当前位置:文档之家› 全泥氰化提金工艺简介.

全泥氰化提金工艺简介.

全泥氰化提金工艺简介.
全泥氰化提金工艺简介.

全泥氰化炭浆法提金冶炼工艺

全泥氰化炭浆法提金冶炼工艺是指将金矿石全部磨碎泥化制成矿浆(一200目含量占90一95%以上)后,先进行氰化浸出,再用活性炭直接从矿浆中吸附已溶金载金、炭解吸电积金泥直接分离提纯熔炼的工艺方法。包括原料准备、搅拌氰化浸出活性炭逆流吸附、载金炭解吸电积、金泥分离提纯熔炼铸锭、活性炭活化再生和含氰污水处理等七个作业阶段。

原料准备阶段

破碎阶段---一般采用两段开路破碎或两段一闭路破碎流程(图2)。含金物料经过预先筛分,筛上粗物料进入一段破碎,破碎后再经二段筛分破碎后即进入磨矿作业。作业的目的主要控制各段破碎比和保证二段破碎产品的粒度,采用二段一闭路流程更能严格保证破碎物的粒度。一般各段破碎比为3~5,太大或太小均不利于提高破碎效率、降低成本和保护设备。二段破碎产品粒度应小于1~1.5cm,最大不超过3cm,可以通过调节破碎机排矿口尺寸来控制。生产中要贯彻"预先筛分,多破少磨"的原则。

磨矿阶段---多采用两段两闭路磨矿流程。第一段闭路磨矿分级流程由格子型球磨机和螺旋分级机组成。第二段闭路磨矿分级流程由溢流型球磨机和水力旋流器组成。将第二段闭路磨矿分级流程的预先分级和检查分级合并在一起有利

于提高磨矿效率和保证产品细度。破碎好的含金物料经过第一段闭路磨矿分级流程后,矿浆中一200目含量为55%一65%。再经过第二段闭路磨矿分级流程后矿浆中一200目物料含量就可达90%一95%以上,符合全泥氰化工艺的细度要求。本段作业主要控制磨矿浓度、溢流浓度和溢流细度。一般磨矿浓度:第一段为75%一80%,第二段为60%~65%;溢流浓度:第一段为25%~30%,第二段为14%一20%;溢流细度(一200目含量):第一段为55%~65%,第二段为90写一95%以上。磨矿浓度的控制主要通过调节给水量、给矿量和返砂比等,若磨矿浓度偏高,则增加给水量、减少给图3两段两闭路磨矿流程矿量,增大返砂比等,反之亦然。溢流浓度的控制可以通过调节溢流给水量,溢流堰高低,进矿口,排矿口、溢流口大小等,而溢流细度的控制则要调节溢流堰高低、溢流口大小及钢球量、钢球配比、返砂比,磨矿浓度,溢流浓度等。总之,在磨矿作业中各项技术参数都是互相联系,相辅相成、相互制约的,因此在调节控制的过程中要综合考虑,协调作用。

除屑作业---多级除屑流程。第一级除屑作业设在碎矿前,要人工捡出原矿中木屑等杂物。第二级除屑作业设在螺旋分级机的溢流处,采用孔径为2~3mm的平面筛板。第三级除屑作业设在水力旋流器给矿前,采用20目的平面筛网。第四级除屑作业设在浓缩脱水前,采用24~28目的弧形筛。本段作业须及时清除筛上杂物,并经常检查筛网使用情况,发现损坏

及时更换,以保证矿浆的除屑质量。矿浆在氰化浸出前需要严格除屑是因为原矿带进的木屑,砂砾、导火线、编织袋的碎片、渣子等杂物,容易造成水力旋流器的进浆口及沉砂口,浓缩机的排矿口、管道、级间筛等部位的堵塞;砂砾的存在会增大活性炭的磨损;木屑等的存在会吸附已溶金而造成金的流失,木屑还可能在再生窑中转变为易碎炭而降低金的实收率。因此,除屑作业非常重要,要按由粗到细的顺序尽可能地多设除屑筛网层级。

制浆阶段---主要在浓缩机中进行,多采用高效浓密机、单层浓缩机或多层浓缩机。符合全泥氰化炭浆法提金工艺条件的矿浆,其矿浆浓度为40%一45%,矿浆PH值为10一11,而由磨矿作业输送来的矿浆浓度为14%一20%,PH值为7~10。本段作业需通过调节浓缩机底流量和絮凝剂用量来控制矿浆浓度,通过调节加入球磨机中的石灰量或加入浓缩机中的氢氧化钠量来控制矿浆的PH值,使之符合下一步浸出吸附作业要求。

搅拌氰化浸出阶段---搅拌氰化浸出又称预浸作业,一般由两个高效节能浸出槽(l号槽和2号槽)串联组成。矿浆由上段作业输送到1号槽,再由1号槽自流进入2号槽。本段作业主要是控制浸出矿浆中氰根离子浓度和氧含量。适宜的氰根离子浓度为0.05%一0.08%,通过调节氰化钠的给药量来控制。矿浆中氧含量通常用充气量和充气压力来表示,一般充气量

为0.02m3/m3·min,充气压力为100KPa。生产中通常以矿浆表面均匀弥散5~15mm直径的小气泡为宜,通过调节气泵总阀门和各槽的充气阀门加以控制。

活性炭逆流吸附阶段

矿浆氰根浓度---比搅拌氰化浸出阶段略低,为0.02%一0.05%,而且由3号槽向以后各槽逐渐降低,7号槽最低为0.02%一0.03%。通过调整氰化钠的添加量来控制。矿浆氧含量---比搅拌浸出阶段略低,通过调节各槽充气阀门控制。底炭密度---底炭密度即为每升矿浆中活性炭的含量,一般为10~15g/L。为了保证金的回收率,通常7号槽的底炭密度略高,为15一20g/L。底炭密度可以通过调节加炭量、串炭量、提炭量来控制。串炭速度--又称串炭频率,是指单位时间内的串炭次数。根据对吸附系统中金的质量平衡研究,串炭速度与炭载金量的乘积是一个常数。为保持适宜的炭载金量,就要选择一定的串炭速度,一般为一天串炭一次。

串炭量---为保持吸附系统金总量平衡,保持槽内或槽之内炭的吸附性能,串炭量应与槽中储存的活性炭量之间有一个适宜的百分比,这个比值一般为10一20%。调节串炭时间的长短可以控制串炭量的大小。炭载金量---在确保吸附率的前提下,炭载金量尽可能高,但炭载金量越高,金在吸附系统中的储存量就越多,资金周转就会受到影响,因此适宜的炭载金量、合理的串炭制度,对炭浆厂来说是非常重要的。一般最终载金

炭金含量为4~6g/kg,可以通过调节提炭量来控制。尾液金含量---尾矿浆溶液中金含量一般为0.02~0.1g/m3,超过这一数值时则说明活性炭吸附有问题,吸附率降低了,可以通过增加底炭密度、降低载金炭含量、缩短串炭时间等方法来控制。尾矿品位---一般为0.2~0.3g/t,最高不超过0.5g/t。此技术指标的调节控制较为复杂,在现有的设备工艺上可以通过提高磨矿细度、降低矿浆浓度、减少处理量、延长浸出时间等方法综合调节控制。

总之,上述各项技术指标都不是孤立的,而是互相联系的、统一的有机整体,任何一种调节方法所起的作用也不是单方面的,所以在生产操作中要根据具体情况,综合考虑,找出最佳的调控措施,以提高金的总回收率,达到最好的经济效益。

载金炭解吸电积阶段---载金炭的解吸电积作业多采用加温加压解吸、高温常压电积联合闭路循环工艺流程,有较成熟的自动化控制程度较高的解吸电积装置。解吸电积液的配制:1%浓度的NaOH和1%浓度的NaCN混合溶液。电积槽阳极为带孔的不锈钢板,阴极为专用的优质钢棉。在生产操作中只要经常观察设备上的各种仪表并触动或旋动设备上的各种按钮或旋扭以控制解吸电积作业的温度、压力、流量、电压和解吸电积时间即可达到较理想的解吸电积效果。一般解吸温度为105℃,压力为2000Kpa,时间为14~16h(当解吸柱温度达到70℃时开始计时)。电积温度为70℃一80℃,电

压为3~4V,电积液流量为300L/h。以上各项技术参数较容易控制而且比较稳定,例如烟台鑫海公司矿山设计院就是根据全泥氰化炭浆法来处理金矿,并加入创新工艺,最后所得金的品位有保证并且回收率有很大提高,受高度好评。

金泥的分离提纯、熔炼铸锭阶段---本阶段作业需在严格的监督和保卫条件下进行。按金银冶炼的正规方法应先将电积金泥进行火法粗炼,使其中的金银形成粗金银锭,然后再集中从金银锭中进一步分离提纯金和银。但是,为了加快资金周转,也可以采用把电积金泥直接分离提纯、熔炼铸锭的方法。金泥的分离提纯(酸法)-----l)先在金泥中加入一定量的盐酸,充分反应以除去残余钢毛和部分其它溅金属,过滤洗涤后再加入一定量的硝酸,充分反应除去大部分银和其它溅金属,再过滤洗涤。本步骤主要是控制酸的加入量、反应时间及洗涤程度。酸的用量与金泥含杂质多少有关,反应时间要根据反应条件和实际反应情况确定,但一般反应时应不少于.2一3h。洗涤程度至关重要,每次洗涤都必须达到中性,用热水洗涤要快些。

2)向洗涤好的金泥中分次加入3一4倍重量的王水,搅拌溶金,后期加热煮沸,使金以离子状态进入溶液中,过滤得含金溶液和沉渣。本步骤应注意初加王水时反应剧烈,要防止金液外溢。溶金反应时间,一般不低于2~3h,要注意观察沉渣颜色的变化。3)向含金溶液中加入过量的无水亚硫酸钠即可得到海

棉金。在此之前首先要把含金溶液赶酸至PH一6~7。加无水亚硫酸钠时要小量逐渐地加,直至过量,同时还要不断加热搅拌。海棉金的熔炼铸锭(焦炭炉)

1)在海棉金中加入硼砂10%~15%、碳酸钠5%~10%、玻璃粉3%~5%,混匀后装入经过预热的石墨增祸内,置入炉中熔炼。熔炼总时间1.5~2.0h,熔炼温度1200~1300℃。本步要注意控制炉温和熔炼时间,并经常观察钳竭放置情况及竭内物料熔化情况。2)熔化充分后,用夹钳取出增涡,将熔体倒入铸模内。本步骤应注意铸模须经过预热,并在内面均匀熏一层厚lmm的黑烟。浇铸时应注意先慢再快后慢顺序,浇铸时间10秒钟。取出金锭后先在稀硝酸或盐酸溶液中浸泡约5一10min,再用清水洗去酸,在酒精中浸泡片刻、取出擦干即可,金锭成色99.9%。

活性炭活化再生阶段---酸法活化再生。活性炭每使用一个循环-吸附~解吸-都要进行酸法活化再生。具体操作是用3%一5%浓度的盐酸溶液与脱金炭在酸洗容器中搅拌1.5~2h后用清水洗涤,再用1%浓度的NaOH溶液冲洗直到中性为止。酸法活化再生主要是除去吸附在活性炭上的钙、镁、钠等酸溶物。应该注意在酸处理过程中会产生剧毒的氢氰酸,必须采取适当的措施以保证安全。火法活化再生---一般活性炭每使用5一10个循环就进行一次火法活化再生处理。火法活化再生是在钢管窖中进行的,钢管窖的加热区有两个。

第一加热区温度为600℃,产生蒸汽气氛。第二加热区温度在650℃以上,炭在此区完成活化再生。具体操作是把湿炭从钢管窖的给料端加入,钢管在旋转过程中把炭输送到排料端排出,炭经空气冷却后即可投入使用。火法再生主要是通过热处理的办法来消除有机物结垢对炭的活性影响。

含氰污水处理阶段--本段作业由两个污水处理槽串联组成,采用碱氯法处理。即在碱性条件下直接把漂白粉加入污水处理槽,搅拌、氧化分解污水中的氰化物,从而达到解毒、净化、消除污染的目的。实际生产中通过调节漂白粉用量来使污水中氰根浓度低于0.5mg/L,然后将污水泵入沉淀池或尾矿库进行自然降解。全泥氰化炭浆法提金冶炼工艺对矿石的适应性强,具有工艺流程简化、工序简单、投资小、成本低、工艺过程稳定、易于操作、金的总回收率高等特点,是当前国内国际比较流行的金矿选矿工艺,也是金矿选矿发展的趋势。

提金工艺(专利)

金矿提金专利 1、氨法分离金泥中的金银 2、氨氧化炉废料回收铂金的方法 3、边磨边浸-液膜萃取提金工艺方法 4、从低品位金矿中回收金的工艺方法 5、从废催化剂回收金和钯的方法及液体输送阀 6、从废炭中回收金的新工艺 7、从浮选金精矿焙砂废矿浆中回收金的方法 8、从含金含铁硫化物矿当中回收黄金的工艺 9、从含金贫液中萃取金的方法 10、从含金物中无氰浸提金的方法 11、从碱性氰化液中萃取金的方法 12、从金矿提取金、铂、钯的方法 13、从金矿尾矿库溢流水中回收金的方法 14、从金矿中综合提取金、银、铜的工艺过程 15、从金铜矿中提取铜铁金银硫的方法 16、从硫化物铜矿中浸提回收铜、银、金、铅、铁、硫的方法及设备 17、从难处理金精矿中提取金的方法 18、从难处理金矿中回收金、银 19、从难浸矿石中提取金的方法 20、从难浸硫化物矿石、碳质矿石中提金的预处理方法及其专用设备 21、从难熔含金含铁的硫化物矿石中回收黄金 22、从难熔含金含铁硫化物精矿中回收黄金的工艺 23、从贫金液、废金液中提取金的液膜及工艺 24、从铅阳极泥提取金、银及回收锑、铋、铜、铅的方法 25、从铅阳极泥中回收银、金、锑、铜、铅的方法 26、从氰化含金废水中回收金的吸附装置 27、从铁矿中综合回收金的方法 28、从铜电解阳极泥中提取金、银的萃取工艺 29、从铜阳极泥中回收金铂钯和碲 30、从载金炭上解吸电解金的工艺方法 31、催化氧化酸法预处理难冶炼金精矿 32、萃取分离金和钯的萃取剂及其应用 33、低温硫化焙烧—选矿法回收铜、金、银 34、低压热酸浸聚氨酯泡沫提金法 35、高含量黄金样品中金含量的快速测定法 36、高压釜内快速氰化提金方法 37、含金矿粉氰化提金添加剂 38、含金氯化液还原制取金的方法 39、含金尾矿库浸工艺 40、含金尾矿无制粒化学疏松堆浸工艺 41、含砷等难处理金精矿的预处理方法 42、含砷含硫难浸金矿的强化碱浸提金工艺

氰化法提金的基本原理

氰化法提金的基本原理? (2006-1-10) 氰化法提金的基本原理?氰化法提金浸出的主要影响因素? 氰化法提金是从金矿石中提取金的主要方法之一。氰化物对金溶解作用机理的解释目前尚不一致,多数认为金在氰化溶中有氧存在的情况下可以生成一 种金的络合而溶解其基本反应式为: 4Au+8KCN+O 2+2H 2 O— 4KAu(CN) 2 +4KOH 一般认为金被氰化物溶解发生两步反应: 2Au+4KCN+O 2+2H 2 O— 2(CN 2+H 2 O+2KOH 2Au+4KCN+O 2 +H 2 O 2 —2KAu(CN) 2 +2KOH 金的表面在氰化物溶液中逐渐地由表及里地溶解。溶液中氧的浓度与金的溶解速度有关. 浸出时氰化物浓度一般为,金的溶解速度随氰化物浓度的提高而呈直线上升到最大值。然后缓慢上升,当氰化物浓度达时,金的溶解速度和氰化物浓度无关,甚至下降(因氰化物水解)。 金的溶解速度随氧浓度上升而增大,采用富氧溶被或高压充气氰化可以强化金的溶解。氰化试剂溶解金银的能力为:氰化铵>氰化钙氰化钠>氰化钾。氰化钾的价格最贵,目前多数使用氰化钠,氰化物的耗量取决于物料性质和操作因素,常为理论量的20-200倍. 物料性质影晌金的浸出率。氰化法虽是目前提金的主要方法,但某些含金矿物原料不宜直接采用氰化法处理,若矿石中铜、砷、锑、铋、硫、磷、磁铁矿、白铁矿等组分含量高时将大大增加氰化物耗量成消耗矿桨中的氧。降低金的浸出率,矿石中含碳高时,碳会吸附已溶金而随尾矿损失。预先氧化焙烧或浮选方法可除去有害杂质的影晌。氰化物水解反应为:KCN+H 2 OyKOH+HCN因此会挥发出有毒的HCN;加入石灰是氰化物水解减弱,上式反应向左方向进行,减少氰化物的损失。石灰还有中和酸类物质作用并可沉淀矿浆中得有害离子,使金的溶解处于最佳条件,常用石灰作保护碱。石灰加入量使矿浆值达到11~12 为宜,矿浆lang=EN-值过高时对溶金不利。金粒大小主要影晌氰化时间,粗拉金(>74微米)的溶解速度慢。所以氰化前采用混汞、重选或浮选预先回收粗粒金是合理的。在磨矿过程中使细金粒充分单体解离仍是提高金的浸出率重要因素。 氰化时矿泥含量和矿浆浓度直接影晌组分扩散速度。矿浆浓度应小于 30~33%。矿泥多时矿浆浓度应小于22-25%,但浓度不宜过低,否则增加氰化物的消耗。 氰化时间取决于物料性质、氰化方式及氰化条件而异。一般搅拌氰化浸出时

废旧电子电路板提金技术

废旧电子电路板提金技术 保密资料 内部资料注意保存

目录 1.废电脑及配件中金的回收第一页 2.废电脑及配件中银的回收第十页 3.废电脑及配件中的鈀和铂的回收第十五页 4.废板卡中铜和铅的回收第二十二页

1.废电脑及配件中的金的回收 2.1 前言 含金废料中金的回收关键是必须设法使金与绝大部分其它物料(包括各种有机物质,贱金属物质和金以外的其它贵金属物质)分开。含金废料的回收工艺可以分为火法和湿法两大类型。金的化学稳定性(通常以单质状态存在)以及含金废料的多样性决定了金回收方法和技术的多样性。根据废料的种类和形态、金废料中金的含量以及现有设备条件等的不同,可以对含金废料采用不同的方法和技术进行回收处理。 由于金在通常情况下只能溶解于王水和碱金属氰化物溶液中,因此工业上产生的含金废液主要有含金废王水溶液和含金氰化物废液两类。 将含金固体废料溶于王水是最常用的将金转入溶液的方法。所得溶液酸度较大,常称为含金废王水,金在其中以+3氧化态存在。从中回收金的基本原理是给这些游离状态或配位状态的金离子提供电子。使其转化为原子状态而得到金的单质。常用的给金离子提供电子的方法有两种:一是在废王水溶液中加入适当的还原剂使金离子得到还原,二是透过电解方式给金离子提供电子,使金在阴极析出。 目前在工业上得到应用的可用于回收废王水中金的还原剂主要有硫酸亚铁、亚硫酸钠、活泼过渡金属(如锌耪和铁粉等)、亚硫酸氢钠(NaHSO3)、草酸、甲酸和水合肼等有机还原剂等。使用还原法回收废王水中的金时必须注意废王水的酸性和氧化性的强弱。通常情况下,废王水的酸性和氧化性很强,在加入还原剂之前必须设法降低其酸性和氧化性。常用的方法是将含金废王水过滤除去不溶性杂质,所得滤液置于瓷质或玻璃内衬的容器中加热煮沸,在此过程中以少量多次的方式滴加一定量的盐酸,使废王水中的氮氧化物气体逸出,此操作俗称为赶硝。赶硝是否完全的简单判别标准是从废王水中逸出的气体颜色必须为无色。 各种还原剂回收金后的尾液中是否还含有金,即回收是否完全,可用以下方法进行判断:按尾液颜色判断,若尾液无色,则金已基本沉淀提取完全;用氯化亚锡酸性溶液检查,有金时,由予生成胶体细粒金悬浮在溶液中,使溶液里紫红色,否则,说明尾液中金已提取完全。 第二大类含金废液含金氯化废液,主要包括电镀过程产生的镀金废渡(一般酸性镀金废液含金4~12g/L,中等酸性镀金废液含金4g/L,碱性镀金废液含金20g/L)、氰化法提金产生的废水以及含金氰化产品(如氰化亚金钾等)生成过程中产生的废水。常用的含金氰化废水中金回收方法主要有电解法、置换法和吸附法等[21-25]。根据含金氰化废水的种类和金含量的高低可以选择单种方法处理,也可以采取几种方法联合处理。

国内外电子废弃物的处理现状及其资源化技术(综述)

国内外电子废弃物的处理现状及其资源化技术 一、前言 电子信息技术在过去几十年里发生了突飞猛进的进步,给人类社会的生产、生活方式带来了深刻的变革。这种变革在大幅度提高生产效率、改善人类生活状况的同时,也带来了严重的环境和社会问题,大量电子废弃物的产生就是其中之一。欧盟发表的有关电子及电器废物的报告指出,每5年这类电子垃圾便增加16%-28%,比总废物量的增长速度快34倍,是世界上增长最快的垃圾,12年后地球表面电子垃圾的年产量将会翻番[1,2,3]。 电子废弃物俗称电子垃圾,包括各种废旧电脑、通信设备、家用电器,以及被淘汰的精密电子仪器仪表等。电子废弃物含有大量重金属和其他有毒成份,如有机阻燃剂、聚氛联苯、铅、砷、镍、铬、汞等物质,若没有专门机构进行收集,并采用先进的符合环保要求的技术和设备进行处理,则会对环境和人体健康构成严重危害。 二、国内外电子废弃物的现状及政策 1、电子废弃物的总量巨大 有关资料表明,中国是世界上较大的家电生产国和消费国之一。统计显示,目前我国电视机的社会保有量达亿台,冰箱亿台,洗衣机亿台[4]。美国是电脑及电子产品的发源地,也是消费大国。自1985年以来,美国个人电脑销售量每年增加23%以上,超过50%的家庭拥有电脑。美国每年的电子废弃物的量正以3%~5%的速度增长,以占全美垃圾量的2%~5%[5]。根据一项最新研究报告显示,美国近20年来售出的电脑,已有3/4闲置在消费者的仓库中。日本是家电生产王国,也是废弃家电大国。据日本有关部门的统计,日本每年要废弃1800万台电视、冰箱、空调和洗衣机,重量达60万吨。在这些废弃家电中,各类金属有10万吨。日本常用的电脑有桌上型和掌上型两大类,每年生产1200万台,年产生废旧电脑约8万吨[6]。 2、电子废弃物的危害巨大 电子废弃物不同于一般的城市垃圾,其制造材料复杂,有些家电材料还含有化学物质,如不妥善处理而直接填埋,会对环境造成污染。如电冰箱的制冷剂是破坏臭氧层的元凶;电脑、电视机的显像管属于具有爆炸性的废物;各种电路板中的铅、聚氛乙烯、汞等有毒物质很容易污染土壤及地下水,当雨水接触到这些埋在地下的垃圾时会引起化学反应,形成“垃圾渗滤液”,其毒性更大。即使把填埋区的底部和顶部密封,也可能由于地面沉降、地质变迁等原因使密封的纤维胶布和掉接的接口损毁或遭侵蚀而导致泄漏或造成持续性的污染。

低品位大矿块堆浸提金的实践

纂∞誊第4期。妒韭研究鸯舞囊v。l。20№.毒2000年8五MININGR螽DAug.2000 文章编号:1006一瑚{20。0)04—0014一∞ 低品位大矿块堆浸提金的实践 蛰秀蘧 (高龙黄金矿业有限责任公司,广西田林县533312) 擒要:夯鳝了高龙公司利罔露慕铡离贫矿进行太粒度、大堆高的堆漫提空试验。试验获得了成劈,各礓技拳经洚糟赫迷戴了蓐内竞进拳平,为开发剩蘑瓴茹位贫矿提供了参考。 关键词:低品住;大矿姨;大堆高;堆浸提金 巾圈分类号:佃853.38文献标识码:A The秘m漱ofHeapGoldLeaa血gforLowGradeandLumpOre 兄WX/u一6妇’ (GaoltmgColdMinesCo.Ltd,,Tian]inCotmty,岱删533312,chim) Abstract:'INspaperintrod∞-edthe《辨由Ⅻ牺∞thek擎gTain-sizeand赫藤heap捌leaching《s撕p—leanINtOh㈣qpen-pitminingofGaolongCo..ThisexFerkⅢnt№successfulandvarioustechnicaland㈣-1KI衄icindexeshadreacheddlRnls商cadvancedlevelsuchmtoprovidereliancefortheIl∞oflowgradeore.KeyWords:Low辱豳;泌翠溉;}鼯heap;C-oldleaching 为了突破犬块度、大堆商、极低品位氧化矿石的堆漫工艺技术戆题,各国金矿出都进褥了大量翦戮究。广西高竞公霹专门缝缀攻关小缀,对该公司露采剥离低品位赞矿进行堆浸提金工艺技术研究,历时薅年,获得了成功。单壤矿量101225+0t,堆高2lm,焱矿乎驽螽德0.43g/t,滗矿平坶鑫位0,18g/t,浸出率58.14%,理论总回收率54.47%,销售收入176.38万元,总成本91.50万元,实现利润84.87万元,嚣溺率48。12%。各瑗浆本经蒋稽耩遮弱了黧内先进水平。 1矿山概况 搿龙金矿祷黼个选矿厂耱地采、露来两套采矿系统。氰化炭浆厂设计规模500t/d,原矿人选品做3.88趴。堆漫厂设计规模200t/d,暇矿入选品披2.1e/t。著下供矿200∥d,露天镶矿500t/d。露袋边界品位0.70∥t,块段最低工业品位2.08g/t,矿区最低工业品位2.5∥t,戎石剥除最小厚度3m。矿幽授产浚寒,炭酝生产燕搂跑设诗规搂大,1995—1998年累计处理矿石量2133.13万t,剿离量965.2万t,年产金量超过1t。由于生产规模的扩大,露采矿体叉蹬遇救缩郏位,近两簪每年的剥离鲎达200万t以上。鞋离工程主要在矿休顶部释上、下盘藩岩,而因矿体倾角较陡,上盘山体坡面较缓,从而增加了刹离废弃物。 该矿鸡公髫矿段矿岩破捧,矿嚣形态多交,蘸层、节理、裂隙发育,分支细脉较多,但又水形成工业矿体。矿体和围岩不易区分辩认,其间犍往存在一个遘浚带,燕子过渡警越塑豢嚣受裂鑫衾溶滚静浸染或袋矿体淋沥=次富集而获得金品位。试验的矿石类戮有4种,滟合筑堆。其中构造石热型矿石占惹量瓣7%一8%,搀遣舞砾崧裂矿石占惑藿的72%一78%,硅亿砂混者垄矿石蠢总量的lO%左右,砂泥岩捌矿石占总鲼的8%左右。矿石平均氧化率为70%一72%,矿石的主要成分见射表。 缝取样蕊溅,盎然金最必金猛为0。012m×0.02mm×0.1mn,最小显馓盎粒径为0.0038film。其各靛级所占比例为:0.037—0.01mm占21.64%.0.01—0.005mrgt占73.03%,,l、于O.005IⅢⅡ占5.33%。自然金的赋存状态以粒间金产出为主,占 技蕞B撵:2∞0一越一暂 基奎疆茸:广程鸯治珏。鬼矗”袭美授嚣 作者筒介:冉势炳(1960一),粥,广西田林县^,高级工程师.生黉从事采矿技术工作 万方数据

废电路板处理和再利用技术

废电路板处理及再利用技术 废电路板的回收是一个新兴行业。随着大量家用电器的报废,废电路板的数量越来越大,其回收利用价值也引起众多投资者关注,成为很有发展前途的产业。废电路板的成分复杂,回收处理难度大,且电路板在生产过程中加入了大量的有机物质,在废电路板的回收处理过程中稍有不慎就可能对环境产生严重的污染。目前,我国废电路板的回收处理技术还比较落后,开发先进的废电路板处理技术已成为众多技术人员研究的对象。本文拟就目前的废电路板回收处理技术作一介绍和评析。 一、废电路板的组成 废电路板包括废覆铜板(CCL)、废印刷线路板(PCB)、带有集成电路和电子器件的印刷线路板卡(一般称为废电路板)。 1.废覆铜板 覆铜板是生产印刷线路板的原材料,主要由基板、铜箔、粘合剂组成。基板的主要材料是合成树脂和增强材料,其中合成树脂主要有酚醛树脂、环氧树脂、聚四氟乙烯等,增强材料一般有纸质和布质两种。 基板的表面是铜箔,铜箔采用机械加工和电积法生产,目前以电积法生产为主,铜箔厚度一般为18μm、25μm、35μm、70μm、和105μm。铜箔用粘合剂牢固地粘覆在基板上,就形成了覆铜板。 目前我国大量使用的覆铜板有酚醛纸质覆铜板、环氧纸质覆铜板、环氧玻璃布覆铜板、聚四氟乙烯覆铜板、聚酰亚胺柔性覆铜板,其中中档以上的民用电器、仪器仪表采用环氧(纸质或玻璃布)覆铜板,用量较大。中低档次的民用电器多用酚醛纸质的覆铜板。 废覆铜板是在生产过程中产生的残次品、边角料,由于表面有压制的铜箔而呈现黄色,一般称之为黄板。废覆铜板含铜量不一,低的约15%,高的可达70%以上,是一种回收铜的重要资源。 2. 废印刷线路板 印刷线路板简称PCB。通常把在绝缘材上按预订设计制成印制线路、印制原件或两者组合而成的导电图形称之为印制电路,把在绝缘基材上提供元器件之间电气连接的导电图形称之为印制线路。印制电路或印制线路的成品板即称为印刷线路板。 印刷线路板主要用于给集成电路等各种电子元器件固定装配提供支撑、实现集成电路等各种电子元器件之间的布线和电气连接或电绝缘等,同时为自动锡焊提供阻焊图形,为元器件插装、检查、维修提供识别字符和图形。

投资少赚钱快的生意

刘氏电子垃圾提炼黄金 项目优势: 1、废旧资源丰富,废弃电子垃圾随处都有,只要联系各地废品收购站,立即可以拥有有大量资源,而且废旧电器的淘汰更新,废电路板只会越来越多,资源永不枯竭。 2、一些废旧手机、电脑等部件中可以挑出含金银钯元件,提炼出黄金等贵金属。在1吨线路板卡中,可以分离出约130公斤铜、2公斤银、0.45公斤黄金,80克钯,利润可观。 3、工艺简便,处理方便,电子垃圾中金银铜钯的含量是原矿品位的几百倍,组成相对单一,回收成本较低。 4、投资少,见效快。回收废旧电路板不需要设备,只要一些简单的工具便可,而目前这个项目做的人还比较少。前期投资比较少几千块钱就可以操作起来,是一个非常好的赚钱项目想了解更多电子垃圾提炼黄金的内容可以搜索一下刘氏提金他们是电子垃圾提炼黄金行业做的最早的一批技术也是最成熟的。行业口碑也不错。可以让你们进入这一行少走冤枉路 宠物托养所 春节长假,旅游自然成为许多人春节休闲的首选,而家中的狗宝贝、猫宝贝们怎么办?找“宠物托养”。于是,宠物托养所,或是在宠物店的基础上提供寄养业务,就成为春节的另一商机。据了解,宠物托养的经济收入不错,宠物猫的寄养费约30元/日,宠物狗的约在50元/日,名品宠物或体形较大的宠物,收费还要贵。 经营诀窍:经营宠物寄养业务,经营者要有合适的经营场所和一定的资金,需要了解清楚不同宠物的习性,准备好充足的食物和玩具。建议在提供寄养服务的同时,还可提供宠物美容、宠物训练、宠物医疗护理等服务。 色彩顾问 这是一群都市中的神秘人物,他们出入高档写字楼,衣着讲究,谈吐得体,气质不凡,他们不是很忙,却拥有不菲的收入;他们不是绝顶聪明,却获得大帮高层圈子的认可——因为,他们能够发掘魅力,制造奇迹!而仅用很少的投资,你就可以拥有一家属于自己的色彩工作室。

提金技术工艺大全(专利)

提金技术工艺大全(专利) 提金技术工艺大全(专利) 金矿提金专利 1、氨法分离金泥中的金银 2、氨氧化炉废料回收铂金的方法 3、边磨边浸-液膜萃取提金工艺方法 4、从低品位金矿中回收金的工艺方法 5、从废催化剂回收金和钯的方法及液体输送阀 6、从废炭中回收金的新工艺 7、从浮选金精矿焙砂废矿浆中回收金的方法 8、从含金含铁硫化物矿当中回收黄金的工艺 9、从含金贫液中萃取金的方法 10、从含金物中无氰浸提金的方法 11、从碱性氰化液中萃取金的方法 12、从金矿提取金、铂、钯的方法 13、从金矿尾矿库溢流水中回收金的方法 14、从金矿中综合提取金、银、铜的工艺过程 15、从金铜矿中提取铜铁金银硫的方法 16、从硫化物铜矿中浸提回收铜、银、金、铅、铁、硫的方法及设备 17、从难处理金精矿中提取金的方法 18、从难处理金矿中回收金、银

19、从难浸矿石中提取金的方法 20、从难浸硫化物矿石、碳质矿石中提金的预处理方法及其专用设备 21、从难熔含金含铁的硫化物矿石中回收黄金 22、从难熔含金含铁硫化物精矿中回收黄金的工艺 23、从贫金液、废金液中提取金的液膜及工艺 24、从铅阳极泥提取金、银及回收锑、铋、铜、铅的方法 25、从铅阳极泥中回收银、金、锑、铜、铅的方法 26、从氰化含金废水中回收金的吸附装置 27、从铁矿中综合回收金的方法 28、从铜电解阳极泥中提取金、银的萃取工艺 29、从铜阳极泥中回收金铂钯和碲 30、从载金炭上解吸电解金的工艺方法 31、催化氧化酸法预处理难冶炼金精矿 32、萃取分离金和钯的萃取剂及其应用 33、低温硫化焙烧—选矿法回收铜、金、银 34、低压热酸浸聚氨酯泡沫提金法 35、高含量黄金样品中金含量的快速测定法 36、高压釜快速氰化提金方法 37、含金矿粉氰化提金添加剂 38、含金氯化液还原制取金的方法 39、含金尾矿库浸工艺 40、含金尾矿无制粒化学疏松堆浸工艺

难处理金矿提金的现状及发展趋势

doi:10.3969/j.issn.1007-7545.2015.04.010 难处理金矿提金的现状及发展趋势 孙留根1,袁朝新1,王云1,孙彦文1,常耀超1,徐晓辉1,杜齐平2,刘永涛2(1.北京矿冶研究总院,北京100160;2.中核沽源铀业有限责任公司,河北张家口076550) 摘要:简要介绍了难处理金精矿氰化类和非氰化类处理方法的机理及国内外最新研究及应用现状,综合比较了各种方法的优缺点,并指出了研究的发展方向。 关键词:难处理金矿;预处理;焙烧;生物氧化;氰化 中图分类号:TF831 文献标志码:A 文章编号:1007-7545(2015)04-0000-00 Status and Development of Gold Extraction from Refractory Gold Ore SUN Liu-gen1, YUAN Chao-xin1, WANG Yun1, SUN Yan-wen1, CHANG Yao-chao1, XU Xiao-hui1, DU Qi-ping2, LIU Yong-tao (1. Beijing General Research Institute of Mining & Metallurgy, Beijing 100160, China; 2. Zhonghe Guyuan Uranium Industry Co., Ltd, Zhangjiakou 076550, Hebei, China) Abstract: Processing mechanism, latest research and application status of refractory gold concentrate by cyanidation and non-cyanidation were briefly introduced. Advantages and disadvantages of each method were analyzed. The development direction of processing refractory gold ore was proposed. Key words: refractory gold ore; pretreatment; roasting; biological oxidation; cyanidation 氰化法是现代湿法提金的最重要方法,世界黄金产量的80%是采用氰化法获得的。随着易处理矿石资源的减少,人们逐渐把目光投向难处理金矿,我国难处理金矿资源[1-2]约占已探明黄金地质储量的25%~30%。但这些资源不能用常规选法经济地回收,需对精矿进行预处理,再用常规氰化浸出等方法回收。 难处理金矿石分三种:中等难处理矿石、复杂难处理矿石、高度难处理矿石。 中等难处理矿石:占总量20%~30%的金以微细粒和显微形态包裹于脉石矿物中,金属硫化物含量约占1%~4%,采用常规氰化法提金或浮选法浮集,金回收率均较低。 复杂难处理矿石:含砷3%以上,碳1%~2%,硫5%~6%,锑0.5%~5%。常规氰化金浸出率一般为20%~50%,氰化钠消耗量大,虽然浮选工艺能获得较高品位的金精矿,但精矿中砷、碳、锑等有害元素的含量也比较高,会给后续提金工艺带来影响。 高度难处理矿石:金银与铅、锑硫化物和含锑的硫砷铜矿物共生,以合金和化合物形式(如银金矿、金碲化合物、AuSb2和Au2Bi等)被化学包裹。 为了提高有价金属的回收率,实现资源的综合利用,国内外冶金工作者经过多年的研究,探索出多种难处理金矿的处理方法[3],按照是否使用氰化物分为氰化法和非氰化法,详细分类如图1所示。 收稿日期:2014-10-23 基金项目:国家重大科学仪器设备开发专项(2012YQ22011905) 作者简介:孙留根(1978-),男,河南许昌人,博士研究生,高级工程师.

铜的提炼和回收技术

D0103、铜的提炼和回收技术 1. [ 02121434 ]- 从富含铜的电子废料中回收金属和非金属材料的工艺 2.[ 98110686 ]- 在铜表面鎏金的方法及用该方法制作的铜板字画 3.[ 91111870 ]- 连续冶炼铜的方法 4.[ 89108671 ]- 氧化铜矿直接制取硫酸铜工艺 5.[ 88105149 ]- 铜灰炼铜粉尘治理--氧化锌回收技术 6.[ 85108534 ]- 黑铜提锡工艺提取 7. 从富含铜的电子废料中回收金属和非金属材料 8.江铜集团废渣中提炼稀贵金属制备催化剂创效益 9.从铜镉渣酸浸后废渣中提取粗铅 10.银冶炼过程中铜的控制及钯的回收 11.铜锌铅火洁冶金现状及21世纪初展望(续) 12.从冶炼金泥冰铜提取金的研究 13.从铜金精矿中湿法综合回收金银铜硫的工艺研究 14.三相氧化法富集分离大洋多金属结核中有价金属 15.铜锌铝合金表面非线性振荡的混沌相关性 16.含铜、铋和银的金精矿堆浸工艺综合回收试验研究 17.湿法从氰化金泥中提取金、银、铜、铅工艺试验研究 18.从铜冶炼砷烟灰中回收铟 19.从催化剂废渣中提取高活性氯化亚铜新工艺 20.紫铜消白颗粒的提取工艺研究 21.有深海锰结核作氧化剂条件下,通过酸性氧化浸出黄铜矿提取铜、锌、镍和钴 22.从电子废料中提取铜成绩斐然 23.超声波提取-DPV溶出伏安法快速测定白菜中铜、铅、锌 24.湿法炼铜的发展与前景 25.竖罐炼锌残渣的综合回收技术 26.利用废氢化催化剂综合提取硫酸铜和硫酸镍新工艺——有机交换萃取法 27.新型加压浸出提取钴和铜工艺在赞比亚谦比希钴厂的研制及应用 28.一种新的非熔炼法从废杂铜中提取高纯度阴极铜的生产流程 29.从铂钯精矿中提取Au、Pt、Pd 30.从铜电解阳极泥中提取金银的萃取工艺 31.一种从含铜较高的金精矿中提取铜的方法 32.从氰化金泥中提取金银新工艺的试验研究 33.应用萃取-电积技术从含铜金精矿中提取铜的研究 34.铜镍电解阳极泥中金、铂、钯的提取试验研究 35.湿法提铜技术新进展 36.利用催化氧化氨浸法提取五水硫酸铜的工艺实验研究 37.铜锑合金电解提铜工艺 38.难选多金属矿石中提取钴、镍、铜和金的试验研究 39.黄铜矿的矿浆电位和可浮性 40.高铋铜阳极泥处理及实践 41.难选铜钼矿铜钼分离新工艺研究

为你揭开电子废料等提炼贵金属的神秘面纱

声明:以下技术所用的化学原料可能有腐蚀或一定的毒性,请在操作使用和储 存过程中注意安全,请放在儿童拿不到的地方;操作使用人员必须有一定的化学知识,熟悉化学药剂的性质、化学反应的原理及应急处理方法,没有把握的请不要做;因为氰化物有剧毒,敬告初学者不要使用,本技术里也未涉及,因此产生的问题与本人无关;请在操作使用过程中穿戴好防护用品,并妥善处理好废水、废气、废渣等。本技术纯为提炼贵金属同行交流所用,所产生的一切问题本人不承担任何责任。 因本人文化不高,水平有限,尤其是语言、文字表达能力较差,再加上此行业涉及的知识太多,尽管有数年的从业经验,但是要想完全用文字把此项目讲解清楚可能很难。因此此文仅供初学者参考,有误处欢迎指正。行家就不要看了,免得你笑得喷饭! 为你揭开电子废料等提炼贵金属的神秘面纱 在废料里提炼出黄金、白银、铂金、钯金,乍听起来好象是天方夜谈,但是这又是千真万确的事情!许多初接触的人在网络好事者和一些别有用心的人胡吹的高额利润诱惑下(曾看到有人吹到几十倍的利润!),在什么都不了解的情况下盲目的投资,导致亏损;也有稍懂点化学知识的自己实验,结果浪费了时间和大量的物力、财力(因为所有含贵金属的原料都不怎么便宜,还有药剂等)。笔者在此提醒大家,天上没有掉馅饼的事情,做任何事情都要循序渐进,切记欲速则不达。当然废料提炼贵金属是个好项目,它的利润是要比其它行业要高,但是这个利润与你的原料是否充足、原料收购价格(现在好多卖废料的也懂点提炼技术)、技术等有很大关系。另外因为种种原因,该项目不可能做的很大(就规模而言,与利润无关),所以想风风光光的做企业家的就不要进来了。 一,常见含贵金属原料: 含贵金属品位较高的,有提取价值的废料来源很多,比如废手机板、手机芯片、排线、电池触点、手机sim卡;废电脑板、CPU、内存条、插头;工业上的电镀厂(镀贵金属的)的废水、废泥;线路板厂的含金或钯的废水;首饰厂的废料;电子元器件厂、电子厂的废料;电信板卡;VCD机板、电视板上的部分电子元件等。各种镀金件。如航空插头,各种电器上的镀金插件,镀金电子元件、电子脚,镀金工艺品等。各种含银废料:照相制版废水,废X光片和菲林,镀银电子元件,含银的电子元件,银触点、含银的瓷片电容等…… 二,设备和药剂 该项目可以大也可以小,建议刚做的人最好从小做起,或做兼职,即使万一做不了损失也不大。一般少量做的时候可以到化学试剂店购买仪器和药剂,设备用的是玻璃仪器,这样做的过程中能够清楚看到颜色等的变化,利于学习和提高。常用的仪器和药剂有:电炉及石棉网(加热用,也可以用煤炉代替)、500毫升烧杯5只、1000毫升烧杯2只、200毫升的量筒1只、定性滤纸1本、漏斗

堆浸提金过程中的注意事项

堆浸提金过程中的注意事项 1前言 堆浸是从低品位矿石回收金的一种简便、经济的技术,目前已成为从低品位矿石、表外矿、老矿山的废石堆和老尾矿中回收金的一种重要方法,采用堆浸提金工艺生产的黄金产量逐年稳步增长,为使堆浸提金工艺适应生产的需要,各国科技工作者从不同的角度,采用不同的方法开展了堆浸提金过程中的注意事项的研究,使堆浸提金技术得到了不断的完善和发展。 2堆浸提金过程中的注意事项 根据堆浸技术的特点,本注意事项主要从改进和完善堆浸工艺、氰化物药剂作用环境方面进行探讨。 2.1改进堆浸工艺 2.1.1正确应用制粒技术,提高金的浸出 实践证明,细粒物料和粘土含量太高的矿石不宜直接堆浸,必须先制粒预处理,提高矿堆的渗透性才能堆浸,制粒预处理能大大强化金的浸出,加快金的浸出速度,多数情况下还能提高金的浸出率。 据报道,美国一家工厂经制粒预处理后,含大量细矿粉的金矿石浸出率提高了6000倍。Paradise Peak金矿采用制粒堆浸后,回收率提高了12%;另一家选金厂采用制粒预处理后,浸出周期从原来的两个月缩短到三周,且金的浸出率从35%提高到90%,而每吨矿石的生产费用则仅从80美分提高到1.30美元。 我国1991年新疆赛都金矿首次进行了全国最大规模(2.4万吨)的制粒堆浸,浸出时间比不制粒短35d,浸出率由49.69%提高到81.5%,提高了32%。新疆多拉萨依金矿进行的2万吨低品位(2.12g/t)金矿的制粒堆浸,金的浸出率为82%,其尾渣品位已与该矿的炭浆法接近。新疆鄯善县康古尔金矿在国内首次应用盐水制粒代替水泥石灰制粒,金浸出率为74.2%,完全解决了盐水堆浸结垢的问题。浙江省湖州大银山金矿采用氰化钠溶液制粒堆浸工艺,使金的浸出率由设计的65%提高到77.5%。 制粒通常采用石灰和水泥作为粘结剂,但用量应适当。目前还研究应用了新的制粒助剂。据报道,美国南卡罗莱纳州的Breway金矿使用了一种制粒助剂,与只加水泥相比,可提高金回收率并减少水泥用量,同时还提高了团粒强度。美国亚利桑那州的Chemstar石灰公司推出的Leach-It制粒助剂,以及另一种Polymers聚合制粒剂,与常规只用水泥相比,采用专用制粒剂可提高金的回收率20%;减少1/2浸出面积;含金溶液量减少1/2,而品位提高两倍;从而减少了氰化物耗量和水的蒸发量。 2.1.2采用不同堆浸工艺,提高浸出效果 国外的堆浸生产不采用一堆一卸的方式,而是永久性堆场,通常将堆场选择在山谷、底面积很大的地方,采取分层分区交替筑堆或分段筑堆的喷淋方式,大幅度地提高企业的经济效益,美国的Girl金矿采用典型的分层分区交替筑堆喷淋方法,使采矿、筑堆设备和喷淋设备的运转率大幅提高,同时保证了贵液品位处于相对稳定状态。我国新疆哈巴河赛都金矿采用“分段堆筑、交叉喷淋、多级逆流浸出”工艺,取得了明显的经济效益,结果见表1。 矿堆的透气性和溶液的渗透性是决定堆浸效果的关键因素。据报道,Fegasus黄金公司的Florida Canyor金矿使用一种独特的弧形筑堆系统;Round Mountain金矿使用走桥式吊车系统;Buckhom和Grofoot金矿使用一种轮式自行可调式输送机。我国研制出的一种移动式弧形筑堆机,效果较好。 美国Hazen研究所的研究结果表明,往矿堆中通入空气增加含氧量,可使浸出周期缩短近

金矿堆浸工艺

金矿堆浸工艺文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

金矿堆浸工艺 【工艺简介】 金矿堆浸就是将低品位的金矿破碎至一定粒度(或造粒),堆积在由沥青、混凝土或塑料等材料铺筑的防漏底垫上,用低浓度氰化物、碱性溶液、无毒溶剂或稀硫酸等溶液在矿堆上喷淋,使金溶解,含金的溶液从矿堆上渗滤出来,然后用活性炭吸附或沉淀等方法回收金。 【应用领域】 堆浸法常用于开发矿体小或品位低的金矿,或两者兼有,而不能用常规方法开发利用的矿床。 [ 工艺优势] 工艺简单、设备少、基建时间短; 投资少、见效快、生产成本低; 矿石的性质、品位、数量的适应性强; [ 工艺介绍] 堆浸场对地形条件要求不高,可因地制宜,根据地形特点分别设置永久性卸堆式堆场或叠加式堆场。如山顶、山坡地势较缓、较开阔,宜用以构筑永久性卸堆堆场。 原矿处理 原矿用鑫海生产的及圆锥破碎机破碎至一定粒度(30-50mm)后,直接去堆淋;或者进行制粒处理(使较细颗粒团聚成粗粉团粒),之后将矿石通过铲车运至矿堆处进行筑堆。 堆淋系统

在铺设好的矿堆上,设置堆淋系统。氰化溶液与矿堆反应后,从矿堆底部渗出含金溶液(贵液),流入贵液池,经贵液泵打入吸附柱,活性炭吸附后的溶液为贫液,贫液返回喷淋系统再利用。 解析电解 以下视频是鑫海矿装坦桑尼亚金矿项目中的系统全貌。该项目的解吸电解装置是"全泥氰化提金"方案的核心设备之一,解吸电解系统在解吸体中加入了容易被活性炭吸附的阳离子,将Au(CN)2-置换出来,实现金的解吸,而解吸载金炭得到的贵液通过电离法回收,获得固体金。 [ 工艺流程图 ]

贵金属提炼

电解提取溶液中贵金属的思考 作者:电子封装电化学实验室 发表时间:2014-02-20 23:52:20 关键词:提取; 贵金属; 电子; 公司; 电解 利用电解方式将溶液中金属离子还原为金属原子,沉积的基材表面,可以实现金属离子的有效提取。贵金属大量存在于电子线路和IC芯片之中。 图1. 电子废弃物CPU 图2. 电子废弃物IC

图3. 电子废弃物触摸板 图4. 电子废弃物金丝绑定线 包括手机的频繁更换,也产生大量电子贵金属,形成“城市金矿”。 图5. 废弃的手机 图6. 废弃的手机线路板

国内外公司也在思考如何高效的提取其中有价值的金属元素。其中有日本的小坂制铁。在日本,近年来形成一股,开发废旧家电、手机、个人电脑等构成的“城市矿山”热潮。废旧电子机器中含有大量的贵金属和稀有金属,而日本则是贵金属、稀有金属天然储量最为匮乏的 国家之一。 图7.日本小坂制铁回收贵金属 有国内的格林美高新技术股份有限公司是一家开采“城市矿山”的企业,主要从事废旧电池、废旧灯管、电子废弃物等的绿色回收利用。曾获国家科技进步奖。 图8.中国格林美回收电子废弃物 总书记说,变废为宝、循环利用是朝阳产业。垃圾是放错位置的资源,把垃圾资源化,化腐朽为神奇,是一门艺术,你们要再接再厉。 国内外都思考如何设计装置提高,提高贵金属提取效率,其中包括银和金的提取。尽管目前提取贵金属的方式很多,包括锌和铁单质还原法,离子交换树脂法,和本文提及的电解法提取。课题组研究发现,前两种方式是针对溶液整体实施化学处理,需要将溶液调整pH值和离子提取后再金属化。步骤繁杂,而且操作针对性差。 基于此,本文考虑借鉴国内相关电解提取银和金在装置和工艺的优势,思考如何提高电解提

氰化法提金的基本原理1121212

氰化法提金的基本原理?888 (2006-1-10) 氰化法提金的基本原理?氰化法提金浸出的主要影响因素? 氰化法提金是从金矿石中提取金的主要方法之一。氰化物对金溶解作用机理的解释目前尚不一致,多数认为金在氰化溶中有氧存在的情况下可以生成一种金的络合而溶解其基本反应式为:4Au+8KCN+O2+2H2O— 4KAu(CN)2+4KOH 一般认为金被氰化物溶解发生两步反应: 2Au+4KCN+O2+2H2O— 2(CN2+H2O+2KOH 2Au+4KCN+O2+H2O2—2KAu(CN)2+2KOH 金的表面在氰化物溶液中逐渐地由表及里地溶解。溶液中氧的浓度与金的溶解速度有关. 浸出时氰化物浓度一般为,金的溶解速度随氰化物浓度的提高而呈直线上升到最大值。然后缓慢上升,当氰化物浓度达时,金的溶解速度和氰化物浓度无关,甚至下降(因氰化物水解)。金的溶解速度随氧浓度上升而增大,采用富氧溶被或高压充气氰化可以强化金的溶解。氰化试剂溶解金银的能力为:氰化铵>氰化钙氰化钠>氰化钾。氰化钾的价格最贵,目前多数使用氰化钠,氰化物的耗量取决于物料性质和操作因素,常为理论量的20-200倍. 物料性质影晌金的浸出率。氰化法虽是目前提金的主要方法,但某些含金矿物原料不宜直接采用氰化法处理,若矿石中铜、砷、锑、铋、硫、磷、磁铁矿、白铁矿等组分含量高时将大大增加氰化物耗量成消耗矿桨中的氧。降低金的浸出率,矿石中含碳高时,碳会吸附已溶金而随尾矿损失。预先氧化焙烧或浮选方法可除去有害杂质的影晌。氰化物水解反应为:KCN+H2OyKOH+HCN因此会挥发出有毒的HCN;加入石灰是氰化物水解减弱,上式反应向左方向进行,减少氰化物的损失。石灰还有中和酸类物质作用并可沉淀矿浆中得有害离子,使金的溶解处于最佳条件,常用石灰作保护碱。石灰加入量使矿浆值达到11~12为宜,矿浆lang=EN-值过高时对溶金不利。金粒大小主要影晌氰化时间,粗拉金(>74微米)的溶解速度慢。所以氰化前采用混汞、重选或浮选预先回收粗粒金是合理的。在磨矿过程中使细金粒充分单体解离仍是提高金的浸出率重要因素。 氰化时矿泥含量和矿浆浓度直接影晌组分扩散速度。矿浆浓度应小于30~33%。矿泥多时矿浆浓度应小于22-25%,但浓度不宜过低,否则增加氰化物的消耗。 氰化时间取决于物料性质、氰化方式及氰化条件而异。一般搅拌氰化浸出时间常大于24小时,有时长达40小时以上,氰化碲时需72小时,渗滤氰化浸出需五天以上。 从氰化浸出液中提金的方法有哪些方法? 从氰化浸出液中提金的方法比较多,如果用炭浆法(CIP).炭浸法(CIC),磁碳法(MCIP)或树脂交换法可以去固液分离作业。一般氰化矿浆经固液分离得到贵液(含金溶液).从贵液中提金的方法有锌置换沉淀法、活性炭吸附法、离子交换树脂吸附法或电解沉积法。用金属锌丝或锌粉从贵液中把金置换沉淀是常用的方法。贵液在进入置换沉淀作业之前经澄清以除去其中的矿泥和悬浮物,因这些杂质对下一步的置换沉淀作业有害. 锌置换沉淀金的基本原理是:在贵液中的锌会溶解于溶液中而使金沉淀出来,贵液中的离子Au(CN)2-与Zn作用的反应式通常写成: 2KAu(CN) 2+3Zn+4KCN+2H2O 2Au↓+2K2Zn(CN)4+K2ZnO2+H2

氰化法提金工艺

氰化法提金工艺—锌粉置换篇 传统的氰化法提金工艺主要包括浸出、洗涤、置换(沉淀)三个工序。 ①浸出——矿石中固体金溶解于含氧的氰化物溶液中的过程。 ②洗涤——为回收浸出后的含金溶液,用水洗涤矿粒表面以及矿粒之间的已溶金,以实现固液分离的过程。 ③置换——用金属锌从含金溶液中使其还原、沉淀,回收金的过程。 20世纪以来,从氰化矿浆中回收金是先进行矿浆的洗涤,然后进行贵液的澄清、除气。从澄清的贵液中沉淀金,一直沿用锌粉置换法。20世纪60年代以来才发展起来的向矿浆中加入活性炭的“炭浆法”发展很快。随着对离子交换剂应用的研究,采用离子交换树脂从氰化液或氰化矿浆中吸附金的方法亦具有重要的实用价值。在氰化液的溶剂萃取提金方面也作过一些研究。当往氰化含金液中加人硫酸时,可用异戊醇来萃取金,萃取率随硫酸浓度的升高而增加。如在2mol/L的硫酸液中进行萃取,还可使金与砷、铁等杂质分离。使用氧代烷氧基磷酸酯从氰酸盐碱性液中萃取金,萃取指标令人满意;使用亚硫酸钠反萃取也获得了较好的结果等等。 1.氰化浸金 用含氧的氰化物溶液把矿石中的金溶解出来的过程叫氰化浸出。目前,无论从工艺、设备、管理或操作等方面都已日臻完善。如前所述,金在含有氧的氰化物溶液中的溶解,实质上是一个电化学腐蚀过程。 浸出过程中主要使用的药剂是氰化物和保护碱两种。 1)氰化物 工业上用于氰化法浸出金的氰化物主要有氰化钾(KCN)、氰化钠(NaCN)、氰化钙

[Ca(CN)2]和氰化铵(NH4CN)四种。 在生产中常用的氰化物是氰化钠,它是一种剧毒的白色粉末,商品氰化钠一般压制成球状或块状。 工业上也有用氰熔体作为浸出药剂的。它是将氰化钙、食盐和焦炭混合后在电炉中熔化而成的一种混合物。除了含40%-45%的Ca(CN)2和NaCN以外,还含有一些对氰化过程有害的杂质,如可溶性硫化物、碳以及一些不溶性杂质等。其特点是价格便宜,但用量大,约为氰化钠的2-2.5倍。为了消除有害杂质的影响,使用氰熔体时应进行预先处理。处理方法是通入空气强烈搅拌或往溶液中加入适量的铅盐。 在理论上,溶解1gAu只需消耗0.5g氰化钠,但在实际生产中,氰化物的消耗值为理论量的20-200倍,甚至更高一些。消耗量的多少主要取决于矿石中能与氰化物起反应的其他成分的含量。 2)保护碱 保护碱主要是为了保持氰化物溶液的稳定性,减少氰化物的水解损失。使碱在氰化浸出中的加入保持在浸出槽或者是氰化原矿的磨矿过程中。当矿石成分复杂,含有一些诸如磁黄铁矿之类对氰化过程有害的矿物时,保护碱在磨矿过程中加入,有利于这些有害矿物氧化或形成沉淀除去。 保护碱可以是氢氧化钾和氢氧化钠,但更常用的是价格便宜的石灰(氢氧化钙)。如若处理含金碲矿这类需要强碱度的矿石时,还是用氢氧化钠为好。 保护碱的加入量应当适量,一般维持矿浆的pH为10-11即可。此时,矿浆中CaO质量分数约为0.01%-0.02%。过低不利于防止氰化物水解,过高尽管能促使带负电荷的硅泥絮凝,有利于矿浆沉淀和液体净化,但对金的浸出速度有明显的不利影响。

选提金技术发展分析

选提金技术发展分析 黄金选冶的传统工艺及新技术重选提金工艺重选是最传统的提金方法。由于它工艺过程简单,成本低廉,对捕集单体租粒金有效,故对于砂矿的提金,该工艺仍占主导地位。不过近来年。重选工艺用于岩金矿山提金的发展非常迅速,国外已有几座新建或扩建的大型岩金矿山采用重选法在磨矿回路中提取单体金。国内某些岩金矿山也有应用,均收到很好的效果。重选设备的改进和创新,推动了重选提金工艺的发展。如研制成功的可动溜槽、圆型跳汰机、利用离心力场的尼尔森选矿机以及我国研制成功的鼓动溜槽、STL型的水套式离心机,使重选回收率进一步提高,收到了明显的效果。 一、氰化提金工艺 20世纪初,氰化法提金就在工业上得到推广应用。目前世界上新建的金矿中约有80%都采用氰化法提金。如何缩短浸出时间,进一步提高浸出率,降低氰化物消耗是人们不断研究探索的课题。因此,目前该工艺的发展在国际上已经达到相当高的水平。 1、氰化提金工艺的改进 (1)在浸出过程中使用氧化剂(纯氧或氧化物)并延伸出加氧炭浸工艺,如氧树脂浸出等。使用辅助氧化剂的益处:一是有效提高金、银浸出率;二是加快浸出速度、缩短浸出时间;三是降低氰化物消耗,减少硝酸铅用量。我国广西龙头山金矿采用助浸工艺,使浸出率提高了4.31%。辅助氧化剂的应用已作为优化氰化工艺的最佳技术,在世界各地广泛推广。 (2)采用氨--氰体系浸出铜金矿石,于1986年在国外的一家小型尾矿处理厂获得成功。我国在提高珲春含铜金精矿的试验研究中,采用了氨--氰体系浸出,使金浸出率显著提高到38.98%。对金铜矿石、含铜精矿的氰化浸出,该技术将显示出较强的生命力。 (3)边磨边浸工艺能强化浸出效果。如最近山西地勘局216地质队采用TW 型塔式磨浸机对合砷难浸金精矿进行边磨边浸,处理量为30吨/日,在磨矿细度95%-98%-400目条件下,金浸出率提高了8%。若利用塔式磨浸机实行边磨边浸新工艺能在黄金矿山推广应用,将是氰化提金工艺的一项重大革新。 2、从氰化浸出液中回收金工艺的发展 从氰化浸出液(或矿浆)中回收金,工业生产较为成熟的三大工艺,即锌粉置换工艺;活性炭吸附工艺和离子交换树脂工艺。活性炭吸附工艺以其更经济和有效,离子交换树脂工艺以其优越的物理和化学性能均成为后来居上者,得到迅速发展。尽管如此,锌粉置换工艺在处理含银高的矿石和含金高的溶液是十分有益的。

相关主题
文本预览
相关文档 最新文档