当前位置:文档之家› 铝及铝合金的焊接工艺与设备

铝及铝合金的焊接工艺与设备

铝及铝合金的焊接工艺与设备
铝及铝合金的焊接工艺与设备

管道全位置自动焊

管道全位置自动焊工艺特点

管道全位置自动焊接工艺采用手工下向焊和半自动焊打底,再采用自动焊施焊。

1.1 STT半自动焊接工艺特点

(1)电弧燃烧稳定,飞溅极少。

(2)根焊焊道成型好,基本不需打磨。

(3)焊缝接头少,焊丝熔敷率高(可达95%)。

(4)焊缝含氢量低,低温冲击韧性好。

1.2 自动焊接(NOREAST)工艺特点

(1)利用“储存器”可输入和存储多组焊接参数,适应多台焊机施焊的要求。

(2)焊接工艺参数由储存器输入,可以保证工艺参数的准确性。

(3)电弧燃烧稳定,焊道成型好,不需要打磨,焊接缺陷少,焊丝熔敷率高。

(4)焊接质量稳定,焊工劳动强度低。

自动焊接工艺配备有自动控制系统,工艺性能稳定,受外界影响小。因为焊接作业由机械自动完成,所以焊工的培训成本大大减少。在大口径、厚壁管道焊接中,其速度、质量和工效都是其它方法所不能相比的。

2、X70试验段管道全位置自动焊接施工

为了适应长距离、大口径、高压力、大壁厚、高强度钢输油气管道的建设速度和质量要求,参与国内外竞争,尽快推广应用管道全位置自动焊接技术,提高我国管道自动焊接技术水平十分必要。按照这一目标,中国石油天然气管道局第二工程公司成立了管道自动焊研究试验小组,采用引进的管道自动焊机进行大量的试验和研究,并于2000年11月将管道全位置自动焊接工艺成功地应用于涩宁兰输气管道的施工,实现了国内长输管道焊接技术水平的飞跃。

2.1 主要焊接工程量

试验段管道全长4.118 千米。采用的管材为API5L、X70,管径为660毫米,壁厚10.3毫米,设计工作压力为10兆帕。

2.2 焊前准备

(1)加强焊工练兵,做好焊接设备的维修保养等前期准备工作。

(2)制定《管道全位置自动焊接工艺规程》。

(3)配合中国石油天然气管道局焊接培训中心,分别对7种国内外实芯焊丝和两种螺纹X70钢管进行工艺试验。

(4)针对试验段地处高原,海拔近3200米,气候寒冷、风速较大的特点,搭建防风棚,以保证在焊后缓冷过程中保温时间不少于1.5h。

2.3 焊接结果

(1)焊缝表面成型规则、饱满,且与母材过渡圆滑。

(2)在试验段4.118千米范围内X射线拍片353道焊口,一次合格率达到96.9%。

(3)每道焊口的电弧燃烧时间为35min,管道全位置自动焊比手工焊效率提高30~40%。

(4)焊缝内在晶体组织较好。

3 管道全位置自动焊存在的问题及有关建议

通过全位置自动焊工艺在涩宁兰试验段上的使用,发现了下列问题,应在以后实践

中改进。

3.1 目前国内还缺乏相应的自动焊焊接施工标准与规范,没有相应的标准和规范,自动焊工艺将很难推广使用。

3.2 坡口是焊接的一项主要技术参数,采用自动焊接工艺时,应采用坡口机现场加工坡口。

3.3 X70钢为高强度钢,焊后缓冷非常重要。机械性能试验表明,如果焊后保温不好,就会使焊缝组织晶粒粗大,耐冲击性能降低。

3.4 根据国外管道自动焊接的经验,建议在大口径、大壁厚管道施工时采用复合型坡口。

3.5 多次焊接机械性能试验证实,自动焊焊接的内在晶体组织比其它焊接工艺好。对于长距离、大口径、大壁厚管道,建议采用全自动焊接工艺。

3.6 对自动焊接设备进行配套时,应同时配备自动无损检测设备,如管道全自动超声波检测仪等,使管道无损检测与焊接同步,确保自动焊机的工效。

3.7 人员培训问题。为了提高一次焊接合格率,保证操作人员熟练掌握焊接技艺,必须加强人员的培训。

管道全位置自动焊接工艺试验和实际应用表明,目前的技术水平已达到施工要求,国内施工单位现已基本完成了西气东输管道工程自动焊接的各项准备工作。对于存在的问题进行了整改,并不断完善各种配套装备、机具,管道全位置自动焊技术将逐步成为管道施工的主要工艺,必将加快我国管道事业的发展。

铝及铝合金焊接工艺的研究

哈尔滨理工大学荣成学院专科生毕业设计 题目:铝及铝合金焊接工艺研究专业年级: 09焊接技术及自动化 学生姓名:金杰 学号:0930150223 指导教师:杨丽丽 哈尔滨理工大学荣成学院 完成时间:2012年6月25日

专科生毕业设计(论文)评语 学院:荣成学院专业:焊接技术及自动化任务起止时间:2012年5月13日至2012年6月25日 毕业设计(论文)题目: 铝及铝合金焊接工艺研究 指导教师对毕业设计(论文)的评语: 指导教师签名:指导教师职称: 评阅教师对毕业设计(论文)的评语: 评阅教师签名:评阅教师职称: 答辩委员会对毕业设计的评语: 答辩委员会评定,该生毕业设计(论文)成绩为: 答辩委员会主席签名:职称: 年月日

专科生毕业设计(论文)任务书 学生姓名:金杰学号:0930150223 学院:荣成学院专业:焊接技术及自动化 任务起止时间:2012年5月13日至2012年6月25日 毕业设计(论文)题目: 铝及铝合金焊接工艺研究 毕业设计工作内容: 铸钢是生产中常用的材料,但是由于其成分中含有杂质较多,铸造过程中冷却缓慢,使其组织粗大偏析比较严重给焊接带来困难.本文通过对ZG270-500及其焊接接头的常见缺陷进行分析,选用适当的焊接工艺参数进行焊接,并对焊后裂纹进行探伤及修补。 1、了解毕业设计的内容,查阅资料(5月13日—5月17日) 2、对铸钢的焊接性及焊接工艺进行分析,总结ZG270-500的焊接工艺及修补措施.撰写题纲(5月17日-5月19日) 3、撰写论文(5月20日-5月21日) 资料: 1.中国机械工程学会焊接学会.焊接手册(第一卷)焊接方法与设备【M】.北京:机械工业出版社,2001 2.美国焊接学会黄静文等[译].焊接手册(第二卷)焊接方法【M】.北京:机械工艺出版社(第七版).1988 3.关桥.刘方君.董春林.高能束流焊接技术的应用与发展趋势【C】.第九次全国焊接会议论文集.1999 4.李亚江.王娟.有色金属焊接及应用.北京:化学工艺出版社.2006 指导教师意见: 签名: 年月日系主任意见: 签名: 年月日

铝合金的表面处理实用工艺审批稿

铝合金的表面处理实用 工艺 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

【工艺知识】铝材表面处理工艺大全介绍 总则 表面处理:它是通过机械和化学的方法处理后,能在产品的表面上形成一层保护机体的保护层。在自然界中能达到稳定状态,增加机体的抗蚀性和增加产品的美观,从而提升产品的价值。表面处理种类的选择首先要从使用环境,使用寿命,人为欣赏的角度出发,当然经济价值也是考虑的核心所在。 表面处理的流程包括前处理,成膜,膜后处理。包装,入库。出货等工序,其中前处理包括机械处理,化学处理。 机械处理包括喷吵,抛丸,打磨,抛光,打蜡等工序。机械处理目的使产品表面剔除凹凸不平,补救表面其它外观不良现象。化学处理使产品表面的油污锈迹去除,并且形成一层能使成膜物质更好的结合或和化成活性金属机体,确保镀层有一个稳定状态,增加保护层的结合力,从而达到保护机体的作用。 铝材表面处理 铝材常见的化学处理有铬化,喷漆,电镀,阳极氧化,电泳等工艺。其中机械处理有拉丝,抛光,喷吵,打磨等工艺。 —————— 第一节铬化 铬化会便产品表面形成一层化学转化膜,膜层厚度在,这层转化膜吸附性好,主要作为涂装底层。外观

有金黄色,铝本色,绿色等。这种转化膜导电性能好,是电子产品的最好选项,如手机电池内导电条,磁电设备等。该膜层适合所有铝及铝合金产品。但该转化膜质软,不耐磨,因此不利于做产品外部件利用。 铬化工艺流程: 脱脂—>铝酸脱—>铬化—>包装—>入库 铬化适合于铝及铝合金,镁及镁合金产品。 品质要求: 1)颜色均匀,膜层细致,不可有碰伤,刮伤,用手触摸,不能有粗糙,掉灰等现象。 2 )膜层厚度。 —————— 第二节,阳极氧化 阳极氧化:可以使产品表面形成一层均匀,致密的氧化层,(Al2O3 。6H2O 俗名钢玉)这种膜能使产品的表面硬度达到(200-300HV),如果特种产品可以做硬质阳极氧化,产品表面硬度可达 400-1200HV,因而硬质阳极氧化是油缸,传动,不可缺的表面处理工艺。 另外这种产品耐磨性非常好,可做航空,航天相关产品的必用工艺。阳极氧化和硬质阳极氧化不同之处:阳极氧化可以着色,装饰性比硬质氧化要好的多。施工要点:阳极氧化对材质要求很严格,不同的材质表面有不同的装饰效果,常用的材质有6061,6063,7075,2024 等,其中,2024 相对效果要差一些,由

铝合金激光焊接中的常见问题解决方法

铝合金激光焊接中的常见问题解决方法铝是较为活泼的金属,电离能低、导热性很高,表面极易形成难熔的Al2O3膜,在焊缝中容易形成未熔合、气孔、夹杂、热裂纹等缺陷,降低焊接接头的力学性能。下面深圳市海维光电科技有限公司的小编就给大家介绍一下铝合金激光焊接中的常见问题解决方法。 为了实现激光对铝合金的焊接,可以从以下几个方面加以解决一些问题。 气体保护装置 铝合金中低熔点元素损失影响最大的因素是气体从喷嘴喷出时的压力,通过减小喷嘴直径,增加气体压力和流速均可降低Mg、Zn

等在焊接过程中的烧损,同时也可以增加熔深。吹气方式有直吹和侧吹两种,还可以在焊件上下同时吹气,焊接中根据实际情况选择吹气方式。 表面处理 铝合金对激光具有高反作用,对铝合金进行适当的表面预处理,如阳极氧化、电解抛光、喷沙处理、喷砂等方式,可以显著提高表面对光束能量的吸收。研究表明,铝合金去除氧化膜后的结晶裂纹倾向比原始态铝合金大。为了既不破坏铝合金表面状态,又能简化激光焊接工程工艺过程,可以采用焊前预处理的办法升高工件表面温度,以提高材料对激光的吸收率。 激光器参数 焊接激光器分为脉冲激光器和连续激光器,脉冲激光器波长1064nm时光束特别集中,脉冲单点能量比连续激光器的大。但是脉冲激光器的能量一般不超过,所以一般适用薄壁焊件。 脉冲模式焊接 激光焊接时应选择合适的焊接波形,常用脉冲波形有方波、尖峰波、双峰波等,通常一个脉冲波时间以毫秒为单位,在一个激光脉冲作用期间内,金属反射率的变化很大。铝合金表面对光的反射率太高,

当高强度激光束射至材料表面,金属表面将会有60%-98%的激光能量因反射而损失掉,且反射率随表面温度变化。 因此一般焊接铝合金时最优选择尖形波(见图 1 )和双峰波,波形上升阶段是为提供较大的能量使铝合金熔化,一旦工件中“小孔”形成,开始进行深熔焊时,金属熔化后液态金属对激光的吸收率迅速增大,此时应迅速减小激光能量,以小功率进行焊接,以免造成飞溅。此种焊接波形后面缓降部分脉宽较长,能够有效地减少气孔和裂纹的产生。采用此波形,使焊缝熔化凝固重复进行,以降低熔池的凝固速度。此波形在焊接种类不同样品时可做适当调整。 选择合适的离焦量也可减少气孔的产生,离焦量的变化对焊缝的表面成形和熔深均有很大的影响,采用负离焦可以增加熔深,而脉冲焊接时,正离焦会使焊缝表面更加平滑美观。 由于铝合金对激光的反射率较高,为了防止激光束垂直入射造成垂直反射而损害激光聚焦镜,焊接过程中通常将焊接头偏转一定角度。焊点直径和有效结合面的直径随激光倾斜角增大而增大,当激光倾斜角度为40°时,获得最大的焊点及有效结合面。焊点熔深和有效熔深随激光倾斜角减小,当大于60°时,其有效焊接熔深降为零。

铝及铝合金焊接施工工艺标准

铝及铝合金焊接施工工艺标准 1 适用范围 本工艺标准适用于铝及铝合金的手工钨极氩弧焊和熔化极氩弧焊的焊接。 2 施工准备 2.1 铝及铝合金的焊接除应执行本工艺标准外,还应符合国家颁布的有关标准、法律法规及规定。 下列文件中的条款通过本标准的引用而成为本标准的条款,凡是不注日期的引用文件其最新版本适用于本标准 《铝及铝合金轧制板材》GB/T-3880-1997 《铝及铝合金热挤压管》第一部分:无缝圆管GB/T4437.1-2000 《铝及铝合金拉(轧)制无缝管》GB/T6893-2000 《铝及铝合金焊丝》GB/T10858 《铝及铝合金焊接管》GB/T10571 《铝制焊接容器》JB/T4734-2002 2.2 材料 2.2.1 一般规定 工程中使用的母材和焊丝应具备出厂质量合格证或质量复验合格报告,并优先选用已列入国家标准或行业标准的母材和焊丝,母材和焊丝应妥善保管,防止损伤、污染和腐蚀。当选用国外材料时,其使用范围应符合相应标准的规定,并应有该材料的质量证明书。 2.2.2 母材 2.2.2.1 工程选用的母材应符合现行的国家标准规定。 2.2.2.2 当对母材有特殊要求时,应在设计图样或相应的技术条件上标明。 2.2.2.3 施工单位对设备、容器和管道的材料的代用,必须事先取得原设计单位的设计修改证明文件,并对改动部位作详细记载。 2.2.2.4 损伤和锈蚀严重的母材不得在工程中使用。 2.2.3 焊接材料 2.2. 3.1 母材焊接所选用的焊丝应符合现行的国家标准《铝及铝合金焊丝》GB/T10858的规定。 2.2. 3.2 选用焊丝时应综合考虑母材的化学成分、力学性能及使用条件因素,并应符合下列规定。(1)焊接纯铝时应选用纯度与母材相同或比母材高的焊丝。 (2)焊接铝锰合金时应选用含锰量与母材相近的焊丝或铝硅合金焊丝。 (3)焊接铝镁合金时应选用含镁量与母材相同或比母材高的焊丝。 (4)异种铝及铝合金的焊接应选用与抗拉强度较高的母材相应的焊丝 2.2. 3.3 焊接时所使用的氩气应符合现行的国家标准《纯氩》GB4842的规定。 2.2. 3.4 手工钨极氩弧焊电极应选用铈钨极,也可选用钍钨极,施焊前应根据焊接电流的大小正确选用钨极直径。

铝合金挤压生产知识

一、铝合金的挤压生产 1.挤压时金属的变形过程分为几个阶段? 分为:⑴填充挤压阶段;⑵平流压出阶段;⑶紊流压出阶段。 2、什么是挤压比(λ)?挤压6063型材时,挤压比(λ)在什么范围内最合适? 挤压筒内铝棒的截面积与挤出型材的截面积之比,称为挤压比(λ)或挤压系数(λ)。 挤压系数是挤压工艺最重要的内容,根据制品外形和截面面积选择挤压筒的直径。挤压系数一般>9。平模当λ=9~40时使用寿命较长,分流模的挤压系数应在20~70范围内。系数过小会产生焊接不良。所以挤压空心型材的挤压系数比实心型材的大。如挤压Φ101×25管材,当λ=15时焊合不好,选择λ=38时管材焊合良好。挤压系数太大,挤压困难,而且因铝棒较短造成产品的成品率太低,影响经济技术指标。 3.生产过程中如何控制挤压温度? 铝棒温度应保持在440~520℃之间(以6063为例),加热时间均在6小时以上。挤压筒加热到400~440℃。模具温度为400~510℃,保温时间1~4小时。 4、选择挤压温度应遵循哪些原则? 6063合金铝棒的挤压温度通常在470~510之间,有时也可在较低温度下挤压。选择铝棒温度的原则:⑴为获得较高的机械性能,应选择较高的挤压温度;⑵当挤压机能力不足,可通过提高铝棒温度来提高挤压速度;⑶当模具悬臂过大时,可提高铝棒温度,以减小

铝棒对模具的压力及摩擦力;⑷挤压温度过高会使产生气泡、撕裂及由于模具工作带粘铝造成表面划痕严重;⑸为了获得高表面质量的产品,宜在较低温度下挤压 5、如何控制挤压速度? 挤压速度是影响生产率的一个重要指标。挤压速度取决于合金种类、几何形状、尺寸和表面状态,同时也与铸锭质量息息相关。要提高挤压速度,必需合理控制铝棒温度、模具温度、挤压筒温度。6063铝合金挤压速度范围为:9~80M/min,其中实心型材为:20~80M/min,空心型材的挤压速度一般为实心型材挤压速度的0.5~0.8倍。 6、什么是均匀化? 通常将6063铝棒在560℃保温6~8小时,使合金的Mg2si相以细小质点均匀分布在整个金属基体中,且消除铸造应力,铸锭出炉后以较高速度冷却(水冷或风冷),这种热处理工艺称作均匀化。 7、在挤压生产中,均匀化有什么作用? ⑴能提高型材的机械性能;⑵降低挤压力约10~15%;⑶大大提高挤压速度;⑷降低合金的挤压摩擦,提高模具寿命;⑸减少型材的挤压痕,改善型材的氧化着色质量。 8、怎样计算挤压机每小时产量? 挤压机每小时产量按下面公式计算: As=3600×F×P[1Vi÷tf/(Ld-1)] 其中:As-挤压机每小时产能(t/h) F-铸锭截面积(㎡)

铝合金通用焊接工艺规程

铝合金通用焊接工艺规程 1 使用范围及目的 范围:本规范是适用于地铁铝合金部件焊接全过程的通用工艺要求。目的:与焊接相关的作业人员按标准规范作业,同时也使焊接过程检查更具可操作性。 2 焊前准备的要求 2.1 在焊接作业前首先必须根据图纸检查来料或可见的重要尺寸、形位公差和焊接质量,来料不合格不能进行焊接作业。 2.2 在焊接作业前,必须将残留在产品表面和型腔内的灰尘、飞溅、毛刺、切削液、铝屑及其它杂物清理干净。 2.3 用棉布将来料或工件上的灰尘和脏物擦干净,如果工件上有油污,使用清洗液清理干净。 2.4 使用风动不锈钢丝轮将焊缝区域内的氧化膜打磨干净,以打磨处呈白亮色为标准,打磨区域为焊缝两侧至少25mm以上。 2.5 焊前确认待焊焊缝区域无打磨时断掉的钢丝等杂物。 2.6 钢焊和铝焊的打磨、清理工具禁止混用。 2.7 原则上工件打磨后在48小时内没有进行焊接,酸洗部件在72小时内没有进行焊接,则焊前必须重新打磨焊接区域。 2.8 为保证焊丝的质量,焊丝原则上用完后再到焊丝房领用,对于晚班需换焊丝的,可以在当天白班下班前领用,禁止现场长时间(24小时以上)存放焊丝。 2.9 在焊接作业前,必须检查焊接设备和工装处于正常工作状态。焊 前应检查焊机喷嘴的实际气流量(允差为+3L/min),自动焊焊丝在8圈以下,手工焊焊丝在5圈以上,否则需要更换气体或焊丝;检查导电嘴是否拧紧,喷嘴是否需要清理。导电嘴不能只简单的采用手动拧紧,必须采用尖嘴钳拧紧。检查工装状

态是否完好,若工装有损坏,应立即通知工装管理员进行核查,并组织维修,禁止在工装异常状态下进行焊接操作。 2.10 焊接前必须检查环境的温度和湿度。作业区要求温度在5?以上,MIG焊湿度小于65,,TIG焊湿度小于70,。环境不符合要求,不能进行焊接作业。 2.11 焊接过程中不允许有穿堂风。因此,在焊接作业前必须关闭台位附近的通道门。当焊接过程中,如果有人打开台位相近处的大门,则要立即停止施焊。如果台位附近的空调风影响到焊接作业,也必须将该处空调的排风口关闭,才能进行焊接作业。 2.12 对于厚度在8mm以上(包括8mm)的铝材,焊接要预热,预热温度 80?,120?,层间温度控制在60?,100?。预热时要使用接触式测温仪进行测温,工件板厚不超过50mm时,正对着焊工的工件表面,距坡口表面4倍板厚,最多不超过50mm的距离处测量,当工件厚度超过50mm时,要求的测温点应位于至少75mm距离的母材或坡口任何方向上同一的位置,条件允许时,温度应在加热面的背面上测定,严禁凭个人感觉及经验做事。 2.13 按图纸进行组装,点焊固定,点焊要满足与焊接相同的要求,不属于焊接组成部分的点焊要尽可能在焊接时完全熔化(图纸要求的点焊 除外,如焊接垫板的固定),组焊后不能出现图纸要求之外的焊点,部件固定后按图纸要求进行尺寸、平行度、垂直度等项点的自检,自检合格后,根据图纸进行焊接,操作工人必须及时、真实填写操作记录。 2.14 当图纸要求或工艺要求使用焊接垫板时,应将焊接垫板点焊在工件上,点焊应符合焊接质量要求,点焊要求为:焊接垫板小于100mm时,在焊接垫板两端点焊固定,焊接垫板大于100mm时,根据焊接垫板长度点焊均匀分布,间距100mm。 2.15 为了避免腐蚀,铝合金配件存放时不允许直接采用钢或者铜材质的容器存放,不允许将配件直接放置在钢制的工装或地板上。 2.16 对于焊缝质量等级为

铝与铝合金的焊接方法

铝合金焊接的几种先进工艺:搅拌摩擦焊、激光焊、激光- 电弧复合焊、电子束焊。针对于焊接性不好和曾认为不可焊接的合金提出了有效的解决方法,几种工艺均具有优越性,并可对厚板铝合金进行焊接。 关键词:铝合金搅拌摩擦焊激光焊激光- 电弧复合焊电子束焊 1 铝合金焊接的特点 铝合金由于重量轻、比强度高、耐腐蚀性能好、无磁性、成形性好及低温性能好等特点而被广泛地应用于各种焊接结构产品中,采用铝合金代替钢板材料焊接,结构重量可减轻50 %以上。 铝合金焊接有几大难点: ①铝合金焊接接头软化严重,强度系数低,这也是阻碍铝合金应用的最大障碍; ②铝合金表面易产生难熔的氧化膜(Al2O3 其熔点为2060 ℃) ,这就需要采用大功率密度的焊接工艺; ③铝合金焊接容易产生气孔; ④铝合金焊接易产生热裂纹; ⑤线膨胀系数大,易产生焊接变形; ⑥铝合金热导率大(约为钢的4 倍) ,相同焊接速度下,热输入要比焊接钢材大2~4 倍。 因此,铝合金的焊接要求采用能量密度大、焊接热输入小、焊接速度高的高效焊接方法。 2 铝合金的先进焊接工艺 针对铝合金焊接的难点,近些年来提出了几种新工艺,在交通、航天、航空等行业得到了一定应用,几种新工艺可以很好地解决铝合金焊接的难点,焊后接头性能良好,并可以对以前焊接性不好或不可焊的铝合金进行焊接。 2. 1 铝合金的搅拌摩擦焊接 搅拌摩擦焊FSW( Friction Stir Welding) 是由英国焊接研究所TWI ( The Welding Institute) 1991 年提出的新的固态塑性连接工艺[1~2 ] 。图1为搅拌摩擦焊接示意图[3 ] 。其工作原理是用一种特殊形式的搅拌头插入工件待焊部位,通过搅拌头高速旋转与工件间的搅拌摩擦,摩擦产生热使该部位金属处于热塑性状态,并在搅拌头的压力作用下从其前端向后部塑性流动,从而使焊件压焊在一起。图2 为搅拌摩擦焊接过程[4 ] 。由于搅拌摩擦焊过程中不存在金属的熔化,是一种固态连接过程,故焊接时不存在熔焊的各种缺陷,可以焊接用熔焊方法难以焊接的有色金属材料,如铝及高强铝合金、铜合金、钛合金以及异种材料、复合材料焊接等。目前搅拌摩擦焊在铝合金的焊接方面研究应用较多。已经成功地进行了搅拌摩擦焊接的铝合金包括2000 系列(Al- Cu) 、5000 系列(Al - Mg) 、6000 系列(Al - Mg - Si) 、7000 系列(Al - Zn) 、8000 系列(Al - Li) 等。国外已经.进入工业化生产阶段,在挪威已经应用此技术焊接快艇上长为20 m 的结构件,美国洛克希德·马丁航空航天公司用该项技术焊接了铝合金储存液氧的低温容器火箭结构件。 铝合金搅拌摩擦焊焊缝是经过塑性变形和动态再结晶而形成,焊缝区晶粒细化,无熔焊的树枝晶,组织细密,热影响区较熔化焊时窄,无合金元素烧损、裂纹和气孔等缺陷,综合性能良好。与传统熔焊方法相比,它无飞溅、烟尘,不需要添加焊丝和保护气体,接头性能良好。由于是固相焊接工艺,加热温度低,焊接热影响区显微组织变化小,如亚稳定相基本保持不变,这对于热处理强化铝合金及沉淀强化铝合金非常有利。焊后的残余应力和变形非常小,对于薄板铝合金焊后基本不变形。与普通摩擦焊相比,它可不受轴类零件的限制,可焊接直焊缝、角焊缝。传统焊接工艺焊接铝合金要求对表面进行去除氧化膜,并在48 h 内进行加工,而搅拌摩擦焊工艺只要在焊前去除油污即可,并对装配要求不高。并且搅拌摩擦焊比熔化焊节省能源、污染小。 搅拌摩擦焊铝合金也存在一定的缺点:

6063铝合金熔炼工艺及注意事项 一.Al-Mg-Si系合金的基本特点

6063铝合金熔炼工艺及注意事项 一.Al-Mg-Si系合金的基本特点: 6063铝合金的化学成份在GB/T5237-93标准中为0.2-0.6%的硅、0.45-0.9%的镁、铁的最高限量为0. 35%,其余杂质元素(Cu、Mn、Zr、Cr等)均小于0.1%。这个成份范围很宽,它还有很大选择余地。 6063铝合金是属铝-镁-硅系列可热处理强化型铝合金,在AL-Mg-Si组成的三元系中,没有三元化合物,只有两个二元化合物Mg2Si和Mg2Al3,以α(Al)-Mg2Si伪二元截面为分界,构成两个三元系,α(Al)-Mg2Si-(Si)和α(Al)-Mg2Si-Mg2Al3,如图一、田二所示: 在Al-Mg-Si系合金中,主要强化相是Mg2Si,合金在淬火时,固溶于基体中的Mg2Si 越多,时效后的合金强度就越高,反之,则越低,如图2所示,在α(Al)-Mg2Si伪二元相图上,共晶温度为595℃,Mg2Si的最大溶解度是1.85%,在500℃时为1. 05%,由此可见,温度对Mg2Si在Al中的固溶度影响很大,淬火温度越高,时效后的强度越高,反之,淬火温度越低,时效后的强度就越低。有些铝型材厂生产的型材化学成份合格,强度却达不到要求,原因就是铝捧加热温度不够或外热内冷,造成型材淬火温度太低所致。 在Al-Mg-Si合金系列中,强化相Mg2Si的镁硅重量比为1.73,如果合金中有过剩的镁(即Mg:Si>1. 73),镁会降低Mg2Si在铝中的固溶度,从而降低Mg2Si在合金中的强化效果。如果合金中存在过剩的硅,即Mg:Si<1.73,则硅对Mg2Si在铝中的固溶度没有影响,由此可见,要得到较高强度的合金,必须Mg:Si<1.73。 二.合金成份的选择 1.合金元素含量的选择 6063合金成份有一个很宽的范围,具体成份除了要考虑机械性能、加工性能外,还要考虑表面处理性能,即型材如何进行表面处理和要得到什么样的表面。例如,要生产磨砂料,Mg/Si应小一些为好,一般选择在Mg/Si=1-1.3范围,这是因为有较多相对过剩的Si,有利于型材得到砂状表面;若生产光亮材、着色材和电泳涂漆材,Mg/Si在1.5-1.7范围为好,这是因为有较少过剩硅,型材抗蚀性好,容易得到光亮的表面。 另外,铝型材的挤压温度一般选在480℃左右,因此,合金元素镁硅总量应在1.0%左右,因为在500℃时,Mg2Si在铝中的固溶度只有1.05%,过高的合金元素含量会导致在淬火时Mg2Si不能全部溶入基体,有较多的末溶解Mg2Si相,这些Mg2Si相对合金的强度没有多少作用,反而会影响型材表面处理性能,给型材的氧化、着色(或涂漆)造成麻烦。

铝及铝合金焊接

铝及铝合金的焊接

铝及铝合金是工业中应用最广泛的一类有色金属结构材料,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。随着近年来科学技术以及工业经济的飞速发展,对铝合金焊接结构件的需求日益增多,使铝合金的焊接性研究也随之深入。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域,因此铝合金的焊接技术正成为研究的热点之一。 有色金属non-ferrous metal,狭义的有色金属又称为非铁金属,是铁、锰、铬以外的所有金属的统称。广义的有色金属还包括有色合金。有色合金是以一种有色金属为基体(通常大于50%),加入一种或几种其他元素而构成的合金。随着科学技术的发展,有色金属的应用日趋广泛。虽然有色金属只占金属总量的5%左右,但有色金属在工程应用中的重要作用确实钢铁或其他材料无法代替的。有色金属具有特殊的性能,比常规钢铁材料的焊接更复杂,这给焊接工作带来很大的困难。 铝合金是工业中应用最广泛的一类有色金属结构材料,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。随着近年来科学技术以及工业经济的飞速发展,对铝合金焊接结构件的需求日益增多,使铝合金的焊接性研究也随之深入。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域,因此铝合金的焊接技术正成为研究的热点之一。 什么是金属盒非金属,什么是黑色金属和有色金属,什么事合什么是金属盒非金属,什么是黑色金属和有色金属,金?目前,已知的的化学元素有118 种,其中自然界只存在92 种,科学家成功研制出并已经得到承认和命名的元素有18 种,有8 种元素没有得到承认和命名。人们通常把这些元素分成金属和非金属两大类。从物理性能上来看,具有导电性、导热性、可塑性以及特殊光泽的元素叫金属,反之是非金属。常见的金属有铁、铝、铜、镁、锌等。在非金属中,常温下呈气态的有氢、氧、氩等;常温下呈液态的有溴;常温下呈固态的有碳、硼等。 金属又可分为黑色金属和有色金属两大类。黑色金属通常是指铁、铬、锰和铁基合金,其他的金属合金称为有色金属。 合金是有两种或两种以上的金属元素与非金属元素所组合成的具有合金性质的物质。3A21 就是由铝和锰组成的以铝为基的合金。 有色金属的分类有色金属按其性质、用途、产量及其在地壳中的储量状况一般分为有色轻金属、有色重金属、贵金属、稀有金属和半金属五大类。在稀有金属中,根据其物理化学性质、原料的共生关系、生产工艺流程等特点,又分稀有轻金属、稀有重金属、稀有难熔金属、稀散金属、稀土金属、稀有放射性金属。

铝及铝合金的焊接特点

铝及铝合金的焊接特点 (1)铝在空气中及焊接时极易氧化,生成的氧化铝(Al2O3)熔点高、非常稳定,不易去除。阻碍母材的熔化和熔合,氧化膜的比重大,不易浮出表面,易生成夹渣、未熔合、未焊透等缺欠。铝材的表面氧化膜和吸附大量的水分,易使焊缝产生气孔。焊接前应采用化学或机械方法进行严格表面清理,清除其表面氧化膜。在焊接过程加强保护,防止其氧化。钨极氩弧焊时,选用交流电源,通过“阴极清理”作用,去除氧化膜。气焊时,采用去除氧化膜的焊剂。在厚板焊接时,可加大焊接热量,例如,氦弧热量大,利用氦气或氩氦混合气体保护,或者采用大规范的熔化极气体保护焊,在直流正接情况下,可不需要“阴极清理”。 (2)铝及铝合金的热导率和比热容均约为碳素钢和低合金钢的两倍多。铝的热导率则是奥氏体不锈钢的十几倍。在焊接过程中,大量的热量能被迅速传导到基体金属内部,因而焊接铝及铝合金时,能量除消耗于熔化金属熔池外,还要有更多的热量无谓消耗于金属其他部位,这种无用能量的消耗要比钢的焊接更为显着,为了获得高质量的焊接接头,应当尽量采用能量集中、功率大的能源,有时也可采用预热等工艺措施。 (3)铝及铝合金的线膨胀系数约为碳素钢和低合金钢的两倍。铝凝固时的体积收缩率较大,焊件的变形和应力较大,因此,需采取预防焊接变形的措施。铝焊接熔池凝固时容易产生缩孔、缩松、热裂纹

及较高的内应力。生产中可采用调整焊丝成分与焊接工艺的措施防止热裂纹的产生。在耐蚀性允许的情况下,可采用铝硅合金焊丝焊接除铝镁合金之外的铝合金。在铝硅合金中含硅%时热裂倾向较大,随着硅含量增加,合金结晶温度范围变小,流动性显0.5. 着提高,收缩率下降,热裂倾向也相应减小。根据生产经验,当含硅5%~6%时可不产生热裂,因而采用SAlSi条(硅含量4.5%~6%) 焊丝会有更好的抗裂性。 (4)铝对光、热的反射能力较强,固、液转态时,没有明显的色泽变化,焊接操作时判断难。高温铝强度很低,支撑熔池困难,容易焊穿。 (5)铝及铝合金在液态能溶解大量的氢,固态几乎不溶解氢。在焊接熔池凝固和快速冷却的过程中,氢来不及溢出,极易形成氢气孔。弧柱气氛中的水分、焊接材料及母材表面氧化膜吸附的水分,都是焊缝中氢气的重要来源。因此,对氢的来源要严格控制,以防止气孔的形成。 (6)合金元素易蒸发、烧损,使焊缝性能下降。 (7)母材基体金属如为变形强化或固溶时效强化时,焊接热会使热影响区的强度下降。 (8)铝为面心立方晶格,没有同素异构体,加热与冷却过程中没有相变,焊缝晶粒易粗大,不能通过相变来细化晶粒。 2. 焊接方法 几乎各种焊接方法都可以用于焊接铝及铝合金,但是铝及铝合金对

焊接工艺评定规范

焊接工艺评定规范 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 焊接工艺评定(Welding Procedure Qualification,简称WPQ) 为验证所拟定的焊件焊接工艺的正确性而进行的试验过程及结果评价。焊接工艺评定是保证质量的重要措施,为正式制定焊接工艺指导书或焊接工艺卡提供可靠依据。 目的 1.评定施焊单位是否有能力焊出符合相关国家或行业标准、技术规范所要求的焊接接头; 2.验证施焊单位所拟订的焊接工艺规程(WPS或pWPS)是否正确。 3.为制定正式的焊接工艺指导书或焊接工艺卡提供可靠的技术依据。 意义 焊接工艺是保证焊接质量的重要措施,它能确认为各种焊接接头编制的焊接工艺指导书的正确性和合理性。通过焊接工艺评定,检验按拟订的焊接工艺指导书焊制的焊接接头的使用性能是否符合设计要求,并为正式制定焊接工艺指导书或焊接工艺卡提供可靠的依据。 焊接工艺评定应用范围: 1、适用于锅炉,压力容器,压力管道,桥梁,船舶,航空航天,核能以及承重钢结构等钢制设备的制造、安装、检修工作。 2、适用于气焊,焊条电弧焊,钨极氩弧焊,熔化极气体保护焊,埋弧焊,等离子弧焊,电渣焊等焊接方法。评定过程: 1、拟定预备焊接工艺指导书(Preliminary Welding Procedure Specification,简称PWPS) 2、施焊试件和制取试样

3、检验试件和试样 4、测定焊接接头是否满足标准所要求的使用性能 5、提出焊接工艺评定报告对拟定的焊接工艺指导书进行评定 工艺评定常规测试 >>外观检测 >>无损探伤 >>拉伸测试 >>弯曲测试 >>冲击测试 >>硬度测试 >>低倍金相测试 >>表面裂纹检测 工艺评定相关标准 评定参考标准: 工艺评定的标准国内标准 SY∕T4103-1995 (相当于API 1104) NB/T47014-2011 《承压设备用焊接工艺评定》 SY∕T0452-2002 《石油输气管道焊接工艺评定方法》(注:供石油,化工工艺评定)JGJ81-2002 《建筑钢结构焊接技术规程》(注:公路桥梁工艺评定可参照执行)GB50236-98 《现场设备,工业管道焊接工程施工及压力管道工艺评定》 《蒸汽锅炉安全技术监察规程(1996)》注:起重行业工艺评定借用此标准 欧洲标准

6063铝合金熔炼生产工艺手册

6063铝合金熔炼生产工艺手册 本文由全球铝业网 (https://www.doczj.com/doc/c41806181.html,) 编辑,转载请注明出处,十分感谢! 一.Al-Mg-Si系合金的基本特点: 6063铝合金的化学成份在GB/T5237-93标准中为0.2-0.6%的硅、0.45-0.9%的镁、铁的最高限量为0.35%,其余杂质元素(Cu、Mn、Zr、Cr等)均小于0.1%。这个成份范围很宽,它还有很大选择余地。 6063铝合金是属铝-镁-硅系列可热处理强化型铝合金,在AL-Mg-Si组成的三元系中,没有三元化合物,只有两个二元化合物Mg2Si和 Mg2Al3,以α(Al)-Mg2Si伪二元截面为分界,构成两个三元系,α(Al)-Mg2Si-(Si)和α(Al)-Mg2Si-Mg2Al3,如图一、田二所示:在Al-Mg-Si系合金中,主要强化相是Mg2Si,合金在淬火时,固溶于基体中的Mg2Si 越多,时效后的合金强度就越高,反之,则越低,如图2所示,在α(Al)-Mg2Si伪二元相图上,共晶温度为595℃,Mg2Si的最大溶解度是1.85%,在 500℃时为1.05%,由此可见,温度对Mg2Si在Al中的固溶度影响很大,淬火温度越高,时效后的强度越高,反之,淬火温度越低,时效后的强度就越低。有些铝型材厂生产的型材化学成份合格,强度却达不到要求,原因就是铝捧加热温度不够或外热内冷,造成型材淬火温度太低所致。 在Al-Mg-Si合金系列中,强化相Mg2Si的镁硅重量比为1.73,如果合金中有过剩的镁(即Mg:Si>1.73),镁会降低Mg2Si在铝中的固溶度,从而降低Mg2Si在合金中的强化效果。如果合金中存在过剩的硅,即Mg:Si<1.73,则硅对Mg2Si在铝中的固溶度没有影响,由此可见,要得到较高强度的合金,必须Mg:Si<1.73。 二.合金成份的选择 1.合金元素含量的选择 6063合金成份有一个很宽的范围,具体成份除了要考虑机械性能、加工性能外,还要考虑表面处理性能,即型材如何进行表面处理和要得到什么样的表面。例如,要生产磨砂料,Mg/Si应小一些为好,一般选择在Mg/Si=1-1.3范围,这是因为有较多相对过剩的Si,有利于型材得到砂状表面;若生产光亮材、着色材和电泳涂漆材,Mg/Si在1.5-1.7范围为好,这是因为有较少过剩硅,型材抗蚀性好,容易得到光亮的表面。 另外,铝型材的挤压温度一般选在480℃左右,因此,合金元素镁硅总量应在1.0%左右,因为在500℃时,Mg2Si在铝中的固溶度只有1.05%,过高的合金元素含量会导致在淬火时Mg2Si不能全部溶入基体,有较多的末溶解Mg2Si相,这些Mg2Si相对合金的强度没有多少作用,反而会影响型材表面处理性能,给型材的氧化、着色(或涂漆)造成麻烦。 2.杂质元素的影响

铝合金焊接通用工艺规范(定版)

铝合金焊接工艺规范 技术部 编制 审核 批准 ××工业有限公司 2012.6.26

前言 本规范根据××工业有限公司,定制与实施设计规范、工艺规范、试验规范的要求,按《企业标准编写的一般规定》,为明确铝合金焊接的工艺要求而制定。 本规范是公司在铝合金焊接中的经验总结,对于生产起指导作用。 本规范编制部门:技术部 本规范制定日期:2012-6-26。

一、目的 为规范焊工操作,保证焊接质量,不断提高焊工的实际操作技术水平,特编制本规范。 二、编制依据 1. GB/T 985.3 《铝及铝合金气体保护焊推荐坡口》 2. GB/T10858-2008《铝及铝合金焊丝》 3. GB/T24598-2009《铝及铝合金熔化焊焊工技能评定》 4. GBT3199-2007 《铝及铝合金加工产品贮存及包装》 5. GBT22087-2008《铝及铝合金弧焊接头缺欠质量》 6.有关产品设计图纸 三、焊前准备 3.1 焊接材料 铝板 3A21(原LF21)及铝合金型材。 焊丝:S311铝硅焊丝 ER4043 直径φ2,φ3,焊丝应有制造长的质量合格证,领取和发放由管理员统一管理。铝硅焊丝抗裂性好,通用性大。 3.2 氩气 氩气瓶上应贴有出厂合格标签,其纯度≥99.99%,所用流量8-16升/分钟,气瓶中 的氩 气不能用尽,瓶内余压不得低于0.5MPa ,以保证充氩纯度。氩气应符合 GB/T4842-1995。 3.3 焊接工具 ①采用交流电焊机,本厂用WSME-315(J19)。 ②选用的氩气减压流量计应开闭自如,没有漏气现象。切记不可先开流量计、后开气 瓶,造成高压气流直冲低压,损坏流量计;关时先关流量计而后关氩气瓶。 ③输送氩气的胶皮管,不得与输送其它气体的胶皮管互相串用,可用新的氧气胶皮管

铝合金焊接质量控制手册

铝合金焊接质量控制手 册 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

铝合金焊接质量控制手册Quality Control Manual Of Aluminium And Aluminium alloys Welding 编制: 审核: 会签: 批准:

目录 catalog 1前言(f o r e w o r d) (3) 2标准及术语(s t a n d a r d a n d t e c h n i c a l t e r m s) (3) 3职责与权限(r e s p o n s i b i l i t y a n d a u t h o r i t y) (3) 4合同评审及设计评审 (11) (contract and design evaluation) 5分包(s u b c o n t r a c t) (13) 6焊接人员(w e l d e r) (13) 7检验人员(i n s p e c t o r a n d t e s t e r) (14) 8设备及工装(e q u i p m e n t a n d f i x t u r e) (14) 9焊接作业(w e l d i n g o p e r a t i o n) (16) 10母材与焊接材料(b a s e m e t a l a n d w e l d i n g m a t e r i a l) (17) 11储存与搬运(s t o r e a n d h a n d l i n g) (18) 12焊前热处理和焊后热处理 (18) (heat treatment before and after welding) 13焊接相关检验 (18) (relative welding inspection and test) 14不合格品及其纠正 (20) (unqualified products and correction) 15校准(a l i g n m e n t) (20) 16标识及可追溯性(m a r k a n d t r a c e a b i l i t y) (20) 17质量记录(q u a l i t y r e c o r d) (21) 1 前言 本手册对公司铝合金焊接质量控制的有关活动做出了规定,符合DIN6700《轨道车辆及其部件焊接》中的最高级别C1级(安全性高的轨道车辆部件)的有关规定。 本手册是对公司《质量手册》的完善和补充,专门用于描述铝合金焊接质量控制的有关活动,要求各有关单位遵照执行。 本手册适用的产品范围:轨道车辆铝合金车体及其部件焊接。 2 标准及术语 本手册所采用的标准是DIN6700系列标准及其引用的相关标准,本手册所采用的术语与标准中的术语一致,不再赘述。

6063铝合金挤压型材常见缺陷及其解决办法

6063铝合金挤压型材常见缺陷及其解决办法 6063铝合金型材以其良好的塑性、适中的热处理强度、良好的焊接性能以及阳极氧化处理后表面华丽的色泽等诸多优点而被广泛应用。但在生产过程中经常会出现一些缺陷而致使产品质量低下,成品率降低,生产成本增加,效益下降,最终导致企业的市场竞争能力下降。因此,从根源上着手解决6063铝合金挤压型材的缺陷问题是企业提高自身竞争力的一个重要方面。 1 划、擦、碰伤 划伤、擦伤、碰伤是当型材从模孔流出以及在随后工序中与工具、设备等相接触时导致的表面损伤。 1.1 主要原因 ①铸锭表面附着有杂物或铸锭成分偏析。铸锭表面存在大量偏析浮出物而铸锭又未进行均匀化处理或均匀化处理效果不好时,铸锭内存在一定数量的坚硬的金属颗粒,在挤压过程中金属流经工作带时,这些偏析浮出物或坚硬的金属颗粒附着在工作带表面或对工作带造成损伤,最终对型材表面造成划伤; ②模具型腔或工作带上有杂物,模具工作带硬度较低,使工作带表面在挤压时受伤而划伤型材; ③出料轨道或摆床上有裸露的金属或石墨条内有较硬的夹杂物,当其与型材接触时对型材表面造成划伤; ④在叉料杆将型材从出料轨道上送到摆床上时,由于速度过快造成型材碰伤; ⑤在摆床上人为拖动型材造成擦伤; ⑥在运输过程中型材之间相互摩擦或挤压造成损伤。 1.2 解决办法 ①加强对铸锭质量的控制; ②提高修模质量,模具定期氮化并严格执行氮化工艺; ③用软质毛毡将型材与辅具隔离,尽量减少型材与辅具的接触损伤; ④生产中要轻拿轻放,尽量避免随意拖动或翻动型材; ⑤在料框中合理摆放型材,尽量避免相互摩擦。 2机械性能不合格 2.1 主要原因 ①挤压时温度过低,挤压速度太慢,型材在挤压机的出口温度达不到固溶温度,起不到固溶强化作用; ②型材出口处风机少,风量不够,导致冷却速度慢,不能使型材在最短的时间内降到200℃以下,使粗大的Mg2Si过早析出,从而使固溶相减少,影响了型材热处理后的机械性能; ③铸锭成分不合格,铸锭中的Mg、Si含量达不到标准要求; ④铸锭未均匀化处理,使铸锭组织中析出的Mg2Si相无法在挤压的较短时间内重新固溶,造成固溶不充分而影响了产品性能; ⑤时效工艺不当、热风循环不畅或热电偶安装位置不正确,导致时效不充分或过时效。 2.2 解决办法 ①合理控制挤压温度和挤压速度,使型材在挤压机的出口温度保持在最低固溶温度以上; ②强化风冷条件,有条件的工厂可安装雾化冷却装置,以期达到6063合金冷却梯度的最低要求; ③加强铸锭的质量管理; ④对铸锭进行均匀化处理; ⑤合理确定时效工艺,正确安装热电偶,正确摆放型材以保证热风循环通畅。 3几何尺寸超差 3.1 主要原因 ①由于模具设计不合理或制造有误、挤压工艺不当、模具与挤压筒不对中、不合理润滑等,导致金属流动中各点流速相差过大,从而产生内应力致使型材变形;

铝及铝合金焊接工艺参数介绍步骤及注意事项

铝及铝合金的焊接工艺技术参数介绍、方法、步 骤及注意事项 一、为什么MIG焊铝的工艺难题较多 答:MIG焊铝的工艺难题主要有: (1)铝及铝合金的熔点低(纯铝660℃),表面生成高熔点氧化膜(AL2O3 2050℃),容易造成焊接不熔合; (2)低熔点共晶物和焊接应力,容易产生焊接热裂纹; (3)母材、焊材氧化膜吸附水分,焊缝容易产生气孔; (4)铝的导热性是钢的3倍,焊缝熔池的温度场变化大,控制焊缝成型的难度较大; (5)焊接变形较大。 二、铝及铝合金焊接难点 (1)强的氧化能力铝在空气中极易与氧结合生成致密结实的Al2O3膜薄,厚度约μm。Al2O3的熔点高达2050℃,远远超过铝及铝合金的熔点(约660℃),而且体积质量大,约为铝的倍。焊接过程中,氧化铝薄膜会阻碍金属之间的良好结合,并易形成夹渣。氧化膜还会吸附水分,焊接时会促使焊缝生成气孔。因此,焊前必须严格清理焊件表面的氧化物,并加强焊接区域的保护。 (2)较大的热导率和比热容铝及铝合金的热导率和比热容约比钢大1倍,焊接过程中大量的热量被迅速传导到基体金属内部。因此,焊接铝及铝合金比钢要消耗更多的热量,焊前常需采取预热等工艺措施。 (3)热裂纹倾向大线膨胀系数约为钢的2倍,凝固时的体积收缩率达%左右,因此焊接某些铝合金时,往往由于过大的内应力而产生热裂纹。生产中常用调整焊丝成分的方法来防止产生热裂纹,如使用焊丝HS311。? (4)容易形成气孔形成气孔的气体是氢。氢在液态铝中的溶解度为100g,而在660℃凝固温度时,氢的溶解度突降至100g,使原来溶解于液态铝中的氢大量析出,形成气泡。同时,铝和铝合金的密度小,气泡在熔池中的上升速度较慢,

铝制压力容器焊接工艺规程

铝制压力容器焊接工艺规程 1 适用范围 本工艺标准适用于铝及铝合金压力容器的手工钨极氩弧焊和熔化极氩弧焊的焊接; 2 准备 2.1 铝及铝合金的焊接除应执行本工艺标准外,还应符合国家颁布的有关标准、法律法规及规定; 下列文件中的条款通过本标准的引用而成为本标准的条款,凡是不注日期的引用文件其最新版本适用于本标准 《铝及铝合金轧制板材》 《铝及铝合金热挤压管》第一部分:无缝圆管 《铝及铝合金拉(轧)制无缝管》 《铝及铝合金焊丝》 《铝及铝合金焊接管》 《铝制焊接容器》 2.2 材料 2.2.1 一般规定 工程中使用的母材和焊丝应具备出厂质量合格证或质量复验合格报告,并优先选用已列入国家标准或行业标准的母材和焊丝,母材和焊丝应妥善保管,防止损伤、污染和腐蚀;当选用国外材料时,其使用范围应符合相应标准的规定,并应有该材料的质量证明书; 2.2.2 母材 2.2.2.1 工程选用的母材应符合现行的国家标准规定; 2.2.2.2 当对母材有特殊要求时,应在设计图样或相应的技术条件上标明; 2.2.2.3 施工单位对设备、容器和管道的材料的代用,必须事先取得原设计单位的设计修改证明文件,并对改动部位作详细记载; 2.2.2.4 损伤和锈蚀严重的母材不得在工程中使用; 2.2.3 焊接材料 2.2. 3.1 母材焊接所选用的焊丝应符合现行的国家标准《铝及铝合金焊丝》GB/T10858的规定; 2.2. 3.2 选用焊丝时应综合考虑母材的化学成分、力学性能及使用条件因素,并应符合下列规定; (1)焊接纯铝时应选用纯度与母材相同或比母材高的焊丝; (2)焊接铝锰合金时应选用含锰量与母材相近的焊丝或铝硅合金焊丝; (3)焊接铝镁合金时应选用含镁量与母材相同或比母材高的焊丝; (4)异种铝及铝合金的焊接应选用与抗拉强度较高的母材相应的焊丝 2.2. 3.3 焊接时所使用的氩气应符合现行的国家标准《纯氩》GB4842的规定; 2.2. 3.4 手工钨极氩弧焊电极应选用铈钨极,也可选用钍钨极,施焊前应根据焊接电流的大小正确选用钨极直径; 2.3 作业人员 2.3.1 铝及铝合金施工应具有符合国家质量技术监督或国家压力容器、压力管道监察机构有关法规要求的质量管理体系; 2.3.2 主要作业人员:焊工,管道工,无损探伤工

相关主题
文本预览
相关文档 最新文档