当前位置:文档之家› 药物动力学常见参数及计算方法

药物动力学常见参数及计算方法

中央室周边室

生物药剂学与药物动力学试卷及答案

生物药剂学与药物动力学期末考试试题 一.单项选择题(共15题,每题1分,共15分) 1.大多数药物吸收的机理是() A.逆浓度关进行的消耗能量过程 B.消耗能量,不需要载体的高浓度向低浓度侧的移动过程 C.需要载体,不消耗能量的高浓度向低浓度侧的移动过程 D.不消耗能量,不需要载体的高浓度向低浓度侧的移动过程 E.有竞争转运现象的被动扩散过程 2.不影响药物胃肠道吸收的因素是() A.药物的解离常数与脂溶性 B.药物从制剂中的溶出速度 C.药物的粒度 D.药物旋光度 E.药物的晶型 3.不是药物胃肠道吸收机理的是() A.主动转运 B.促进扩散 C.渗透作用 D.胞饮作用 E.被动扩散 4.下列哪项符合剂量静脉注射的药物动力学规律()

A.平均稳态血药浓度是(Css)max与(css)min的算术平均值 B.达稳态时每个剂量间隔内的AUC等于单剂量给药的AUC C.达稳态时每个剂量间隔内的AUC大于单剂量给药的AUC D.达稳态时的累积因子与剂量有关 E.平均稳态血药浓度是(css)max与(Css)min的几何平均值 5.测得利多卡因的消除速度常数为0.3465h,则它的生物半衰期() A.4h B.1.5h C.2.0h D.O.693h E.1h 6.下列有关药物表观分布溶积的叙述中,叙述正确的是() A.表观分布容积大,表明药物在血浆中浓度小 B.表观分布容积表明药物在体内分布的实际容积 C.表观分布容积不可能超过体液量 D.表观分布容积的单位是“升/小时” E.表现分布容积具有生理学意义 7.静脉注射某药,X0=60rag,若初始血药浓度为15ug/ml,其表观分布容积V为() A.20L B.4ml C.30L D.4L E.15L 8.地高辛的半衰期为40.8h,在体内每天消除剩余量百分之几() A.35.88 B.40.76 C.66.52 D.29.41 E.87.67

高考物理二轮复习计算题题型1运动学、动力学类问题练习

计算题题型1 运动学、动力学类问题 角度1:直线运动规律及牛顿运动定律的综合应用 1.(2017·江西吉安一诊)如图所示,在赛车训练场相邻两车道上有黑白两辆车,黑色车辆停在A线位置,某时刻白色车速度以v1=40 m/s通过A线后立即以大小a1=4 m/s2的加速度开始制动减速,黑车4 s后开始以a2=4 m/s2的加速度开始向同一方向匀加速运动,经过一定时间,两车同时在B线位置.两车看成质点.从白色车通过A线位置开始计时,求经过多长时间两车同时在B线位置及在B线位置时黑色车的速度大小. 2.质量M=10 kg的木板A沿水平面向右运动,与水平面之间的动摩擦因数μ1=0.1,当A的速度v0=5 m/s时,在A的左端施加一个恒力F=35 N,如图所示,同时在木板上表面无初速度地放上一个质量m=5 kg的滑块B.已知滑块B右端的木板上表面粗糙,长度为12.5 m,与滑块之间的动摩擦因数μ2=0.1,滑块左端的木板上表面包括滑块所放的位置均光滑,长度为 2.5 m,g 取10 m/s2. (1)至少经过多长时间滑块与木板的速度相等? (2)共经过多长时间滑块与木板分开? 3.(2017·辽宁鞍山一模)如图所示为在某工厂的厂房内用水平传送带将工件的半成品运送到下一工序的示意图.传送带在电动机的带动下保持v=2 m/s的速度匀速向右运动,现将质量

为m=20 kg的半成品轻放在传送带的左端A处,半成品工件与传送带间的动摩擦因数为μ=0.5,设传送带足够长,重力加速度g=10 m/s2.试求: (1)半成品工件与传送带相对滑动所经历的时间; (2)半成品工件与传送带间发生的相对位移大小; (3)若每分钟运送的半成品工件为30个,则电动机对传送带做功的功率因运送工件而增加多少? 角度2:带电粒子(带电体)在电场与磁场中的平衡与运动 1.(2017·黑龙江双鸭山一模)如图所示,一带电荷量为+q、质量为m的小物块处于一倾角为37°的光滑斜面上,当整个装置被置于一水平向右的匀强电场中,小物块恰好静止.重力加速度取g,sin 37°= 0.6,cos 37°=0.8.求: (1)水平向右电场的电场强度; (2)若将电场强度减小为原来的,物块的加速度是多大? (3)电场强度变化后物块下滑距离L时的动能.

药物动力学计算题 (2)

1.计算题:一个病人用一种新药,以2mg/h的速度滴注,6小时即终止滴注,问终止后2小时体内血药浓度是多少?(已知k=0。01h-1,V=10L) 2.计算题:已知某单室模型药物,单次口服剂量0。25g,F=1,K=0.07h-1,AUC=700μg/ml·h,求表观分布容积、清除率、生物半衰期(假定以一级过程消除)。 3.某药静注剂量0。5g,4小时测得血药浓度为4。532μg/ml,12小时测得血药浓度为2。266μg/ml,求表观分布容积Vd为多少? 4.某人静注某药,静注2h、6h血药浓度分别为1.2μg/ml和0.3μg/ml(一级动力学),求该药消除速度常数?如果该药最小有效剂量为0。2μg/ml,问第二次静注时间最好不迟于第一次给药后几小时? 5.病人静注复方银花注射剂2m/ml后,立即测定血药浓度为1.2μg/ml,3h为0。3μg/ml,该药在体内呈单室一级速度模型,试求t1/2。 6.某病人一次用四环素100mg,血药初浓度为10μg/ml,4h后为 7.5μg/ml, 。 试求t1 /2 7.静脉快速注射某药100mg,其血药浓度-时间曲线方程为:C=7。14e—0。173t,其中浓度C的单位是mg/L,时间t的单位是h.请计算:(1)分布容积;(2)消除半衰期;(3)AUC。

8.计算题:某药物具有单室模型特征,体内药物按一级速度过程清除。其生物半衰期为2h,表观分布容积为20L。现以静脉注射给药,每4小时一次,每次剂量为500mg. 求:该药的蓄积因子 第2次静脉注射后第3小时时的血药浓度 稳态最大血药浓度 稳态最小血药浓度 9.给病人一次快速静注四环素100mg,立即测得血清药物浓度为10μg/ml,4小时后血清浓度为7。5μg/ml。求四环素的表观分布体积以及这个病人的四环素半衰期(假定以一级速度过程消除)。 10.计算题:病人体重60kg,静脉注射某抗菌素剂量600mg,血药浓度-时间曲线方程为:C=61。82e-0.5262t,其中的浓度单位是μg/ml,t的单位是h,试求病人体内的初始血药浓度、表观分布容积、生物半衰期和血药浓度-时间曲线下面积。 11.计算题:已知某药物具有单室模型特征,体内药物按一级速度方程清除,其t =3h,V=40L,若每6h静脉注射1次,每次剂量为200mg,达稳态血药浓度. 1/2 求:该药的(1)ss C m ax (2)ss C m in (3)ss C (4)第2次给药后第1小时的血药浓度

地下水动力学其它计算题

第二章计算题 1. 在厚度不等的承压含水层中,沿地下水流方向打四个钻孔(孔1、孔2、 孔3、孔4),如图2—1所示,各孔所见含水层厚度分别为:M 1=14.5,M 2 =M 3 =10m, M 4 =7m,已知孔1—孔2、孔2—孔3、孔3—孔4的间距分别为210m、125m、180m。 2. 图2—2所示,作侧河水已受污染,其水位用H 1 表示,没有受污染的右侧 河水位用H 2 表示。(1)已知河渠间含水层为均质、各向同性,渗透系数未知,

入渗强度为0.01m/d。当含水层中水位至少下降2m时,两侧排水渠水位都为H=6m。试求:(1)排水渠的间距L;(2)排水渠一侧单位长度上的流量Q。 两河间距l=500m,含水层的稳定单宽流量为1.2m2/d。在无入渗补给量的条件下,试求含水层的渗透系数。 5. 水文地质条件如图2—4所示。已知h 1=10m,H 2 =10m,下部含水层的平均 厚度M=20m,钻孔到河边距离l=2000m,上层的渗透系数K 1 =2m/d,下层的渗透系 A B 水层分为上下两层,上层为细砂,A、B两处的含水层厚度分别为h A =5.19m、

h =2.19m,渗透系数为3.6m/d。下层为粗砂,平均厚度M=6.4m,渗透系数为30m/d。B 试求含水层的单宽流量。 7. 图2—5所示,某河旁水源地为中粗砂潜水含水层,其渗透系数为100m/d。 含水层平均厚度为20m,给水度为0.002。以井距30m的井排进行取水,井排与 8. 某水库蓄水后,使岸边潜水产生回水现象,如图2—6所示。设计水库蓄 水后最高水位标高H=28m。在距水库l=5km处有一工厂,其地面标高为25m,已 =8m(以含水层底版算起),渗透系数为10m/d,给水度为0.04。设计灌渠水h 位瞬时抬高1.5m后,使地下水位在一天内最小抬高0.3m。试求灌渠的合理间距。

药物动力学习题

药物动力学习题 是非题 1、若某药物消除半衰期为3h,表示该药消除过程中从任何时间的浓度开始计算,其浓度下降一半的时间均为3h。 2、某药同时用于两个病人,消除半衰期分别为3h和6h,因后者时间较长,故给药剂量应增加。 3、亏量法处理尿排泄数据时对药物消除速度的波动较敏感。 4、药物的消除速度常数k大,说明该药体内消除慢,半衰期长。 5、静注两种单室模型药物,剂量相同,分布容积大的血药浓度大,分布容积小的血药浓度小。 6、肾清除率是反映肾功能的重要参数之一,某药清除率值大,说明药物清除快。 7、药物在胃肠道中崩解和吸收快,则达峰时间短,峰浓度高。 8、当药物大部分代谢时,可采用尿药速度法处理尿药排泄数据,求取消除速率常数。 9、达峰时间只与吸收速度常数k a和消除速度常数k有关。 10、静脉滴注给药经过3.32个半衰期,血药浓度达到稳态浓度的90%。 11、反映药物吸收速度和吸收程度的参数主要指AUC、t max、 C max。药物。 12、生物利用度的试验设计采用随机交叉试验设计方法,其目的是为了消除个体差异与试验周期对试验结果的影响。 填空题 1、药物在体内的消除速度与药物浓度的一次方成正比的过程叫做__过程。 2、药物在体内转运时,在体内瞬间达到分布平衡,且消除过程呈线性消除,则该药物属__模型药物。 3、单室模型静脉注射C ss主要由__决定,因为一般药物的__和__基本上是恒定的。 4、单室模型血管外给药血药浓度与时间的函数表达式为__。

5、达峰时间是指__;AUC是指__;滞后时间是指__。 6、达到稳态血浓度时,体内药物的消除速度等于__。 7、静脉滴注给药时,要求血药浓度达到稳态血药浓度的95%需要__个t1/2 名词解释 1、药物动力学 2、隔室模型 3、单室模型 问答题 1、药物动力学研究内容有哪些? 2、试述口服给药二室模型药物的血药浓度- 时间曲线的特征? 3、以静脉注射给药为例,简述残数法求算二室模型动力学参 数的原理。 4、隔室模型的确定受哪些因素的影响?如何判断模型? 5、重复给药与单剂量给药的药物体内过程有何不同? 6、什么是蓄积系数?静脉注射给药与血管外给药蓄积系数求算公式有什么不同? 7、用哪些参数描述血药浓度的波动程度? 8、何为非线性药物动力学?非线性药物动力学与线性药物动力学有何区别? 9、写出非线性消除过程Michaelis-Menten方程,说明V m、K m 的意义。 10、药物在体内哪些过程易出现非线性药物动力学? 11、TDM在临床药学中有何应用? 12、TDM的目的是什么?哪些情况下需要进行血药浓度监测? 13、新药药物动力学研究时取样时间点如何确定? 14肾功能减退患者给药方案的调整方法有哪些各有何特点?

第07章基元反应动力学习题及答案

第07章基元反应动力学习题及答案

2 第七章 基元化学反应动力学 习题及答案 1. N 2O 5在25℃时分解反应的半衰期为5.7h, 且与N 2O 5的初始压力无关。 试求此反应在25℃条件下完成90%所需时间。 解:由题意知此反应为一级反应 1 1 1216.07 .56932 .06932.02 1-=== h t k t k y 1)11 ln( =- h k y t 9.181216.0/)% 9011ln(/)11ln( 1=-=-= 即完成90%所需时间为18.9h 。 2.异丙烯醚气相异构化成丙烯酮的反应是一级反应,其反应速率系(常)数与温度的关系为:k /s -1 =5.4×1011exp(-122 474 J ·mol -1/RT ),150℃下,反应开始时只有异丙烯醚,其压力为101 325 Pa ,问多长时间后,丙烯酮的分压可达54 kPa ? 解:k /S -1=5.4×1011 exp[-122474/8.314×(150+273)] =4.055×10-4 据题意:kt p p t =0 ln

3 t 410005.454000 101325101325 ln -?=- t =1877S 3. 双分子反应2A(g)?→?k B(g) + D(g),在623K 、初始浓度为0.400mol dm -3时, 半衰期为105s,请求出 (1) 反应速率系数k (2) A(g)反应掉90%所需时间为多少? (3) 若反应的活化能为140 kJ mol -1, 573K 时的最大反应速率为多少? 解:(1) r = k [A]2 , t 0.5= 1/(2 k [A]0) , k = 0.012dm 3mol -1s -1 (2) 1/[A] – 1/[A]0 =2 k t , t = 945 s (3) ln(k/k ’)=(E a /R )(1/T ’-1/T ) , 573K 时k = 0.00223dm 3mol -1s -1, 最大反应速率r max = k [A]02=3.6×10-4 moldm -3s -1. 4. 450℃时实验测定气相反应3A + B →2C 的速率数据如下; 实验 初压 / Pa 初速率-dp B / dt / (Pa/h) P A,0 P B,0 1. 100 1.00 0.0100 2. 200 1.00 0.0400 3. 400 0.50 0.0800 (1)若反应的速率方程为r = kP A x P B y ,求x 、y 及k 。 (2)求P A =150Pa P B = 0.75Pa 时反应的速率。 解:(1)把1、2两组数据分别代入速率方程r =kp A X ·p B Y 并相比,得: r 1/r 2=(100/200)X 即 0.0100/0.0400=(100/200)X

药物动力学模拟题二

药物代谢动力学 模拟卷2 一、名词解释 1. 生物利用度 制剂中药物被吸收进入体循环的速度和程度。 生物利用度(bioavailability ,F )是指药物经血管外途径给药后吸收进入全身血液循环的相对量。 F=(A/D )X100%。 2. 清除率 单位时间从体内清除的含药血浆体积或单位时间内从体内清除的表现。 清除率是一个抽象的概念,它把一肾在一定时间内排出的,同当时该物质在中浓度联系起来,因而能更她地说明肾排出某物质的能力。包括即肾每分钟排出某物质的量(U×V)应为涌小球滤过量与、的量和分泌量的代数和。 3. 积蓄系数 坪浓度与第一次给药后的浓度比值。 蓄积系数又称为蓄积因子或积累系数,是指多次使半数动物出现的总(ED50(n ))与一次染毒的半数有效量(ED50(1))之比值,毒性效应包括死亡。 4. 双室模型 药物进入机体后,在一部分组织、器官中分布较快,而在另一部分组织、器官中分布较慢,在这种情况下,将机体看作药物分布均匀程度不同的两个独立系统即两个隔室,称为双室模型。 这是药物动力学数学模型之一,二室模型是把身体分为二个房室,即中央室与周边(外周)室。房室的划分与体内各组织器官的解剖生理学特性相联系的地方在于:中央室往往是药物首先进入的区域,除血浆外通常还有细胞外液以及心、肝、肾、脑等血管丰富、血流畅通的组织,药物可以在数分钟内分布到整个中央室,而且药物的血浆浓度和这些组织中的浓度可以迅速达到平衡,并且维持在平衡状态。周边室一般是血管稀少、血流缓慢的组织,如脂肪组织静止状 5. 非线性药物动力学 是指药物浓度超过某一界限时,参与药物代谢的酶发生了饱和现象所引起的。可以用描述酶的动力学方程式即着名的米氏方程来进行研究。 一般来说药物剂量增加,血药浓度成比例增加就是线性,不成比例的话就是非线性。 二、解释下列公式的药物动力学意义 1. ss ss ss C C C DF min max -=

药代动力学代表计算题

计算题(Calculation questions ) 1.某患者单次静脉注射某单室模型药物2g ,测得不同时间的血药浓度结果如下: 时间(h) 1.0 2.0 3.0 4.0 5.0 6.0 8.0 10.0 血药浓度(mg/ml) 0.28 0.24 0.21 0.18 0.16 0.14 0.1 0.08 求k ,Cl ,T 1/2,C 0,V ,AUC 和14h 的血药浓度。 【解】对于单室模型药物静脉注射 kt 0e C C -=,t 303 .2k C log C log 0- = log C 对t 作直线回归(注:以下各题直线回归均使用计算器或计算机处理),得: a = 0.4954, b = -0.0610,|r | = 0.999(说明相关性很好) 将a 、b 代入公式0C log 303 .2kt C log +-= 得回归方程: 4954.0t 061.0C log --= ① 1h 1405.0)061.0(303.2b 303.2k -=-?-=?-= ② h 9323.41405 .0693 .0k 693.0T 2/1=== ③ mg/ml 3196.0)4954.0(log C 10=-=- ④ 6.258L ml)(62583196 .02000C X V 00==== ⑤ L/h 8792.0258.61405.0kV Cl =?== ⑥ )(mg/ml h 2747.21405 .03196.0k C AUC 00 ?=== ∞ ⑦ 3495.14954.014061.0C log -=-?-= g/ml 44.7mg/ml)(0477.0C μ== 即14h 的血药浓度为g/ml 44.7μ。 2.某患者单次静脉注射某药1000mg ,定期测得尿药量如下: 时间(h) 1 2 3 6 12 24 36 48 60 72 每次尿药量(mg) 4.02 3.75 3.49 9.15 13.47 14.75 6.42 2.79 1.22 0.52 设此药属一室模型,表观分布容积30L ,用速度法求k ,T 1/2,k e ,Cl r ,并求出80h 的累积药量。 【解】单室模型静脉注射尿药数据符合方程0e c u X k log 303 .2kt t X log +-=??, t X log u ??对c t 作图应为一直线。根据所给数据列表如下: t (h) 1 2 3 6 12 t ? 1 1 1 3 6

生物药剂学和药物动力学计算题

第八章 单室模型 例1 给某患者静脉注射一单室模型药物,剂量 1050 mg ,测得不同时刻血药浓度数据如下: 试求该药的 k ,t1/2,V ,CL ,AUC 以及 12 h 的血药浓度。 解:(1)作图法 根据 ,以 lg C 对 t 作图,得一条直线 (2)线性回归法 采用最小二乘法将有关数据列表计算如下: 计算得回归方程: 其他参数求算与作图法相同 0lg 303 .2lg C t k C +-=176.21355.0lg +-=t C

例2 某单室模型药物静注 20 mg ,其消除半衰期为 3.5 h ,表观分布容积为 50 L ,问消除该药物注射剂量的 95% 需要多少时间?10 h 时的血药浓度为多少? 例3 静注某单室模型药物 200 mg ,测得血药初浓度为 20 mg/ml ,6 h 后再次测定血药浓度为 12 mg/ml ,试求该药的消除半衰期? 解: 例4 某单室模型药物100mg 给患者静脉注射后,定时收集尿液,测得累积尿药排泄量X u 如下,试 例6 某一单室模型药物,生物半衰期为 5 h ,静脉滴注达稳态血药浓度的 95%,需要多少时间? 解: 例5 某药物静脉注射 1000 mg 后,定时收集尿液,已知平均尿药排泄速度与中点时间的关系 为 ,已知该药属单室模型,分布容积 30 L ,求该药的t 1/2,k e ,CL r 以及 80 h 的累积尿药量。 解: 6211.00299.0lg c u +-=??t t X

例7 某患者体重 50 kg ,以每分钟 20 mg 的速度静脉滴注普鲁卡因,问稳态血药浓度是多少?滴注 经历 10 h 的血药浓度是多少?(已知 t 1/2 = 3.5 h ,V = 2 L/kg ) 解题思路及步骤: ① 分析都给了哪些参数? ② 求哪些参数,对应哪些公式? , ③ 哪些参数没有直接给出,需要求算,对应哪些公式? 例8 对某患者静脉滴注利多卡因,已知 t 1/2 = 1.9 h ,V = 100 L ,若要使稳态血药浓度达到 3 mg/ml , 应取 k 0 值为多少? 解题思路及步骤: ① 分析都给了哪些参数? ② 求哪些参数,对应哪些公式? ③ 哪些参数没有直接给出,需要求算,对应哪些公式? 例9 某药物生物半衰期为 3.0 h ,表观分布容积为 10 L ,今以每小时 30 mg 速度给某患者静脉滴注, 8 h 即停止滴注,问停药后 2 h 体内血药浓度是多少? 解题思路及步骤: ① 分析都给了哪些参数? ② 求哪些参数,对应哪些公式? C=C 0 + e -kt ③ 哪些参数没有直接给出,需要求算,对应哪些公式? 例10 给患者静脉注射某药 20 mg ,同时以 20 mg/h 速度静脉滴注该药,问经过 4 h 体内血 药浓度多少?(已知V = 50 L ,t 1/2 = 40 h ) 解: kV k C ss 0=)1(0 kt e kV k C --=1/2 00.693 L 100250h /mg 12006020t k V k = =?==?=)()(kV k C ss 0 =kV C k ss 0=1/20.693 t k = 1/2 0.693t k =) 1(0kt e kV k C --=

化学动力学计算题

第十一章 化学动力学计算题 1.放射性同位素的蜕变速率符合一级反应的规律(蜕变速率与放射性同位素的数量成正比)。210Po 经α蜕变生成稳定的206Pb :210Po → 206Pb + 4He 。实验测得14 d 后放射性降低了6.85%,试求210Po 的蜕变速率常数和半衰期,并计算它蜕变掉90%时所需要的时间。 解: 2.双分子反应2A(g)?→?k B(g) + D(g), 在623 K 、初始浓度为0.400 mol·dm -3时,半衰期为105 s, 求出: (1) 反应速率常数k ; (2) A(g)反应掉90%所需时间为多少? (3) 若反应的活化能为140 kJ/mol, 573 K 时的最大反应速率为多少? 解:(1) 由基元反应得: v = k [A]2 那么: t 1/2= 1/(2k [A]0), k = 1/(2t 1/2[A]0) =1/(2×105×0.400) dm 3·mol -1·s -1 =0.0120 dm 3·mol -1·s -1 (2) 由1/[A] – 1/[A]0 =2kt 得: 1/0.1[A]0 – 1/[A]0 =2kt 1/0.0400 – 1/0.400 = 2×0.0120×t 所以: t = 945 s (3) 由ln(k/k ')=(E a /R )×(1/T '-1/T ) 得: ln(0.012/k ')=(140000/8.314)×(1/573-1/623) k ' = 0.00223 dm 3·mol -1·s -1, 因此, 最大反应速率v max = k '[A]02= 0.00223×(0.400)2 mol·dm -3·s -1 =3.6×10-4 mol·dm -3·s -1 1 3d 1007.50685.011ln d 14111ln 1--?=-=-=A A x t k d 137d 1007.52ln 2ln 1 32/1=?==--A k t d 45490.011ln d 1007.5111ln 113=-?=-=--A A x k t

药代动力学参数

一、吸收 溶出度:药物分子在消化道中溶解的程度 生物利用度:药物吸收的程度 绝对生物利用度 最大血药浓度(Cmax) 达峰时间(Tmax) 二、分布 由于体内环境的非均一性(血液、组织),导致药物浓度变化的速度不同。 隔室(compartment):同一隔室药物浓度的变化速度相同,均相。 一室模型:药物进入血液迅速分布全身,并不断被清除。 二室模型: 药物进入体内后,首先快速分布于组织中,然后进入较慢的消除过程。 表观分布体积(Vd)(aparent volume of distribution):表征药物在体内被组织摄取的能力。表观容积大的药物体内存留时间较长。 药物浓度-时间曲线下面积(AUC);系统药物暴露(Systemic Exposure) 血脑屏障;蛋白结合率;分布半衰期(t 1/2(α) 三、消除 消除(elimination):原药在体内消失的过程。包括肾(尿)或胆汁(粪)或呼吸排泄及代谢转化的总和。

消除速率常数(elimination constants):反映药物在体内消失的快慢。不完全反映药物的作用时间(代谢物也有活性)。 半寿期或半衰期(t1/2):药物浓度或药量降低50%所需的时间。消除半衰期t1/2(β))Terminal Half-life ,Elimination Half-life。 清除率(clearance,廓清率)或肾清除率(renal clearance):反映药物或代谢物经肾被排出体外的速度。 一方面是药物对机体的作用,产生药效、毒性或副作用,表现为药物的药理作用或毒理作用,决定于特定的化学结构,具有较强的结构特异性。 另一方面是机体对药物的作用:吸收、分布,生物转化和排泄,表现为药物的药代动力学性质。主要取决于药物的溶解性、脂水分配系数、电荷等药物分子整体的理化性质,结构特异性不强。 药物的吸收是药物由给药部位通过生物膜进入血液循环的过程。 吸收部位 消化道(口服给药,口腔、胃、小肠、大肠)、呼吸道(鼻腔给药,肺)、肌肉(肌肉注射)、粘膜(栓剂)。 吸收部位不同,药物被吸收的程度和快慢,有差异(静注、肌注;皮下给药,口服。) 共性:药物是通过生物膜吸收的。 吸收过程 扩散

常用的药物代谢动力学参数包括那些

常用的药物代谢动力学参数包括那些. (1).表观分布容积 表示体内药量与血药浓度之间相互关系的一个比列常数。即体内药量按血浆中同样浓度分布时,所需体液的总容积。其数值反映了药物在体内的分布程度。表观分布容积是一个假设的容积,是假定药物在体内均匀分布情况下求得的药物分布容积,其意义在于:可计算出达到期望血浆药物浓度时的给药剂量;可以推测药物在体内的分布程度和组织中摄取程度。 (2).血浆药物浓度 指药物吸收后在血浆内的总浓度,包括与血浆蛋白结合的或在血浆游离的药物,有时也可泛指药物在全血中的浓度。药物作用的强度与药物在血浆中的浓度成正比,同时药物在血浆中的浓度也随时间变化。 (3).血药浓度—时间曲线 指给药后,以血浆(或尿液)药物浓度为纵坐标,时间为横坐标,绘制的曲线,简称药—时曲线,如图:

(4).血浆药物峰度浓度 简称峰浓度,指药—时曲线上的最高血浆药物浓度值,即用药后所能达到的最高 血浆药物浓度,常以符号C max表示,单位以ug/mL或者mg/L来表示。药物血浆浓度与药物的有效性与安全性直接相关。一般来说,峰浓度达到有效浓度才能显效,浓 度越高效果越强,但超出安全范围则可出现毒性反应。另外,峰浓度还是衡量制剂吸收的一个重要指标。 (5).血浆药物浓度达峰时间 简称达峰时间,指在给药后人体血浆药物浓度曲线上达到最高浓度(峰浓度)所需时间,常以符号t max表示,单位一小时或分钟表示。达峰时间短,表示药物吸收快、起效迅速,但同时消除也快;而达峰时间长,则表示药物吸收和起效较慢,药物作用持续的时间也越长。达峰时间是应用药物和研究自己的一个重要指标。(6).血浆生物半衰期 通常指药物消除的半衰期,即体内给药后人体血浆药物浓度曲线上达到做高浓度(峰浓度)所需的时间,常以符号t1/2表示。一般情况下,代谢快活排泄快的药物,其半衰期较短,而代谢慢或排泄慢的药物,半衰期较长。临床上可根据不同的药物的半衰期来确定适当的给药间隔时间(或每日的给药次数),以维持有效的血药浓度避免蓄积中毒。 (7)药—时曲线下面积(AUC) 指药——时曲线中函数曲线之间所围成的面积,是衡量药物在人体内被利用程度的一个重要参数,反映进入人体循环的药物相对量。对于不同剂型的同一种药物,可以比较被吸收入人体的总药量,AUC越大表示进入人体内的药物越多。 (8).生物利用度

药物动力学计算题

1.计算题:一个病人用一种新药,以2mg/h的速度滴注,6小时即终止滴注,问终止后2小时体血药浓度是多少?(已知k=0.01h-1,V=10L) 2.计算题:已知某单室模型药物,单次口服剂量0.25g,F=1,K=0.07h-1,AUC=700μg/ml·h,求表观分布容积、清除率、生物半衰期(假定以一级过程消除)。 3.某药静注剂量0.5g,4小时测得血药浓度为 4.532μg/ml,12小时测得血药浓度为2.266μg/ml,求表观分布容积Vd为多少? 4.某人静注某药,静注2h、6h血药浓度分别为1.2μg/ml和0.3μg/ml(一级动力学),求该药消除速度常数?如果该药最小有效剂量为0.2μg/ml,问第二次静注时间最好不迟于第一次给药后几小时? 5.病人静注复方银花注射剂2m/ml后,立即测定血药浓度为1.2μg/ml,3h为0.3μg/ml,该药在体呈单室一级速度模型,试求t1/2。 6.某病人一次用四环素100mg,血药初浓度为10μg/ml,4h后为 7.5μg/ml,试求t1/2。 7.静脉快速注射某药100mg,其血药浓度-时间曲线方程为:C=7.14e-0.173t,其中浓度C的单位是mg/L,时间t的单位是h。请计算:(1)分布容积;(2)消除半衰期;(3)AUC。

8.计算题:某药物具有单室模型特征,体药物按一级速度过程清除。其生物半衰期为2h,表观分布容积为20L。现以静脉注射给药,每4小时一次,每次剂量为500mg。 求:该药的蓄积因子 第2次静脉注射后第3小时时的血药浓度 稳态最大血药浓度 稳态最小血药浓度 9.给病人一次快速静注四环素100mg,立即测得血清药物浓度为10μg/ml,4小时后血清浓度为7.5μg/ml。求四环素的表观分布体积以及这个病人的四环素半衰期(假定以一级速度过程消除)。 10.计算题:病人体重60kg,静脉注射某抗菌素剂量600mg,血药浓度-时间曲线方程为:C=61.82e-0.5262t,其中的浓度单位是μg/ml,t的单位是h,试求病人体的初始血药浓度、表观分布容积、生物半衰期和血药浓度-时间曲线下面积。 11.计算题:已知某药物具有单室模型特征,体药物按一级速度方程清除,其t1/2=3h,V=40L,若每6h静脉注射1次,每次剂量为200mg,达稳态血药浓度。求:该药的(1)ss C max (2)ss C m in (3)ss C (4)第2次给药后第1小时的血药浓度

药代动力学参数

药代动力学参数 This model paper was revised by the Standardization Office on December 10, 2020

一、吸收 溶出度:药物分子在消化道中溶解的程度 生物利用度:药物吸收的程度 绝对生物利用度 最大血药浓度(Cmax) 达峰时间(Tmax) 二、分布 由于体内环境的非均一性(血液、组织),导致药物浓度变化的速度不同。 隔室(compartment):同一隔室药物浓度的变化速度相同,均相。 一室模型:药物进入血液迅速分布全身,并不断被清除。 二室模型: 药物进入体内后,首先快速分布于组织中,然后进入较慢的消除过程。 表观分布体积(Vd)(aparent volume of distribution):表征药物在体内被组织摄取的能力。表观容积大的药物体内存留时间较长。 药物浓度-时间曲线下面积(AUC);系统药物暴露(Systemic Exposure) 血脑屏障;蛋白结合率;分布半衰期(t 1/2(α) 三、消除 消除(elimination):原药在体内消失的过程。包括肾(尿)或胆汁(粪)或呼吸排泄及代谢转化的总和。

消除速率常数(elimination constants):反映药物在体内消失的快慢。不完全反映药物的作用时间(代谢物也有活性)。 半寿期或半衰期(t1/2):药物浓度或药量降低50%所需的时间。消除半衰期t1/2(β))Terminal Half-life ,Elimination Half-life。 清除率(clearance,廓清率)或肾清除率(renal clearance):反映药物或代谢物经肾被排出体外的速度。 一方面是药物对机体的作用,产生药效、毒性或副作用,表现为药物的药理作用或毒理作用,决定于特定的化学结构,具有较强的结构特异性。 另一方面是机体对药物的作用:吸收、分布,生物转化和排泄,表现为药物的药代动力学性质。主要取决于药物的溶解性、脂水分配系数、电荷等药物分子整体的理化性质,结构特异性不强。 药物的吸收是药物由给药部位通过生物膜进入血液循环的过程。 吸收部位 消化道(口服给药,口腔、胃、小肠、大肠)、呼吸道(鼻腔给药,肺)、肌肉()、粘膜(栓剂)。 吸收部位不同,药物被吸收的程度和快慢,有差异(静注、肌注;皮下给药,口服。) 共性:药物是通过生物膜吸收的。 吸收过程 扩散

全国高考动力学计算专题

2010―― 2015年物理高考动力学计算题汇编 1. ( 2010全国大纲I 卷)汽车由静止开始在平直的公路上行驶, 间变化的图线如右图所示。 (1) 画出汽车在 0~60s 内的v-t 图线; (2) 求在这60s 内汽车行驶的路程。 1?解(I)设t=10, 40, 60 s 时刻的速度分别为 V i , V 2 , V 3。 由图知0~10 s 内汽车以加速度 2m|_s 工匀加速行驶,由运动学公式得 V 1 =2x10=20 m / s ① 由图知10~40 S 内汽车匀速行驶.冈此 v 2 =20 m/s ② I ~I _2 由图知40~60 s 内汽车以加速度1m 生 匀减速行 驶.由运动学公式得 根据①②③式,可画出汽车在 0~60 s 内的V -1图线,如 右图所示。 ⑵由右图可知,在这 60 s 内汽车行驶的路程为 30 60 s 20=900m ④ 2 2. ( 2010课标1卷) 短跑名将博尔特在北京奥运会上创造了 100m 和200m 短跑项目的新世 界纪录,他的成绩分别是 9. 69 s 和19 . 30 s 。假定他在100 m 比赛时从发令到起跑的反 应时间是0. 15 S ,起跑后做匀加速运动,达到最大速率后做匀速运动。 200 m 比赛时,反 应时间及起跑后加速阶段的加速度和加速时间与 100 m 比赛时相同,但由于弯道和体力等因 素的影响,以后的平均速率只有跑 100 m 时最大速率的96%。求:(结果保留两位小数) (1) 加速所用时间和达到的最大速率: (2) 起跑后做匀加速运动的加速度。 2.解:(1)设加速所用时间为t (以s 为单位),迅速运动的速度为 v (以m/s 为单位), 0 ~60s 内汽车的加速度随时 v 3 = 20 -1 20 =0 ③

化学动力学习题参考答案

第六章 化学动力学习题答案 1. 某放射性元素经14天后,活性降低了%。试求:(1)该放射性元素的半衰期;(2)若要分解掉90%,需经多长时间 解:放射性元素的衰变符合一级反应规律。 设反应开始时,其活性组分为100%,14天后,剩余的活性组分为100%%,则: A,031A,011100 ln ln 5.0710d 14100 6.85 c k t c x --===?-- 312 ln 2/ln 2/(5.0710)136.7d t k -==?= A,03A,0A,0111ln ln 454.2d 0.9 5.071010.9 c t k c c -===-?- 2.已知某药物在体内的代谢过程为某简单级数反应,给某病人在上午8时注射该药物,然后分别经过不同时刻t 测定药物在血液中的浓度c (以mmol?L -1表示),得到如下数据: t / h 4 8 12 16 c/(mmol?L -1) 如何确定该药物在体内代谢过程的反应级数该反应的速率常数和半衰期分别是多少 解:此题可用尝试法求解反应级数。先求出不同时刻的ln c : t / h 4 8 12 16 ln c ? ? ? ? 以ln c 对t 作图,得一直线,相关系数为,所以此为一级反应,即n=1。 直线的斜率为?,则有此反应的速率常数为;半衰期1/2ln 2 7.24h t k ==。 3.蔗糖在酸催化的条件下,水解转化为果糖和葡萄糖,经实验测定对蔗糖呈一 级反应的特征: 122211261266126H C H O H O C H O C H O + +??→+ 蔗糖(右旋) 果糖(右旋) 葡萄糖(左旋)

-生物药剂学及药物动力学计算题

第八章单室模型 例1 给某患者静脉注射一单室模型药物,剂量1050 mg,测得不同时刻血药浓度数据如下: 试求该药的k,t1/2,V,CL,AUC以及12 h的血药浓度。 解:(1)作图法 根据,以lg C 对t 作图,得一条直线 (2)线性回归法 采用最小二乘法将有关数据列表计算如下: lg 303 .2 lg C t k C+ - =

计算得回归方程:其他参数求算与作图法相同 例2 某单室模型药物静注20 mg,其消除半衰期为 3.5 h,表观分布容积为50 L,问消除该药物注射剂量的95% 需要多少时间?10 h 时的血药浓度为多少? 例3 静注某单室模型药物200 mg,测得血药初浓度为20 mg/ml,6 h 后再次测定血药浓度为12 mg/ml,试求该药的消除半衰期? 解: 例4 某单室模型药物100mg给患者静脉注射后,定时收集尿液,测得累积尿药排泄量X u如下,试t (h) 0 1.0 2.0 3.0 6.0 12.0 24.0 36.0 48.0 60.0 72.0 X u(mg) 0 4.02 7.77 11.26 20.41 33.88 48.63 55.05 57.84 59.06 59.58 例6 某一单室模型药物,生物半衰期为 5 h,静脉滴注达稳态血药浓度的95%,需要多少时间? 解: 176 .2 1355 .0 lg+ - =t C

例5 某药物静脉注射1000 mg 后,定时收集尿液,已知平均尿药排泄速度与中点时间的关系 为,已知该药属单室模型,分布容积30 L,求该药的t1/2,k e,CL r 以及80 h 的累积尿药量。 解: 例7 某患者体重50 kg,以每分钟20 mg 的速度静脉滴注普鲁卡因,问稳态血药浓度是多少?滴注经历10 h 的血药浓度是多少?(已知t1/2 = 3.5 h,V = 2 L/kg) 解题思路及步骤: ①分析都给了哪些参数? ②求哪些参数,对应哪些公式?, ③哪些参数没有直接给出,需要求算,对应哪些公式? 例8 对某患者静脉滴注利多卡因,已知t1/2 = 1.9 h,V = 100 L,若要使稳态血药浓度达到 3 mg/ml,应取k0 值为多少? 解题思路及步骤: ①分析都给了哪些参数? ②求哪些参数,对应哪些公式? ③哪些参数没有直接给出,需要求算,对应哪些公式? 例9 某药物生物半衰期为3.0 h,表观分布容积为10 L,今以每小时30 mg 速度给某患者静脉滴注, 8 h 即停止滴注,问停药后2 h 体内血药浓度是多少? 解题思路及步骤: 6211 .0 0299 .0 lg c u+ - = ? ? t t X kV k C ss =) 1( 0kt e kV k C- - = 1/2 0.693 L 100 2 50 h / mg 1200 60 20 t k V k = = ? = = ? = ) ( ) ( kV k C ss =kV C k ss = 1/2 0.693 t k=

常用的药物代谢动力学参数包括那些

常用的药物代谢动力学参 数包括那些 Prepared on 24 November 2020

常用的药物代谢动力学参数包括那些. (1).表观分布容积 表示体内药量与血药浓度之间相互关系的一个比列常数。即体内药量按血浆中同样浓度分布时,所需体液的总容积。其数值反映了药物在体内的分布程度。表观分布容积是一个假设的容积,是假定药物在体内均匀分布情况下求得的药物分布容积,其意义在于:可计算出达到期望血浆药物浓度时的给药剂量;可以推测药物在体内的分布程度和组织中摄取程度。 (2).血浆药物浓度 指药物吸收后在血浆内的总浓度,包括与血浆蛋白结合的或在血浆游离的药物,有时也可泛指药物在全血中的浓度。药物作用的强度与药物在血浆中的浓度成正比,同时药物在血浆中的浓度也随时间变化。 (3).血药浓度—时间曲线 指给药后,以血浆(或尿液)药物浓度为纵坐标,时间为横坐标,绘制的曲线,简称药—时曲线,如图:

(4).血浆药物峰度浓度 简称峰浓度,指药—时曲线上的最高血浆药物浓度值,即用药后所能达到的最高血浆药物浓度,常以符号C max表示,单位以 ug/mL或者mg/L来表示。药物血浆浓度与药物的有效性与安全性直接相关。一般来说,峰浓度达到有效浓度才能显效,浓度越高效果越强,但超出安全范围则可出现毒性反应。另外,峰浓度还是衡量制剂吸收的一个重要指标。 (5).血浆药物浓度达峰时间 简称达峰时间,指在给药后人体血浆药物浓度曲线上达到最高浓度(峰浓度)所需时间,常以符号t max表示,单位一小时或分钟表示。达峰时间短,表示药物吸收快、起效迅速,但同时消除也快;而达峰时间长,则表示药物吸收和起效较慢,药物作用持续的时间也越长。达峰时间是应用药物和研究自己的一个重要指标。(6).血浆生物半衰期

动力学(1)习题

第七章化学动力学(1)练习题 一、判断题: 1.在同一反应中各物质的变化速率相同。 2.若化学反应由一系列基元反应组成,则该反应的速率是各基元反应速率的代数和。3.单分子反应一定是基元反应。 4.双分子反应一定是基元反应。 5.零级反应的反应速率不随反应物浓度变化而变化。 6.若一个化学反应是一级反应,则该反应的速率与反应物浓度的一次方成正比。7.一个化学反应进行完全所需的时间是半衰期的2倍。 8.一个化学反应的级数越大,其反应速率也越大。 9.若反应A + B Y + Z的速率方程为:r=kc A c B,则该反应是二级反应,且肯定不是双分子反应。 10.对于一般服从阿累尼乌斯方程的化学反应,温度越高,反应速率越快,因此升高温度有利于生成更多的产物。 11.若反应(1)的活化能为E1,反应(2)的活化能为E2,且E1 > E2,则在同一温度下k1一定小于k2。 12.若某化学反应的Δr U m < 0,则该化学反应的活化能小于零。 13.对平衡反应A Y,在一定温度下反应达平衡时,正逆反应速率常数相等。 14.平行反应,k1/k2的比值不随温度的变化而变化。 15.复杂反应的速率取决于其中最慢的一步。 16.反应物分子的能量高于产物分子的能量,则此反应就不需要活化能。 17.温度升高。正、逆反应速度都会增大,因此平衡常数也不随温度而改变。 二、单选题: 1.1.反应3O 22O 3 ,其速率方程 -d[O 2 ]/d t = k[O3]2[O2] 或 d[O 3 ]/d t = k'[O3]2[O2],那么k与k'的关系是:(A) 2k = 3k' ; (B) k = k' ; (C) 3k = 2k' ; (D) ?k = ?k' 。 2.有如下简单反应a A + b,已知a < b < d,则速率常数k A、k B、k D的关系为: (A) ; (B) k A < k B < k D; (C) k A > k B > k D; (D) 。

相关主题
文本预览
相关文档 最新文档