合逻辑电路与时序逻辑电路需要从”硬件电路“和”verilog语言“两方面来区分。

从硬件电路上来说:

两者的区别在于逻辑电路是否包含“记忆性单元”:

组合逻辑电路不包含记忆性单元,时序逻辑电路包含记忆性单元。

译码器、加法器由非记忆性单元构成,故属于组合逻辑电路。

寄存器、计数器由记忆性单元构成,故属于时序逻辑电路。

组合逻辑单元的另一个特点是: 1 输入、输出之间没有反馈延迟通道

从verilog语法上大家只要记住下面4个组合逻辑电路的要点,与之相反的就是时序逻辑电路:(可以只看要点)

要点1:用alway描写组合逻辑电路,敏感事件列表中,不要使用边缘敏感事件。

要点2:为变量赋值使用阻塞赋值(=),不要使用非阻塞赋值(<=0)。

要点3:用always 块时,必须注意电平敏感信号表是否完全,

如:always @ (a or b or c or d)

begin q=(a&b&c) | (d&e);

end

此时生成的不是组合逻辑,因为当e变化时,q不能立即跟着变化。只有当a/b/c/d发生变化时e的影响变化结果才会显示出来,可见综合成的电路需要一个寄存器来存储e的变化。

要点4:用always 块时,不要忘了加else语句:

如:always @ (a or b)

begin if(c) q=a;

end

或:always @ (a or b)

begin if(c) q=a;

else;

end

上面两种形式生成的都不是纯组合逻辑电路,因为当c==0时,q能保留原来的值,所以生成的电路中有锁相环(组合逻辑单元的另一个特点是: 1 输入、输出之间没有反馈延

迟通道)。

如果将上面两个函数改成这样就是组合逻辑电路了:

always @ (a or b)

begin if(c) q=a;

else q=b;

end

或者这样也行:

always @ (a or b)

begin if(c) q=a;

else q=0;

end

补充:

1 组合逻辑电路跟时序逻辑电路重点停留在:”电路“两个字上,verilog只是语言,不是生成的电路。

2 verilog中是否出现reg型变量跟是否是组合和时序逻辑电路无关,因为reg型变量综合出来,不一定就是寄存器。(如果综合出来有寄存器,则一定是时序逻辑电路)

3 always 既能描述组合逻辑电路,也能描述时序逻辑电路,always 块内被赋值的变量必须是reg型变量。

4 assign 描述的都是组合逻辑电路,assign只能对wire型变量赋值。

请指点!!

时序逻辑电路51时序逻辑电路的基本概念1时序逻辑电路

第5章时序逻辑电路 5.1 时序逻辑电路的基本概念 1.时序逻辑电路的结构及特点 时序逻辑电路在任何时刻的输出状态不仅取决于当时的输入信号,还与电路的原状态有关,触发器就是最简单的时序逻辑电路,时序逻辑电路中必须含有存储电路。时序电路的基本结构如图 5.1 所示,它由组合电路和存储电路两部分组成。 图5.1 时序逻辑电路框图 时序逻辑电路具有以下特点: (1)时序逻辑电路通常包含组合电路和存储电路两个组成部分,而存储电路要记忆给定时刻前的输入输出信号,是必不可少的。 (2)时序逻辑电路中存在反馈,存储电路的输出状态必须反馈到组合电路的输入端,与输入信号一起,共同决定组合逻辑电路的输出。 2.时序逻辑电路的分类 (1)按时钟输入方式 时序电路按照时钟输入方式分为同步时序电路和异步时序电路两大类。同步时序电路中,各触发器受同一时钟控制,其状态转换与所加的时钟脉冲信号都是同步的;异步时序电路中,各触发器的时钟不同,电路状态的转换有先有后。同步时序电路较复杂,其速度高于异步时序电路。 (2)按输出信号的特点 根据输出信号的特点可将时序电路分为米里(Mealy)型和摩尔(Moore)型两类。米里型电路的外部输出Z既与触发器的状态Q n有关,又与外部输入X有

关。而摩尔型电路的外部输出Z仅与触发器的状态Q n有关,而与外部输入X无关。 (3)按逻辑功能 时序逻辑电路按逻辑功能可划分为寄存器、锁存器、移位寄存器、计数器和节拍发生器等。 3.时序逻辑电路的逻辑功能描述方法 描述一个时序电路的逻辑功能可以采用逻辑方程组(驱动方程、输出方程、状态方程)、状态表、状态图、时序图等方法。这些方法可以相互转换,而且都是分析和设计时序电路的基本工具。 5.2 时序逻辑电路的分析方法和设计方法 1.时序逻辑电路的分析步骤 (1)首先确定是同步还是异步。若是异步,须写出各触发器的时钟方程。(2)写驱动方程。 (3)写状态方程(或次态方程)。 (4)写输出方程。若电路由外部输出,要写出这些输出的逻辑表达式,即输出方程。 (5)列状态表 (6)画状态图和时序图。 (7)检查电路能否自启动并说明其逻辑功能。 5.2.1 同步时序逻辑电路的设计方法 1.同步时序逻辑电路的设计步骤 设计同步时序电路的一般过程如图5.10所示。 图5.10 同步时序电路的设计过程

第1节组合逻辑和时序逻辑.

第1节组合逻辑和时序逻辑 来源:https://www.doczj.com/doc/c41837619.html,/book/09-03/8331410070307.html 通过前面各章的学习可知,Verilog HDL语言分为面向综合和面向仿真两大类语句,且可综合语句远少于仿真语句,读者可能会有可综合设计相对简单的感觉。然而事实刚好与此相反,这是因为:首先,可综合设计是用来构建硬件平台的,因此对设计的指标要求很高,包括资源、频率和功耗,这都需要通过代码来体现;其次,在实际开发中要利用基本Verilog HDL语句完成种类繁多的硬件开发,给设计人员带来了很大的挑战。所有的仿真语句只是为了可综合设计的验证而存在。为了让读者深入地理解可综合设计、灵活运用已学内容,本章将可综合设计中的基本知识点和难点提取出来,融入Verilog HDL语法以及开发工具等诸多方面,以深入浅出的方式向读者说明设计中的难点本质。 8.1 组合逻辑和时序逻辑 数字电路根据逻辑功能的不同特点,可以分成两大类,一类叫组合逻辑电路(简称组合电路),另一类叫做时序逻辑电路(简称时序电路)。掌握组合逻辑和时序逻辑的区分手段与实现方法是数字系统设计的基本要求。 8.1.1 组合逻辑设计 1.组合逻辑概念 组合逻辑是Verilog HDL设计中的一个重要组成部分。从电路本质上讲,组合逻辑电路的特点是输出信号只是当前时刻输入信号的函数,与其他时刻的输入状态无关。无存储电路,也没有反馈电路,其典型结构如图8-1所示。从电路行为上看,其特征就是输出信号的变化仅仅与输入信号的电平有关,不涉及对信号跳变沿的处理。 尽管组合电路在功能上千差万别,可是其分析方法却有很多相似之处。给定逻辑电路后,得到其输入与输出的直接表达式,将输入组合全部带入表达式中计算得到输出结果,并以真值表的形式表达出来,最后根据真值表说明电路功能。 组合逻辑电路的设计就是在给定逻辑功能的前提下,通过某种设计渠道,得到满足功能要求且最简单的逻辑电路。基于HDL 语言和EDA 工具的组合逻辑电路的设计流程如图8-2 所示。

时序逻辑电路设计

引言 人类社会进步,各种仪器测试设备的以电子设备代替成为趋势,各类测试仪器都希望通过电子设备来实现。电子设备在实现相应参数的测量时,具有简单容易操作,而且数据便于计算机处理等优点。目前科技的飞速进展与集成电路的发展应用,有密不可分的关系。十九世纪工业革命主要以机器节省人力,二十世纪的工业的革命则主要以电脑为人脑分劳。而电脑的发展归于集成电路工业。 集成电路是将各种电路器件集成于半导体表面而形成的电路。近年来集成电路几乎成为所有电子产品的心脏。由于集成电路微小化的趋向,使电子产品得以“轻、薄、短、小”。故集成电路工业又称微电子工业。差不多在同时数字计算机的发展提供了应用晶体管的庞大潜在市场。 20世纪90年代以后,电子科学和技术取得了飞速的发展,其标志就是电子计算机的普及和大规模集成电路的广泛应用。在这种情况下,传统的关于数字电路的内容也随之起了很大的变化,在数字电路领域EDA工具已经相当成熟,无论是电路内容结构设计还是电路系统设计,以前的手工设计都被计算机辅助设计或自动设计所取代。 通过长期的学习微电子专业理论知识,我们应该多动手实践把理论知识与实践相结合,加强对理论知识的把握。本文是十进制同步计数器的设计,对十进制同步计数器的设计进行电路原理图设计以及仿真,版图设计,版图验证。 1 设计技术要求 (1)项目名称:十进制同步计数器的设计 (2)使用工艺:2.0um硅栅工艺(tanner)或者1.0um硅栅工艺(cadence) (3)供电电源:5V (4)输入要求:异步清除,CMOS电平 (5)进行原理图设计,并完成电路的仿真 (6)版图设计,完成LVS一致性检验,生成相应的GDSII文档 2 设计构思及理论 2.1 设计思路 十进制同步计数器的设计可以细化成下列步骤: ①建立最简原始状态图。 ②确定触发器级数,进行状态编码。 ③用状态装换卡诺图化简,求状态方程和输出方程。 ④查自启动特性。 ⑤确定触发类型,求驱动方程。 ⑥画逻辑图。

同步时序逻辑电路的习题 数字逻辑

第五章 同步时序逻辑电路的习题 一、基本知识点 1、时序逻辑电路的一般结构 特点:a 、有存储电路(记忆元件);有组合电路(特殊时可没有) b 、包含反馈电路,电路功能与“时序”相关 c 、输出不仅与输入(X )有关,而且与存储状态(Y )有关 分类:(1)Mealy 型 Z =F (X ,Q ) 输出是电路的输入和现态的函数(注意输出与输入有直接关系) (2)Moore 型 Z =F (Q ) 输出仅仅是电路现态的函数(注意输出与输入没有直接关系) 同步时序逻辑电路:各触发器共用同一时钟信号,即电路中各触发器状态的转换时刻在统一时钟信号控制下同步发生。 异步时序逻辑电路:电路没有统一的时钟信号对状态变化进行同步控制,输入信号的变化将直接引起电路状态的变化。 //本课程将较少讨论异步时序逻辑电路 2、同步时序逻辑电路的描述 注意:任一个同步时序逻辑电路的结构和功能可用3组函数表达式完整地描述。 (1)激励函数表达式:存储电路输入Y 与电路输入X 和现态Q 之间的关系 Y =F (X ,Q ) //现态Q 就是上图存储电路原始的输出y k (2)次态函数表达式:电路的次态Q n+1与激励函数Y 和现态Q 之间关系 Q n+1=F (Y ,Q ) //次态Q n+1就是上图存储电路再次触发后的输出y k n+1 (3)输出函数表达式:电路的输出Z 和输入X 和当前现态Q 的关系 Mealy 型 Z =F (X ,Q ) Moore 型 Z =F (Q ) 输入信号 输出信号 X 1 X 2 X n Z 1 Z 2 Z m y s 过去输入 现态 现在输入 } 输出 输出 所有输入 现态

第3、5章 组合电路和时序电路(总复习)

【总复习卷】 第3、5章组合逻辑电路和时序逻辑电路在数字电路系统中,按照逻辑功能和电路特点,各种数字集成电路可分为组合逻辑电路和时序逻辑电路两大类。 【知识结构图】 【本章重点】 第3章、组合逻辑电路 1.组合逻辑电路在电路结构及逻辑功能上的特点。 2.编码器和译码器的电路设计。 3.各类编码及译码器逻辑功能介绍。 4.集成编码器及译码器使用。 第5章、时序逻辑电路 1.时序逻辑电路在电路结构及编逻辑功能上的特点。 2.各类寄存器寄存数码的原理。 3.二进制和非二进制计数器工作原理及波形图。 4.简单异步二进制计数器的设计。 5.常用中大规模计数器的使用。 【本章难点】1.编码器、译码器真值表的写法。 2.同步计数器计数状态的分析。 【本章考点】1.组合逻辑电路和时序逻辑电路的各自的特点。 2.编码器和译码器电路设计及工作原理分析。 3.寄存器寄存数码的工作过程(波形)。 4.各种类型计数器的计数状态表、状态转换图、工作波形图。

综合训练(第3、5章) 一、填空题 1. 在数字电路系统中,按照逻辑功能和电路特点,各种数字集成电路可分为_________逻辑电路和_________逻辑电路两大类。 2. 把0和1按一定规律编排,使每组代码具有一个特定的含义的过程,称为_________。把代码的 特定含义翻译出来的过程称为_________。 3. ________常用于接收、暂存、传递数码等。存放n位二进制数码需要______个触发器。 4. 能实现_________操作的电路称为计数器;按计数时各触发器状态转换与计数脉冲是否同步。可 分为_________计数器和_________计数器。_________进制计数器是各种计数器基础。 5. 一个四位二进制减法计数器状态为_________时,再输入一个计数脉冲,计数状态为1111,并向高 位发出__________信号。 6. 要把y0、y1.......y11、y12十三个信号编成二进制代码.至少需要_________位二进制数码。7. 构成计数器的基本电路是__________,如果把n个这类基本电路串联起来,就可以表示 __________位二进制数。 二、判断题(对的打“√”,错的打“×”) 1.组合逻辑电路具有记忆功能。( ) 2.编码是译码的逆过程。( ) 3.移位寄存器每输入一个脉动时,不一定只有一个触发器翻转。( ) 4.译码时每次只有一个输出端输出有效,即该输出端为1,其余为0。( ) 5.移位寄存器即可并行输出也可以串行输出。() 6.数码寄存器存放的数码可以并行输入也可以串行输入。() 7.数码寄存器最简单的寄存器,这种寄存器称为并行输入,并行输出数码寄存器。() 8.右移位寄存器存放的数码将从低位到高位,依次串行输入。() 9.时序逻辑电路结构上的特点是:由门电路和触发器组成。() 10.具有8个触发器的二进制异步计数器能表达256种状态。() 11.表示一位十进制数至少需要二位二进制数。() 12.构成一位十进制计数器至少需要4个触发器。() 13.在异步计数器中,若按自然顺序计数,则要求最低位触发器每输入一个计数脉冲其状态就翻转一次。() 14.显示器属于时序逻辑电路类型。() 15.触发器属于最简单的时序逻辑电路。() 16.八位二进制数能表十进制数的最大值是256。() 17.按8421BCD码进行计数的十进制计数器1010-1111这六种状态不允许出现。( ) 18.构成计数器电路的器件必须有具有记忆能力的。()

7.《电子技术基础》复习题_时序逻辑电路

《电子技术基础》复习题 时序逻辑电路 一、填空题: 1.具有“置0”、“置1”、“保持”和“计数功能”的触发器是() 2.触发器有门电路构成,但它不同门电路功能,主要特点是:() 3.TTL型触发器的直接置0端Rd、置1端Sd的正确用法是() 4.按触发方式双稳态触发器分为:() 5.时序电路可以由()组成 6.时序电路输出状态的改变() 7.通常寄存器应具有()功能 8.通常计数器应具有()功能 9. M进制计数器的状态转换的特点是设初态后,每来()个CP时,计数器又重回初态。 10.欲构成能记最大十进制数为999的计数器,至少需要()个双稳触发器。 11. 同步时序逻辑电路中所有触发器的时钟端应()。 二、选择题: 1.计数器在电路组成上的特点是() a)有CP输入端,无数码输入端b) 有CP输入端和数码输入端c) 无CP输入端,有数码输入 端 2.按各触发器的状态转换与CP的关系分类,计数器可分为()计数器。 a)加法、减法和加减可逆b)同步和异步c)二、十和M进制 3. 按计数器的状态变换的规律分类,计数器可分为()计数器。 a)加法、减法和加减可逆b)同步和异步c)二、十和M进制 4 按计数器的进位制分类,计数器可分为()计数器。 a)加法、减法和加减可逆b)同步和异步c)二、十和M进制 5. n位二进制加法计数器有()个状态,最大计数值是()。 a)2n-1b)2n c)2n-1 6.分析时序逻辑电路的状态表,可知它是一只()。 (a) 二进制计数器(b)六进制计数(c) 五进制计数器 7. 分析如图所示计数器的波形图,可知它是一只()。 (a) 六进制计数器(b) 七进制计数器(c) 八进制计数器

实验十 Moore型同步时序逻辑电路的分析与设计

实验十Moore型同步时序逻辑电路的分析与设计 一.实验目的: 1.同步时序逻辑电路的分析与设计方法 2.掌握时序逻辑电路的测试方法。 二.实验原理: 1.Moore同步时序逻辑电路的分析方法: 时序逻辑电路的分析,按照电路图(逻辑图),选择芯片,根据芯片管脚,在逻辑图上标明管脚号;搭接电路后,根据电路要求输入时钟信号(单脉冲信号或连续脉冲信号),求出电路的状态转换图或时序图(工作波形),从中分析出电路的功能。 2.Moore同步时序逻辑电路的设计方法: (1)分析题意,求出状态转换图。 (2)状态分析化简:确定等价状态,电路中的等价状态可合并为一个状态。(3)重新确定电路状态数N,求出触发器数n,触发器数按下列公式求:2n-1

(7)利用卡诺图如图2,求状态方程、驱动方程。 (8)自启动检验:将各无效状态代入状态方程,分析状态转换情况,画出完整的 状态转换图,如图3所示,检查是否能自启动。

时序逻辑电路

课程名称:数字逻辑电路设计实践实验名称:组合逻辑电路设计

时序逻辑电路 1、 实验目的 1. 掌握时序逻辑电路的一般设计过程; 2. 掌握时序逻辑电路的时延分析方法,了解时序电路对时钟信号相关参数的基本要求; 3. 掌握时序逻辑电路的基本调试方法; 4. 熟练使用示波器和逻辑分析仪观察波形图,并会使用逻辑分析仪做状态分析。 2、 实验原理 详见书103~147 3、 实验内容 1. 广告流水灯 a. 实验要求 用触发器、组合函数器件和门电路设计一个广告流水灯,该流水等由8个LED 组成,工作时始终为1暗7亮,且这一个暗灯循环右移。 1 写出设计过程,画出设计的逻辑电路图,按图搭接电路。 1)状态转换图: 现态 次态 Q2(n) Q1(n) Q0(n) Q2(n+1) Q1(n+1) Q0(n+1) 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 2)建立卡诺图: 001 010 100 011 101 110 000 111 1!1 210n n n Q Q Q +++ 有上表得: Q 0n 1=Q 0 n 0 1 00 01 11 10 2 n Q 10n n Q Q

Q 1n 1=Q 0n ⊕Q 1 n Q 2n 1=Q 0n Q 1n ⊕Q 2n =Q 0n Q 1n ⊕Q 2 n 因此,需要三个D 触发器来实现时序电路,三个D 触发器分别对应Q0、Q1、Q2 通过一片74LS138 3-8线译码器将Q2Q1Q0所对应的二进制码输出转化为相应的0~7号LED 灯的输入电平。 2 将单脉冲加到系统时钟端,静态验证实验电路。 3 将TTL 连续脉冲信号加到系统时钟端,用示波器和逻辑分析仪观察并记录时钟脉 冲CLK 、触发器的输出端Q2、Q1、Q0和8个LED 上的波形。 b . 实验数据 ① 设计电路。 U1A 74ALS74AN 1D 2 1Q 5 ~1Q 6 ~1CLR 1 1CLK 3 ~1PR 4U2A 74ALS74AN 1D 2 1Q 5 ~1Q 6 ~1CLR 1 1CLK 3 ~1PR 4 U3B 74ALS74AN 1D 2 1Q 5 ~1Q 6 ~1CLR 1 1CLK 3 ~1PR 4U4A 74ALS86N U5B 74ALS86N U6A 74LS04N U7A 74LS00N VCC 5V 1 45 78U9 74LS138N Y015Y114Y213Y312Y411Y510Y69Y7 7 A 1 B 2 C 3G16~G2A 4~G2B 5 6 23 VCC VCC 5V VCC LED ② 静态验证 (自拟表格) 将3-8译码器的15Y ~0Y 输出端,从左到右依次接测试箱上的8个LED 灯80~L L ,3个D 触发器共同接箱上经消抖处理的当脉冲信号(上升沿触发)。依次按动单脉冲按钮,得以下结果。见表1. 表1.广告流水灯静态验证结果 次序 L8 L7 L6 L5 L4 L3 L2 L1 1 暗 亮 亮 亮 亮 亮 亮 亮 2 亮 暗 亮 亮 亮 亮 亮 亮 3 亮 亮 暗 亮 亮 亮 亮 亮 4 亮 亮 亮 暗 亮 亮 亮 亮 5 亮 亮 亮 亮 暗 亮 亮 亮 6 亮 亮 亮 亮 亮 暗 亮 亮

同步时序逻辑电路分析与设计

“电工学(二)数字逻辑电路”课程实验报告 实验/实训项目同步时序逻辑电路分析与设计 实验/实训地点 实验/实训小组 实验/实训时间 专业电器工程及其自动化 班级 姓名 学号 指导老师

过程、步骤、代一、实验原理 1. 集成计数器74LS290功能测试。 74LS290是二一五一十进制异步计数器,逻辑简图为图5.1所示。 74LS290具有下述功能: 直接置0(R 0(1),R 0(2)=1),直接置(S 0(1),S 0(2)=1) 二进制计数(CP 1输入Q A 输出) 五进制计数(CP 1输入Q A Q B Q C 输出) 十进制计数(两种接法如图5.2A 、B 所示) 按芯片引脚图分别测试上述功能,并填入表5.1、表5.2、表5.3中。 图5.1 74LS290逻辑图

图5.2 十进制计数器 2. 计数器级连 分别用2片74LS290计数器级连成二一五混合进制、十进制计数器。 (1)画出连线电路图。 (2)按图接线,并将输出端接到LED 数码显示器的相应输入端,用单脉冲作为输入脉冲验证设计是否正确。 (3)画出四位十进制计数器连接图并总结多级计数级连规律。 3. 任意进制计数器设计方法 采用脉冲反馈法(称复位法或置位法),可用74LS290组成任意(M )计数器,图5.3是用74LS290实现模7计数器的两种方案,图(A )采用复位法,即计到M 异步置0,图(B )采用置位法,即计数计到M-1异步置0。 表5.1 功能表 R 0(1) R 0(2) S 0(1) S 0(2) 输出 Q D Q G Q B Q A H H L X H H X L X X H H X L X L L X X L X L L X 表5.2 二一五混合时制 计数 输出 Q A Q D Q G Q B 0 1 2 3 4 5 6 7 8 9

实验《二》:组合逻辑与时序逻辑电路的VHDL模型实验

汕头大学实验报告 学院: 工学院系: 电子专业年级成绩: 姓名: 学号组: 实验时间: 2010-04-10 指导教师签字: _______________________________________________________________________________ 实验《二》:组合逻辑与时序逻辑电路的VHDL模型实验 一、实验目的: 1、掌握组合逻辑和时序逻辑电路的设计方法。 2、掌握组合逻辑电路的静态测试方法。加深FPGA设计的过程,并比较原理图输入和 文本输入的优劣。 3、了解通用同步计数器,异步计数器的使用方法。 4、理解积分分频器的原理。 二、硬件要求 1、拨位开关。 2、FPGA主芯片:EP1K30QC208。 3、LED显示模块。 三、实验原理 译码器是输入数码和输出数码之间的对应关系,也就是说,“输入码和输出码之间的对应表”这应该算是设计译码器的必须条件。 译码器常用来做码和码之间的转换器,也常被用于地址总线或用作电路的控制线。 例如下面为常见的3×8译码器的真值表: 实验中可根据需要,为3×8译码器加入使能控制脚。 一般的分频器可获得的分频频率种类分布不均匀,积分分频,能比较好的解决这个问题。 1、分频结果=来源频率×N/(2?-1); 2、频率波形不均匀。

四、实验内容及步骤 本实验内容是完成38译码器和5/8分频器的设计,然后将3×8译码器的结果在实验箱上实现,5/8分频器则能正确仿真、显示,实验步骤如下: 1、编写3×8译码器的VHDL代码。 2、用Quartus II对其进行编译仿真。 3、在仿真确定无误后,选择芯片ACEX1K EP1K30QC208。 4、给芯片进行管脚绑定,在此进行编译。 5、根据自己绑定的管脚,在实验箱上对键盘接口、显示接口和FPGA之间进行正确连 线。 6、给目标板下载代码,在开关输入键值,观看实验结果。 7、编写5/8分频器的VHDL代码。 8、用Quartus II对其进行编译仿真。 9、使用WaveForm进行波形仿真。 五、实验结果与分析 1、对于3×8译码器,设置了3位拨动开关为输入,8位LED为输出。时序仿真结果如下: 由图可知,A的三位为输入,Y的8位为输出。符合三八译码器真值表。经过验证,3位拨 动开关的不同组合输入,都会在LED上得到正确的输出。验证了38译码器的功能。 2、5/8分频器 由图可知,实现了5/8分频器的功能,仿真成功。

实验二 时序逻辑电路的设计[1]

实验二 时序逻辑电路的设计 一、实验目的: 1、 掌握时序逻辑电路的分析方法。 2、 掌握VHDL 设计常用时序逻辑电路的方法。 3、 掌握时序逻辑电路的测试方法。 4、 掌握层次电路设计方法。 5、 理解时序逻辑电路的特点。 二、实验的硬件要求: 1、 EDA/SOPC 实验箱。 2、 计算机。 三、实验原理 1、时序逻辑电路的定义 数字逻辑电路可分为两类:组合逻辑电路和时序逻辑电路。组合逻辑电路中不包含记忆单元(触发器、锁存器等),主要由逻辑门电路构成,电路在任何时刻的输出只和当前时刻的输入有关,而与以前的输入无关。时序电路则是指包含了记忆单元的逻辑电路,其输出不仅跟当前电路的输入有关,还和输入信号作用前电路的状态有关。 2、同步时序逻辑电路的设计方法 同步时序逻辑电路的设计是分析的逆过程,其任务是根据实际逻辑问题的要求,设计出能实现给定逻辑功能的电路。同步时序电路的设计过程: (1)根据给定的逻辑功能建立原始状态图和原始状态表。 ①明确电路的输入条件和相应的输出要求,分别确定输入变量和输出变量的数目和符号; ②找出所有可能的状态和状态转换之间的关系; ③根据原始状态图建立原始状态表; (2)状态化简---求出最简状态图。 合并等价状态,消去多余状态的过程称为状态化简。 等价状态:在相同的输入下有相同的输出,并转换到同一个次态去的两个状态称为等价状态。 (3)状态编码(状态分配)。 给每个状态赋以二进制代码的过程。 根据状态数确定触发器的个数,n n M 221-≤∠(M 为状态数;n 为触发器的个数)。 (4)选择触发器的类型。 (5)求出电路的激励方程和输出方程。 (6)画出逻辑图并检查自启动能力。 3、时序逻辑电路的特点及设计时的注意事项 ①时序逻辑电路与组合逻辑电路相比,输出会延时一个时钟周期。 ②时序逻辑电路一般容易消除“毛刺”。 ③用VHDL 描述时序逻辑电路时,一般只需将时钟信号和异步控制(如异步复位)信号作为敏感信号。

FPGA程序中组合逻辑和时序逻辑的运用

FPGA程序中组合逻辑和时序逻辑的运用

1、时序逻辑以及组合逻辑使用问题 在编写程序中关于时序的控制中,我们经常会遇到关于组合逻辑和时序逻辑的许多问题,最典型的是组合逻辑和时序逻辑的混合使用,导致程序中的时序可控性降低,调试起来让我们很头疼。 2、组合逻辑以及时序逻辑的使用分析 为此分析一下组合逻辑和时序逻辑的使用来加深对这两种逻辑的使用是有 必要的。 组合逻辑适用于门级建模以及数据流建模,其开始于assign,依赖于各种操作符(算数、逻辑、关系、等价、按位、缩减、拼接、移位、重复、条件等操作运算符)。 时序逻辑适用于行为级建模,其使用一般建立在时钟之上,以always@(*)或initial语句开始,使用电平敏感的时序控制机制,运用行为语句:if—else条 件语句、case多路分支语句、while循环、for循环、repeat循环、forever循环等,又分为并行块以及顺序块等。 在使用中我们会使用单纯的时序逻辑,单纯的组合逻辑,或者两种逻辑混合使用来建立我们的整个模块系统以及逻辑控制。但是不同的使用方式会带来不同的问题,当然这都是建立在各自逻辑的使用性能的基础上的。 3、实例分析以及解决方案 下来将会简单的举几个例子来说明义下一些会遇到的问题: 1、单纯的时序逻辑 一般的程序设计都是建立在时钟之上的的可控低速数据传输的操作,因 此明了的时序控制可以是我们的程序的运行具有很高的可操作和控制性。如下图: clk red_n data16'hffff16'bad01 使用确认的时序,我们可以很明确的知道,我们的数据的改变,很容易控制并改变。 2、单纯的组合逻辑 组合逻辑,在数据传输工程中的使用,可以实时的检测到数据流的变化。 如图:

FPGA程序中组合逻辑和时序逻辑的运用

FPGA程序中组合逻辑和时序逻辑的运用 版本记录表 作者版本号日期修改内容 王长友V1.00.a2016.05.28第一次创建

1、时序逻辑以及组合逻辑使用问题 在编写程序中关于时序的控制中,我们经常会遇到关于组合逻辑和时序逻辑的许多问题,最典型的是组合逻辑和时序逻辑的混合使用,导致程序中的时序可控性降低,调试起来让我们很头疼。 2、组合逻辑以及时序逻辑的使用分析 为此分析一下组合逻辑和时序逻辑的使用来加深对这两种逻辑的使用是有 必要的。 组合逻辑适用于门级建模以及数据流建模,其开始于assign,依赖于各种操作符(算数、逻辑、关系、等价、按位、缩减、拼接、移位、重复、条件等操作运算符)。 时序逻辑适用于行为级建模,其使用一般建立在时钟之上,以always@(*)或initial语句开始,使用电平敏感的时序控制机制,运用行为语句:if—else条 件语句、case多路分支语句、while循环、for循环、repeat循环、forever循环等,又分为并行块以及顺序块等。 在使用中我们会使用单纯的时序逻辑,单纯的组合逻辑,或者两种逻辑混合使用来建立我们的整个模块系统以及逻辑控制。但是不同的使用方式会带来不同的问题,当然这都是建立在各自逻辑的使用性能的基础上的。 3、实例分析以及解决方案 下来将会简单的举几个例子来说明义下一些会遇到的问题: 1、单纯的时序逻辑 一般的程序设计都是建立在时钟之上的的可控低速数据传输的操作,因 此明了的时序控制可以是我们的程序的运行具有很高的可操作和控制性。如下图: 使用确认的时序,我们可以很明确的知道,我们的数据的改变,很容易控制并改变。 2、单纯的组合逻辑 组合逻辑,在数据传输工程中的使用,可以实时的检测到数据流的变化。 如图:

零基础学FPGA(九)手把手解析时序逻辑乘法器代码

零基础学FPGA(九)手把手解析时序逻辑乘法器代码 上次看了一下关于乘法器的Verilog代码,有几个地方一直很迷惑,相信很多初学者看这段代码一定跟我当初一样,看得一头雾水,在网上也有一些网友提问,说这段代码不好理解,今天小墨同学就和大家一起来看一下这段代码,我会亲自在草稿纸上演算,尽量把过程写的详细些,让更多的人了解乘法器的设计思路。 下面是一段16位乘法器的代码,大家可以先浏览一下,之后我再做详细解释 module mux16( clk,rst_n, start,ain,bin,yout,done ); input clk; //芯片的时钟信号。 input rst_n; //低电平复位、清零信号。定义为0表示芯片复位;定义为1表示复位信号无效。input start; //芯片使能信号。定义为0表示信号无效;定义为1表示芯片读入输入管脚得乘数和被乘数,并将乘积复位清零。 input[15:0] ain; //输入a(被乘数),其数据位宽为16bit. input[15:0] bin; //输入b(乘数),其数据位宽为16bit. output[31:0] yout; //乘积输出,其数据位宽为32bit. output done; //芯片输出标志信号。定义为1表示乘法运算完成. reg[15:0] areg; //乘数a寄存器 reg[15:0] breg; //乘数b寄存器 reg[31:0] yout_r; //乘积寄存器 reg done_r; reg[4:0] i; //移位次数寄存器 //------------------------------------------------ //数据位控制 always @(posedge clk or negedge rst_n) if(!rst_n) i <= 5'd0; else if(start && i < 5'd17) i <= i+1'b1; else if(!start) i <= 5'd0; //------------------------------------------------ //乘法运算完成标志信号产生 always @(posedge clk or negedge rst_n) if(!rst_n) done_r <= 1'b0; else if(i == 5'd16) done_r <= 1'b1; //乘法运算完成标志 else if(i == 5'd17) done_r <= 1'b0; //标志位撤销

组合与时序逻辑及竞争冒险

组合逻辑与时序逻辑 数字电路根据逻辑功能的不同特点,可以分成两大类,一类叫组合逻辑电路(简称组合电路),另一类叫做时序逻辑电路(简称时序电路)。 组合逻辑电路在逻辑功能上的特点是任意时刻的输出仅仅取决于该时刻的输入,与电路原来的状态无关。具有一组输出和一组输入的非记忆性逻辑门电路结构。组合电路不包含存储信号的记忆单元,输出与输入间无反馈通路,信号是单向传输,且存在传输延迟时间。 组合逻辑由与或非门组成的网络,用于完成简单的逻辑功能,如多路器,与或非逻辑运算,加法器乘法器等。 数据在寄存器中保存 由于逻辑门和布线都有延迟,因此没有办法使实际电路的输出与理想的布尔方程计算完全一致,可以说,实际组合逻辑电路的瞬间不确定性是无法避免的。 如果能使组合逻辑电路的输入稳定一段时间,也就是说,所有的输入信号在一段相对较长的时间段里不再发生变化。虽然在稳定时间片段的刚一开始由于冒险竞争现象会产生于理想情况不一致的毛刺或输出不确定的情况,但只要稳定时间片段大于最长的路径延迟,就可以取得组合逻辑电路的理想输出。如果能躲开输出不确定片段,在理想值稳定输出的片刻把该输出值存入寄存器组,则寄存器组中保存的就是该组合逻辑电路的理想输出。如果不是有意的改变寄存器组的值,那么该值可以一直保留下去,知道改变寄存器组中保留的数值。可以把寄存器组中保留的数值作为下一集电路的输入,根据维持一定长度的时间片段,在做改变,以保证下一集组合电路有稳定的输入。 数据流动的控制 加减乘除比较等运算都可以用组合逻辑来实现,但运算的输入必须有一段稳定的时间才可能得到稳定的输出,而输出要被下一阶段的运算作为输入,也必须要有一段时间的稳定,因而输出结果必须保存在寄存器中。在计算电路中有很多寄存器组,他们是用来暂存运算的中间数据。对寄存器组之间数据路东进行精确的控制,在算法的实现过程中有着极其重要的作用。这种控制由同步状态机实现的。 重要概念:生成与时钟精确配合的开关时序是计算逻辑的核心。 由于门级电路和布线的延迟,输出必须经过一段时间才能稳定。所以需要设计出一个状态机,在这个状态机的控制下生成一系列的开关信号,严格按照时钟的节拍来开启或者关闭数据通道,就能用硬件来构成复杂的计算逻辑。 时序逻辑电路在逻辑功能上的特点是任意时刻的输出不仅取决于当时的输入信号,而且还取决于电路原来的状态,或者说,还与以前的输入有关。因而时序逻辑电路必然包含存储记忆单元电路。 时序逻辑由多个触发器和多个组合逻辑块组成的网络。 时序逻辑则可以用来产生于运算过程有关的(按时间节拍)多个控制信号序列,包括存储运算的结果和取出存储器中的数据。 在可综合的硬件描述语言设计的复杂运算逻辑系统中,往往采用同步状态机来产生于时钟节拍密切相关(同步)的多个控制信号,用它来控制多路器或数据通道的开启与关闭,来使有限的组合逻辑运算器资源得到充分的运行,并寄存有意义的运算结果,或把他们传送到指定的地方。 同步时序逻辑是指表示状态的寄存器组的值只可能在唯一确定的触发条件发生改变。 异步时序逻辑是指触发条件由多个控制因素组成,任何一个因素的跳变都可以引起触发。记录状态的寄存器不是连接在同一个时钟信号上。

第13章_组合逻辑电路和时序逻辑电路习题答案

习题13 13-1分析如习题13-47图所示电路的逻辑功能。 图13-47 习题13-1图 解:Array + = Y+ AB ABC AC 该电路功能为三人表决电路, A具有否决权。 13-2分析如习题13-48图所示电路的逻辑功能。 图13-48 习题13-2图

解: B A C B C A Y ++= 从真值表中可以看出此电路实现的功能是:检测三个输入是否全相同。 13-3 已知一个组合逻辑电路的输入A ,B 和输出Y 的波形如图13-49所示,写出Y 的逻辑表达式,用与非门实现该组合逻辑电路。 图13-49 习题13-3图 解: B A B A B A B A Y ?=+= A B Y

13-4由两个或非门组成的基本RS 触发器及S ,R 端的波形如图13-50所示,请画出Q 端和Q 端的波形。 图13-50 习题13-4图 解: S R 状态不定 状态不定 Q Q 13-5 JK 触发器的逻辑图及输入波形如图13-51,请画出输出端Q 的波形。

图13-51 习题13-5图 解: Q J CP K 13-6 判断下列说法是否正确: (1) 仅有触发器构成的逻辑电路一定是时序逻辑电路。 (2) 仅有门电路构成的逻辑电路一定是组合逻辑电路。 (3) 计数器是执行连续加1操作的逻辑电路。 (4) n 个触发器可以组成存放2n 位二进制代码的寄存器。 (5) 左移移位寄存器是将所存储的数码逐位向触发器的高位移。 (6) 左移移位寄存器的串行输入端应按照先高位后低位的顺序输入代码。 答:(1)对;(2)错;(3)错;(4)错;(5)错;(6)错。 13-7 由四位双向移位寄存器74LS194构成的电路如图13-52所示,设初态为0000,请列出状态转换表。

同步时序逻辑电路的分析方法

时序逻辑电路的分析方法 时序逻辑电路的分析:根据给定的电路,写出它的方程、列出状态转换真值表、画出状态转换图和时序图,而后得出它的功能。 同步时序逻辑电路的分析方法 同步时序逻辑电路的主要特点:在同步时序逻辑电路中,由于所有触发器都由同一个时钟脉冲信号CP来触发,它只控制触发器的翻转时刻,而对触发器翻转到何种状态并无影响,所以,在分析同步时序逻辑电路时,可以不考虑时钟条件。 1、基本分析步骤 1)写方程式: 输出方程:时序逻辑电路的输出逻辑表达式,它通常为现态和输入信号的函数。 驱动方程:各触发器输入端的逻辑表达式。 状态方程:将驱动方程代入相应触发器的特性方程中,便得到该触发器的状态方程。 2)列状态转换真值表: 将电路现态的各种取值代入状态方程和输出方程中进行计算,求出相应的次态和输出,从而列出状态转换真值表。如现态的起始值已给定时,则从给定值开始计算。如没有给定时,则可设定一个现态起始值依次进行计算。 3)逻辑功能的说明: 根据状态转换真值表来说明电路的逻辑功能。 4)画状态转换图和时序图: 状态转换图:是指电路由现态转换到次态的示意图。 时序图:是在时钟脉冲CP作用下,各触发器状态变化的波形图。 5)检验电路能否自启动 关于电路的自启动问题和检验方法,在下例中得到说明。

2、分析举例 例、试分析下图所示电路的逻辑功能,并画出状态转换图和时序图。 解:由上图所示电路可看出,时钟脉冲CP加在每个触发器的时钟脉冲输入端上。因此,它是一个同步时序逻辑电路,时钟方程可以不写。 ①写方程式: 输出方程: 驱动方程: 状态方程: ②列状态转换真值表: 状态转换真值表的作法是: 从第一个现态“000”开始,代入状态方程,得次态为“001”,代入输出方程,得输出为“0”。

组合逻辑电路和时序逻辑电路

组合逻辑电路和时序逻辑电路 一、实验目的 1. 熟悉集成电路的引脚排列。 2. 掌握TTL组合逻辑电路的设计方法,完成单元功能电路的设计。 3. 熟悉中规模集成电路译码器、数据选择器的性能与应用。 4. 掌握数字电子技术Multisim软件的使用。 5. 掌握用软件测试D触发器和JK触发器功能的方法。 6. 学会设计和实现具有一定功能的时序逻辑电路。 二、仪器设备 Multisim 10软件 三、实验内容与步骤 1. 用两片74LS00设计一个三人表决电路 要求该电路有3个输入端,1个输出端,输入信号接开关,输出端接发光二极管,当两个以上的人同意时,发光二极管亮。 2. 设计一个三输入三输出的逻辑电路。 要求用2-4译码器74LS139或数据选择器74LS153设计电路,实现功能如下:当A=1,B=C=0时,红绿灯亮; 当B=1,A=C=0时,绿黄灯亮; 当C=1,A=B=0时,黄红灯亮;

当A=B=C=0时,三灯全亮; 其余情况三灯全灭。 3. 利用D触发器或JK触发器和与非门设计一个4人抢答器 要求用开关作为抢答输入,发光二极管作为抢答输出,主持人用单脉冲作为清零输入。 4. 利用中规模计数器74LS161实现任意进制计数器 四、注意事项 1.所用全部器件的输出端不允许与地或电源相连接 2.器件本身的电源和地切勿接反 3.接逻辑电路之前,必须先测试所用单片组件之功能 4.检测导线的好坏 五、实验步骤及过程 1.用两片74LS00组成的三人表决电路。 A、B、C三个单刀单掷开关表示输入,高电平表示同意,悬空(0表示 不同意),LED小灯表示投票结果。仿真电路图如下:

14组合逻辑电路、触发器和时序逻辑电路

周测14组合逻辑电路、触发器和时序逻辑电路 一、单项选择题(每题2分,共20分) ( )1.以下能防止空翻现象的触发器是________ A.基本RS 触发器 B.同步RS 触发器 C.主从RS 触发器 D.RS 触发器 ( )2.构成加法器的基本电路是________ A.基本放大电路 B.限幅电路 C.门电路 D.触发器 ( )3.用二进制异步计数器从零计到十进制数50,至少需要触发器的个数为________ A.S B.6 C.7 D.4 ( )4.寄存器主要用于________ A.存储数码和信息 B.水久存储二进制数码 C.存储十进制数码 D.暂存数码和信息 ( )5.如果要存储6位二进制数码通常要用________个触发器来构成寄存器。 A.2 B.3 C.6 D.12 ( )6.抗千扰能力较差的触发方式是________ A.同步触发 B.上升沿触发 C.下降沿触发 D.主从触发 ( )7.二—十进制译码器有________ A.3个输入端,8个输出端 B.4个输入端,10个输出端 C.4个输入端,9个输出端 D.3个输入端,9个输出端 ( )8.七段显示译码器要显示数“2”则共阴极数码显示器的a —g 引脚的电平应为________ A.1101101 B.1011011 C.1111011 D.1110000 ( )9.3位二进制编码器输人信号为1时,输出Y2Y1Y0。= A. 100 B.110 C.011 D.101 ( )10.十进制数(67)10码对应的8421码是________ A.10000111 B.1100111 C.1100011 D.1100110 二、判断题(每题2分,共20分) ( )1.JK 触发器的特性方程是N N N Q K Q J Q +=+1。 ( )2.主从RS 触发器工作分两拍进行,先是从触发器工作再是主触发器工作。 ( )3.半导体数码管是将发光管排列成“日”字形状制成的。 ( )4.译码器属于组合逻辑电路,其输入的具有特定含义的二进制的代码,输出的是数字而不是信号。 ( )5.组合逻辑电路的分析是指根据实际问题设计出相应的逻辑电路图。 ( )6. 数码显示器属于时序逻辑电路类型。 ( )7.移位寄存器每输入一个脉冲时,不一定只有一个触发器翻转。 ( )8.将JK 触发器的JK 端连在一起作为输人端,就构成了D 触发器。 ( )9.触发器能够存储一位二值信号。 ( )10.主从触发器电路中,主触发器和从触发器输出状态的翻转是同时进行的。 三、填空题(每题2分,共20分) 1.由或非门组成的基本RS 触发器输人信号不允许R=________,S=________。 2.T 触发器要预先设置为1状态,应将D S 设置为________电平,D R 设置为________电平。 3.具有置0、置1功能的触发器是________。 4.组合逻辑电路不具有________功能,它的输出直接由电路的________所决定,与输入信号作用前的电路状态无关。 5.逻辑电路按其逻辑功能和结构特点可分为两大类,一类为________________,另一类为________________。 6.从器件特性来分,数字集成电路有________和________两大类。

相关主题
文本预览
相关文档 最新文档