当前位置:文档之家› 例题-简支梁内力计算

例题-简支梁内力计算

例题-简支梁内力计算

例题-简支梁内力计算

(完整版)梁的内力计算

第四章 梁的内力 第一节 工程实际中的受弯杆 受弯杆件是工程实际中最常见的一种变形杆,通常把以弯曲为主的杆件称为梁。图 4 — i 中列举了例子并画出了它们的计算简图。如图( a 表示的是房屋建筑中的板、梁、柱结 构,其中支撑楼板的大梁 AB 受到由楼板传递来的均布荷载 口;图(b )表示的是一种简易挡 水结构,其支持面板的斜梁 AC 受到由面板传递来的不均匀分布水压力; 图(c )表示的是- 小型公路桥,桥面荷载通过横梁以集中荷载的形式作用到纵梁上;图( d )表示的是机械中 的一种蜗轮杆传动装置,蜗杆受到蜗轮传递来的集中力偶矩 m 的作用。 1.1 梁的受力与变形特点 综合上述杆件受力可以看出: 当杆件受到垂直于其轴线的外力即横向力或受到位于轴线平面 内的外力偶作用时,杆的轴线将由直线变为曲线, 这种变形形式称为弯曲.。在工程实际中受 弯杆件的弯曲变形较为复杂,其中最简单的弯曲为平面弯曲。 1.2 平面弯曲的概念 工程中常见梁的横截面往往至少有一根纵向对称轴, 该对称轴与梁轴线组成一全梁的纵向对.. 称面(如图4 — 2),当梁上所有外力(包括荷载和反力)均作用在此纵向对称面内时,梁轴 线变形后的曲线也在此纵向对称面内, 这种弯曲称为平面弯曲.。它是工程中最常见也最基本 的弯曲问题。 1.3 梁的简化一一计算简图的选取 工程实际中梁的截面、支座与荷载形式多种多样, 较为复杂。为计算方便,必须对实际梁进 行简化,抽象出代表梁几何与受力特征的力学模型,即梁的计算简图...。 选取梁的计算简图时,应注意遵循下列两个原则:(1)尽可能地反映梁的真实受力情况;(2) 尽可能使力学计算简便。 a 房屋建筑中的大梁 c 小跨度公路桥地纵梁 图4-1 b 简易挡水结构中的斜梁

设计计算例题

说明:此计算例题只是一个例子,本次设计抗震部分是不需要计算的,只需按构造要求设置即可 (1)建设地点:南方某市 (2)场地面积:50m×55m (3)总建筑面积:约45002 m(允许偏差10%) (4)抗震设防烈度:7度,设计基本地震加速度为0.10g,设计地震分组为第一组 (5)基本风压:0.4 KN/m2,,基本雪压:0.45 KN/m2 (6)地面粗糙度:B类,Ⅱ类场地 (7)地震资料:地震承载力标准值为220KN/m2,未见地下水,不考虑冻土深度 (8)建筑安全等级:Ⅱ级 (9)设计标高:室内设计标高000 ,室内外高差600mm .0 (10)楼面做法:20mm厚水泥砂浆找平,5mm厚1:2水泥砂浆加107胶水着色粉面层,现浇混凝土楼板,底面为15mm厚纸筋灰抹底,涂2道 (11)屋面做法:现浇楼板上铺珍珠膨胀岩保护层100mm厚,现浇钢筋混凝土楼板,20mm厚1:2水泥砂浆找平,15mm厚纸筋灰抹底,三毡四油防水层(12)门窗做法:全部采用木门,窗户为铝合金制作 2 结构布置及结构计算简图的确定 2.1 结构的平面布置 本次方案采用横向布置,横向承重,即:框架主梁沿横向布置,横向框架为主,要承重框架,主梁和柱可形成横向框架,横向抗倒刚度大,各榀横向框架间由纵向的次梁相连,即建筑物的整体性较好。 结构的平面布置图如下:

2.1.1构件截面尺寸的初定 梁的截面尺寸应满足承载力、刚度及延性要求。截面高度一般取梁跨度l 的1/12~1/8,当梁的负载面积较大或荷载较大时,宜取上限值。为防止梁产生剪切脆性破坏,梁的净跨与截面高度之比不宜小于4。梁的截面宽度可取1/3~1/2梁高,同时不小于1/2柱宽,且不应小于250mm 。 (1)框架梁 1-3柱网: L=6m :mm l h 750~500600081~12181~121=??? ? ??=???? ??=, 取mm h 500= mm h b 250~16750021~3121~31=??? ? ??=???? ??=, 取mm b 250= L=1.8m :mm l h 225~150180081~12181~121=??? ? ??=???? ??=, 取mm h 300= 梁宽保持一致, 取mm b 250= L=3.9m :mm l h 488~325390081~12181~121=??? ? ??=???? ??=, 取mm h 500= 取mm b 250= 4-16柱网: L=6m :b ×h=250×500mm L=1.8m :b ×h=250×300mm 边柱连系梁取250×500mm ,中柱连系梁取250×300mm 在抗震设计中,纵向框架梁截面高度不宜小于10o l ,故其截面高度选择合理。 惯性矩的计算 b ×h=250×500mm , I= 48331004.26500250121 121mm bh ?=??= b ×h=250×300mm , I=483310625.530025012 1 121mm bh ?=??= (2)框架柱 取底层H=3300+600+600=4500mm (H=第一层层高+室内外高差+基础顶至室外地坪高度) 初选柱截面尺寸:b ×h=400×400=160000 2mm

受静载荷梁的内力及变位计算公式

受静载荷梁的内力及变位计算公式 符号意义及正负号规定简图 P——集中载荷 q——均布载荷 R——支座反力,作用方向向上者为正 Q——剪力,对邻近截面所产生的力矩沿顺时针方向者为正 M——弯矩,使截面上部受压,下部受拉者为正 θ——转角,顺时针方向旋转者为正 f——挠度,向下变位者为正 E——弹性模量 I——截面的轴惯性矩 a、b、c——见各栏图中所示 简图 支座反力、 支座反力矩 区段剪力弯矩挠度转角 R B=P M B=-Pl Q x=-P M x=-P x R B=P M B=-Pb AC Q x=0M x=0 CB Q x=-P M x=-P(x-a) R B=nP R B=ql Q x=-qx R B=qc M B=-qcb AC Q x=0M x=0

CD Q x=-q(x-d)

DB Q x=-qc M x=-qc(x-a) AC CB R B=0 M B=M x=-M Q x=0M x=-M ω值见表梁分段的比值及ω的函数表; a、b、c——见各栏中所示 简图 支座反力、 支座反力矩 区段剪力弯矩挠度转角R A=R B= AC CB R A= R B= AC CB M x=Pa(1-ξ) M C=M max=

R A=R B=P AC Q x= P M x=Px CD Q x=0 M x=M max=Pa AC CD DB若a>c: 当n为奇数: 当n为偶数: 当n为奇数: 当n为偶数: 当n为奇数: 当n为偶数: 当n为奇数: 当n为偶数:

R CD Q x=0 R A=R B = AC CD AC CD DB R A=R B=qc AC Q x=qc M x=qcx CD DE Q x=0M x=M max=qcb

钢结构设计实例 含计算过程

设计资料 北京地区某金工车间。采用无檩屋盖体系,梯形钢屋架。车间跨度21m,长度144m,柱距6m,厂房高度15.7m。车间内设有两台150/520kN中级工作制吊车。设计温度高于-20℃。采用三毡四油,上铺小石子防水屋面,水泥砂浆找平层,8cm厚泡沫混凝土保温层,1.5m×6.0m预应力混凝土大型屋面板。屋面积灰荷载0.6kN/m2,屋面活荷载0.35 kN/m2,雪荷载为0.45kN/m2,风荷载为0.5kN/m2。屋架铰支在钢筋混凝土柱上,上柱截面为400mm ×400mm,混凝土标号为C20。 一、选择钢材和焊条 根据北京地区的计算温度和荷载性质及连接方法,钢材选用Q235-B。焊条采用E43型,手工焊。 二、屋架形式及尺寸 无檩屋盖,i=1/10,采用平坡梯形屋架。 =L-300=20700mm, 屋架计算跨度为L =1990mm, 端部高度取H 中部高度取H=H +1/2iL=1990+0.1×2100/2=3040mm, 屋架杆件几何长度见附图1所示,屋架跨中起拱42mm(按L/500考虑)。 为使屋架上弦承受节点荷载,配合屋面板1.5m的宽度,腹杆体系大部分采用下弦间长为3.0m的人字式,仅在跨中考虑到腹杆的适宜倾角,采用再分式。 屋架杆件几何长度(单位:mm) 三、屋盖支撑布置 根据车间长度、屋架跨度和荷载情况,设置四道上、下弦横向水平支撑。因柱网采用封闭结合,为统一支撑规格,厂房两端的横向水平支撑设在第二柱间。在第一柱间的上弦平面设置刚性系杆保证安装时上弦杆的稳定,第一柱间下弦平面也设置刚性系杆以传递山墙风荷载。在设置横向水平支撑的柱间,于屋架跨中和两端共设四道垂直支撑。在屋脊节点及支座节点处沿厂房纵向设置通长的刚性系杆,下弦跨中节点处设置一道纵向通长的柔性系杆,支撑布置见附图2。图中与横向水平支撑连接的屋架编号为GWJ-2,山墙的端屋架编号为GWJ-3,其他屋架编号均为GWJ-1。

简支梁桥的设计计算

简支梁桥的设计计算 1.车轮荷载在板上是如何分布的? 答:作用在桥面上的车轮荷载,与桥面的接触面近似于椭圆,但为了便于计算,通常把接触面看错矩形,作用在桥面上的车轮荷载,与桥面的接触面近似于椭圆,为便于计算,把此接触面看作的矩形。车轮荷载在桥面铺装层中呈450角扩散到行车道板上。 2.梁桥横向力计算时,杠杆法的基本原理和使用条件是什么? 答:杠杆法基本原理是忽略了主梁之间横向结构的联系作用,即假设桥面班在主梁上断开,把桥面板看作沿横向支承在主梁上的简支梁获简支单悬臂梁。 杠杆法的适用条件:(1)双肋式梁桥;(2)多梁式桥支点截面 3.杠杆法计算荷载横向分布系数的步骤是什么? 答:(1)绘制主梁的荷载反力影响线; (2)确定荷载的横向最不利的布置; (3)内插计算对应于荷载位置的影响线纵标ηi ; (4)计算主梁在车道荷载和人群荷载作用下的横向分布系数; 4.多跨连续单向板的内力计算时,计算弯矩和剪力有哪些需要注意的地方? 答: 1.弯矩首先计算出跨度相同的简支板在恒载和活载作用下的跨中弯矩M0,再乘以相应的修正系数,得支点、跨中截面的设计弯矩,弯矩修正系数可根据板厚t和梁肋高度h的比值(即主梁的抗扭能力的大小)来选用。 2.剪力计算单向板支点剪力时,一般不考虑板和主梁的弹性固结作用,荷载应尽量靠近梁肋边缘布置。计算跨径取用梁肋间的净跨径。考虑相应的有效工作宽度沿桥梁跨径方向的变化,计算出荷载强度q和q',将每米板宽承受的分布荷载分为矩形部分A1 和三角形部分A2 。对于跨内只有一个车轮荷载的情况,由恒载及活载引起的支点剪力Qs为:如行车道板的跨径内不只一个车轮进入时,需计及其它车轮的影响。 5.桥梁支座必须满足那些方面的要求? 答:(1)首先具有足够的承载力(包括恒载和活载引起的竖向力和水平力),以保证安全可靠地传递支座反力;

简支梁计算公式总汇

简支梁在各种荷载作用下跨中最大挠度计算公式: 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4).

跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 进行反算,看能满足的上部荷载要求!

轴设计计算和轴承计算模板(实例)

【轴设计计算】 计算项目计算内容及过程计算结果 1. 选择材料该轴没有特殊的要求,因而选用调质处理的45号钢,可以查得 的其强度极限。(表12-1) 45号钢,调质处 理, =650MPa 2. 初估轴径 按扭转强度估算输出端联轴器处的最小直径,根据表12-11, 按45号钢,取C=110; 根据公式(12-2)有: 由于在联轴器处有一个键槽,轴径应增加5%,49.57+49.57 × 5%=52.05(mm);为了使所选轴径与联轴器孔径相适应,需要同 时选取联轴器。 Tc=K·T2=1.3×874.2=1136.46≤Tn查手册(课程 设计P238),选用HL4弹性联轴器J55×84/Y55×112GB5014-85。故 取联轴器联接的轴径为d1=55mm。 d1=55mm HL4弹性联轴器 Tn=1250 N·m [n]=4000r/min l =84mm 3. 结构设计 (1)轴上零件 的轴向定位 (2)轴上零件 的周向定位 根据齿轮减速器的简图确定轴上主要零件的布置图(如图所示) 和轴的初步估算定出轴径进行轴的结构设计。 齿轮的一端靠轴肩定位,另一端靠套筒定位,装拆、传力均较为 方便;两端轴承常用同一尺寸,以便于购买、加工、安装和维修; 为了便于拆装轴承,轴承处轴肩不宜过高(轴肩高h≥0.07d ),故 左端轴承与齿轮间设置两个轴肩,如下页图所示。 齿轮与轴、半联轴器与轴、轴承与轴的周向定位均采用平键联接 及过盈配合。根据设计手册,并考虑便于加工,取在齿轮、半联轴 器处的键剖面尺寸为b×h=18×11,(查表7-3)配合均采用H7/k6; 滚动轴承内圈与轴的配合采用基孔制,轴的尺寸公差为k6,如图所 示。 (3)确定各段 轴径直径和长 度 轴径:从联轴器开始向左取ф55(联轴器轴径)d1; d2 →ф63 (55+2×0.07 d1=62.7;取标准值,表12-10) d3→ф65 (轴颈,查轴承内径)(轴承) d4 →ф75 (取>65的标准值)(齿轮) d5 →ф85 (75+2×0.07 d4=85.5;取整数值) d6→ф74 (查轴承7213C的安装尺寸da) d7→ф65(轴颈,同轴两轴承取同样的型号)d7=d3 轴长:取决于轴上零件的宽度及他们的相对位置。半联轴器与轴配 合长度 =84mm,为使压板压住半联轴器,取其相应的轴长为 l1=82mm;选用7213C轴承,其宽度为B=23mm;齿轮端面至箱体壁间 的距离取a=15mm;考虑到箱体的铸造误差,装配时留有余地,取滚 动轴承与箱体内边距s=5mm;轴承处箱体凸缘宽度,应按箱盖与箱座 联接螺栓尺寸及结构要求确定,暂定:该宽度B3=轴承宽+(0.08~ 0.1)a+(10~20)mm,取为50mm;轴承盖厚度取为20mm;轴承盖 与联轴器之间的距离取为b=16 mm;已知齿轮宽度为 d1=55mm d2=63mm d3=65mm d4=75mm d5=85mm d6=74mm d7=65mm B=23mm a=15mm s=5mm B3=50mm b=16 mm l1=82mm l2 =16+21+(50-5-23) =59mm

#简支T梁内力计算和结果比较

简支T 梁内力计算及结果对比 一、桥梁概况 一座九梁式装配式钢筋混凝土简支梁桥的主梁和横隔梁截面如图1-1所示,计算跨径29.5l m =,主梁翼缘板刚性连接。设计荷载:公路—I 级,人群荷载:3.0/kN m , 每侧的栏杆及人行道构件自重作用力为5/kN m ,桥面铺装5.6/kN m ,主梁采用C50混凝土容重为25/kN m 。 (a ) (b ) 图1-1主梁和横隔梁简图(单位:cm ) 二、恒载内力计算 ㈠.恒载集度 主梁:()10.080.140.18 1.30 1.600.18259.76/2g kN m ?+??? =?+?-?= ??????? 横隔梁: 对于边主梁:()12 1.600.18 1.000.110.1572529.500.56/2 g kN m -=-? ???÷= 对于中主梁:2 122220.56 1.12/g g kN m =?=?= 桥面铺装:3 5.6/g kN m =

栏杆和人行道:45/g kN m = 作用于边主梁的全部恒载为: 19.760.56 5.6520.92/i g g kN m ==+++=∑ 作用于中主梁的恒载为: 29.76 1.12 5.6521.48/i g g kN m ==+++=∑ ㈡.恒载内力 计算主梁的弯矩和剪力,计算图式如图2-1所示,则: ()222x gl x gx M x gx l x = ?-?=-,()222 x gl g Q gx l x =-=- g 图2-1 恒载内力计算图式 各计算截面的剪力和弯矩值见表2-1和表2-2。 边主梁恒载内力 表2-1 内力 截面位置 剪力()Q kN 弯矩()M kN m ? 0x = 308.572 gl Q = = 0M = 4l x = 154.294 gl Q == 2 31706.7832gl M == 2 l x = 0Q = 2 2275.708 gl M == 中主梁恒载内力

(完整版)地下车库结构设计及计算实例

w 地下车库结构设计及计算实例 [摘要] 本文通过上海某楼盘地下车库的结构设计计算实例,参考了国内相应的规范和规程,并 比较与分析了不同的车库顶板以及基础设计方案。 [关键词] 地下室外墙;无梁楼盖;梁板式楼盖;筏板;抗冲切;抗剪;抗浮;地基承载力 本工程为上海某楼盘独立地下车库,地下一层,上部设绿化覆土带。车库顶板采用无梁楼 盖加柱帽结构,基础采用独立柱基加抗水板的做法。以下为该地下车库的设计计算分析过程: 一、抗浮验算 由于本工程为一层独立地下室,因此该地下车库需要进行局部抗浮计算,取单个混凝土柱 子进行验算。 水浮力 F w = w hA 其中,γ取 10KN/m 2 ;h 为地下室底板标高至地下水位标高之间的距离;A 为单根柱子所属 底板面积。 抗浮力∑G=(G 1+G 2+G 3+G 4)A+F 1+F 2+F 3 其中,G 1 为顶板上覆土重荷载(包括地下水自重); G 2 为顶板自重荷载;G 3 为底板自重荷载; G 4 为底板上素砼面层荷载;F 1 为柱自重;F 2 为顶板柱帽重;F 3 为底板柱帽重。(如有底板外挑压 土自重应考虑进行) 分别根据上海市工程建设规范《地基基础设计规范》[1] DGJ08-11-2010(以下简称《规范》) 12.3.2 条以及《高层建筑筏形与箱形基础技术规范》[2] JGJ6-2011 的 5.5.4 条规定,满足 1.05F ≤∑G 即无须设置抗拔桩。(取 1.05 为综合考虑有关规范规定所选取的经验值) 二、地基承载力验算 以基底持力土层的抗剪强度指标计算地基承载力(考虑深度修正),并以此计算值作为本次 设计的地基承载力设计值。 根据《规范》5.2.3-1 求得 f d = (1/ 2)N r r b + N q q 0 d + N c c C d 上部荷载作用下地基净反力为 ∑ N / A = w dh 应小于 f d ,(∑N 为基本组合)则地基承载力 满足要求。 三、地下室外墙计算 地下室外墙计算简图见下图,取外墙单位长度为计算单元。

简支梁桥设计

桥梁工程课设——简支梁桥设计 1. 基本设计资料 1) 跨度和桥面宽度 (一) 标准跨径:35m (墩中心距)。 (二) 计算跨径:34.5m (三) 主梁全长:34.96m (四) 桥面宽度:净14m (行车道)+2×1m (人行道) 2) 技术标准 设计荷载:公路—I 级,人群荷载为23m KN 。 设计安全等级:一级。 3) 主要材料 (一) 混凝土:混凝土简支T 形梁及横梁采用C40混凝土,容重为3 26m KN ; 桥面铺装为厚0.065~0.17m 的防水混凝土,容重为325m KN 。 (二) 钢材:采用R235钢筋、HRB400钢筋。 4) 构造形式及截面尺寸(见图1-1和1-2) 如图所示,全桥共由9片主梁组成,单片T 形梁高为2m ,宽为1.6m ,桥上 横坡为双向1.5%,坡度由混凝土桥面铺装控制;设有五根横梁。 图1-1 桥梁横断面图

图1-2 主梁纵断面图 2. 主梁的荷载横向分布系数计算 1) 跨中荷载横向分布系数计算 如前所述,本例桥跨内设有5道横隔梁,具有可靠横向连接,且承重结构的宽跨比为:5.0464.05.3416≤==l B ,故可以按照修正的刚性横梁法来绘制横向影响线和计算横向分布系数c m 。 (一) 计算主梁的抗弯和抗扭惯性矩I 和T I 计算主梁截面的重心位置x 翼缘板厚按平均厚度计算,其平均板厚为 cm h 13)1610(2 1 1=+?=

则,cm x 8.7020 20013)20160(10020200213 13)20160(=?+?-??+? ?-= 主梁抗弯惯性矩I 为 4 23238.24294296)8.70100(2002020020121)2138.70(13)20160(13)20160(121cm I =? ?? ???-??+??+-??-+?-?=对于T 形梁截面,抗扭惯性矩可近似按下式计算: i i m i i T t b c I ∑==1 式中 i b ,i t ——单个矩形截面的宽度和高度; i c ——矩形截面抗扭刚度系数,由表2-1可以查的 T I 的计算过程及结果见表2-2 既得4310825.5m I T -?= (二) 计算抗扭修正系数β 对于本例,主梁间距相同,将主梁近似看成等截面,则得 9682.06.153243.01210 825.5425.05.34911 12113 22 2=??????+=+ = -∑E E a EI GI nl i T β (三) 按修正偏心压力法计算横向影响线竖坐标值

自己整理的简支梁挠度计算公式

简支梁在各种荷载作用下跨中最大挠度计算公式 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.

I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 进行反算,看能满足的上部荷载要求!

第四章 简支梁设计计算(1)

第四章 简支梁(板)桥设计计算 第一节 简支梁(板)桥主梁内力计算 对于简支梁桥的一片主梁,知道了永久作用和通过荷载横向分布系数求得的可变作用,就可按工程力学的方法计算主梁截面的内力(弯矩M 和剪力Q ),有了截面内力,就可按结构设计原理进行该主梁的设计和验算。 对于跨径在10m 以内的一般小跨径混凝土简支梁(板)桥,通常只需计算跨中截面的最大弯矩和支点截面及跨中截面的剪力,跨中与支点之间各截面的剪力可以近似地按直线规律变化,弯矩可假设按二次抛物线规律变化,以简支梁的一个支点为坐标原点,其弯矩变化规律即为: )(42 max x l x l M M x -= (4-1) 式中:x M —主梁距离支点x 处的截面弯矩值; m ax M —主梁跨中最大设计弯矩值; l —主梁的计算跨径。 对于较大跨径的简支梁,一般还应计算跨径四分之一截面处的弯矩和剪力。如果主梁沿桥轴方向截面有变化,例如梁肋宽度或梁高有变化,则还应计算截面变化处的主梁内力。 一 永久作用效应计算 钢筋混凝土或预应力混凝土公路桥梁的永久作用,往往占全部设计荷载很大的比重(通常占60~90%),桥梁的跨径愈大,永久作用所占的比重也愈大。因此,设计人员要准确地计算出作用于桥梁上的永久作用。如果在设计之初通过一些近似途径(经验曲线、相近的标准设计或已建桥梁的资料等)估算桥梁的永久作用,则应按试算后确定的结构尺寸重新计算桥梁的永久作用。 在计算永久作用效应时,为简化起见,习惯上往往将沿桥跨分点作用的横隔梁重力、沿桥横向不等分布的铺装层重力以及作用于两侧人行道和栏杆等重力均匀分摊给各主梁承受。因此,对于等截面梁桥的主梁,其永久作用可简单地按均布荷载进行计算。如果需要精确计算,可根据桥梁施工情况,将人行道、栏杆、灯柱和管道等重力像可变作用计算那样,按荷载横向分布的规律进行分配。 对于组合式梁桥,应按实际施工组合的情况,分阶段计算其永久作用效应。 对于预应力混凝土简支梁桥,在施加预应力阶段,往往要利用梁体自重,或称先期永久作用,来抵消强大钢丝束张拉力在梁体上翼缘产生的拉应力。在此情况下,也要将永久作用分成两个阶段(即先期永久作用和后期永久作用)来进行计算。在特殊情况下,永久作用可能还要分成更多的阶段来计算。 得到永久作用集度值g 之后,就可按材料力学公式计算出梁内各截面的弯矩M 和剪力Q 。当永久作用分阶段计算时,应按各阶段的永久作用集度值g i 来计算主梁内力,以便进行内力或应力组合。 下面通过一个计算实例来说明永久作用效应的计算方法。 例4-1:计算图4-1 所示标准跨径为20m 、由5片主梁组成的装配式钢筋混凝土简支梁桥主梁的永久作用效应,已知每侧的栏杆及人行道构件的永久作用为m kN /5。

H型钢结构简支梁设计计算书

H型钢结构简支梁设计计算书 转发评论 2011-10-21 11:16 ------------------------------- | 简支梁设计| | | | 构件:BEAM1 | | 日期:2011/10/21 | | 时间:11:03:20 | ------------------------------- ----- 设计信息----- 钢梁钢材:Q235 梁跨度(m):15.000 梁平面外计算长度(m):6.500 钢梁截面:焊接组合H形截面: H*B1*B2*Tw*T1*T2=298*149*149*8*10*10 容许挠度限值[υ]: l/400 = 37.500 (mm) 强度计算净截面系数:1.000 计算梁截面自重作用: 计算 简支梁受荷方式: 竖向单向受荷 荷载组合分项系数按荷载规范自动取值 ----- 设计依据----- 《建筑结构荷载规范》(GB 50009-2001) 《钢结构设计规范》(GB 50017-2003) ----- 简支梁作用与验算----- 1、截面特性计算 A =5.2040e-003; X c =7.4500e-002; Yc =1.4900e-001; Ix =7.6141e-005; Iy =5.5251e-006; ix =1.2096e-001; iy =3.2584e-002;

W1x=5.1102e-004; W2x=5.1102e-004; W1y=7.4163e-005; W2y=7.4163e-005; 2、简支梁自重作用计算 梁自重荷载作用计算: 简支梁自重(KN): G =6.1277e+000; 自重作用折算梁上均布线荷(KN/m) p=4.0851e-001; 3、梁上恒载作用 荷载编号荷载类型荷载值1 荷载参数1 荷载参数2 荷载值2 1 4 1.00 1.00 0.00 0.00 2 4 1.50 7.50 0.00 0.00 3 4 1.00 14.00 0.00 0.00 4、单工况荷载标准值作用支座反力(压为正,单位:KN) △恒载标准值支座反力 左支座反力Rd1=4.814, 右支座反力Rd2=4.814 5、梁上各断面内力计算结果 △组合1:1.2恒+1.4活 断面号: 1 2 3 4 5 6 7 弯矩(kN.m):0.000 6.538 11.110 14.916 17.955 20.229 21.737 剪力(kN) : 5.777 3.964 3.351 2.738 2.126 1.513 -0.900 断面号:8 9 10 11 12 13 弯矩(kN.m):20.229 17.955 14.916 11.110 6.538 0.000 剪力(kN) :-1.513 -2.126 -2.738 -3.351 -3.964 -5.777 △组合2:1.35恒+0.7*1.4活 断面号: 1 2 3 4 5 6 7 弯矩(kN.m):0.000 7.355 12.498 16.780 20.200 22.758 24.455 剪力(kN) : 6.499 4.459 3.770 3.081 2.391 1.702 -1.013 断面号:8 9 10 11 12 13 弯矩(kN.m):22.758 20.200 16.780 12.498 7.355 0.000 剪力(kN) :-1.702 -2.391 -3.081 -3.770 -4.459 -6.499

简支梁挠度计算公式

不同荷载作用下跨中简支梁的最大挠度计算公式为: 均布荷载作用下的最大挠度在梁跨中部,其计算公式为:ymax=5ql^4/(384ei)。 其中:ymax为梁跨中的最大挠度(mm)。 Q——平均配线载荷标准值(KN/M)。 E是钢的弹性模量。对于工程结构钢,E=2100000 n/mm^2。 I是型钢的惯性矩,可在型钢表中找到(mm^4)。 集中荷载作用下的最大挠度在梁的中部,其计算公式为:ymax=8pl^3/(384ei)=1pl^3/(48ei)。 其中:ymax为梁跨中的最大挠度(mm)。 P为各集中荷载标准值之和(KN)。 E是钢的弹性模量。对于工程结构钢,E=2100000 n/mm^2。 I是型钢的惯性矩,可在型钢表中找到(mm^4)。

在两个相等的集中荷载作用下,两跨间的最大挠度位于梁的中部。计算公式为:ymax=6.81pl^3/(384ei)。 其中:ymax为梁跨中的最大挠度(mm)。 P为各集中荷载标准值之和(KN)。 E是钢的弹性模量。对于工程结构钢,E=2100000 n/mm^2。 I是型钢的惯性矩,可在型钢表中找到(mm^4)。 三种集中荷载作用下的最大挠度计算公式为:ymax=6.33pl^3/(384ei)。 其中:ymax为梁跨中的最大挠度(mm)。 P为各集中荷载标准值之和(KN)。 E是钢的弹性模量。对于工程结构钢,E=2100000 n/mm^2。 I是型钢的惯性矩,可在型钢表中找到(mm^4)。 当悬臂梁在自由端承受均布荷载或集中荷载时,自由端的最大挠度为 Ymax=1ql^4/(8EI),Ymax=1pl^3/(3EI)。

UASB设计计算实例.pdf

UASB反应器的设计计算 1 设计参数 (1) 污泥参数 设计温度T=25℃ 容积负荷NV=8.5kgCOD/(m3.d) 污泥为颗粒状 污泥产率0.1kgMLSS/kgCOD, 产气率0.5m3/kgCOD (2) 设计水量Q=2800m3/d=116.67m3/h=0.032 m3/s。 (3) 水质指标 表5 UASB反应器进出水水质指标 水质指标COD(㎎∕L)BOD(㎎∕L)SS(㎎ ∕L) 进水水质3735 2340 568 设计去除率85% 90% / 设计出水水质560 234 568 2 UASB反应器容积及主要工艺尺寸的确定[5] (1) UASB反应器容积的确定 本设计采用容积负荷法确立其容积V V=QS0/NV V—反应器的有效容积(m3) S0—进水有机物浓度(kgCOD/L) V=3400 *3.735/8.5=1494m3 取有效容积系数为0.8,则实际体积为1868m3 (2) 主要构造尺寸的确定 UASB反应器采用圆形池子,布水均匀,处理效果好。 取水力负荷q1=0.6m3/(m2·d) 反应器表面积 A=Q/q1=141.67/0.6=236.12m2

反应器高度 H=V/A=1868/236.12=7.9m 取H=8m 采用4座相同的UASB反应器,则每个单池面积A1为: A1=A/4=236.12/4=59.03m2 取D=9mA 则实际横截面积 A2=3.14D2/4=63.6 m2 实际表面水力负荷 q1=Q/4A2=141.67/5 63.6=0.56 q1在0.5—1.5m/h之间,符合设计要求。 3 UASB进水配水系统设计 (1) 设计原则 ①进水必须要反应器底部均匀分布,确保各单位面积进水量基本相等,防止短路和表面负荷不均; ②应满足污泥床水力搅拌需要,要同时考虑水力搅拌和产生的沼气搅拌; ③易于观察进水管的堵塞现象,如果发生堵塞易于清除。 本设计采用圆形布水器,每个UASB反应器设30个布水点。 (2) 设计参数 每个池子的流量 Q1=141.67/4=35.42m3/h (3) 设计计算 查有关数据[6],对颗粒污泥来说,容积负荷大于4m3/(m2.h)时,每个进水口的负荷须大于2m2 则布水孔个数n必须满足пD2/4/n>2即n<пD2/8=3.14*9*9/8=32 取n=30个 则每个进水口负荷a=пD2/4/n=3.14* 9* 9/4/30=2.12m2 可设3个圆环,最里面的圆环设5个孔口,中间设10个,最外围设15个,其草图见图4 ①内圈5个孔口设计 服务面积: S1=5 *2.12=10.6m2 折合为服务圆的直径为:

结构力学简支梁跨中挠度计算公式

简支梁跨中最大挠度计算公式 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.

I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 进行反算,看能满足的上部荷载要求!

桥梁设计计算实例

Henan Polytechnic University 、 钢筋混凝土简支T形梁桥设计 1 基本资料 1.1公路等级:二级公路 1.2主梁形式:钢筋混凝土T形简支形梁 1.3标准跨径:20m 1.4计算跨径:19.7m 1.5实际梁长:19.6m 1.6车道数:二车道 1.7 桥面净空 桥面净空——7m+2×0.75m人行道 1.8 设计依据 (1)《公路桥涵设计通用规范(JTG D60—2004)》,简称《桥规》。 (2)《公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004)》,简称《公预规》。 (3)《公路桥涵地基与基础设计规范(JTJ 124-85)》,简称《基规》。

2 具体设计 2.1 主梁的详细尺寸 主梁间距:1.7m 主梁高度:h=( 111~118)l=(1 11~118 )20=1.82~1.1(m )(取1.8) 主梁肋宽度:b=0.2m 主梁的根数:(7m+2×0.75m )/1.7=5 2.2行车道板的内力计算 考虑到主梁翼板在接缝处沿纵向全长设置连接钢筋,故行车道板可按两端固接和中间铰接的板计算。 已知桥面铺装为2cm 的沥青表面处治(重力密度为23kN/m 3)和平均9cm 厚混泥土垫层(重力密度为24kN/m 3),C30T 梁翼板的重力密度为25kN/m 3。 2.2.1结构自重及其内力(按纵向1m 宽的板条计算) ) ①每米延板上的恒载1g 沥青表面处治:1g =0.02×1.0×23=0.46kN/m C25号混凝土垫层:2g =0.09×1.0×24=2.16kN/m T 梁翼板自重:3g =(0.08+0.14)/2×1.0×25=2.75kN/m 每延米板宽自重:g= 1g +2g +3g =0.46+2.16+2.75=5.37kN/m ②每米宽板条的恒载内力: 弯矩:M g m in,=-21gl 20=-2 1×5.37×0.712=-1.35kN.m 剪力:Q Ag =g·l 0=5.37×0.71=3.81kN 2.2.2汽车车辆荷载产生的内力 公路II 级:以重车轮作用于铰缝轴线上为最不利荷载布置,此时两边的悬臂板

沥青路面设计计算实例

沥青混凝土路面计算书 一、轴载分析 路面设计以双轮组单轴载100kN 为标准轴载。 1.以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次 3)轴载换算: 轴载换算的计算公式:N= 4.35121 ()k i i i P C C n P =∑ 2)累计当量轴次: 根据设计规范,二级公路沥青路面的设计年限取15年,双车道的车道系数取0.6 累计当量轴次: () '111365t e N N γηγ??+-???=()151 5.4%1365 ×885.380.65.4% ??+-???=? =(次) 3)验算半刚性基层层底拉应力中的累计当量轴次 注:轴载小于50kN 的轴载作用不计 验算半刚性基层层底拉应力的轴载换算公式: N=8121 ()k i i i P C C n P =∑ (2)累计当量轴次: ()'111365t e N N γηγ??+-???==()151 5.4%1365×505.650.65.4% ??+-????=2462767.6(次) 二、结构组合与材料选取 根据规范推荐结构,并考虑到公路沿途筑路材料较丰富,路面结构采用沥青混凝土(15cm ),基层采用二灰碎石(20cm ),基底层采用石灰土(厚度待定)。 二级公路面层采用三层式沥青面层, 表面层采用细粒式密级配沥青混凝土 (厚度3cm ), 中间层采用中粒式密级配沥青混凝土 (厚度5cm ), 下层采用粗粒式密级配沥青混凝土 (厚度7cm )。 三、各层材料的抗压模量与劈裂强度 抗压模量取20℃的模量,各值均取规范给定范围的中值,因此得到20℃的抗压模量: 细粒式密级配沥青混凝土为 1400MPa , 中粒式密级配沥青混凝土为 1200MPa , 粗粒式密级配沥青混凝土为 1000MPa , 二灰碎石为 1500MPa , 石灰土为 550MPa 。 各层材料的劈裂强度: 细粒式密级配沥青混凝土为 1.4MPa , 中粒式密级配沥青混凝土为 1.0MPa , 粗粒式密级配沥青混凝土为 0.8MPa , 二灰碎石为 0.5MPa ,

简支梁桥设计计算

T 形简支梁桥 1.设计名称:天河简支梁设计 2.设计资料及构造布置 2.1.桥面跨径及桥宽 标准跨径:该桥为二级公路上的一座简支梁桥,根据桥下净空和方案的经济比较,确定主梁采用标准跨径为20m 的装配式钢筋混凝土简支梁桥。 计算跨径:根据梁式桥计算跨径的取值方法,计算跨径取相邻支座中心间距为19.5m. 桥面宽度:横向布置为 净-7(行车道)+2×0.75m (人行道)+2×0.25(栏杆) 桥下净空: 4m 混凝土:主梁采用C25 主梁高:取1.5m. 主梁梁肋宽:为保证主梁抗剪需要,梁肋受压时的稳定,以及混凝土的振捣质量,通常梁肋宽度为15cm -18cm ,鉴于本桥跨度16m 按较大取18cm 2.2.设计依据 (1)《公路桥涵设计通用规》 (JTGD60-2004) (2)《公路钢筋混凝土预应力混凝土桥涵设计规》(JTGD62-2004) (3)《桥梁工程》 (4)《桥梁工程设计方法及应用》 3荷载横向分布系数计算书 3.1主梁荷载横向分布系数计算 3.1.1①跨中荷载横向分布系数 a.计算主梁的抗弯及抗扭惯性矩I X 和I TX 利用G -M 法计算荷载横向分布系数,求主梁截面的形心位置a X 平均板厚为: h 1=2 1 (h 薄+h 厚)=0.5×(13+8)=10.5cm

则a X =[(180-15)×10.5×(10.5÷2)+15×150×(150÷2)]/[(180-15) ×10.5+15×150]=44.7cm I X = 121×(180-15) ×10.53+(180-15) ×10.5×(44.7-2 5.10)2+121 ×15×1503+15× 150×(44.7-2 150)2 =4.99×106 cm 4 T 形截面抗扭惯性矩I TX =1.15×3 1 ×[(1.8-0.15) ×0.1053+1.5×0.153]=2.67×10-3 m 4 则单位抗弯及抗扭惯性矩: J X =b I x =1801099.42-?= 2.77×10-4 m 4/cm J TX =b I TX =180102.67-3 ?=1.48×10-5 m 4/cm b.计算横梁的抗弯及抗扭惯性矩I y 和I Ty l=4b=4×180=720 cm c=2 1 ×(480-15)=232.5 cm h '=150×4 3 =112.5cm 取整110 cm b '=15 cm 由c/l=232.5/720=0.32查得λ/c=0.608 则λ=0.608×232.5=141.4 cm=1.41m 求横隔梁截面重心位置: a y =[141×10.52+(1÷2) ×15×1102 ]/[2×141×10.5+110×15]=23.1cm 横梁抗弯惯性矩: I y =121 ×2×141×10.53+2×141×10.5×(23.1-25.10)2+121 ×15×1103+15×110× (23.1-110/2)2 =4.31×106 cm 4 =4.31×10-2 m 4 I Ty =1.15×31 ×(2×141.4×103 +110×153)=2.6×105 cm 3 单位抗弯惯性矩和抗扭惯性矩为:b 1

相关主题
文本预览
相关文档 最新文档