当前位置:文档之家› 小信号放大电路分析(完整电子教案加教学资源)

小信号放大电路分析(完整电子教案加教学资源)

小信号放大电路分析(完整电子教案加教学资源)
小信号放大电路分析(完整电子教案加教学资源)

小信号放大电路分析(完整电子教案加教学资源)

【项目描述】

在电子线路中,晶体管不仅实现直流开关、直流信号放大,还能实现交流小信号的放大。例如在收音机电子线路中,要把微弱的小信号放大成驱动扬声器工作的大电压、大电流信号,就需要小信号放大电路。本项目利用BJT三极管的放大电路实现多级放大电路的设计。电路如下图4.1所示,主要由信号输入级、信号放大级、信号输出级组成。

图4.1 小信号放大电路

【知识目标】

(1) 掌握发射极放电电路的组成,掌握各个元器件的租用;掌握电路的静态和动态分析方法;掌握微变等效电路的绘制;掌握分压偏置电路的工作原理。

(2) 掌握多级耦合放大电路的工作原理及静态、动态电路分析。

(3) 掌握共集电极放大电路的静态、动态电路分析。

(4) 掌握共基极放大电路的静态、动态电路分析。

【能力目标】

(1) 能完成共发射极放大电路静态和动态分析。

(2) 能完成共集电极、共基极放大电路分析及电路设计。

(3) 能完成小信号放大电路的输入、输出、中间放大电路的设计与分析。

任务4.1共发射极放大电路分析

课件项目仿真资源互动动画资源【任务引领】

在小信号放大电路中,为了实现交流小信号的电压放大,经常会采用共发射极放大电路。下图4.2为一个分压偏置大电路,当调整R C阻值是可以获取不同的电压放大倍数。同时调整RB电阻时,也会影响小信号的输出。本任务要求根据交流信号放大能力,对共发射极放大电流的基极电阻、集电极电阻及相关参数进行设计。

(a)电路(b)电路运行动画

图4.2 分压偏置放大电路

【知识目标】

1.掌握共发射极放大电路的结构及放大原理;

2.掌握共射极放大电路静态分析和动态分析方法;

3. 掌握共发射极放大电路电压放大倍数、输入电阻、输出电阻分析、计算方法;

4.掌握分压偏置电路工作原理及分析方法。

【能力目标】

1.能分析、设计共发射极放大电路;

2.能分析、设计分压偏置放大电路。

4. 1.1基本共射极放大电路工作原理

教学视频

一、放大器电路组成

放大器的作用就是把微弱的电信号不失真的加以放大。所谓失真,就是输入信号经放大器输出后,发生了波形畸变。

为了达到一定的输出功率,放大器往往由多级放大电路组成。放大器一般可分为电压放大器和功率放大器两部分,下图所示为放大器的方框图。

图4.3 放大器结构

其中的传感器把物理量的变化转换成电压的变化,如话筒把声波转换为交流电压,热敏电阻把温度的变化转换为电压的变化;电压放大器的作用主要是把信号电压加以放大;功率放大器除了要求输出有一定的电压外,还要求输出较大的电流;执行元件把电信号转换成其他形式的能量,执行所需工作任务;电源提供放大器工作所需的电功率、工作电压及工作电流。

按放大目的的不同,放大器又分交流放大器,直流放大器,脉冲放大器,下面以

共射极交流基本放大电路为例分析。

二、共射极放大电路结构

共射极放大电路如下图4.4所示。

(a)小信号放大电路(b)输出波形

图4.4 三极管电流放大测试电路

其仿真电路搭建方法如下视频所示。

三极管共发射极放大电路仿真搭建工程视频

电容对交流信号似为短路,所以输入信号一端连接三极管的基极,另一端连接三极管的发射极;输出信号一端连接到三极管的集电极,另一端连接三极管的发射极,所以该电路称为共射极放大电路。

电路中各元件的作用如下:

V1是NPN型晶体管,是放大电路的核心元件,起电流放大作用。

U CC是放大电路的直流电源,一方面与R B,R C相配合,使晶体管的发射结正偏、集电结反偏,以满足晶体管放大的外部条件(图5.1中,若晶体管采用PNP型,则电源U CC的极性就要反过来);另一方面为输出信号提供能量。U CC 的数值一般为几~十几伏。

R B是基极偏置电阻,电源U CC通过R B为晶体管发射结提供正向偏压,改变R B的阻值,即可改变基极电流I B的大小,从而改变晶体管的工作状态。R B值一般为几十~几百千欧。

R C是集电极负载电阻,电源U CC通过R C为晶体管提供集电结反向偏压,并将晶体管放大后的电流I C的变化转变为R C上电压的变化,反映到输出端,从而实现电压放大。R C值一般为几~十几千欧。

C1, C2是耦合电容,起“隔直通交”作用,一方面隔离放大电路与信号源和负载之间的直流通路,另一方面使交流信号畅通。C1, C2的数值一般为几~几十微法。

R L是外接负载,它可以是扬声器、耳机或其他负载,也可以是后级放大电路的输入电阻。

符号“⊥”为接机壳(一般即表示接地)符号,是电路中的零参考电位。

三、放大电路中电压、电流符号规定

(1) 直流分量如图4.3(a)所示的波形,用大写字母和大写下标表示。如I B表示基极的直流电流。

(2) 交流分量如图4.3(b)所示的波形,用小写字母和小写下标表示。如i b表示基极的交流电流。

(3) 总变化量如图4.3(c)所示的波形,是直流分量和交流分量之和,即交流

叠加在直流上,用小写字母和大写下标表示。如i B表示基极电流总的瞬时值,其数值为i B=I B+i b。

(4) 交流有效值用大写字母和小写下标表示。如I b表示基极的正弦交流电流的有效值。

(a)直流分量) (b)交流分量(c)总变换量

图4.3 晶体管基极的电流波形

2.共发射极放大电路工作原理

教学视频

要实现三极管信号的放大,必须使三极管处于放大区,只要调整R b、R c和U CC的值,使晶体管工作在放大区,即发射结正偏,集电结反偏。因此在电路中有:

式中,r be为晶体管发射极与基极之间的等效动态电阻,设未加输入信号,则i B=I B;当加入交流信号电压u i时,因为有C1隔直流作用,原来的I B不变,只

是增加了交流成分,所以I B=I B+i b。

i B和u i的波形如下图所示。

图4.4 共发射极放大电路工作过程共发射极信号

在输出回路中,因为晶体管工作在放大区,所以

依据基尔霍夫电压定律( KVL),在输出回路中有

经过电容C2的输出电压:

u ce和u o的波形如上图4.4所示,从图中可见u o与u i相位相反,这种现象称为放大器的倒相作用,只要适当选取Rc,u o就会比u i大得多,收到电压放大的效果。

从以上分析可以得到放大电路的工作原理:u i经过输入电容C1与U BE叠加后加到晶体管的输入端,使基极电流i B发生变化,i B又使集电极电流i c发生变化,

i c在R c的压降使晶体管输出端电压发生变化,最后经过电容C2输出交流电压u o,所以放大器的放大原理实质是用微弱的信号电压u i通过晶体管的控制作用,去控制晶体管集电极的电流i c,i c又在R c的作用下转换成电压u o输出。I c是直流电源提供的,因此晶体管的输出功率实际上是利用晶体管的控制作用,把直流电能转化成交流电能。这里,输入信号是控制源,晶体管是控制元件,直流电为受控对象。

4. 1.2共射极放大电路静态分析

教学视频

静态分析的目的就是要计算静态时电路中晶体管的直流电压和直流电流值。因为晶体管的输出特性分为放大区、饱和区、截止区,其中只有放大区才有放大作用,所以,由电路参数所确定的静态工作点必须使晶体管处于合理的放大状态以等待交流输入信号的到来。要得到晶体管电路中的直流电流、电压值,只需考虑晶体管电路的直流通路即可。直流通路就是直流信号传递的路径。

因为耦合电容对直流信号相当于开路,将放大电路中的耦合电容开路,就得到对应的直流通路。按照这个原则,共发射极固定偏置放大电路对应的直流通路如图4.5所示。这个直流通路中的直流电压和电流的数值就是静态工作点。

图4.5 共射极放大电路直流通路

1求取静态工作点 从图4.5可知:

CC B B BEQ CC CQ C CEQ C B

U I R U U I R U I I β=+=+=

根据上述关系,可求解各静态点值。

2.静态工作点的位置与非线性失真的关系

教学视频

如果静态工作点处于负载线的中央,这时的动态工作范围最大(要求工作点的移动范围不能进入截止区或饱和区),可以获得最大的不失真输出。但在实际工

作中,如果输入信号比较小,在不至于产生失真的情况下,一般把静态工作点选得稍微低一些,这样可以降低静态工作电流,并节省直流电源能量消耗,因为静态工作点的高低就是静态集电极电流的大小。静态工作点的位置与非线性失真的关系如图4.6所示。

图4.5静态工作点的位置与非线性失真的关系

如果静态工作点选得过低,将使工作点的动态范围进入截止区而产生失真,这种由于晶体管进入截止区而造成的失真称为截止失真,如图4.5(a)所示;相反,如果静态工作点选得过高,将使晶体管进入饱和区引起饱和失真,图4.5(b)给出了饱和失真的情况。由于输出与输入反相,当出现截止失真时,输出的顶部被削平;反之,当出现饱和失真时,输出的底部被削平。

4. 1.3共射极放大电路动态分析

教学视频

1. 晶体管微变等效模型

晶体管的输入特性是非线性的,当输入信号较小时,可以把静态工作点附近的一段曲线视做直线。这样晶体管B,E间就相当于一个线性电阻r be,即晶体管的输入电阻r be = u be /i b 。如下图所示。

图4.7 输入回路

工程上常用下式来估算:

注意r be它不是晶体管输入端直流电阻(万用表测量的欧姆值)。通常小功率晶体管,当I C=1~2mA时,r be为1kW左右。

晶体管输出特性曲线在工作点附近是一组与横轴平行的直线,当u ce在较大范围内变化时,i c几乎不变,具有恒流特性。这样晶体管C,E间可等效为一个受控电流源,其输出电流为i c =b i b,由于晶体管的输出电阻r ce极大(输出恒流特性),所以可看做理想电流源。

为此,可画出晶体管的微变等效电路模型如下图所示。

图4.8 三极管等效模型

下图为一三极管放大电路等效电路。

图4.9 微变等效电路

2.电路放大能力分析

(1)电压放大倍数A u

A u反映了放大电路对电压的放大能力,定义为放大电路的输出电压U o与输

入电压U i之比,即:

由图4.9(b)可知,,,放大电路的交流负载,按图中所标注的电流和电压正方向有,所以:

A u为负值,表示输出电压与输入电压反相。

如果放大电路不带负载,则电压放大倍数为:

由于显然放大电路接入负载后电压放大倍数下降。

此外,通常用A i表示电流放大倍数:

用A p表示功率放大倍数:

它们三者之间的关系是:

例5.2某交流放大器的输入电压是100mV,输入电流为0.5mA;输出电压为1V,输出电流为50mA,求该放大器的电压放大倍数、电流放大倍数和功率放大倍数。

解:(1)求电压放大倍数。

(2)求电流放大倍数。

(3)求功率放大倍数。

放大倍数用对数表示增益G,功率放大倍数取常用对数来表示,称为功率增益G P,单位为贝尔(Bel),实际应用时嫌“贝尔”单位太大,人们又取它的十分之一,即分贝(dB)。

在电信工程中,对放大器的三种增益作如下规定:

功率增益:

电压增益:

电流增益:

例,求例5.2中放大器的电压增益、电流增益和功率增益。

解:求电压增益。

求电流增益。

求功率增益。

运用放大器增益的概念,可以简化电路的运算数字,例如,功率放大倍数A P=1000000倍,用功率增益表示时=10lg1000000 = 60dB。

在计算电路的增益时,若增益出现负值则该电路不是放大器而是衰减器。为了方便,通常编有分贝换算表供查用。表5.1为电压放大倍数和分贝数的对应值。

表4.1 电压放大倍数和增益分贝数的换算表

例如,一个放大器的放大倍数A u=100,则由表5.1可查出它的电压增益为40分贝。

(2)输入电阻R i

R i是从放大电路的输入端看进去的交流等效电阻,它等于放大电路输入电压与输入电流的比值,即R i = U i / I i 。

R i反映放大电路对所接信号源(或前一级放大电路)的影响程度。如图4.10所示,如果把一个内阻为R s的信号源u s加到放大电路的输入端时,放大电路的输入电阻就是前级信号源的负载。

由图5.10可见

若R i >>R s ,则U i ≈U s。通常希望R i尽可能大一些,以使放大电路向信号源取用的电流尽可能小,以减轻前级的负担。

输入电阻可用微变等效电路法估算,由图4.9(b)放大电路的微变等效电路可得:R i=R B∥r be≈r be

图4.10 放大器的输入电阻和输出电阻

(3)输出电阻R o

R o是从放大电路的输出端看进去的交流等效电阻,它等于放大电路输出电压与输出电流的比值,即R o= U o /I o。

R o是衡量放大电路带负载能力的一个性能指标。如图5.10所示,放大电路接上负载后,要向负载(后级)提供能量,所以,可将放大电路看做一个具有一定内阻的信号源,这个信号源的内阻就是放大电路的输出电阻。

由图5.10可见

若R o<

显然,R o愈小,则即使负载R L变化大,而输出电压变化也愈小。这就是说R o愈小,放大器带负载能力愈强。一般情况下,都希望输出电阻R o尽量小些。

输出电阻可用微变等效电路法估算,由图4.10放大电路的微变等效电路可得:R o = R C。

案例:如图4.2所示,可计算出该电路的静态和动态参数:

4. 1.4分压偏置电路分析

教学视频

1.放大电路稳定性分析

基本共射放大电路的基极偏流,偏置电阻R B一经选定,I B也随之确定为恒定值,因此这种电路也称为固定偏置电路。它的电路结构简单,所需元器件少,且电压放大倍数高,但它的稳定性差。当晶体管受热时,其静态电流数值上升,会引起静态工作点发生偏移,导致本来不失真的放大信号出现失真;

还会使集电极损耗增加,管温升高,管子不能正常工作,甚至烧坏管子。同样的道理,当更换晶体管时也会出现类似问题。因此要使u o波形不失真,就要稳定放大电路的静态工作点,首先要稳定静态I C的值。

(1) 温度变化时对ICEO的影响

温度上升, 反向饱和电流I CBO增加, 穿透电I CEO=(1+β)I CBO也增加。反映在输出特性曲线上是使其上移,i C增加。温度每增加12℃(8 ℃), 锗管(硅管)I CEO增大到原来的2倍。

(2)温度变化时对u BE影响

温度上升,发射结电压u BE下降, 在外加电压和电阻不变的情况下, 使基极电流i B上升, i C增加。u BE的温度系数为-2~2.5mv/℃。

(3)温度变化时对b影响

温度上升, 使三极管的电流放大倍数β增大, 使特性曲线间距增大。iC增加温度每增加1℃, β相应增加0.5%~1%。

2.分压偏置电路工作原理

(1)利用基极电阻RB1和RB2分压来稳定基极电位

利用基极电阻RB1和RB2分压来稳定基极电位的方法如下图所示。

图4.11分压偏置电路

由上图的放大电路的直流通路可得:

若使I1 >>I B,则I1≈I2。这样基极电位U B为

由于U B是由U CC经R B1和R B2分压决定的,故不随温度变化,且与晶体管参数无关。

(2)由发射极电阻R E实现静态工作点的稳定

温度上升使I C增大时,I E随之增大,U E也增大;因基极电位U B=U BE+U E保持恒定,故U E增大使U BE减小,引起I B减小,使I C相应减小,从而抑制了温升引起的I C的增量,即稳定了静态工作点。其稳定过程如下所示:T(℃)↑→I C↑→I E↑→U E↑→U BE↓→I B↓→I C↓

T(℃) ↓→I C↓→I E↓→U E↓→U BE↑→I B↑→I C↑

通常U B>>U BE ,所以集电极电流:

根据I1>>I B和U B>>U BE两个条件得到的式说明了U B和I C是稳定的,基本上不随温度而变,而且也基本上与管子的参数b值无关。

如上图的发射极电阻R E实现静态工作点的稳定电路,已知晶体管b = 40,U CC=12V,R B1=20kW,R B2=10 kW,R L= 4kW,R C =2kW,R E =2 kW,C E 足够大。试求:静态值I C和U CE 。

3.分压偏置电路动态分析

(a)分压偏置电路(b)微变等效电路

图4.12分压偏置电路(multisim)

按照上述同样方法可以计算出分压偏置电路的电压放大倍数、输入电阻、输出电阻。

1.电压放大倍数

如果图4.12(a)图中的射极旁路电容C e存在,由于电容对交流信号视为短路,所以电压放大倍数与前面共射极放大电路A U一样。

如果射极旁路电容C e不存在,其微变等效电路如下图所示。

2.输入电阻

式中,,可见接入后输入电阻增大了。

若并接了电容C e,则

音频小信号功率放大

摘要 本次电路设计课题是音频小信号放大电路,它属于模拟电路课程设计,所以实验中就需要用到大量的模拟电路知识。对于音频小信号放大电路它是由两级放大电路组成,第一部分是运用到了两级负反馈放大电路,旨在放大电压,第二部分OCL功率放大电路采用复合三极管,目的放大电路电流。两部分放大电路的设计根本目的就是为了将小信号放大为一个大信号而不失真。失真这是设计音频放大电路中的一个难点,电路的巧妙设计可以有效的避免失真,电容的运用是解决失真的关键。

目录 1 选题背景 (2) 1.1 指导思想 (2) 1.2 方案论证 (2) 1.3 基本设计任务 (2) 1.4 发挥设计任务 (2) 1.5电路特点 (3) 2 电路设计 (3) 2.1 总体方框图..................................... 错误!未定义书签。 2.2 工作原理 (3) 3 各主要电路及部件工作原理 (3) 3.1 第一级—输入信号放大电路 (4) 3.2 NE5532简要说明................................. 错误!未定义书签。 3.3 第二级—功率放大电路........................... 错误!未定义书签。 3.4 直流信号过滤电路 (6) 4 原理总图 (7) 5 元器件清单 (7) 6 调试过程及测试数据(或者仿真结果) (7) 6.1 仿真检查 (8) 6.1.1第一级仿真检查 (8) 6.1.2第二级仿真检查 (9) 6.2 通前电检查 (10) 6.3 通电检查 (10) 6.3.1第一级电路检查 (10) 6.3.2第二级电路检查 (10) 6.3.3完整电路检查 (10) 6.4 结果分析 (10) 7 小结 (10) 8 设计体会及今后的改进意见 (11) 8.1 体会 (11) 8.2 本方案特点及存在的问题 (11) 8.3 改进意见 (11) 参考文献 (12)

设计一个射频小信号放大器[1]要点

射 频 课 程 设 技 论 文 院系:电气信息工程学院 班级:电信2班 姓名:贾珂 学号:541101030211

1射频小信号放大器概述 射频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,所谓小信号,一是信号幅度足够小,使得所有有源器件(晶体三极管,场效应管或IC)都可采用二端口Y参数或线性等效电路来模型化;二是放大器的输出信号与输入信号成线性比例关系.从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 小信号放大器的分类:按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器;. 小信号谐振放大器除具有放大功能外,还具有选频功能,即具有从众多信号中选择出有用信号,滤除无用的干扰信号的能力.从这个意义上讲,高频小信号谐振放大电路又可视为集放大,选频一体,由有源放大元件和无源选频网络所组成的高频电子电路.主要用途是做接收机的高频放大器和中频放大器. 其中射频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。2电路的基本原理 图2-1所示电路为共发射极接法的晶体管高频小信号单级单调谐回路谐振放大器。它不仅要放大高频信号,而且还要有一定的选频作用,因此,晶体管的集电极负载为LC并联谐振回路。在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率或相位。晶体管的静态工作点由电阻R b1、R b2及Re决定,其计算方法与低频单管放大器相同。

高频小信号放大电路课程设计

通信基本电路课程设计报告设计题目:高频小信号放大电路 专业班级 学号 学生姓名 指导教师 教师评分

目录 一、设计任务与要求 (2) 二、总体方案 (2) 三、设计内容 (2) 3.1电路工作原理 (3) 3.1.1 电路原理图 (3) 3.1.2 高频小信号放大电路分析 (3) 3.2 主要技术指标 (6) 3.3仿真结果与分析 (10) 四、总结及体会 (12) 五、主要参考文献 (13)

一、设计任务与要求 1、主要内容 根据高频电子线路课程所学内容,设计一个高频小信号谐振放大器。通过在电路设计中发现问题、解决问题,掌握小信号谐振放大器的基本设计方法,加深对该门课程的理论知识的理解,提高电子实践能力。 2、基本要求 设计一个小信号谐振放大器,主要技术指标为: (1) 谐振频率04MHz f =; (2) 谐振电压放大倍数04060dB v dB A ≤≤; (3) 通频带300Hz BW K =。 二、总体方案 小信号调谐放大器是各种电子设备、发射和接收机中广泛应用的一种电压放大器。其主要特点是晶体管的输入输出回路(即负载)不是纯电阻,而是由L 、C 元件组成的并联谐振回路。 小信号调谐放大器的类型很多,按调谐回路区分:有单调谐回路,双调谐回路和参差调谐回路放大器。按晶体管连接方法区分:有共基极、共发射极和共集电极放大器。 高频小信号谐振放大器的作用、电路组成、及工作原理,与低频小信号放大电路是基本一致的。不同的是:一是在高频小信号谐振放大器中,所放大信号的频率远比低频放大电路信号频率高;二是高频小信号谐振放大器的频宽是窄带(要求只放大某一中心频率的载波信号)。因此,首先在电路组成上应将低频放大电路中的低频三极管换成具有更高功率晶体管和LC 并联谐振回路。 三、设计内容 1.电路工作原理

高频小信号放大器实验报告

基于Multisim的通信电路仿真实验 实验一高频小信号放大器 1.1 实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 1.2 实验容 1.2.1 单调谐高频小信号放大器仿真 图1.1 单调谐高频小信号放大器 1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。 ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz 2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。 下图中绿色为输入波形,蓝色为输出波形

Avo=Vo/Vi=1.06/0.252=4.206 3、利用软件中的波特图仪观察通频带,并计算矩形系数。 通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz 矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)= (14.278GHz-9.359KHz)/7.092MHz=2013.254 4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av 相应的图,根据图粗略计算出通频带。

Fo(KHz) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 Uo(mV) 0.669 0.765 1 1.05 1.06 1.06 0.977 0.816 0.749 0.653 0.574 0.511 Av 2.655 3.036 3.968 4.167 4.206 4.206 3.877 3.238 2.972 2.591 2.278 2.028 5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形, 体会该电路的选频作用。 2次谐波 4次谐波 6次谐波

高频小信号放大器——典型例题分析

高频小信号放大器——典型例题分析 1.集成宽带放大器L1590的内部电路如图7.5所示。试问电路中采用了什么方法来扩展通频带的?答:集成宽放L1590是由两级放大电路构成。第一级由V1、V2、V3、V6构成;第二级由V7~V10构成,三极管V11~V16、二极管V17~V20和有关电阻构成偏置电路。其中第一级的V1、V3和V2、V6均为共射-共基组合电路,它们共同构成共射-共基差动放大器,这种电路形式不仅具有较宽的频带,而且还提供了较高的增益,同时,R2、R3和R4引入的负反馈可扩展该级的频带。V3、V6集电极输出的信号分别送到V7、V10的基极。第二级的V7、V8和V9、V10均为共集-共射组合电路,它们共同构成共集-共射差动放大器,R18、R19和R20引入负反馈,这些都使该级具有很宽的频带,改变R20可调节增益。应该指出,V7、V10的共集组态可将第一级和后面电路隔离。由于采取了上述措施,使L1590的工作频带可达0~150MHZ。顺便提一下,图中的V4、V5起自动增益控制(AGC)作用,其中2脚接的是AGC电压。图7.5 集成宽放L1590的内部电路2.通频带为什么是小信号谐振放大器的一个重要指标?通频带不够会给信号带来什么影响?为什么?答:小信号谐振放大器的基本功能是选择和放大信号,而被放大的信号一般都是已调信号,包含一

定的边频,小信号谐振放大器的通频带的宽窄直接关系到信号通过放大器后是否产生失真,或产生的频率失真是否严重,因此,通频带是小信号谐振放大器的一个重要指标。通频带不够将使输入信号中处于通频带以外的分量衰减,使信号产生失真。3.超外差接收机(远程接收机)高放管为什么要尽量选用低噪声管?答:多级放大器的总噪声系数为由于每级放大器的噪声系数总是大于1,上式中的各项都为正值,因此放大器级数越多,总的噪声系数也就越大。上式还表明,各级放大器对总噪声系数的影响是不同的,第一级的影响最大,越往后级,影响就越小。因此,要降低整个放大器的噪声系数,最主要的是降低第一级(有时还包括第二级)的噪声系数,并提高其功率增益。综上所述,超外差接收机(远程接收机)高放管要尽量选用低噪声管,以降低系统噪声系数,提高系统灵敏度。4.试画出图7.6所示放大器的交流通路。工作频率f=465kHZ。答:根据画交流通路的一般原则,即大电容视为短路,直流电源视为短路,大电感按开路处理。就可以很容易画出其交流通路。对于图中0.01μF电容,因工作频率为465kHZ,其容抗为,相对于与它串联 和并联的电阻而言,可以忽略,所以可以视为短路。画出的交流通路如图7.7所示。图7.6 图7.75.共发射极单调谐放大器如图7.2所示,试推导出 谐振电压增益、通频带及选择性(矩形系数)公式。解:单

小信号多级放大电路设计-模电课程设计报告

机械与电气工程学院 《模拟电子技术》课程设计报告 姓名: 学号: 班级: 指导教师:

课题名称:小信号多级放大电路设计 一、设计目的 1.通过本课程设计,掌握晶体管放大电路工作原理。 2.熟悉简单模拟电路的设计方法和主要流程。 3.学习模拟电路的制作与调试方法。 二、设计要求 1.输入电压:Vi p-p =30mV。 2.输入电阻:10k~40k。 3.频率特性:100HZ~100kHZ。 4.总谐波失真度(THD)≦3%。 5.供电电压:15V。 6.电压增益:100倍。 7.全部用分立元器件组成,不得使用集成运算放大器等集成电路。核心部分必须包含两级共射放大电路,耦合方式自选,在确保指标的前提下可自行添加其他电路。 8. 所有元器件必须为标准件,且平均每级电路中包含的电位器个数不得超过1个(其中指标为增益可调的电路,每个电路的电位器总个数可增加1个),最多不超过3个。 三、方案设计 1.负反馈的类型 在输出端,取样方式分为电压取样(电压反馈)和电流取样(电流反馈),在输入端,比较方式分为串联比较(串联反馈)和并联比较(并联反馈)。因此负反馈放大电路有四种类型:电压串联、电压并联、电流串联、电流并联。 2.负反馈对放大电路性能的影响 (1)引入负反馈使增益下降 闭环增益表达式为 =A/(1+AF) A f 其中D=1+AF为反馈深度。深度负反馈D>>1条件下

A f ≈1/F (2)负反馈提高增益的稳定性易得: d A f / A f =d A/(1+AF)*A=d A/D*A 上式表明,反馈越深,闭环增益的稳定性越好。(3)负反馈对输入电阻和输出电阻的影响 串联负反馈使R i 增加,并联负反馈使R i 下降。程度取决于反馈深度: R if =(1+AF)R i (串联负反馈) R if = R i /(1+AF)(并联负反馈) 电压负反馈使R o 下降,电流负反馈使R o 增加。程度上取决于反馈深度: R of =(1+AF)R o (电流负反馈) R of =R o /(1+AF) (电压负反馈) (4)负反馈展宽频带 基本放大电路高、低频响应均只有一个极点时,闭环上、下限截止频率为: f Hf =(1+AF)f H f Lf =f L /(1+AF) 3.方案确定 输入电阻:10k~40k,分析可知电路具有输入电阻较大的特点,则电路第一级要引入共集电路提高输入电阻。输出电阻:<1k,不是太小,则输出级不需要引入共集电路。电压增益:100倍,且题目要求必须要有两级共射电路,则电路分为两级共射放大。频率特性:100HZ~100kHZ,每一级的电容耦合,本来用10uF,但是通频带在仿真的时候下限只能达到290HZ,上限能达到4.5MHZ。所以用47uF电容耦合,能展宽通频带。 四、电路设计 设计电路图如图1所示

调谐小信号放大器分析设计方案与仿真

实验室 时间段 座位号 实验报告 实验课程 实验名称 班级 姓名 学号 指导老师

小信号调谐放大器预习报告 一.实验目的 1.熟悉电子元器件和高频电子线路实验系统; 2.掌握单调谐和双调谐放大器的基本工作原理; 3.掌握测量放大器幅频特性的方法; 4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响; 5.了解放大器动态范围的概念和测量方法。 二.实验内容 调谐放大器的频率特性如图所示。 图1-1 调谐放大器的频率特性 调谐放大器主要由放大器和调谐回路两部分组成。因此,调谐放大器不仅有放大作用,而且还有选频作用。本章讨论的小信号调谐放大器,一般工作在甲类状态,多用在接收机中做高频和中频放大,对它的主要指标要求是:有足够的增益,满足通频带和选择性要求,工作稳定等。 二.单调谐放大器 共发射极单调谐放大器原理电路如图1-2所示。 放大倍数f o f 1f K 0.7o K o K 2o f ?通频带f ?2o f ?2o f ?

图1-2 图中晶体管T 起放大信号的作用,R B1、R B2、R E 为直流偏置电阻,用以保证晶体管工作于放大区域,从而放大器工作于甲类。C E 是R E 的旁路电容,C B 、C C 是输入、输出耦合电容,L 、C 是谐振回路作为放大器的集电极负载起选频作用,它采用抽头接入法,以减轻晶体管输出电阻对谐振回路Q 值的影响,R C 是集电极(交流)电阻,它决定了回路Q 值、带宽。 三.双调谐回路放大器 图中,R B1、R B2、R E 为直流偏置电阻,用以保证晶体管工作于放大区域,且放大器工作于甲类状态,E C 为E R 的旁通电容,B C 和C C 为输入、输出耦合电容。图中两个谐振回路:11L C 、组成了初级回路,22L C 、组成了次级回路。两者之间并无互感耦合(必要时,可分别对12L L 、加以屏蔽),而是由电容3C 进行耦合,故称为电容耦合。 本次实验需做内容

高频小信号放大器的设计

高 频 小 信 号 放 大 器 设 计 学号:320708030112 姓名:杨新梅 年级:07电信本1班 专业:电子信息工程 指导老师:张炜 2008年12月3日

目录 一、选题意义 (3) 二、总体方案 (4) 三、各部分设计及原理分析 (7) 四、参数选择 (11) 五、实验结果 (17) 六、结论 (18) 七、参考文献 (19)

一、选题的意义 高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 高频小信号放大器的分类: 按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器; 其中高频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。

二、总体方案 高频小信号调谐放大器简述: 高频小信号放大器的功用就是无失真的放大某一频率范围内的信号。按其频带宽度可以分为窄带和宽带放大器,而最常用的是窄带放大器,它是以各种选频电路作负载,兼具阻抗变换和选频滤波功能。对高频小信号放大器的基本要求是: (1)增益要高,即放大倍数要大。 (2)频率选择性要好,即选择所需信号和抑制无用信号的能力要强,通常用Q值来表示,其频率特性曲线如图-1所示,带宽BW=f2-f1= 2Δf0.7,品质因数Q=fo/2Δf0.7. 图-1频率特性曲线

高频小信号谐振放大电路(打印版)

长春工程学院 高频电子线路课程设计(论文)题目:高频小信号放大电路设计 学院:电子与信息工程学院 专业班级:电子0942班 学号:20号、31号、9号、26号 学生姓名: 指导教师: 起止时间:2011.9.22~2011.10.20 电气与信息学院 和谐勤奋求是创新

内容摘要 高频小信号谐振放大电路 摘要:掌握高频小信号谐振放大器的工程设计方法,谐振回路的调谐方法,放大器的各项技术指标的测试方法及高频情况下的各种分布参数对电路性能的影响,表征高频小信号谐振放大器的主要性能指标由谐振频率fo,谐振电压放大倍数Avo,放大器的通频带BW及选择性(通常用矩形系数Kr0.1)。 关键词: 1.谐振频率放大器的谐振回路谐振时所对应的频率f0称为谐振频率。 2.电压增益放大器的谐振回路谐振时所对应的电压放大倍数Avo称为谐振放大器的电压增益(放大倍数) 3.通频带由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数Av下降到谐振电压放大倍数Avo的0.707倍时所对应的频率范围称为放大器的通频带BW。 4.矩形系数谐振放大器的选择性可由谐振曲线的矩形系数Kr0.1来表示矩形系数Kr0.1为电压放大倍数下降到0.1Avo时对应的频率范围与电压放大倍数下降到0.707Avo时对应的频率偏离之比。 工作计划: 1.确定电路形式。 2.设置静态工作点。 3.计算谐振回路的参数。 4.确定输入耦合回路及高频滤波电容。

content of marketing plan Resonant frequency small-signal amplifier Abstract: High-frequency small-signal resonance amplifier master of engineering design methods, resonant circuit tuning method, the technical specifications of the amplifier test methods and high-frequency parameters of various distributions in case of impact on circuit performance and characterization of high-frequency small-signal the main performance indicators of the resonant amplifier from the resonant frequency fo, the resonant voltage gain Avo, the amplifier passband BW and selective (usually rectangular coefficient Kr0.1). Keywords: 1 resonant circuit resonant frequency amplifier corresponding to the resonance frequency f0 is called the resonant frequency. 2 the resonant circuit voltage gain of the amplifier corresponding to the resonance voltage gain Avo called resonant amplifier voltage gain (magnification) 3 pass-band frequency selection as the role of the resonant circuit when the frequency deviation from the resonant frequency, the amplifier voltage gain drop, used to call down to the voltage gain Av resonant voltage gain Avo of 0.707 times the frequency range corresponding to known as the amplifier passband BW. 4 rectangular resonant amplifier selectivity coefficient by coefficient Kr0.1 resonance curve of the rectangle to represent a rectangle for the voltage gain coefficient Kr0.1 down to 0.1Avo corresponding to the frequency range and voltage gain drops to 0.707Avo the frequency corresponding to deviation of the ratio. Work plan: 1 to determine the circuit form. 2 set the quiescent operating point. 3 calculate the resonant circuit parameters. 4 Make sure the input coupling loop and high frequency filter capacitor. 设计任务说明

MESFET功率放大器设计:小信号法

第七讲功率放大器设计 MESFET 功率放大器设计:小信号法 基本工程问题: 没有大信号器件模型,怎样设计功率放大器? *许多器件供应商不提供其器件的大信号模型. *通常提供的唯一设计数据是器件的小信号S参数和静态IV曲线. *利用前面STEVE CRIPPS 介绍的负载线法,根据这些数据足以设计第一类的功率放大器. 功率放大器是大信号器件,因为在接近功率饱和时其特性呈现非线性。但许多场合,设计师仅有一组小信号S参数,在电路仿真时,作为表示有源器件的根据。由于这些S参数只适用于小信号,在大信号时怎样设计最大射频输出功率和线性,并不清楚。Steve Cripps 提出一种方法,可以用器件的静态IV曲线确定大信号负载线阻抗(RL),设计第一类放大器。RL用做目标阻抗,即用输出匹配电路表示的管子漏极负载。用该方法设计师可以对RF 最大输出功率优化输出电路,同时对最佳输入匹配和最大增益优化输入电路。通常输出匹配较差,这是因为为了输出最大RF功率,有意造成一定失配(即:输出匹配对RL优化,而不是对器件的S22优化)。 该方法的局限性 *仅对最大Psat优化 *仅对A类和AB类工作状态有效 *无法计算交调产物:IM3,IMR5,IP3 *无法计算谐波电平 *无法计算ACPR(对数字调制) 小信号设计技术有其局限性。输出电路对最大RF饱和功率优化,但不一定对最大线性功率。就是说无法直接计算1dB压缩点输出功率。而且也无法直接计算放大器的二音交调性能:IM3,IM5,IP3和IP5。为了计算这些重要参数,设计师必须依靠测量法或“经验(rules of thumb)”。MESFET放大器的两个重要“经验”是: *P-1dB比Psat约低1dB。 *IP3比P-1dB约高10—12dB。 论题: 用小信号法求解最大功率 *设计流程图(步骤) *指标 *选择器件 *由IV曲线计算负载线电阻 *匹配网络 *分布参数与集总参数 *仿真:增益,输入匹配和输出匹配 *提取封装参数

实验2__高频小信号调谐放大器

高频电子线路实验报告姓名: 班级:

实验一高频小信号调谐放大器 一、实验目的 1.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算。 2.掌握信号源内阻及负载对谐振回路Q值的影响。 3.掌握高频小信号放大器动态范围的测试方法。 二、实验内容: 1.调测小信号放大器的静态工作状态。 2.用示波器观察放大器输出与偏置及回路并联电阻的关系。 3.观察放大器输出波形与谐振回路的关系。 4.调测放大器的幅频特性。 5.观察放大器的动态范围。 三、实验仪器设备: 1、高频电子线路实验箱GP-4。 2、数字存储示波器TDS-1002 3、高频信号发生器WY-1052A 4、数字万用表 四、实验步骤: 实验用单调谐回路谐振放大器电路如图1所示。图中,R1、R2、RE用以保证晶体管工作于放大区域,从而放大器工作于

甲类。 C2是RE的旁路电容,C1、C7是输入、输出耦合电容,L、C3、C4是谐振回路,C3用来调谐,K1、K2、K3用以改变集电极回路的阻尼电阻R3,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值) 的影响。K4、K5、K6用 以改变射极偏置电阻R4, 以观察放大器静态工作 点变化对谐振回路 (包括电压增益)的 影响。为了减轻负载 对回路Q值的影响, 输出端采用了(部分 接入方式),即电感 抽头输出方式。

(一):单级单调谐电路 用示波器在小信号放大器的模块的TT2处观察,调节小信号放大器的T2,CC2,适当调节该模块的w3,使TT2处信号V o的峰值V op-p 最大不失真。记录各数据,填表中。 电压增益系数: 放大器的谐振回路对应的电压放大系数Avo 称为谐振放大器的电压增益系数。当电路处于谐振放大状态时,Avo 计算公式如下: Avo = V o / Vi 或Avo = lg(V o / Vi)dB

低频小信号放大器电路设计

摘要 低频小信号放大器电路设计 摘要 实用性低频小信号放大器电路设计,它主要用于使用前置放大器的低频小信号的电压经过集成块LM358的放大使其增益二十几倍,达到信号放大的作用,本文介绍了其基本原理,内容,与低频放大微弱信号放大能力的技术路线,设计电路图方案等。 本系统是基于(IC)LM358设计而成的一种低频小信号放大器,整个电路主要由稳压电源,前置放大电路,波形变换电路3部分。电源主要是为前置放大器提供稳定的直流电源。前置放大器主要是由ML358一级放大电路和ML358二级放大电路组成,第一级可以将电压放大5倍,第二级可以放大1-5倍,总增益20-25倍,接通电源后,信号发生器产生信号,示波器用于变换的波形显示。通过波形的数据变化,计算出增益效果,是否满足设计需求。 该设计的电路结构简单,实用,充分利用了集成功放的优良性能。实验结果表明,前置放大器的带宽,失真,效率等方面具有较好的指标,具有较高的实用性,为小信号放大器的设计是一个广泛的思考。 关键词:低频小信号,电压放大,前置放大级电路,集成块LM358

Abstract Design of low frequencysmall signal amplifier Abstract: The utility of low frequency small signal amplifier circuit design, it is mainly used for voltage low frequency small signal using a pre amplifier after amplification integrated block LM358 has gain 20 times, achieve signal amplification effect, this paper introduces the basic principle, content, and low frequency amplification technology route of weak signal amplification ability, circuit design scheme. The system is based on (IC) a low frequency small signal amplifier LM358 designed, the whole circuit is mainly composed of a regulated power supply, preamplifier circuit, a waveform transform circuit 3 parts. The power supply is mainly to provide a stable DC power for the preamplifier. The preamplifier is mainly composed of ML358 amplifier and ML358 two stage amplifier circuit, the first stage of the voltage can be magnified 5 times, second can be magnified 1-5 times, 20-25 times of the total gain, power, signal generator generates a signal, oscilloscope is used to transform the waveform display. By the waveform data changes, calculated the gain effect, whether meet the design requirements. The design of the circuit structure is simple, practical, make full use of the excellent performance of the integrated amplifier. The experimental results show that, the pre amplifier bandwidth, distortion, has better efficiency indicators, and has higher practicability, designed for small signal amplifier is a broad thinking. Keywords:Lowfrequency smalsignal,voltage amplification,preamplifiercircuit,Integrated block LM358

晶体管中频小信号选频放大器设计(高频电子线路课程设计)..

课程设计任务书 学生姓名:专业班级:电子1001班 指导教师:韩屏工作单位:信息工程学院题目:晶体管中频小信号选频放大器设计 初始条件: 具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。 要求完成的主要任务: 1.采用晶体管或集成电路完成一个调幅中频小信号放大器的设计; 2.放大器选频频率f0=455KHz,最大增益200倍,矩形系数不大于5; 3.负载电阻R L=1KΩ时,输出电压不小干0.5V,无明显失真; 4.完成课程设计报告(应包含电路图,清单、调试及设计总结)。 时间安排: 1.2013年12月10日分班集中,布置课程设计任务、选题;讲解课设具体实施计划与课程设计报告格式的要求;课设答疑事项。 2.2013年12月11日至2013年12月26日完成资料查阅、设计、制作与调试;完成课程设计报告撰写。 3. 2013年12月27日提交课程设计报告,进行课程设计验收和答辩。 指导教师签名:年月日系主任(或责任教师)签名:年月日

目录 摘要............................................................................................................. I Abstract ...................................................................................................... I I 一、绪论 (1) 二、中频小信号放大器的工作原理 (2) 三、中频选频放大器的设计方案 (3) 3.1 稳定性分析 (3) 3.2 提高放大器稳定性的方法 (4) 3.3中频选频放大 (5) 3.4 信号负反馈 (6) 四、电路仿真与分析 (7) 4.1 multisim仿真软件简介 (7) 4.2 中频选频放大部分仿真 (7) 五、实物制作及调试 (9) 六、个人体会 (12) 参考文献 (13) 附录I 元件清单 (14) 附录II总电路图 (15)

通信电子电路课程设计(小信号放大器)

通信电子线路课程设计--高频小信号谐振放大器 学校: 姓名: 学号: 班级: 指导老师:

年月日 目录 一、前言 (3) 二、电路基本原理 (3) 三、主要性能指标及测量方法 (5) 1、谐振频率 (7) 2、电压增益 (7) 3、通频带 (8) 4、矩形系数 (9) 四、设计方案 (10) 1、设置静态工作点 (10) 2、计算谐振回路参数 (10) 3、电路图、仿真图和PCB图 (11) 五、电路装调与测试 (13) 六、心得体会 (14) 七、参考文献 (15)

一、前言 高频调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现问题是自激震荡,同时频率选择和各级建阻抗匹配也恶化你难实现。 Protel DXP软件能实现从电学概念设计到输出物理生产数据,以及这之间的所有分析、验证、和设计数据管理。今天的Protel DXP 软件已不是单纯的PCB设计工具,而是一个系统,它覆盖了以PCB 为核心的全部物理设计。使用Protel、等计算机软件对产品进行辅助设计在很早以前就已经成为了一种趋势,这类软件的问世也极提高了设计人员在机械、电子等行业的产品设计质量与效率。 通过《通信电子线路》的学习,使用Protel DXP软件设计了一个高频小信号放大器。 二、电路的基本原理 高频小信号放大器的功用就是五失真的放大某一频率围的信号。按其频带宽度可以分为窄带和宽带放大器。高频小信号放大器是通信电子设备中常用的功能电路,它所放大的信号频率在数百千赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从

高频小信号调谐放大器

高频电子线路课程设计报告 题目: __ 高频小信号谐振放大器 __ 院系:_xxxxxxxxxxxxxxxxxxxxxxxx_ 专业:____电子信息科学与技术 班级: xxxxxxxxxxx 姓名: xxxxxx 学号: _ xxxxxxxxxxxxxxx __ 指导教师: xxxxxxxx 报告成绩: 2016年12月16日

目录 一设计目的 (1) 二设计思路 (1) 2.1 电路的功能 (1) 2.2 设计的基本要求 (1) 三设计过程 (1) 3.1 设计电路 (1) 3.2 测量方法 (4) 3.2.1谐振频率 (4) 3.2.2电压增益 (4) 3.2.3通频带 (5) 3.2.4矩形系数 (5) 四系统调试与结果 (6) 4.1 设置静态工作点 (6) 4.2 计算谐振回路参数 (6) 4.3 利用Multisim 对电路的仿真图 (7) 4.4 设计结果与分析 (8) 五主要元器件与设备 (10) 5.1 元器件与设备 (10) 5.2相关参数 (11) 六课程设计体会与建议 (11) 6.1 设计体会 (11) 6.2 设计建议 (12) 七参考文献 (12)

一设计目的 (1)了解LC谐振回路的选频原理和回路参数对回路特性的影响。 (2)掌握高频单调谐放大器的构成和工作原理。 (3)掌握高频单特性放大器的等效电路、性能指标要求及分析设计。 (4)掌握高频单调谐放大器的设计方案和测试方法。 二设计思路 2.1 电路的功能 所谓谐振放大器,就是采用谐振回路作负载的放大器。根据谐振回路的特性,谐振放大器对于靠近谐振频率的信号,有较大的增益;对于远离谐振频率的信号,增益迅速下降。所以,谐振放大器不仅有放大作用,而且也起着滤波或选频的作用。高频小信号放大器的作用是无失真的放大某一频率范围内的信号。按其频带宽度可以分为窄带和宽带放大器。高频小信号放大器是通信电子设备中常用的功能电路,它所放大的信号频率在数百千赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 2.2设计的基本要求 (1)通过具体计算,选择器件给出电路设计电路 (2)给出最终实现电路 (3)进行仿真校验 (4)作出设计总结 三设计过程 3.1设计电路

高频小信号放大器

高频小信号放大器() 一、学习目标与要求 1.掌握单调谐回路谐振放大器工作原理的分析方法,理解提高稳定性措施; 2.了解同步调谐放大器和双参差调谐放大器工作原理; 3.了解双调谐放大电路,能够识读各种类型的谐振放大器电路; 4.了解集中选频放大器电路;了解噪声概念; 二、学习要点 (一)高频小信号放大器的分类 (l )按器件分类 高频小信号放大器若按器件分可分为晶体管放大器、场效应管放大器、集成电路放大器。 (2)按通带分类 高频小信号放大器若按通带分可分为窄带放大器、宽带放大器。 (3)按负载分类 高频小信号放大器若按负载分可分为谐振放大器、非谐振放大器。 本章重点介绍单级窄带负载为I .C 调谐回路的谐振放大器,这种放大器不仅有放大作用,而且有选频作用。对其他器件的单级谐振放大器、各种级联放大器以及集成电路放大器这略加讨论。 (二) 高频小信号放大器的质量指标 1.增益(放大系数) 放大器输出电压Vo(或功率P 。)与输入电压V i (或功率P i )之比,称为放大器的增益或放大倍数,用A v (或A P )表示(有时以dB 数计算)。我们希望每级放大器在中心频率(谐振频率)及通频带处的增益尽量大,使满足总增益时级数尽量少。 电压增益:i o v V V A = (6-1) 功率增益:i o P P P A = (6-2) 2.通频带 放大器的电压增益下降到最大值的0,7(即v /1)倍时,所对应的频率范围称为放大器的通频带,用B =2△f 0.7表示,如图3-l 所示。2△f 0.7也称为3分贝带宽。 图6-1 高频小信号放大器的通频带 与谐振回路相同,放大器的通频带决定于回路的形式和回路的等效品质因数Q e 。此外,放大器的总通频带,随着级数的增加而变窄,并且,通频带愈宽,放大器的增益愈小。

实验一_高频小信号调谐放大器实验报告

本科生实验报告 实验课程高频电路实验 学院名称信科院 专业名称物联网工程 学生姓名刘鑫 学生学号201313060108 指导教师陈川 实验地点6C1001 实验成绩 二〇年月二〇年月

高频小信号调谐放大器实验 一、实验目的 1. 掌握小信号调谐放大器的基本工作原理; 2. 掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 3. 了解高频小信号放大器动态范围的测试方法; 二、实验仪器与设备 高频电子线路综合实验箱; 扫频仪; 高频信号发生器; 双踪示波器 三、实验原理 (一)单调谐放大器 小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。其实验单元电路如图1-1所示。该电路由晶体管Q 1、选频回路T 1二部分组成。它不仅对高频小信号放大,而且还有一定的选频作用。本实验中输入信号的频率f S =12MHz 。基极偏置电阻R A1、R 4和射极电阻R 5决定晶体管的静态工作点。可变电阻W 3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。 表征高频小信号调谐放大器的主要性能指标有谐振频率f 0,谐振电压放大倍数A v0,放大器的通频带BW 及选择性(通常用矩形系数K r0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f 0的表达式为 ∑ = LC f π210

式中,L 为调谐回路电感线圈的电感量; ∑ C 为调谐回路的总电容,∑ C 的表达式为 ie oe C P C P C C 2221++=∑ 式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,用扫频仪测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。A V0的表达式为 G g p g p y p p g y p p v v A ie oe fe fe i V ++-=-=- =∑2 22 1212100 式中,g Σ为谐振回路谐振时的总电导。要注意的是y fe 本身也是一个复数,所以谐振时输出电压V 0与输入电压V i 相位差不是180o 而是为(180o + Φfe )。 A V0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1-1中R L 两端的电压V 0及输入信号V i 的大小,则电压放大倍数A V0由下式计算: A V0 = V 0 / V i 或 A V0 = 20 lg (V 0 /V i ) d B 3.通频带 由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带BW ,其表达式为 BW = 2△f 0.7 = fo/Q L 式中,Q L 为谐振回路的有载品质因数。 分析表明,放大器的谐振电压放大倍数A V0与通频带BW 的关系为 ∑ = ?C y BW A fe V π20

相关主题
文本预览
相关文档 最新文档