当前位置:文档之家› 教材习题参考答案第六章离子聚合doc

教材习题参考答案第六章离子聚合doc

教材习题参考答案第六章离子聚合doc
教材习题参考答案第六章离子聚合doc

教材习题参考答案第六章离子聚合

思考题:

5.分别叙述进行阴、阳离子聚合时,控制聚合反应运速率和聚合物分子量的主要方法。

解:进行离于聚合时.一蟹若果用改变聚合反应温度或改变溶剂极性的方法来控制聚合速度,阴离子聚合一般为无止聚合,所以通过引发剂的用量可调节聚合物约分了量。有时也通过加入链转移剂(例如R1苯)调代聚合物的分子量。

阳离子极易发生发生链转移反应。链转移反应是影响聚合物分子量的主要因素,而聚合反应温度对链转移反应的影响很大。所以一般通过控制聚合反应温度来控制聚合物的分子量。有时也通过加入链转移剂来控制聚合物的分子量。

计算题:

2.将1.0×10-3mol萘钠溶于四氢呋喃中,然后迅速加入2.0mol的苯乙烯,溶液的总体积为1L。假如单体立即均匀混合,发现2000秒钟内已有一半单体聚合,计算在聚合了2000秒和4000秒时的聚合度。

解:无终止的阴离子聚合速率为R p=k p[M-][M]

以萘钠为引发剂时,由于聚合开始前,引发剂就以定量地离解成活性中心∴[M-]=[C]=1.0×10-3mol/L

将R p式改写为-d[M]/dt=k p[C][M]

积分得ln([M]0/[M])=k p[C]t

已知t1=2000秒时,[M]0/[M]1=2,代入上面积分式:

ln2=k p×2000

∴k p[C]=ln2/2000

设当t2=4000秒时,剩余单体浓度为[M]2

ln([M]0/[M]2)=k p[C]t2=ln2/2000×4000=1.386

∴[M]2= [M]0/4

则反应掉的单体浓度为[M]0-[M]0/4=3[M]0/4

根据阴离子聚合的聚合度公式n=n[M]/[C] (双阴离子n=2) [C]为引发剂浓度

∵聚合到2000秒时,单体转化率为50%,则反应掉的单体浓度为50%[M]0∴n×50%[M]0/[C]=2×50%×2.0/(1.0×10-3)=2000

已求得聚合到4000秒时,反应掉的单体浓度为3[M]0/4

∴n×(3[M]0/4)/[C]=2×(3/4)×2.0/(1.0×10-3)=3000

7.在搅拌下依次向装有四氢呋喃的反应釜中加入0.2mol n-BuLi和20kg苯乙烯。当单体聚合了一半时,向体系中加入1.8g H2O,然后继续反应。假如用水终止的和继续增长的聚苯乙烯的分子量分布指数均是1,试计算(1)水终止的聚合物的数均分子量;

(2)单体完全聚合后体系中全部聚合物的数均分子量;

(3)最后所得聚合物的分子量分布指数。

解一:(1)单体反应一半时加入1.8g H2O,由水终止所得聚合物的分子量为

(2)单体完全转化后全部聚合物的数均分子量,仍然是个平均的概念,即指的是平均来讲每一个活性种所加上的单体的克数(若是数均聚合度,即为所加上的单体的个数),不管中途是否加有终止剂,还是发生了其他不均匀增长

∴单体完全转化后全部聚合物的数均分子量为

8.在-35℃以TiCl4为引发剂、水为共引发剂,异丁烯进行低温聚合,单体浓度对平均聚合度的影响,有下列数据

[M] (mol/L) 0.667 0.333 0.278 0.145 0.059

DP 6940 4130 2860 2350 1030

根据以上数据计算速率常数比:k tr/k p和k t/k p。

解:由以上数据可得

1/[M] 1.499 3.003 3.597 6.897 16.949

1/DP 1.441 2.421 3.497 4.255 9.709

根据无链转移剂时聚合度公式

可知,以对作图,所得直线斜率即为k t/k p;截距即为C m,亦即k tr/k p。

9.异丁烯在四氢呋喃中用SnCl4-H2O引发聚合。发现聚合速率R p∝[SnCl4][H2O][异丁烯]2。起始生成的聚合物的数均分子量为20000。1.00g聚合物含3.0×10-5mol的OH基,不含氯。写出该聚合的引发、增长、终止反应方程式。推导聚合速率和聚合度的表达式。指出推导过程中用了何种假定。什么情况下聚合速率是水或SnCl4的零级、单体的一级反应?

解:根据题意,终止是活性中心与反离子碎片结合。

①引发:

增长:

终止:

②各步反应速率方程为

R i=k i[H+(SnCl4OH)-][CH2=C(CH3)2]=k络k i[SnCl4][H2O][CH2=C(CH3)2]

(k络=[H+(SnCl4OH)-]/[SnCl4][H2O])

R p=k p[HM+(SnCl4OH)-][CH2=C(CH3)2]

R t=k t[HM+(SnCl4OH)-]

假定R i=R t (稳态) 则

[HM+(SnCl4OH)-]=k络k i[SnCl4][H2O][CH2=C(CH3)2]/k t

代入R p式得

R p= k络k i k p[SnCl4] [H2O][CH2=C(CH3)2]2/k t

=R p/R t= k p[HM+( SnCl4OH)-][CH2=C(CH3)2]/(k t [HM+( SnCl4OH)-])=k p [CH2=C(CH3)2] /k t

③若[H2O]>>[SnCl4],且k i>>k络,

则在引发反应中,第一步(生成络合物的反应)为控制步骤,且[H2O]基本保持恒定。

∴R i=k络[H2O][SnCl4] = k1[SnCl4]

稳态时:k t[HM+( SnCl4OH)-]= k1[SnCl4]

∴[HM+( SnCl4OH)-]=k1/k t[SnCl4]

代入R p式得

R p=k p k1/k t[SnCl4][CH2=C(CH3)2]

即R p是水的零级,单体的一级反应。

④若[SnCl4]>>[H2O],且k i>>k络

则在引发反应中,生成络合物的反应为控制步骤,且[SnCl4]基本恒定。

∴R i= k络[H2O][SnCl4]=k2[H2O]

稳定时:k t[HM+( SnCl4OH)-]=k2[H2O]

∴[HM+( SnCl4OH)-]=k2/k t[H2O]

代入R p式得:

R p=k p k2/k t[H2O] [CH2=C(CH3)2]

即R p是SnCl4的零级、单体的一级反应。

自由基聚合与离子型聚合特征区别

引发剂种类> 自由基聚合: 采用受热易产生自由基的物质作为引发剂<偶氮类 过氧类 氧化还原体系 引发剂的性质只影响引发反应,用量影响Rp和 > 离子聚合: 采用容易产生活性离子的物质作为引发剂 * 阳离子聚合:亲电试剂,主要是Lewis酸,需共引发剂 * 阴离子聚合:亲核试剂,主要是碱金属及其有机化合物 引发剂中的一部分,在活性中心近旁成为反离子 其形态影响聚合速率、分子量、产物的立构规整性单体结构 自由基聚合<带有弱吸电子基的乙烯基单体 共轭烯烃 离子聚合:对单体有较高的选择性 <阳离子聚合:阳离子聚合:带有强推电子取代基的烯类单体 共轭烯烃(活性较小)阴离子聚合:带有强吸电子取代基的烯类单体 共轭烯烃 环状化合物、羰基化合物 溶剂的影响 自由基聚合<向溶剂链转移,降低分子量 笼蔽效应,降低引发剂效率 f 溶剂加入,降低了[M],Rp略有降低 水也可作溶剂,进行悬浮、乳液聚合 离子聚合<溶剂的极性和溶剂化能力,对活性种的形态有较大影响:离子对、自由离子影响到RRp、Xn 和产物的立构规整性 溶剂种类:阳:卤代烃、CS2、液态SO2、CO2;阴:液氨、醚类(THF、二氧六环) 反应温度自由基聚合:取决于引发剂的分解温度,50 ~80 ℃ 离子聚合:引发活化能很小 为防止链转移、重排等副反应,在低温聚合,阳离子聚合常在-70 ~-100 ℃进行。聚合机理 自由基聚合:多为双基终止<双基偶合 双基歧化 离子聚合:具有相同电荷,不能双基终止<无自加速现象

阳:向单体、反离子、链转移剂终止 阴:往往无终止,活性聚合物,添加其它试剂终止 机理特征:自由基聚合:慢引发、快增长、速终止、可转移阳离子聚合:快引发、快增长、易转移、难终止 阴离子聚合:快引发、慢增长、无终止 阻聚剂种类自由基聚合:氧、DPPH、苯醌 阳离子聚合:极性物质水、醇,碱性物质,苯醌 阴离子聚合:极性物质水、醇,酸性物质,CO2 问题:有DPPH和苯醌两种试剂,如何区别三种反应?

第四章 离子聚合与配位聚合生产工艺

第四章离子聚合与配位聚合生产工艺 4.1离子聚合及其工业应用 定义:单体在阳离子或阴离子作用下,活化为带正电荷或带负电荷的活性离子,再与单体连锁聚合形成高聚物的化学反应,统称为离子型聚合反应。 离子型聚合反应:阳离子聚合;阴离子聚合;配位离子型聚合 应用: 丁基橡胶、聚异丁烯、聚甲醛、聚硅氧烷、聚环氧乙烷等;高密度聚乙烯、等规聚丙烯、顺丁橡胶等;活性高聚物、遥爪高聚物等。 4.1.1阳离子聚合反应 单体:具有强推电子取代基和共轭效应的烯烃类单体、羰基化合物、杂环。 工业化生产所用的主要单体有:异丁烯、苯乙烯、环醚、甲醛、乙烯基醚类、异戊二烯等。 引发剂 共性:阳离子聚合所用的引发剂为“亲电试剂”。 作用:提供氢质子或碳阳离子与单体作用完成链引发过程。 常用的引发剂 阳离子聚合反应机理 以异丁烯为单体,以三氟化硼为引发剂,水为助引发剂 ●链引发: 链增长: 链转移: (活性中心向单体转移):

另一情况 显然,以上一种方式为主。 向反离子转移,离子对重排: 向助引发剂转移 链转移结果又产生了新活性中心,它仍然可以进行反应。对于向单体转移终止的发生比自由基聚合时要快得多,同时,又是控制产物相对分子质量的主要因素。因此,阳离子聚合多采用低温聚合。 链终止 终止之一(与反离子中的阴离子作用而终止): 终止之二(与水、醇、酸等终止剂作用而终止) 阳离子可控聚合 根据:阳离子聚合反应难以控制的原因在于碳正离子非常活泼。通过亲核作用使碳正离子稳定则可以获得“活性”阳离子增长链。 方法:1.选择适当的亲核对应离子B-;2.外加路易士碱(X) 方法1:采用碘化氢/碘(HI/I2)引发体系。对应阴离子B-由被碘分子活化的碘阴离子(I-—I2)组成,它使碳正离子处于活性种状态。例如乙烯基醚的活性阳离子聚合反应:

第六章 离子聚合 重点、难点指导

第六章 离子聚合 重点、难点指导 一、重要术语和概念 离子聚合单体、离子聚合的引发剂和共引发剂、离子聚合中活性中心形态与溶剂、离子聚合的机理特征、活性阴离子聚合、嵌段共聚物制备 二、重要公式 活性阴离子聚合速率: ]][[][M B k dt M d R p p ?=?= 活性阴离子聚合物的聚合度:][])[]([0C M M n Xn ?= 三、难点 阴离子聚合反应的影响因素、活性阴离子聚合 1、阴离子聚合 (1) 阴离子聚合单体 能进行阴离子聚合的单体包括三种类型,即:(1)带吸电子取代基的。α-烯烃;(2)带共轭取代基的α-烯烃;(3)某些含杂原子的化合物(如O 、N 杂环)。 (2) 阴离子聚合的引发剂 阴离子聚合的引发剂主要有三类:即:(1)碱金属烷基化合物如正丁基锂( LiBu)等;(2)碱金属如Li 、Na 、K 等;(3)碱金属络合物如萘钠、苯基锂等。 (3) 阴离子聚合反应机理 阴离子聚合届连锁聚合反应的一种类型、其反应也包括链引发、链增长和链终止三个基元反应。机理特征是慢引发、快增长、无终止、无转移、成为典型的活性聚合,可用来合成分子量窄分布的聚合物和嵌段共聚物。合成嵌段共聚物时,应使pKa 值较大的单体先聚合,再加pKa 值较小的单体后继聚合。 (4) 阴离子聚合反应的影响因素 在阴离子聚合反应中.活性中心离子的存在形态是影响聚合反应速率和聚合物结构的最重要因素.分析如下: ①溶剂的影响 溶剂对明离子聚合引发剂、单体及活性离子对具有“溶剂化作用”。极性溶剂的溶剂化作用使阴离子聚合的活性中心成为松离子对甚至自由离子,因此在极性溶剂中进行的阴离子聚合反应速率快.但聚合物的结构规整性差;非极性溶剂的溶剂化作用较弱,活性中心多为紧离对、聚合反应速率较馒而聚合物的结构规整性较好。 ②反离子的影响 ‘ 在非极性溶剂中.阴离子聚合链增长速率常数随反离子半径增加而增加.聚合产物的规整性下降;在极性溶剂中。链增长速率常数随反离子半径增加而降低,聚合物的规整性提高。 ③温度的影响 温度对阴离子聚合反应的影响包括对聚合反应本身的影响和对镕转移副反应的影响。首先温度升高使聚合反应速率升高,同时使聚合物结构规整性降低;其次活性明离子容易与质子性物质发生链转移反应而终止,且链转移反应的话化能又高于链增长活化能,所以升高温度往往使链转移反应加剧。另外,除活性中心为紧离子对外,阴离子聚合的活化能稍低于自

1 离子型聚合与自由集溶液聚和对溶剂的要求有何区别

1 离子型聚合与自由集溶液聚和对溶剂的要求有何区别? 离子聚合:需使中性分子生成离子对,此时要求较高的能量,所以生成的粒子不稳定,必须在聚合之前用溶剂在低温下使之稳定,不能使用强极性溶剂,多在低温弱极性溶剂中反应,选择溶剂的原则应考虑极性大小。溶剂的极性增加有利于链增长,使聚合速率加快,而阴离子对溶剂的要求是采用极性较低或中等极性的溶剂,极性较高可分解成强亲电基团或强亲核基团;自由基溶液聚合对溶剂的要求是:1.选择溶剂的连转移常数Cs较小的溶剂2.选择良溶剂,构成均相体系,有可能的消除自动加速效应。 2阴离子配位催化剂的主要组成由哪儿? 住催化剂:由周期表中第3-8族的过渡金属构成的化合物 助催化剂:由周期表中1-3族的金属的有机化合物组成 第三组分:通常是具有给电子能力的路易斯碱,如含N,P,和O等化合物,可以提高催化剂的定向性和引发活性 3如何提高配位催化剂的效率 加入第三组分,扩大催化剂的表面积,增加活性组分的有效活性中心 4什么是活性聚合 引发体系的引发之前,预先100%迅速变为活性中心,然后以相同的速率同时引发单体增长,直至单体耗尽任保持活性。 5 何谓定向聚合 能制备立构规整性聚合物的聚合反应。立构规整性聚合物也称立构规整性高分子、定向聚合物。自然界存在着许多立构规整性聚合物,如天然橡胶、纤维素、蛋白质和淀粉等 6 目前那些高分子是采用离子型和配位阴离子型合成工艺来生产的? 写出反应式并注明所用催化剂 7.铝-钛催化剂为何能制的结构规整的聚烯烃 乙烯先于钛原子配位,然后插入Ti-C键并与之形成桥键。当单体与聚合物链的次甲基生成r键的同时,原来的碳铝桥键破裂而形成新的碳铝桥键,因此增长一个链节。如此重复进行则的聚乙烯大分子。 8.比较正.负离子聚合,配位阴离子聚合,自由基聚合的特征 自由基:慢引发,快增长,速终止,有转移阴离子:快引发慢增长无终止阳离子:快引发慢增长易转移难终止配位聚合:1.采用Z-N催化剂2.聚合机理为配位聚合3.具有定向性4.配位聚合用的单体有选择性5.溶剂要求严格 缩聚反应 1.试述缩聚反应的分类及实施方法 分类:按反应热力学特征分为:可逆缩聚和不可逆缩聚;按所生成产物结构分:线性缩聚和体型缩聚;按参加反应单体分类:均缩聚异缩聚和共缩聚实施方法:熔融缩聚:聚合温度高于单体和缩聚物熔点,反应在熔融状态下进行。溶液缩聚:单体加适量催化剂,在溶液中进行的聚合方法称为溶液聚合。界面缩聚:两种单体分别溶于互不相容的两种溶剂中,在两相界面进行的缩聚反应。乳液聚合:单体溶解于有机溶剂中,并以乳液状分散于水中进行聚合方法。固相缩聚:在原料和聚合物熔点以下进行的缩聚称为固相聚合。2.再生产中,熔融,溶液,界面缩聚对单体的纯度,单体克分子比要求不同,为什么? 熔融聚合:对原料单体纯度的数值要求精确,负责,投入原料的比例有误差,直接影响产物的分子量;单官能团的杂质易引起封端作用;有些杂质影响反应速度,产物结构,分子量分布等等。溶液聚合:总希望单体浓度尽可能高的情况下进行,但浓度太高会使反应物料变得粘稠影响正常反应。界面缩聚:静态界面缩聚与单体浓度无关,动态界面缩聚,对单体浓度要高。

第三章 离子聚合和配位聚合

第三章离子聚合与配位聚合生产工艺共价键均相断裂产生两个自由基,非均相断裂则产生离子。 离子聚合反应:乙烯基单体、二烯烃单体以及一些杂环化合物在某些离子的作用下进行的聚合反应称为离子聚合反应。 根据增长链链端离子所带电荷的性质,分为:阳离子聚合反应和阴离子聚合反应。 配位聚合反应:由配位聚合催化剂引发乙烯基单体,二烯烃单体进行空间定向聚合,是一类特殊的离子聚合反应体系,称之为配位阴离子聚合反应,简称配位聚合反应。 配位聚合催化剂:由过度金属卤化物与有机金属化合物组成的络合型聚合催化剂体系,由于属于配位络合结构,所以称为配位聚合催化剂。 第一节离子聚合反应及其工业应用 一、阳离子聚合反应及其工业应用 1、阳离子聚合反应 阳离子聚合反应是乙烯基单体或某些杂环单体如环醚、环缩醛、环亚胺、环硫醚、内酰胺、内酯等在阳离子引发剂(或称催化剂)作用下生成相应离子进行聚合的反应。例如:乙烯基单体在阳离子引发剂作用下进行的阳离子聚合反应为: 链引发 链增长 链转移与终止 向单体链转移 由于阳离子增长链末端带有正电荷,所以具有亲核性的单体或碱性单体易于发生阳离子聚合反应,但容易从单体分子中夺取质子而发生向单体链转移的副反应或与亲核杂质反应终

止。即使在很低的温度下,也容易发生链转移反应,因而不易得到高分子量产品。所以工业上用异丁烯和少量异戊二烯经阳离子聚合反应生产丁基橡胶时聚合温度须低至—100℃。 氧正离子、硫正离子等的活性低于碳正离子,所以杂环单体经阳离子聚合反应生产高分子量聚合物可在65℃以上进行。 2、工业应用 高分子合成工业中应用阳离子聚合反应生产的聚合物主要品种如下: 聚异丁烯:异丁烯在阳离子引发剂AlCl3、BF3等作用下聚合,由于聚合反应条件、反应温度、单体浓度、是否加有链转移剂等的不同而得到不同分子量的产品,因而具有不同的用途。 低分子量聚异丁烯(分子量<5万),为高粘度流体,主要用作机油添加剂、粘合剂等。高分子量聚异丁烯为弹性体用作密封材料和蜡的添加剂或作为屋面油毡。异丁烯与少量异戊二烯的共聚物称作丁基橡胶,其聚合度为5万~50万。所用引发剂为AlCl3,溶剂为二氯甲烷,于173K聚合而得。 聚甲醛:由三聚甲醛与少量二氧五环经阳离子引发剂AlCl3、BF3等引发聚合。用作热熔粘合剂、橡胶配合剂等。 聚乙烯亚胺:主要是环乙胺、环丙胺等经阳离子聚合反应生成聚乙烯亚胺均聚物或共聚物,它是高度分支的高聚物。用作絮凝剂、粘合剂、涂料以及表面活性剂等。 3、阳离子聚合得到的特殊聚合物 可合成分子量较狭窄和可控制分子量的聚合物。在适当引发剂作用下阳离子增长链可以表现为“活性’’增长链,从而有控制的合成适当分子量及分子量分布的聚合物。 可以进行活性阳离子聚合反应的单体有:乙烯基醚类单体、异丁烯,苯乙烯及其衍生物等,其中以乙烯基醚类单体最为重要。 具有功能性悬挂基团的聚合物,为梳形结构。

聚合物电芯和锂电芯区别

聚合物电池和锂电池区别 18650锂离子电池:主要有镍氢电池、锂离子电池、磷酸铁锂 聚合物电池:以钴酸锂材料为正极,碳材料为负极,电解质采用固态或凝胶有机导电膜组成,并采用铝塑膜做外包装的最新一代的可充电锂离子电池 聚合物是液态锂电池的更新换代产品,不仅具有液态锂离子电池存在的爆炸的安全隐患,具有更高的能量密度;同时外形更灵活,方便,重量轻巧;产品性能均达到或超过液态锂离子的技术指标,更具有安全性,受到国内外电子厂商及设计公司的青睐。 1.安全性能好 聚合物锂电池在结构上采用铝塑软包装,有别于也爱电芯的金属外壳,一旦发生安全隐患,液态电芯容易爆炸,而聚合物电芯最多只会气胀。 2.厚度小,能做的更薄 普通液态锂电池采用先定制外壳,后塞正负极材料的方法,厚度做到3.6mm以下,存在技术瓶颈,聚合物电芯部存在这一问题,厚度可做到1mm以下,符合时下手机需求的方向。 3.重量轻 聚合物电池重量较同等容量规格的钢壳锂电池轻40%,较铝壳电池轻20%。 4.容量大 聚合物电池同等尺寸规格的钢壳电池容量高10-15%,较铝壳电池高5-10%,成为彩屏手机及彩信手机的首选,现在市面上新出的彩屏和彩屏手机也大多采用聚合物电芯 5.内阻小 聚合物电芯的内阻较一般液态电芯小,目前聚合物的电芯内阻甚至可做到35mΩ以下,极大的减低了电池的自耗电,延长手机的待机时间,完全可以达到与国际接轨水平这种支持大放电电流的聚合物锂电更是遥控模型的理想选择,成为最有希望替代镍氢电池的产品。 6.形状可定制 聚合物电池可根据客户的需求增加或减少电芯厚度,开发新的电芯型号,价格便宜,开模周期短,有的甚至可以根据手机形状量身定做,以充分利用电池外壳空间,提升电池容量。 7.放电特性佳 聚合物电池采用胶体电解质,相比液态电解质交替电解质具有平稳的放电性和更高的放电平台。 8.保护板设计简单

第六章离子聚合

第六章离子聚合 一、名称解释 1. 阳离子聚合:增长活性中心为带正电荷的阳离子的连锁聚合。 2. 活性聚合:当单体转化率达到100%时,聚合仍不终止,形成具有反应活性聚合物(活性聚合物)的聚合叫活性聚合。 3. 化学计量聚合:阴离子的活性聚合由于其聚合度可由单体和引发剂的浓度定量计算确定,因此也称为化学计量聚合。 4. 开环聚合:环状单体在引发剂作用下开环,形成线形聚合物的聚合反应。 5. Ziegler-Natta引发剂:Zigler-Natta引发剂是一大类引发体系的统称,通常有两个组份构成:主 引发剂是Ⅳ~Ⅷ族过渡金属化合物。共引发剂是Ⅰ~Ⅲ族的金属有机化合物。 6. 配位聚合:单体与引发剂经过配位方式进行的聚合反应。具体的说,采用具有配位(或络合)能力的引发剂、链增长(有时包括引发)都是单体先在活性种的空位上配位(络合)并活化,然手插入烷基—金属键中。配位聚合又有络合引发聚合或插入聚合之称。 7. 定向聚合:任何聚合过程(包括自由基、阳离子、阴离子、配位聚合)或任何聚合方法(如本体、悬浮、乳液和溶液等),只要它是经形成有规立构聚合物为主,都是定向聚合。定向聚 合等同于立构规整聚合。 二、选择题 1. 下列单体中哪一种最容易进行阳离子聚合反应---------------------------------------------( B ) A.CH2=CH2B.CH2=CHOCH3C.CH2=CHCl D.CH2=CHNO2 2. 下列哪种物质不能作为阳离子聚合的引发剂------------------------------------------------(B ) A.正碳离子盐B.有机碱金属C.质子酸D.Lewis酸 3. 四氢呋喃可以进行下列哪种聚合---------------------------------------------------------( C ) A.自由基聚合B.阴离子聚合C.阳离子聚合D.配位聚合 4. 在无终止的阴离子聚合中,阴离子无终止的原因是(C ) A 阴离子本身比较稳定 B 阴离子无双基终止而是单基终止 C 从活性链上脱出负氢离子困难 D 活化能低,在低温下聚合 5. 合成聚合物的几种方法中,能获得最窄相对分子质量分布的是( A ) A 阴离子聚合 B 阳离子聚合 C 自由基聚合D自由基共聚合 6. 能引发苯乙烯阴离子活性聚合,并且聚合度等于两倍的动力学链长的是(D) A. BuLi B. AIBN C. AlCl3+H2O D. 萘+钠 7. 制备分子量分别较窄的聚苯乙烯,应该选择(B) A阳离子聚合B阴离子聚合反应C配位聚合反应D自由基聚合反应

离子型聚合

第六章离子型聚合 1.基本概念: 活性聚合(Living Polymerization):当单体转化率达到100%时,聚合仍不终止,形成具有反应活性聚合物(活性聚合物)的聚合叫活性聚合。 化学计量聚合(Stoichiometric calculation Polymerization):阴离子的活性聚合由于其聚合度可由单体和引发剂的浓度定量计算确定,因此也称为化学计量聚合。 开环聚合(Ring-Opening Polymerization):环状单体在引发剂作用下开环,形成线形聚合物的聚合反应。 阴离子聚合阳离子聚合配位聚合定向聚合活性聚合 开环聚合定向指数(立构规则度)立构规整性聚合物活性聚合物 2. 阴离子聚合、阳离子聚合与配位聚合的单体、引发剂及引发反应 3. 各种连锁聚合反应的特点比较 4. 阴离子聚合、阳离子聚合与配位聚合的反应机理特点 5. 影响离子聚合的因素 6. 离子聚合活性中心的的四种形态 7. 基本计算 1)阳离子聚合动力学 阳离子聚合动力学研究较自由基聚合困难,因为阳离子聚合体系总伴有共引发剂,使引发体系复杂化;离子对和(少量)自由离子并存,两者的影响难以分离;聚合速率极快,引发和增长几乎同步瞬时完成,数据重现性差;很难确定真正的终止反应,稳态假定不一定适用等。 为了建立速率方程,多选用低活性引发剂,如SnCl4进行研究,并选择向反离子转移作为(单分子)终止方式,终止前后引发剂浓度不变。得到聚合速率方程为 推导如下: 阳离子聚合机理为 链引发反应

链增长反应 向反离子转移终止 各步的速率方程如下 引发 增长 终止 式中 为所有增长离对的总浓度 K为引发剂、共引发剂配合平衡常数 ki、kp、kt分别为链引发、增长、终止反应的速率常数

第六章离子聚合

6 离子聚合 6.1 课程的知识要点 离子聚合基本原理;阴(阳)离子聚合的简单机理、引发剂;活性聚合的特点及应用、活性聚合的制备、遥爪聚合物;离子聚合与自由基聚合的比较。 6.2 本章习题 1.下列单体选用哪一引发剂才能聚合?指出聚合机理类型。 2、用n-丁基锂引发100g苯乙烯聚合,丁基锂加入量恰好是500分子,如无终止,苯乙烯和丁基锂都耗尽,计算活性聚苯乙烯链的数均分子量。 3、将1.0×10-3mol萘纳溶于四氢呋喃中,然后迅速加入2.0mol苯乙烯,溶液的总体积为1L.假如单位立即混合均匀,发现2000内已有一半单体聚合,计算聚合2000s和4000s时的聚合度。 4、将苯乙烯加到萘纳的四氢呋喃溶液中,苯乙烯和萘纳的浓度分别为0.2mol?L-1和1×10-3 mol?L-1。在25℃下聚合5s,测得苯乙烯的浓度为1.73×10-3mol?L-1,试计算: a.增长速率常数 b. 引发速率 c. 10s的聚合速率 d. 10s的数均聚合度 5、将5g充分纯化和干燥的苯乙烯在50ml四氢呋喃中的溶液保持在-50℃.另将1.0g钠和 6.0g萘加入干燥的四氢呋喃中搅拌均匀,形成暗绿色萘纳溶液.将1.0ml 萘纳绿色溶液注入苯乙烯溶液中,立刻变成橘红色,数分钟后反应完全.加入数毫升甲醇急冷,颜色消失,将反应混合物加热至室温,聚合物析出,用甲醇洗涤,无其它副反应,试求聚苯乙烯的.如所有大分子同时开始增长和终止,则产物应为多少? 6、25℃时,在四氢呋喃中,以C 4H 9 Li作引发剂(0.005mol·L-1),1-乙烯基萘(0.75mol·L-1) 进行阴离子聚合,计算:a.平均聚合度;b.聚合度的数量分布和质量分布。

聚合物锂离子电池技术

聚合物锂离子电池技术 摘要:本文阐述了不得聚合物锂离子电池的结构特点,从正极材料、电解质、负极材料等几方面综述了聚合物锂离子电池的技引言 能源和环境是人类进入21世纪必须面对的两个严峻问题,开发新能源和清洁可再生能源是今后世界经济中最具决定性影响的技术领域之一。锂离子电池自问世以来发展极快,这是因为它正好满足了移动通讯和笔记本电脑迅猛发展对电源小型化、轻量化、长工作时间、长寿命、无记忆效应和对环境无公害等的要求。而聚合物固态电解质代替液体电解质来制造聚合物锂离子电池,则是锂离子电池的一个重大进步,其主要优点是具有高的可靠性和加工性,可以做成全塑结构,从而使制造超薄及自由度大的电池的愿望得以实现。 1 锂离子电池的结构特点 锂离子电池的正负极活性物质均为嵌入化合物,充电时Li+从正极脱出,经过电解质插入到负极;放电时则相反,电池的充放电过程实际上是Li+在两个电极之间来回嵌入和脱出的过程,故这种电池又称为“摇椅电池”(Rocking Chair Batteries,缩写为RCB)。其反应示意图及基本反应式如下所示:

2. 聚合物锂离子电池技术 2.1 聚合物锂离子电池的性能特点 聚合物锂离子电池是指电解质使用固态聚合物电解质(SPE)的锂离子电池。电池由正极集流体、正极膜、聚合物电解质膜、负极膜、负极集流体紧压复合成型,外包封铝塑复合薄膜,并将其边缘热熔封合,得到聚合物锂离子电池。由于电解质膜是固态,不存在漏液问题,在电池设计上自由度较大,可根据需要进行串并联或采用双极结构。 聚合物锂离子电池具有以下特点:①塑形灵活性;②更高的质量比能量(3倍于MH-Ni电池);③电化学稳定窗口宽,可达5V;④完美的安全可靠性;⑤更长循环寿命,容量损失少;⑥体积利用率高;⑦广泛的应用领域。

第六章 离子聚合.doc

第六章离子聚合 思考题 6.1试从单体结构来解释丙烯腈和异丁烯离子聚合行为的差异,选用何种引发剂?丙烯酸、烯丙醇、丙烯酰胺、氯乙烯能否进行离子聚合,为什么? 答丙烯腈中氰基为吸电子基团,同时与双键形成丌-丌共轭,能使双键上的电子云密度减弱,有利于阴离子的进攻,并使所形成的碳阴离子的电子云密度分散而稳定,因此丙烯腈能够进行阴离子聚合。进行阴离子聚合时,可选用碱金属、碱金属化合物、碱金属烷基化合物、碱金属烷氧化合物等作为引发剂。 异丁烯中两个甲基为推电子基团,能使双键上的电子云密度增加,有利于阳离子的进攻,并使所形成的碳阳离子的电子云密度分散而稳定,因此异丁烯能够进行阳离子聚合。进行阳离子聚合时,通常采用质子酸、lewis酸及其相应的共引发剂进行引发。 丙烯酸、烯丙醇、丙烯酰胺、氯乙烯不能进行离子聚合,因为没有强烈的推电子基团和吸电子基团。 思考题6.2下列单体选用哪一引发剂才能聚合?指出聚合机理类型。 答苯乙烯三种机理均可,可以选用表中5种引发剂的任一种。 偏二腈乙烯,阴离子聚合,选用Na+萘或n-C4H9Li引发。 异丁烯,阳离子聚合,选用SnCl4+ H2O或BF3+H2O。 丁基乙烯基醚,阳离子聚合,选用SnCl4+ H2O或BF3+H2O。 CH2=C(CH3)CO2CH3,阴离子聚合和自由基聚合。阴离子聚合,选用Na+萘或n-C4H9Li 引发;自由基聚合选用(C6H5CO)2O2作引发剂。 思考题6.3下列引发剂可以引发哪些单体聚合?选择一种单体作代表,写出引发反应式。 (1)KNH2(2)A1C13+HCl (3)SnCl4+C2H5Cl (4)CH3ONa 答(1) KNH2是一类高活性的阴离子引发剂,可以引发大多数阴离子聚合的单体进行聚合。如引发苯乙烯进行聚合 (2) A1C13活性高,用微量水作共引发剂即可。A1C13+HCl配合时,C1-亲核性过强,易与阳离子共价终止,因此很少采用。 (3) SnCl4+C2H5Cl以引发异丁烯、乙烯基烷基醚及共轭烯烃进行阳离子聚合 (4) CH3ONa可以引发高活性和较高活性的单体进行阴离子聚合。高活性单体如硝基乙烯、偏二氰乙烯。较高活性单体如丙烯腈、甲基丙烯腈等,以及环氧烷烃(如环氧乙烷、环氧丙烷等)的开环聚合。 思考题6.4在离子聚合中,活性种离子和反离子之间的结合可能有几种形式?其存在形式受哪些因素影响?不同形式对单体的聚合机理、活性和定向能力有何影响? 答离子聚合中,活性种离子近旁总伴有反离子。它们之间的结合,可以是共价键、离子对,乃至自由离子,彼此处于平衡之中。如下所示,结合形式和活性种的数量受溶剂性质、温度及反离子等因素的影响。 Bδ-Aδ+,?B-A+ ?B-║A+ ?B- + A+ 极化共价键紧密接触溶剂隔离自由离子

聚合物锂离子电池芯检验规范

聚合物锂离子电池芯检验规范 1目的 本标准规定了聚合物锂离子电芯的常规测试方法和要求,及质量评定程序;提供公司产品开发的依据,并在此基础上进行电芯的品质、安全性和风险性评价。 2适用范围 本规范规定了生产的聚合物锂离子常规电芯各项性能的测试方法、要求及质量评定程序。本规范仅在内部使用,对外标准以产品规格书为准。所有测试方法如引用标准,本公司按照本规定的标准进行测试,原则上参考引用标准。对于特定产品的开发参照本标准,作为评估风险的依据,但相关项目不作为最后判定依据。具有明确客户接受的规格书产品的检测,可以依规格书检测,相应的质量风险由相关人员承担。 3职责与权限 3.1检测中心负责本标准的制定和修订; 3.2检测中心负责本标准的执行和维护。 4定义: 4.1聚合物锂离子电芯 Polymer Lithium Ion Battery(PLIB) 指采用铝塑包装膜为外壳的叠层式或卷绕式锂离子电芯,指不具备有特殊的功能和要求的电芯简称聚合物锂离子常规电芯(包括高温电芯)。 4.2充电限制电压 Limited Charge Voltage 按规定,电芯由恒流充电转恒压充电时的电压值4.20V。 4.3放电截止电压 Cut-off Voltage 电芯终止放电时的电压3.00V。 4.4额定容量 Rated Capacity

指电芯在环境温度为20±5℃时,以5h时率放电至终止电压时所提供的容量,用C 5表示,单位Ah(安培小时)或mAh(毫安小时)。 4.5基准电流 Basic Current /1h.。 充放电电流必须以额定容量为基准,电流值用ItA的倍数表示,其中ItA=C h 4.6漏液:L eakage 指电芯或电池有可见的电解液溢出。 4.7破裂 Rupture 由于内部或外部的因素而引起的电芯外壳或电池壳体发生的机械损坏,导致内部物质暴露或溢出,但没有喷出。 4.8起火 Fire 电芯或电池实验过程有可见火焰。 4.9 爆炸 Explosion 电芯或电池的外壳猛烈破裂导致主要成分抛射出来。 4.10常规电芯容量初步分类定义:Definitions of Primary Sorting 小容量电芯:容量为300mAh以内的电芯。 普通容量电芯:容量在300 mAh -1800mAh之间的电芯。 大容量电芯:容量在1800mAh以上的电芯. 4.11循环寿命 Cycle Life 指电芯或电池在一定的充放电制度下,电池的容量衰减到某一规定值前所经历的循环次数。本公司规定电芯容量连续二次循环低于初始容量的80%,则认为电芯寿命终止。 4.12保持容量Capacity Retention 电芯经过相应实验后按标准要求进行放电,所释放出来的容量。

第六章 离子聚合

第六章离子聚合 一、名词解释 活性聚合(Living Polymerization):当单体转化率达到100%时,聚合仍不终止,形成具有反应活性聚合物(活性聚合物)的聚合叫活性聚合。 阴离子聚合:活性中心为阴离子的聚合方法。 阳离子聚合:活性中心为阳离子的聚合方法。 二、问答题 1.试从单体,引发剂,聚合方法及反应的特点等方面对自由基,阴离子和阳离子聚合反应进行比较。

2.在离子聚合反应过程中,能否出现自动加速效应?为什么? 解:在离子聚合反应过程中不会出现自动加速现象。 自由基聚合反应过程中出现自动加速现象的原因是:随着聚合反应的进行,体系的粘度不断增大。当体系粘度增大到一定程度时,双基终止受阻碍,因而k t 明显变小,链终止速度下降;但单体扩散速度几乎不受影响,K p 下降很小,链 增长速度变化不大,因此相对提高了聚合反应速度,出现了自动加速现象。在离子聚合反应过程中由于相同电贺互相排斥不存在双基终止,因此不会出现自动加速效应。 3.在离子聚合反应过程中,活性中心离子和反离子之间的结合有几种形式?其存在形式受哪些因素的影响?不同存在形式和单体的反应能力如何? 解:在离子聚合中,活性中心正离子和反离子之间有以下几种结合方式: A A +A +A ++B - 共价键接触离子 对(紧对)溶剂分开的离子对(松对)自由离子 以上各种形式之间处于平衡状态。结合形式和活性种的数量受溶剂性质,温度,及反离子等因素的影响。 溶剂的溶剂化能力越大,越有利于形成松对甚至自由离子;随着温度的降低,离解平衡常数(K 值)变大,因此温度越低越有利于形成松对甚至自由离子;反离子的半径越大,越不易被溶剂化,所以一般在具有溶剂化能力的溶剂中随反离子半径的增大,形成松对和自由离子的可能性减小;在无溶剂化作用的溶剂中,随反离子半径的增大,A +与B -之间的库仑引力减小,A +与B -之间的距离增大。 活性中心离子与反离子的不同结合形式和单体的反应能力顺序如下: A ++B ->A +//B ->A + B - 共价键连接的A-B 一般无引发能力。 4.为什么阳离子聚合反应一般需要在很低温度下进行才能得到高分子量的聚合物? 解:因为阳离子聚合的活性种一般为碳阳离子。碳阳离子很活泼,极易发生重排和链转移反应。向单体的链转移常数(421010---≈M C )比自由基聚合(541010---≈M C )大的多。为了减少链转移反应的发生,提高聚合物的分子量,所以阳离子反应一般需在低温下进行。 5.何为活性聚合物??为什么阴离子聚合可为活性聚合? 解:活性聚合物是指在链增长反应中,活性链直到单体全部耗尽仍保持活性的聚合物,再加入单体还可以继续引发聚合,聚合物的分子量继续增加。 在阴离子聚合反应中,带相同电荷的活性链离子不能发生双基终止;活性链负碳离子的反离子常为金属离子,而不是原子团,它一般不能夺取链中的某个原子或H +而终止;活性链通过脱去H +离子发生链终止又很困难,所以当体系中无引起链转移或链终止的杂质时,实际上是无终止聚合,即活性聚合。

关于锂电池和锂聚合物电池的区别和他们正确的充电方法

关于锂电池和锂聚合物电池的区别及他们正确的充电方法 一、锂电池的种类: 以前市面上所使用的二次电池主要有镍氢(Ni-MH)和锂离子(Li-ion)两种类型。锂离子电池中已经量产的有液体锂离子电池(LiB)和聚合物锂离子电池(LiP)两种。所以在许多情况下,电池上标注了Li-ion的,一定是锂离子电池。但不一定就是液体锂离子 电池,也有可能是聚合物锂离子电池。 锂离子电池是锂电池的改进型产品。锂电池很早以前就有了,但锂是一种高度活跃(还记得它在元素周期表中的位置吗?)的金属,它使用时不太安全,经常会在充电时出现燃烧、爆裂的情况,后来就有了改进型的锂离子电池,加入了能抑制锂元素活跃的成份(比如钴、锰等等)从而使锂电真正达到了安全、高效、方便,而老的锂电池也随之基本上淘汰了。至于如何区分它们,从电池的标识上就能识别,锂电池为Li、锂离子电池为Li-ion。现在,笔记本和手机使用的所谓“锂电池”,其实都是锂离子电池。 现代电池的基本构造包括正极、负极和电解质三项要素。作为电池的一种,锂离子电池同样具有这三个要素。一般锂离子技术使用液体或无机胶体电解液,因此需要坚固的外壳来容纳可燃的活性成分,这就增加了电池的重量和成本,也限制了尺寸大小和造型的灵活性。一般而言,液体锂离子二次电池的最小厚度是6mm,再减少就比较困难。 而所谓聚合物锂离子电池是在这三种主要构造中至少有一项或一项以上使用高分子材 料作为其主要的电池系统。 新一代的聚合物锂离子电池在聚合物化的程度上已经很高,所以形状上可做到薄形化(最薄0.5毫米)、任意面积化和任意形状化,大大提高了电池造型设计的灵活性,从而可以配合产品需求,做成任何形状和容量的电池。同时,聚合物锂离子电池的单位能量比目前的一般锂离子电池提高了50%,其容量、充放电特性、安全性、工作温度范围、循环寿命和环保性能等方面都较锂离子电池有大幅度的提高。 目前市面上所销售的液体锂离子(LiB)电池在过度充电的情形下,容易造成安全阀破裂因而起火的情形,这是非常危险的,所以必需加装保护IC线路以确保电池不会发生过度充电的情形。而高分子聚合物锂离子电池方面,这种类型的电池相对液体锂离子电池而言具有较好的耐充放电特性,因此对外加保护IC线路方面的要求可以适当放宽。此外在充电方面,聚合物锂离子电池可以利用IC定电流充电,和锂离子二次电池所采用的CCCV(Constant Currert-Constant Voltage)充电方式所需的时间比较起来,可以 缩短许多的等待时间。 二、手机制造商对锂电池的使用情况 虽然近几年来几乎所有厂家都已经倾向于采用锂离子电池,但世界各大手机制造商对电池的选择还是有自己的特点和习惯,例如曾经在相同的一段历史时期里: 诺基亚:采用Ni-MH(镍氢)电池、LiB(液体锂离子)电池,未采用LiP(聚合物锂离

离子聚合测验题答案

离子聚合测验题 一.填空题 1.只能进行阳离子聚合的单体有异丁烯和乙烯基醚等。 2.阳离子聚合的引发体系有 BF3+H2O 、 SnCl4+H2O 和 AlCl3+H2O 等。 3.阴离子聚合体系中活性中心离子对可能以松散离子对、紧密离子对和自由离子等三种形态存在。 4.阳离子聚合的特点是快引发、快增长、易转移、难终止。 5. 异丁烯阳离子聚合最主要的链终止方式是向单体链转移。合成高相对分 子质量的异丁烯,需要进行低温聚合的原因是抑制链转移。 6.离子聚合中溶剂的极性加大,反应速率加快,原因是极性溶剂使离子对 松散。 7.丁基橡胶是以异丁烯和异戊二烯为单体,按阳离子反应历程, 以AlCl3+H2O 为催化剂,采用溶液聚合方法,在-100℃温度下聚 合制得的。 8.在芳香烃溶剂中,以n-丁基锂为引发剂引发苯乙烯聚合,发现引发速率和增长 速率分别是正丁基锂浓度的1/6级和1/2级,表明引发过程和增长过程中存在着。 9.要制备SBS热塑性弹性体,可以采用_阴离子___聚合的原理。先用碱金属引发 剂引发聚合,生成丁二烯结构单元,然后再加入苯乙烯单体,最后加 终止剂使反应停止。 二.选择题 1. 阳离子聚合的引发剂(C D ) A C4H9Li B NaOH+萘 C BF3+H2O D H2SO4 2. 阳离子聚合的单体(A D ) A CH2=CH-C6H5 B CH2=C(CH3)COOCH3 C CH2=CH-CH3 D CH2=CH-OR 3.只能采用阳离子聚合的单体是(C ) A 氯乙烯 B MMA C 异丁烯 D 丙烯腈。 4.在高分子合成中,容易制得有实用价值的嵌段共聚物的是(B ) A配位聚合B阴离子活性聚合C自由基共聚合D阳离子聚合 5.阳离子聚合的特点可以用以下哪种方式来描述(B ) A慢引发,快增长,速终止B快引发,快增长,易转移,难终止 C 快引发,慢增长,无转移,无终止D慢引发,快增长,易转移,难终止 6.合成丁基橡胶的主要单体是(B ): A丁二烯+异丁烯B异丁烯+异戊二烯C丁二烯 7.制备高分子量聚异丁烯是以BF3为催化剂,在氯甲烷中,于-100℃下聚合,链 终止的主要形式为(B ): A双基终止B向单体转移终止C向溶剂转移终止 8.无终止阴离子聚合,调节聚合物分子量的有效手段是(B ): A、温度 B、引发剂浓度 C、溶剂性质 9.升高温度对阳离子聚合反应速率和分子量的影响规律是(C ): A Rp↑M↑ B Rp↑M↓ C Rp↓M↓

聚合物锂电池的优点和缺点详细解答

聚合物锂电池的优点和缺点详细解答! 聚合物锂电池是锂离子电池的一种,但是与液锂电池(Li-ion)相比具有能量密度高、更小型化、超薄化、轻量化,以及高安全性和低成本等多种明显优势,是一种新型电池。下面我们详细介绍聚合物锂电池的优点和缺点 聚合物锂电池 一.优点: 1.安全性能好

聚合物锂电池在结构上采用铝塑软包装,有别于液态电芯的金属外壳,一旦发生安全隐患,液态电芯容易爆炸,而聚合物电芯最多只会气鼓。 2.厚度小,能做得更薄 超薄,电池能够组装进信用卡中。普通液态锂电采用先定制外壳,后塞正负极村料的方法,厚度做到3.6mm以下存在技术瓶颈,聚合物电芯则不存在这一问题,厚度可做到1mm以下,符合时下手机需求方向。 3.重量轻 采用聚合物电解质的电池无需金属壳来作为保护外包装。聚合物电池重量较同等容量规格的钢壳锂电轻40%,较铝壳电池轻20%。 4.容量大 聚合物电池较同等尺寸规格的钢壳电池容量高10~15%,较铝壳电池高5~10%,成为彩屏手机及彩信手机的首选,现在市面上新出的彩屏和彩信手机也大多采用聚合物电芯。5.内阻小 聚合物电芯的内阻较一般液态电芯小,目前国产聚合物电芯的内阻甚至可以做到35mΩ以下,极大的减低了电池的自耗电,延长手机的待机时间,完全可以达到与国际接轨的水平。这种支持大放电电流的聚合物锂电更是遥控模型的理想选择,成为最有希望替代镍氢电池的产品。 6.形状可定制

制造商不用局限于标准外形,能够经济地做成合适的大小。聚合物电池可根据客户的需求增加或减少电芯厚度,开发新的电芯型号,价格便宜,开模周期短,有的甚至可以根据手机形状量身定做,以充分利用电池外壳空间,提升电池容量。 7.放电特性佳 聚合物电池采用胶体电解质,相比液态电解质,胶体电解质具有平稳的放电特性和更高的放电平台。 8.保护板设计简单 由于采用聚合物材料,电芯不起火、不爆炸,电芯本身具有足够的安全性,因此聚合物电池的保护线路设计可考虑省略PTC和保险丝,从而节约电池成本。 二.缺点: 和锂离子电池相比能量密度和循环次数都有下降。 制造昂贵。 没有标准外形,大多数电池为高容量消费市场而制造。 和锂离子电池相比,价格、能量比较高

第6章离子聚合

5 离子聚合 思考题 1.(略) 答: (1)H 2C CHC 6H 5可被引发剂(C 6H 5CO)2O 2Na+萘BF 3+H 2O n-C 4H 9Li 引发聚合。、、和 2C 6H 5COO · (C 6H 5CO)2O C 6H 5COO ·+H 2C CHC 6H 5C 6H 5COOCH 2CH2C 6H 5· ; 属于自由基聚合。 H 2C CHC 6H 5+(C 6H 5CO)2O 2① H 2C CHC 6H 5+Na-萘; 属于阴离子聚合。 ②Na +H 2C CH C 65 Na HC C 65 CH 2+2Na HC 6H 5 CH 2 Na HC C 6H 5H 2C H 2 C CH 6H 5Na ③H 2C CHC 6H 5+; 属于阳离子聚合。 (BF 3+H 2O )BF 3 + H 2O H (BF 3OH) H 2C CHC 6H 5+H (BF 3OH) CH 2C 6H 5 H (BF 3OH) ④H 2C CHC 6H 5+; 属于阴离子聚合。 n-C 4H 9Li H 2C CHC 6H 5+ n-C 4H 9Li n-C 4H 9CH 2CHLi 6H 5+ - ; 属于阴离子聚合。 ①(2)可被引发剂(Na+萘)n-C 4H 9Li 引发聚合。 和H 2C C(CN)2H 2C C(CN)2Na+萘H 2C C(CN)2+ + Na + +Na C(CN)2CH 2 + _

; 属于阴离子聚合。 ②H 2C C(CN)2 + n-C 4H 9Li H 2C C(CN)2+n-C 4H 9Li n-C 4H 9CH 2C(CN)2Li -+ BF 3+H 2O (3)可被引发剂引发聚合,属于阳离子聚合。 H 2C C(CH 3)2BF 3+H 2O H +(BF 3OH)- H +(BF 3OH)H 2C C(CH 3)2+CH 3C +(CH 3)2(BF 3OH)- H 2C H C O n-C 4H 9BF 3+H 2O (4)可被引发剂引发聚合,属于阳离子聚合。 BF 3+H 2O H +(BF 3OH)-H 2C H C O n-C 4H 9+H +(BF 3OH)- CH 3C +H(BF 3OH)- O(n-C 4H 9) (5)可被引发剂H 2C C(CH 3)COOCH 3(C 6H 5CO)2O 2n-C 4H 9Li 引发聚合。和Na+萘、 2C 6H 5COO · (C 6H 5CO)2O C 6H 5COO ·+; 属于自由基聚合。 +(C 6H 5CO)2O 2①H 2C C(CH 3)COOCH 3H 2C C(CH 3)COOCH 3C 6H 5COOCH 2CCH 3 3· +Na-萘; 属于阴离子聚合。 ② Na +Na C H 3H 2C H 2 C C 3 Na H 2C C(CH 3)COOCH 3 H 2C C(CH 3)COOCH 3Na +C -COOCH 3 2 CH 3 + 2Na +C -COOCH 3 2 CH 3 CH 3H 3C +; 属于阴离子聚合。③ H 2C C(CH 3)COOCH 3 n-C 4H 9Li +H 2C C(CH 3)COOCH 3 n-C 4H 9Li 4H 9CH 2C(CH 3)Li 3-+

第4章离子型聚合

第六章离子型聚合 6.1 离子型聚合与自由基聚合反应的比较 自由基聚合与阴、阳离子型聚合同属链式聚合,但由于活性中心的性质不同,其聚合过程特征有很大区别。现归纳比较如下。 (1) 引发剂种类 自由基聚合常采用过氧化物、偶氮化合物等容易热分解产生自由基的物质作引发剂,引发剂的性质只影响引发反应。离子型聚合则采用容易产生活性离子的物质作引发剂。阳离子引发剂是亲电试剂,主要是Lewis酸。阴离子引发剂是亲核试剂,主要是碱金属及其有机化合物。 (2) 多种增长物种共存 对于离子型引发剂而言,不仅包括阴离子或阳离子的活性中心,而且在活性中心的旁边始终存在着一个带有相反电荷的反离子。反离子的存在对聚合反应速度和聚合物的微观结构都有影响,其影响大小取决于反离子性质及其与活性中心的相对位置 BA B+A-B+//A- B+ + A- (5-1) ⅠⅡⅢⅣ 式(5-1)中,I为共价的物种,它通常是非活性的,一般可以忽略。Ⅱ和Ⅲ为离子对,引发剂绝大多数以这种形式存在。其中,Ⅱ称作紧密离子对,即反离子在整个增长时间里紧靠着活性中心。Ⅲ称作松散离子对,即活性中心与反离子之间被溶剂分子隔开,或者说是溶剂化。Ⅳ为自由离子。通常在一个聚合体系中,增长物种包括以上两种或两种以上的形式,它们彼此之间处于热力学平衡状态。 (3) 单体结构 离子型聚合对单体有较高的选择性。具有推电子基的乙烯基单体,双键上电子云密度增加,有利于阳离子聚合。具有吸电子基团的乙烯基单体,则容易进行阴离子聚合。带有弱吸电子基的乙烯基单体,适于自由基聚合。共轭烯类单体能以三种机理聚合。环状单体和羰基化合物由于极性较大,一般不能自由基聚合,只能进行离子型聚合或逐步聚合。 (4) 溶剂的影响 自由基聚合时,溶剂只参与链转移反应,并可影响引发剂分解速率。离子型聚合时,溶剂的极性和溶剂化能力,对引发和增长活性中心的状态有很大的影响,使之可分别处于共价结合、紧密离子对、松散离子对、直到自由离子。如增加溶剂的极性,可使式(5-1)的平衡向右移动,改变增长物种的状态及相对含量,从而影响聚合反应速度和聚合物的微观结构。离子型聚合除了用非极性烃类溶剂外,对其它溶剂是有选择性的:阳离子聚合可用卤代烷、CS2、液态S02、C02等溶剂,而阴离子聚合则可用液氨、液氯和醚类等,它们不能颠倒使用,否则会产生链转移或链终止。 (5) 聚合温度 自由基聚合温度取决于引发反应的需要,通常在50qC-80~C左右,甚至更高。离子

相关主题
文本预览
相关文档 最新文档