当前位置:文档之家› 548-几种添加剂对板栗淀粉糊粘度和老化特性影响的研究与在线粘度计(黏度-粘度特性)

548-几种添加剂对板栗淀粉糊粘度和老化特性影响的研究与在线粘度计(黏度-粘度特性)

548-几种添加剂对板栗淀粉糊粘度和老化特性影响的研究与在线粘度计(黏度-粘度特性)
548-几种添加剂对板栗淀粉糊粘度和老化特性影响的研究与在线粘度计(黏度-粘度特性)

聚丙烯酰胺特性黏度的测定及分子量计算

聚丙烯酰胺特性黏度的测定及分子量计算 根据中国国家标准GB12005.聚丙烯酰胺的分子量用特性黏度法测定;水解度用中和法测定;残余单体的含量大于0.01%吋用气相或液相色谱法测定.大于0.5%时用溴化法测定。 (1)特性黏度的测定及分子量计算 ①测定原理:按规定条件制备浓度为0.0005-0.OOlg/mL的试样溶液,该溶液以氯化钠溶液为溶.c(NaCl)=1.00mol/L。用气承液柱式乌式毛细管黏度计分别测定溶液和溶剂的流经时间.根据测得值计算特性黏度。本方法适用于不同聚合方法制备的粉状和胶状非离子型聚丙烯酰胺和阴离子型聚内烯酰胺。 ②仪器 a、玻璃毛细管黏度计:采用GB1632规定的稀释型乌氏毛细管黏度计,如图4.73所示,阳离子聚丙烯酰胺

技术要求如下: i、应使浓度为lmol/L的氯化钠水溶液在30°下的流经时间在 100-130s范围内; ii、型号为4-0.55和4-0.57,其中4表示定量球6的容积(单位mL).0.55和0.57表示毛细管内径(单位mm)。 b、恒温水浴:控温精度士0.05°C。 c、秒表:分度值0.Is。 d、分析天平:感量0.OOOlg。 e、容量瓶:容积25mL、50mL、100mL、200mL。阳离子聚丙烯酰胺厂家 f、移液管:容积5mL、10mL、50mL? g、具塞锥形瓶:容积250mL。 h、玻璃砂芯漏斗:G-2型。 i、烧杯:容积lOOmL。

j、量筒:容积50mL。 k、注射器、乳胶管洗耳球等。 ③试剂和溶液:本分析方法所用的试剂和水,均为分析纯试剂和蒸馏水。 a、氯化钠溶液:将氣化钠用蒸馏水配制成c(NaCl)=l.OOmol/L和 c(NaCl)=2.OOmol/L的溶液。 b、铬酸洗液。阳离子聚丙烯酰胺厂家 ④试样溶液的配制 a、粉状聚丙烯酰胺:在lOOmL容量瓶中称人0.05-0.lg均匀的粉状试样,准确至0.OOOlg。加人约48mL的蒸馏水,经常摇动容量瓶。待试样溶解后,用移液管准确加人50mL浓度2.00mol/L的氯化钠溶液,放在(30±0.05)°C水浴中。恒温后,用蒸馏水稀释至刻度,摇匀,用于燥的玻璃砂芯漏斗过滤,即得试样浓度约 0.0005-0.001g/mL 且氯化钠浓度为l.OOmol/L的试样溶液,放在恒温水浴中备用。 b、胶状聚丙烯酰胺:在已准确称量的lOOmL烧杯中,称人固含量为8%-30%的胶状试样0.66-1.25g.精确至0. OOOlg。加入50mL蒸馏水.搅拌溶解后,转移入200mL容量瓶中。加人lOOmL浓度为2.00mol/L 的氯化钠溶液.放在恒温水浴中。恒温后,用蒸馏水稀释至刻度.摇匀,用千燥的玻璃砂芯漏斗过滤,即得试样浓度约为0. 0005-0.001g/mL,且氯化钠浓度1.00mol/L的试样溶液,放在恒温水浴中备用。阳离子聚丙烯酰胺厂家

几种常见淀粉在肉制品中的应用特性比较及

应用特性比较及其研究新进展 摘要:低交联酯化玉米淀粉和木薯淀粉,可广泛应用于火腿肠、肉酱、午餐肉等肉制品中。而将交联酯化马铃薯变性淀粉添加到灌肠制品中,可对灌肠制品的组织结构、弹性、嫩度、保水力、粘着力、口感和切片性有明显的改善,并能提高产品的质量和得率,与玉米原淀粉及交联酯化玉米变性淀粉相比,有明显的优势。随交联酯化程度的改变,这些种类的淀粉凝胶后的糊丝长短、透明度、凝胶程度也会改变,可根据产品的具体需求进行调整,表达到最佳的应用效果。 关键词:交联酯化马铃薯变性淀粉、变性玉米淀粉和木薯淀粉;肉制品;应用特性 正文:淀粉是人类饮食中碳水化合物的主要来源,是谷类食物的重要成分和食品生产加工中的主要原料。多年来,淀粉在肉类制品的加工生产中发挥着重要的作用。肉制品加工中曾经用天然淀粉作增稠剂来改善肉制品的保水性、组织结构;作赋形剂和填充剂来改善产品的外观和得率。这种作用是由于在加热过程中淀粉的糊化而产生的。在淀粉家族中,天然淀粉的种类十分繁多,但一些产品加工中,天然淀粉却不能满足某些工艺要求。因此,人们利用淀粉的变性原理来改善其分子的基本特性,根据加工食品的特殊要求制成新型辅料。它能满足某些食品加工的工艺要求,克服天然淀粉所存在的缺点,达到理想的预期效果。[2]而且由于变性淀粉耐强加工过程(高温、

低pH值),并且具有良好的吸水性、黏着性、凝胶性和持水性等优越性质,在肉制品加工有很大潜力。变性淀粉应用于肉制品中应具备的一个重要性质就是要有较好的持久性和吸水性。而肉的持水性主要在于蛋白质的作用。由于部分结合淀粉逐渐夺取了变性后的蛋白质网络状结构中的结合不够紧密的水,这部分水被淀粉颗粒固定,故而持水性变好。同时,淀粉因糊化变得柔软而有弹性,促进肉块间的粘结,填充孔洞。交联酯化淀粉是一种双重变性淀粉。由于酯化的作用可以使其比原淀粉有更高的稳定性,更好的透明度,并且凝沉老化趋势及脱水收缩现象均有所降低。特别适用于高档肉制品和低温肉制品,可充分满足这些产品对生产、运输、储藏以及超市零售系统的特殊要求。由于交联变性使淀粉的支链之间由化学键连接,比氢键要稳定得多,对于低pH值、机械处理、和长时间的高温加热都具有较高的稳定性,蒸煮的糊丝比原淀粉更短,口感更细腻,能有效提高产品品质并延长货架期。[1] 玉米淀粉:经过变性的玉米淀粉糊化温度比蛋白质变性温度要高。所以在加热初期仍具有较好的流动性,有利于热传导,缩短加热时间,减少营养损失,从而可改善产品的质量和风味。因为变性玉米淀粉引入了特定的化学基因,使糊化后的淀粉分子更舒展.更易于吸水,使肉制品组织均匀细腻,结构紧密,富有弹性,切面光滑,鲜嫩适口,在长期储藏和低温冷藏时保水性极强。[4]此种变性淀粉是一类复合方式变性淀粉。其稳定化处理的作用可以使它比原淀粉有更高的稳定性,透明度提高,凝沉老化趋势及脱水收缩

粘度测试注意事项及乌氏粘度计原理

粘度测试注意事项及乌氏粘度计原理 根据其测量原理,为了获得准确可靠的测量数据必须注意以下几点: 一、仪器的性能指标必须满足国家计量检定规程度要求。使用中的仪器要进行周期检定,必要时(仪器使用频繁或处于合格临界状态)要进行中间自查以确定其计量性能合格,系数误差在允许范围内,否则无法获得准确数据。 二、特别注意被测液体的温度。许多用户忽视这一点,认为温度差一点无所谓,我们的实验证明:当温度偏差0.5℃ 时,有些液体粘度值偏差超过5% ,温度偏差对粘 粘度计 度影响很大,温度升高, 粘度下降。所以要特别注意将被测液体的温度恒定在规定的温度点附近,对精确测量最好不要超过0.1℃。 三、测量容器(外筒)的选择。对于双筒旋转粘度计要仔细阅读仪器说明书,不同的转子(内筒)匹配相应的外筒, 否则测量结果会偏差巨大。对于单一圆筒旋转粘度计,原理上要求外筒半径无限大,实际测量时要求外筒即测量容器的内径不低于某一尺寸。例如上海天平仪器厂生产的NDJ-1型旋转粘度计,要求测量用烧杯或直筒形容器直径不小于70mm。实验证明特别在使用一号转子时,若容器内径过小引起较大的测量误差。 四、正确选择转子或调整转速,使示值在20~90格之间。该类仪器采用刻度盘加指针方式读数,其稳定性及读数偏差综合在一起有0.5格,如果读数偏小如5格附近,引起的相对误差在10%以上,如果选择合适的转子或转速使读数在50格,那么其相对误差可降低到1%。如果示值在90格以上,使游丝产生的扭矩过大,容易产生蠕变,损伤游丝,所以一定要正确选择转子和转速。 五、频率修正。对于国产仪器名义频率在50Hz,而我国目前的供电频率也是50 Hz,我们用频率计测试变动性小于0.5%,所以一般测量不需要频率修正。但对于日本和欧美的有些仪器, 名义频率在60Hz, 必须进行频率修正,否则会产生20%的误差,修正公式为: 实际粘度=指示粘度×名义频率÷实际频率 六、转子浸入液体的深度及气泡的影响。旋转粘度计对转子浸入液体的深度有严格要求,必须按照说明书要求*作(有些双筒仪器对测试的液体用量有严格要求,必须用量筒量取)。在转子浸入液体的过程中往往带有气泡,在转子旋转后一段时间大部分会上浮消失,附在转子下部的气泡有时无法消除,气泡的存在会给测量数据带来较大的偏差,所以倾斜缓慢地浸入转子是一个有效的办法。 七、转子的清洗。测量用的转子(包括外筒)要清洁无污物,一般要在测量后及时

木薯淀粉生产工艺及其特性

木薯淀粉主要用作食品、制糖、医药、饲料、纺织、造纸、化工等工业部门的原料。 木薯淀粉生产过程,是物理分离过程,即是将木薯原料中的淀粉与纤维素、白、无机等其它物质分开。在生产过程中,根椐淀粉不溶于冷水和比重大于水的性质,用水及专用机械设备,将淀粉从水的悬浮液中分离出来,从而达到回收淀粉的目的。其生产工艺流程分为输送、清洗、碎解、浸渍、筛分、漂白、除砂、分离、脱水、干澡、风冷、包装等工序。 2 原料 木薯淀粉的原料包括鲜木薯和木薯干片,它们是生产的主要物质,必须确保质量,要求鲜木薯新鲜,当天采购,当天进厂,当天加工,无泥、沙、根、须、木质部分及其它杂质混入;木薯干片要求干爽、不霉、不变质、无虫蛀。 鲜木薯的平均成分如下: 淀粉 27% 纤维素 4% 蛋白质 1% 其它 3% 水分 65% 木薯干片的平均成分为: 淀粉 68% 纤维素 8% 蛋白质 3%

水分 13% 由于木薯品种、采收时间、自然条件、生产水来不同,原料的淀粉含量有所差异。 3 辅料(加工木薯干片淀粉用) 硫酸 2KG/T淀粉 漂白粉 0.5kg/t淀粉 高锰酸钾 0.1kg/t淀粉 4 工艺路线 木薯淀粉的湿法加工工艺,包括滚筒清洗、二次碎解、浓浆筛分、逆流洗涤、氧化还原法漂白 (以新鲜木薯为原料才需漂白)、旋流除砂、浓浆分离、溢浆法脱水、一级负压脉冲气流干燥。 5 工艺流程 6 主要工艺过程 (1)原料准备 原料是生产的物质基础,原料的质量直接关系到产品的质量。木薯淀粉厂的原料有鲜木薯和木薯 干片两种。 鲜木薯采收后,应及时除去泥土、根、须及木质部分、堆放在干净的地面,避免混入铁块、铁钉、石头、木头等杂物,要求当天采收,当天进厂、当天加工,以保证原料的新鲜度,从而提高抽提 率及产品的质量。 木薯干片应干爽,不霉,不变质,无虫蛀,以保证产品质量。

变性淀粉理化性质

变性淀粉的理化性质 淀粉的可利用性取决于淀粉颗粒的结构和淀粉中直链淀粉和支链淀粉的含量,不同种类的淀 粉其分子结构和直链淀粉、支链淀粉的含量不相同。直链淀粉和支链淀粉在若干性质方面存在很大差异,直链淀粉与碘能形成螺旋络合结构,呈现深蓝色,支链淀粉与碘液呈现紫红色,故常用碘液鉴定淀粉。因此,不同来源的淀粉原料具有不同的可利用性。如薯类淀粉,颗粒大而松,易让水分子进去,糊化温度低,峰黏高,分子量大且直链淀粉少,不易分子重排,另外含有0·07% ~0·09%的磷,析水性强,不易回生。谷类淀粉,颗粒小而紧,水分子难进入,糊化温度高,峰黏低,分子小且直链淀粉多,易重排;另外还含有脂肪,直链淀粉与脂肪结合不易吸收,故易胶凝回生,透明性差。天然淀粉在广泛采用新工艺、新设备的现代工业生产中应用是有限的,大多数的天然淀粉都不具备能被有效的、很好的利用性能,因此在保持原淀粉基本性质的基 础上,变性淀粉具有了以下性质:如1)具有了耐酸性;2)耐热性;3)抗剪切等性能。这些性能都使得变性淀粉更适应现代生产工艺的要求。淀粉糊化后具有增稠、凝胶、粘合、成膜及其它功能,不同品种淀粉的特性存在着差别。表1列出各类淀粉的性能,并对其进行比较。这些都是影响淀粉应用的特性。

马铃薯、木薯淀粉、玉米和小麦淀粉糊化后,其黏度存在很大差别(如图1所示)。马铃薯、木薯淀粉较玉米、小麦淀粉易糊化,在较低温度开始糊化,黏度上升快,达到最高值,继续搅拌受热,黏度快速降低,在95℃继续保温1 h,黏度缓慢降低,继续降温至50℃,黏度有所回升;相反玉米、小麦淀粉较难糊化,在降温过程中黏度出现最大峰值,这也说明玉米、小麦淀粉的凝沉性要强于马铃薯和木薯淀粉[2]。

板栗质量标准

?板栗质量等级(GB/T 20346--2008) ?前言 本标准的附录A为规范性附录。 本标准由国家林业局提出并归口。 本标准起草单位:河北省农林科学院昌黎果树研究所、河北省林业局、中国科学院南京植物所、北京农学院、中国标准化研究院。 本标准主要起草人:孔德军、刘庆香、王广鹏、封新国、侯聚敏、柳鎏、秦岭、席兴军。 板栗质量等级 1范围 本标准规定了板栗质量等级、检验方法、检验规则、包装、标志、运输和贮藏。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注明日期的引用文件,其最新版本适用于本标准。 GB/T 191—2008 包装储运图示标志 GB/T 5009.9 食品中淀粉的测定方法 GB/T 6194 水果、蔬菜可溶性糖测定法 GB/T 8855 新鲜水果和蔬菜取样方法 GB/T 10362—1989 玉米水分测定法 LY/T 1674—2006 板栗贮藏保鲜技术规程 LS/T 3801—1987 粮食包装麻袋 3术语和定义 下列术语和定义适用于本标准。 3.1 采收成熟度 ripe level 栗苞在树上自然开裂,坚果丰满并具有本品种成熟时应有的色泽、风味等性状。 3.2 杂质 impurity 产品中出现的对人体健康有害的或不应有之物,如沙粒、土块、毛发等。 3.3 异常气味 off flavor 除板栗特有香味外的气味和味道。 3.4

炒食型 stir-frying species 适合用于炒食用品种,一般具有肉质细糯、含糖量较高、风味香甜,果皮深褐色,茸毛少的特点。 3.5 菜用型 stewing species 适合用于菜用品种,一般具有肉质偏粗粳、含糖量较低,果皮茸毛较多的 特点。 3.6 整齐度 uniformity 板栗坚果大小的均匀一致程度。 3.7 缺陷容许度 tolerance of defect fruit 同一检验批次的板栗中,缺陷果允许存在的最大限度,用缺陷坚果个数占坚果总个数的百分比表示。 3.8 霉烂果 decay nut 遭受病原菌的侵染,导致细胞分离、果皮变黑,部分或全部丧失食用价值的坚果。 3.9 虫蛀果 pests nut 遭受虫害侵蚀而影响感官或理化质量,部分或全部丧失食用价值的坚果。 3.10 风干果 air-drying nut 由于风干失水,果仁干缩并与果皮分离的坚果。 3.11 裂嘴果 top cracking nut 自然生长条件下果皮开裂或由于机械损伤等外力而导致果皮破损的坚果。 3.12 淀粉糊化温度 gelatinization degree 淀粉在一定温度溶液中实现糊化时的临界温度,板栗口感质量(糯性)的量化指标。 4板栗质量等级 4.1 基本要求 具有本品种达到采收成熟度时的基本特征(果皮颜色、光泽等),果形良好,果面洁净,无杂质,无异常气味。 4.2 感官指标

品氏粘度计使用步骤

品氏粘度计 一、毛细管法测定黏度原理 溶胶黏度的测试对用溶胶一凝胶法制备薄膜和杂化材料等具有十分显着的影响,例如制备薄膜时,需要溶胶黏度的在(2~5)×10_3Pa·S之间,否则不能获得均匀的薄膜。而制备纤维时,则需要溶胶的黏度在0.1~l00Pa·S之间才能拉丝,否则容易断裂或者不能拉丝。 毛细管黏度计实验室中测定液体、溶液或胶体溶液的黏度时,用毛细管黏度计最方便。从物理学知道,毛细管黏度计的基本公式是Poiseuille公式 式中,r、l分别为毛细管的半径和长度;v为在t秒内液体所流过的毛细管体积;p为毛细管两端的压力差。据此式可以测出液体的黏度。但液体黏度的绝对值不易测定,一般都用已知黏度的液体测出黏度计的毛细管常数,然后令待测液体在相同条件下流过同一支毛细管。因为同一毛细管的r、l、v一定,故液体在毛细管中的流动仅受压力差的影响,在此处压力差即为重力,即p=ghp,故可据下式求出待测液体的黏度 式中,、、分别为标准液体(如纯水、纯苯等,其黏度已知)的黏度、密度和流过一定体积毛细管所经过的时间。、、为待测液体的黏度、密度和流过同一体积毛细管所经过的时间。若溶液很稀,则,这时 所以,只要测出标准液体(已知)和待测液体的流经时间,便可据式(12—3)算出待测液体的黏度。常常用做标准液体的水在20℃时其黏度分别为 二、使用步骤/方法 1、将粘度计用洗液和蒸馏水洗干净,然后烘干备用。(使用前必需将粘度计洗净, 一般先用能溶解粘度计内残留物的溶剂(盐酸)反复洗涤,再用自来水冲洗,蒸馏水冲一下,放入烘箱,升温至150℃左右即可) 2、调节恒温槽至(25.0±0.1)℃。

3、用移液管取一定量(10ml)待测液放入粘度计中,然后把粘度计垂直固定 在恒温槽中,恒温5min~10min。 4、用打气球接于D管并堵塞2管,向管内打气。待液体上升至C球的2/3处,停止打气,打开管口2。利用秒表测定液体流经两刻度间所需的时间。 重复同样操作,测定5次,要求各次的时间相差不超过0.3s,取其平均值。 5、将粘度计中的待测液倾入回收瓶中,用热风吹干。再用移液管取10mL蒸馏水放入粘度计中,与前述步聚相同,测定蒸馏水流经m1至m2所需的时间,重复同样操作,要求同前。 二、装油:(除乌氏直接从精管子倒入外) 用带有小嘴的橡皮球(洗耳球)或注射器连结精管子上小玻璃管,左手拿着粘度计,并用食指堵 住粗管子口,将粘度计倒过来,把有毛细管的长玻璃管伸入样品内,拉动注射器,把样品吸到第二个 圈线(使液面与圈线相切),然后竖起来即可。逆流装好后,用夹子夹紧乳胶管,套在吸样品的管子上。 三、恒温及调垂直: 把装好样品的粘度计放到恒温槽架子上(夹子上),把毛细管左、右、前、后调垂直,在测定温 度下恒温10分钟,开始测定,记下第一到第二圈间流出时间,一般进行三次(去掉不正常数)取平 均数。

实验二--乌氏粘度计测定聚合物的特性粘度

实验二--乌氏粘度计测定聚合物的特性粘度

实验二乌氏粘度计测定聚合物的特性粘度 一、实验目的 粘度法是测定聚合物分子量的相对方法,此法设备简单,操作方便,且具有较好的精确度,因而在聚合物的生产和研究中得到十分广泛的应用。 通过本实验要求掌握粘度法测定高聚物分子量的基本原理、操作技术和数据处理方法。 二、实验原理 分子量是表征化合物特征的基本参数之一。但高聚物分子量大小不一,参差不齐,一般在103~107之间,所以通常所测高聚物的分子量是平均分子量。测定高聚分子量的方法很多,本实验采用粘度法测定高聚物分子量。 高聚物在稀溶液中的粘度,主要反映了液体在流动时存在着内摩擦。在测高聚物溶液粘度求分子量时,常用到下面一些名词。 如果高聚物分子的分子量愈大,则它与溶剂间的接触表面也愈大,摩擦就大,表现出的特性粘度也大。特性粘度和分子量之间的经验关系式为: 式中,M 为粘均分子量;K为比例常数;alpha是与分子形状有关的经验参数。K和alpha值与温度、聚合物、溶剂性质有关,也和分子量大小有关。K 值受温度的影响较明显,而alpha值主要取决于高分子线团在某温度下,某溶剂中舒展的程度,其数值解与0.5~1 之间。K 与alpha 的数值可通过其他绝对方法确定,例如渗透压法、光散射法等,从粘度法只能测定[η]。 在无限稀释条件下 因此我们获得[η]的方法有二种;一种是以ηsp/C对C 作图,外推到C→0 的截距值;另一种是以lnηr/C对C作图,也外推到C→0 的截距,两根线会合于一点。方程为:

测定粘度的方法主要有毛细管法、转筒法和落球法。在测定高聚物分子的特性粘度时,以毛细管流出发的粘度计最为方便若液体在毛细管粘度计中,因重力作用流出时,可通过泊肃叶公式计算粘度。 (m=1)。 对于某一只指定的粘度计而言,(4)可以写成下式 省略忽略相关值,可写成: 式中,t 为溶液的流出时间;t0为纯溶剂的流出时间。 可以通过溶剂和溶液在毛细管中的流出时间,从(6)式求得ηr,再由图求得[η]。 三、实验主要仪器设备和材料 主要仪器:恒温玻璃水浴(包括电加热器、电动搅拌器、温度计、感 温元件和温度控制仪)、三管乌式粘度计、秒表、洗 耳球、 250ml 三角烧瓶、20ml移液管、40 ml砂芯 漏斗 主要原料:溶剂(分析纯)和聚合物自选 四、实验方法、步骤及结果测试 1. 试样准备: 按溶剂选择原则选择待测高聚物的溶剂。从手册查所选高聚物/溶剂对在特定温度下Mark-Houwink方程中的K和α值。 预先在容量瓶内配制精确体积的溶液。浓度选择要使溶液和纯溶剂流经乌氏粘度计上两刻度线之间C球的时间比约为1.2~2.0。 2. 温度调节:

淀粉糖的种类

淀粉糖的种类、特性和制造工艺 淀粉糖是以淀粉为原料,通过酸或酶的催化水解反应生产的糖品的总称,是淀粉深加工的主要产品。在美国,淀粉糖年产量已达1 000万t,占玉米深加工总量的60%,从20世纪80年代中期开始,美国国内淀粉糖消费量已超过蔗糖。我国淀粉糖工业目前仍处于发展的起步阶段,从20世纪90年代以来,由于现代生物工程技术的应用,生产淀粉糖所用酶制剂品种的增加及质量的提高,使淀粉糖行业得到快速发展,产量以年均10%的速度增长,而且品种也日益增加,形成了各种不同甜度及功能的麦芽糊精、葡萄糖、麦芽糖、功能性糖及糖醇等几大系列的淀粉糖产品。 淀粉糖的原料是淀粉,任何含淀粉的农作物,如玉米、大米、木薯等均可用来生产淀粉糖,生产不受地区和季节的限制。淀粉糖在口感、功能性上比蔗糖更能适应不同消费者的需要,并可改善食品的品质和加工性能,如低聚异麦芽糖可以增殖双歧杆菌、防龋齿;麦芽糖浆、淀粉糖浆在糖果、蜜饯制造中代替部分蔗糖可防止“返砂”、“发烊”等,这些都是蔗糖无可比拟的。因此,淀粉糖具有很好的发展前景。 第一节淀粉糖的种类及特性 一、淀粉糖的种类 淀粉糖种类按成分组成来分大致可分为液体葡萄糖、结晶葡萄糖(全糖)、麦芽糖浆(饴糖、高麦芽糖浆、麦芽糖)、麦芽糊精、麦芽低聚糖、果葡糖浆等。 1 液体葡萄糖:是控制淀粉适度水解得到的以葡萄糖、麦芽糖以及麦芽低聚糖组成的混合糖浆,葡萄糖和麦芽糖均属于还原性较强的糖,淀粉水解程度越大,葡萄糖等含量越高,还原性越强。淀粉糖工业上常用葡萄糖值(dextrose equivalent)简称DE值(糖化液中还原性糖全部当做葡萄糖计算,占干物质的百分率称葡萄糖值)来表示淀粉水解的程度。液体葡萄糖按转化程度可分为高、中、低3大类。工业上产量最大、应用最广的中等转化糖浆,其

木薯淀粉的理化性质

木薯淀粉的理化性质 淀粉是绿色植物通过光合作用合成的,它储存于植物的种子、块茎和块根中。植物所含淀粉的多少与品种、生长周期、繁殖与种植方法、收获方法、抗病抗灾性能、日照的时间与强度、环境的温度与湿度、降水量、地形和土壤条件等因素有密切的关系。在稻、麦、玉米、高粱的种子颗粒中含有70%左右的淀粉,在马铃薯的块茎中含有18%左右的淀粉,在木薯的块根中含有25%左右的淀粉。我们就是利用这些含淀粉高的种子、块茎、块根作为原料来生产淀粉。 淀粉是可再生资源,也是产量仅次于纤维素的第二大可再生资源。它取之不尽,用之不竭,是人类赖以生存和发展的最基本和最重要的资源。 为区别淀粉品种,一般加用原料名称,如玉米淀粉、木薯淀粉、马铃薯淀粉、甘薯淀粉、小麦淀粉等等。 木薯淀粉玉米淀粉、马铃薯淀粉、小麦淀粉等一样,都是重要的工业原料,用途极其广泛。 一、木薯淀粉的化学组成和结构 淀粉主要由碳、氢、氧三种元素组成。淀粉是在水介质中光合作用合成,即植物的绿叶以叶绿素为催化剂,通过将二氧化碳和水合成为葡萄糖,其反应式为: 日光 ↓ 6CO2+6H2O ─→ C6H12O6+6O2 ↑ 叶绿素 燃烧 ↓ (C6H10O5)n+6nO2 ─→ 5nH2O+6nCO2+Q(热) ↑ △ 木薯淀粉为多聚葡萄糖,属于碳水化合物中的多糖类。多糖类又叫高聚糖,是许多单糖的聚合物,即许多葡萄糖分子连接起来成为淀粉分子。工业生产葡萄糖就是以淀粉作原料,将聚合状态的葡萄糖经水解转变成为游离状态的葡萄糖。这个反应过程称为“糖化”,其反应式如下: 酸或酶

直链淀粉是由葡萄糖单位通过α××105。此值相当于分子中有200-980个葡萄糖单位。木薯淀粉的直链淀粉,其含量(干基)为17%,平均聚合度为2600,平均聚合度质量为6700,表现的聚合度分布为580-2200。 支链淀粉具有高度分支结构,由线型直链淀粉短链组成,其分子较直链淀粉大,相对分子

旋转粘度计的使用和维护

旋转粘度计的使用和维护 旋转粘度计广泛应用于测定油脂、油漆、涂料、塑料、食品、药物、胶粘剂等各种流体的动力粘度。该仪器结构简单、价格便宜、方便实用,因而广受欢迎。在长期从事该类仪器的检定过程中我们发现许多用户,特别是中小企业的测试人员在使用过程中存在许多问题,往往我们检定的仪器性能优于国家计量检定规程的要求,但是用户在测试样品时数据偏差很大。现就如何正确使用该类仪器获得准确可靠的测量结果分析如下。 首先,简单介绍一下该类仪器的测量原理: 旋转粘度计开机后先要检测零位,这一操作一般在不安装转子的情况下进行,然后在半径R 1的外筒里同轴地安装半径R2的内筒,其间充满了粘性流体,同步电机以稳定的速度旋转,接连刻度圆盘,再通过游丝和转轴带动内筒(即转子)旋转, 内筒(即转子)即受到基于流体的粘性力矩的作用,作用越大, 则游丝与之相抗衡而产生的扭矩也越大,于是指针在刻度盘上指示的刻度也就越大。将读数乘以特定的系数即得到液体的动力粘度。 根据其测量原理,为了获得准确可靠的测量数据必须注意以下几点: 一、仪器的性能指标必须满足国家计量检定规程度要求。使用中的仪器要进行周期检定,必要时(仪器使用频繁或处于合格临界状态)要进行中间自查以确定其计量性能合格,系数误差在允许范围内,否则无法获得准确数据。 二、特别注意被测液体的温度。许多用户忽视这一点,认为温度差一点无所谓,我们的实验证明:当温度偏差0.5℃时,有些液体粘度值偏差超过5% ,温度偏差对粘度影响很大,温度升高, 粘度下降。所以要特别注意将被测液体的温度恒定在规定的温度点附近,对精确测量最好不要超过0.1℃。 三、测量容器(外筒)的选择。对于双筒旋转粘度计要仔细阅读仪器说明书,不同的转子(内筒)匹配相应的外筒, 否则测量结果会偏差巨大。对于单一圆筒旋转粘度计,原理上要求外筒半径无限大,实际测量时要求外筒即测量容器的内径不低于某一尺寸。例如上海天平仪器厂生

动力粘度&特性粘度

动力粘度&特性粘度 动力粘度 定义:面积各为1m2并相距1m的两层流体,以1m/s的速度作相对运动时所产生的内摩擦力。单位:N?s/㎡(牛顿秒每米方)既Pa?S(帕?秒)。度量流体粘性大小的物理量,记为μ。 粘度数值上等于单位速度梯度下流体所受的剪应力。速度梯度也表示流体运动中的角变形率,故粘度也表示剪应力与角变形率之间比值关系。按国际单位制,粘度的单位为帕·秒。有时也用泊或厘泊(1泊=10-1帕·秒,1厘泊=10-2泊)。粘度是流体的一种属性,不同流体的粘度数值不同。同种流体的粘度显著地与温度有关,而与压强几乎无关。气体的粘度随温度升高而增大,液体则减小。粘度可通过实验求得,也可用粘度计测量。在流体力学的许多公式中,粘度常与密度ρ以μ/ρ的组合形式出现,故定义v=μ/ρ,由于v的单位米2/秒中只有运动学单位,故称运动粘度。 对于牛顿流体,剪切应力与剪切速率之比为常数,称为牛顿粘度,对于非牛顿流体,剪切应力与剪切速率之比随剪切应力而变化,所得的粘度称在相应剪切应力下的“表观粘度”,塑料属于后一种情况。 测定仪器:旋转流变仪、毛细管流变仪 特性粘度 定义:高聚物溶液的浓度较稀时,其相对粘度的对数值与高聚物溶液质量浓度的比值,即为该高聚物的特性粘度。特性粘度(intrinsic viscosity )的定义是当高聚物溶液浓度趋于零时的“比浓粘度”(ηsp/c)或比浓对数相对粘度(lnηr/c ),即:limc→0 ηsp/c=l nηr/c=[η] 特性粘度的量值取决于高聚物的相对分子质量和结构、溶液的温度和溶剂的特性,当温度和溶剂一定时,对于同种高聚物而言,其特性粘数就仅与其相对分子质量有关。因此,如果能建立相对分子质量与特性粘数之间的定量关系,就可以通过特性粘数的测定得到高聚物的相对分子质量。 当溶剂和温度一定时,分子结构相同的高聚物,其相对分子质量与特性粘数之间的关系可以用Mark-Houwinkxw 方程来确定,即:[η]=kM a 测定仪器:乌氏粘度计、毛细管粘度计

板栗生理特性

板栗生理特性 孙兴志 板栗别名栗子,毛栗与桃、杏、李、枣并称“五果”。栗是山毛榉科栗属中的乔木或灌木总称,大约有7~9种,原生于北半球温带地区,大部分种类栗树都是20~40米高的落叶乔木,只有少数是灌木。各种栗树都结可以食用的坚果,单叶,椭圆或长椭圆状,10~30厘米长,4~10厘米宽,边缘有刺毛状齿。雌雄同株,雄花为直立柔荑花序,雌花单独或数朵生于总苞内。坚果包藏在密生尖刺的总苞内,总苞直径为5~11厘米,一个总苞内有1~7个坚果。 美洲栗原来是美国东部的主要树种,但被一种真菌病传染几乎灭绝,欧洲和西亚的栗书树种类也容易受感染,但中国和日本的栗树种类对这种真菌有抵抗力,所以现在被美国引种,培养能抗真菌的杂交树种。 本属植物分布于北半球的亚洲、欧洲、美洲和非洲。其中主要栽培种还有欧洲栗和日本栗。板栗是中国栽培最早的果树之一,已约有2000~3000年的栽培历史。叶披针形或长圆形,叶缘有锯齿。花单性,雌雄同株;雄花为葇荑花序,成熟后总苞裂开,栗果脱落。坚果紫褐色,被黄褐色茸毛,或近光滑,果肉淡黄。果实含糖、淀粉、蛋白质、脂肪及多种维生素、矿物质。

中国的板栗品种大体可分北方栗和南方栗两大类:北方栗坚果较小,果肉糯性,适于炒食,著名的品种有明栗、尖顶油栗、明拣栗等。南方栗坚果较大,果肉偏粳性,适宜于菜用。树性强健。根系发达,有菌根共生。较抗旱,耐瘠薄,宜于山地栽培。适合偏酸性土壤。实生播种或嫁接繁殖。木材致密坚硬、耐湿。枝、树皮和总苞含单宁,可提取栲胶。 板栗多生于低山丘陵缓坡及河滩地带,喜光,光照不足引起枝条枯死或不结果。对土壤要求不严,喜肥沃温润、排水良好的砂质或磔质壤土,对有害气体抗性强。忌积水,忌土壤粘重。深根性,根据系发达,萌芽力强,耐修剪,虫害较多。另外,其品种不同品种耐寒、耐旱。寿命长达300年以上。 板栗枝叶茂密,树荫浓郁,树冠丰满。宜用作庭荫树,2、3株丛植,可配臵在建筑的阴面,常群植片林用作常绿基调树种,有幽邃深山之效果。在工矿区绿化可作隔音、防风、防火林或作高墙绿篱,宜在风景区与色叶树种配臵组成风景林。 【板栗种植技术】 板栗对气候土壤条件的适应范围较为广泛。其适宜的年平均气温为lO.5~21.8℃,温度过高,冬眠不足,生长发育不良,气温过低则易遭受冻害。板栗既喜欢墒情潮

2. 特性黏度检测公式

聚乳酸分子量检测公式一、PL PD特性粘度、分子量测试公式 ==-1 Iv=式中: ηr——相对黏度,无量纲; t ——聚合物溶液的流出时间,s; t0 ——溶剂的流出时间,s; ηsp——增比黏度,无量纲; Iv ——特性黏度,dL/g; C ——聚合物溶液的浓度,g/ dL。 分子量计算公式:Mv0.73=[Iv]/(5.45×10-4)。二、PDL特性粘度、分子量测试公式 ==-1 Iv=式中: ηr——相对黏度,无量纲; t ——聚合物溶液的流出时间,s; t0 ——溶剂的流出时间,s;

ηsp——增比黏度,无量纲; Iv ——特性黏度,dL/g; C ——聚合物溶液的浓度,g/ dL。 分子量计算公式:Mv0.77=[Iv]/(2.21×10-4)。 三、PCL特性粘度、分子量测试公式 特性粘度测试(0.4万~81万)采用《中国药典》2010年版二部,乌氏粘度计法,称量25±0.5mg的产品,放入到25ml容量瓶中,配成氯仿溶液,过滤后测 试。溶剂为CHCl3,水浴温度30℃,一点法得特性粘度[η]。= =-1 Iv=式中:ηr——相对黏度,无量纲;t——聚合物溶液的流出时间,s;t0——溶剂的流出时间,s;ηsp——增比黏度,无量纲;Iv——特性黏度,dL/g;C——聚合物溶液的浓度,g/ dL。结果计算: 质量(mg)T0(S)(S)IV(dL/g)Mv(万)平均: ==-1 Iv= 式中: ηr——相对黏度,无量纲; t ——聚合物溶液的流出时间,s; t ——溶剂的流出时间,s; ηsp——增比黏度,无量纲; Iv ——特性黏度,dL/g; C ——聚合物溶液的浓度,g/ dL。 分子量计算公式:Mv0.828=[Iv]/(1.298×10-4)。

板栗的品种及特性

板栗的品种及特性 一、概述 板栗原产我国,栽培历史悠久,品种资源丰富,分布地域辽阔。据不完全统计,1996年全国板栗面积111万hm平方米,年产板栗2.5亿kg。南起海南岛(北纬18°30’),北至辽宁的凤城(北纬40°31’)和吉林的集安(北纬41°20’),全国25个省(市、自治区)均有分布。重点产区为燕山、沂蒙山、秦岭和大别山等山区及云贵高原,其中山东、湖北、河南、河北四省的产量占全国产量的60%左右。低海拔分布区如河北省昌黎、山东省郯城、江苏省新沂在50m以下。高海拔区如云南省的维西达2800m,一般分布在300-500m之间。 板栗为坚果,营养丰富,淀粉含量56%—72%,蛋白质含量5.7%-10.7%,脂肪含量2%—7.4%,并含有较多的维生素等。既可生食、炒食和煮食,又能制成香甜的糕点、糖果等。不仅是内销的高档果品,而且也是创汇率高的传统出口产品。 我国板栗的产量和品质,在世界食用栗中居首位。世界主要四种食用栗中,欧洲栗、美洲栗、日本栗和我国板栗相比,其产量欧洲栗最多,约占世界总产量的50%,我国板栗的产量仅为欧洲栗产量的1/5。然而,我国板栗坚果的品质

却居世界食用栗首位。栗果形状玲珑秀美。风味香甜可口,为世界各国一致称道。尤其板栗坚果涩皮易剥离,适宜加工的独特性状,更为世人珍视,在国际市场上被誉为“东方珍珠”。由于板栗在国际市场畅销,售价较高。近年来我国板栗发展迅速,总量跃居世界各产栗国之首。板栗是我国出口换汇的重要外贸商品,外销日本、新加坡、菲律宾、韩国、泰国等国家和香港地区。而以日本购买量最大,占总外销量的80%以上。目前我国板栗年外销量约达3万吨。从世界干果消费预测来看,在国际市场上进一步拓展板栗贸易的前景十分广阔. 二、主要品种及特性 主要栽培品种板栗的品种类型多达300余以上。按其分布区域,基本上可划分为两大品种群,即北方品种群(华北地方品种群)和南方品种群(长江流域地方品种群)。此外还有丹东栗品种群(属日本栗系统)及一些矮生野板栗。现将主要栽培品种介绍如下: 华丰山东省果树研究所从野杂12(野板栗×板栗)×板栗的杂交后代中选育的新品种。树冠较开张,呈圆头形。总苞椭圆形,重40g左右,平均含坚果个,单粒重8g左右,出实率56%。9月中旬成熟。坚果大小整齐、美观,果肉细糯香甜,含水%,糖%,淀粉%,脂肪%,蛋白质%。适于炒食,耐贮藏。幼树生长旺盛,雌花形成容易,1—2年生苗定植后

粘度流体特性与流动特性

牛顿液体的流动特性与流体特性 流动特性 在涂料领域,以及生产液体或非固体材料的许多其他工业中,新兴快速发展的市场和需求已经导致新的创新产品的发展。 因此,这些产品目前很多都采用了复杂配方的原料和工艺生产,使品质越来越好。鉴于此,在需要考虑的许多重要材料特性当中,粘度的控制变得更加复杂。 为满足这一严格的生产要求和连续取得这样的高性能产品,在研发、生产和质量管理使用高度精确的测试技术是绝对必要的。所以,粘度检测的需求催生了粘度杯等产品的诞生,而由于粘度杯的价格相对于粘度计仪器便宜许多,所以许多粘度检测都使用粘度杯进行。 流体特性 在流变科学方面,粘度测量在理解材料的流动特性及其对一些外加应力的反应起了关键作用。参考基本的牛顿模型,当剪切力作用于一个流体时,流体发生变形,因此材料层根据与所加力有关的速度梯级发生移动。因此,粘度就是剪切力与剪切速度的关系,这取决于产品的性质。 符合牛顿力学性质与不符合牛顿力学性质的流体“牛顿”的产品的粘度,例如水和某些油,在给定的温度下是恒定的,不管是否施加了剪切力,而“不符合牛顿力学性质”的产品在施加的剪切力发生变化时由显示其粘度发生变化。 这一属性可在变形造成粘度降低的地方导致稀释效应,或相应地在粘度增加的地方厚度也增加。

因为某些产品是依靠剪切力的,当处理粘度测量时须考虑流体特性。SHEEN粘度杯是专门设计来检测此类流体的,而且经过不断改良,SHEEN粘度杯比一般国产粘度杯要精准耐用。 触变性和抗流变性实际上,大多数现代涂料系统或类似产品在某种程度上都显示与剪切作用有关的粘度下降,这一特性通常是期望具有的,例如当摇晃、应用或喷射这些材料的时候。 缺乏对这一特性的控制可引起不良的效应,例如性能不一致,平整度不良或下陷。 通常遇到的依靠剪切的流体包括假塑性,塑性或触变行为。 在改变剪切后一段时期,根据他们的最初溶胶凝胶外形,很多产品的结构性能把他们的粘度降低到不同的平衡值,并在剪切行为停止时,恢复到它们原先的值。当施加足够的力时,一些其他产品可超出它们的屈服值流动。 相反对于抗流变效应,该效应在剪切作用下显示粘度增加,这一性质偶尔应用于一些工艺程序中,例如磨碎,或分散。 本文来自南北潮仪器商城

木薯淀粉的理化性质定稿版

木薯淀粉的理化性质 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

木薯淀粉的理化性质 淀粉是绿色植物通过光合作用合成的,它储存于植物的种子、块茎和块根中。植物所含淀粉的多少与品种、生长周期、繁殖与种植方法、收获方法、抗病抗灾性能、日照的时间与强度、环境的温度与湿度、降水量、地形和土壤条件等因素有密切的关系。在稻、麦、玉米、高粱的种子颗粒中含有70%左右的淀粉,在马铃薯的块茎中含有18%左右的淀粉,在木薯的块根中含有25%左右的淀粉。我们就是利用这些含淀粉高的种子、块茎、块根作为原料来生产淀粉。 淀粉是可再生资源,也是产量仅次于纤维素的第二大可再生资源。它取之不尽,用之不竭,是人类赖以生存和发展的最基本和最重要的资源。 为区别淀粉品种,一般加用原料名称,如玉米淀粉、木薯淀粉、马铃薯淀粉、甘薯淀粉、小麦淀粉等等。 木薯淀粉玉米淀粉、马铃薯淀粉、小麦淀粉等一样,都是重要的工业原料,用途极其广泛。 一、木薯淀粉的化学组成和结构 淀粉主要由碳、氢、氧三种元素组成。淀粉是在水介质中光合作用合成,即植物的绿叶以叶绿素为催化剂,通过将二氧化碳和水合成为葡萄糖,其反应式为: 日光 ↓ 6CO2+6H2O ─→ C6H12O6+6O2

↑ 叶绿素 葡萄糖又经一系列的生物化学反应,最后生成淀粉、纤维素等多聚糖。淀粉的分子式为(C6H10O5)n,光合作用分子量是n(162.14)。n是一个不定数,表示淀粉分子是由许多个葡萄糖单位组成。组成淀粉分子的葡萄糖单位数量称为聚合度,聚合度乘以葡萄糖单位分子量162.14便得淀粉分子量〔为了与游离葡萄糖(C6H12O6)区别,通常称 (C6H10O5)为葡萄糖单位〕。在组成淀粉的元素中,碳占44.5%,氢占6.2%,氧占 49.3%。干淀粉燃烧生成二氧化碳和水,并放出大量的热,其反应式为: 燃烧 ↓ (C6H10O5)n+6nO2 ─→ 5nH2O+6nCO2+Q(热) ↑ △ 木薯淀粉为多聚葡萄糖,属于碳水化合物中的多糖类。多糖类又叫高聚糖,是许多单糖的聚合物,即许多葡萄糖分子连接起来成为淀粉分子。工业生产葡萄糖就是以淀粉作原料,将聚合状态的葡萄糖经水解转变成为游离状态的葡萄糖。这个反应过程称为“糖化”,其反应式如下: 酸或酶

板栗淀粉的理化特性

板栗淀粉的理化特性 板栗淀粉的相对密度低于玉米淀粉和马铃薯淀粉,板栗淀粉的白度介于两者之间,板栗淀粉的晶型属于C型,板栗淀粉的玻璃化转变温度为147.7℃。板栗淀粉在蒸馏水中的沉降速度很慢,而在pH4的酸性条件下的沉降速度很快,加酸对板栗淀粉的沉降速度影响很 大。 粘度:板栗淀粉RVA粘度曲线表明:板栗淀粉的峰值粘度介于马铃薯淀粉和玉米淀粉之间,板栗淀粉开始糊化的温度为75.9℃。板栗淀粉糊随着浓度的增加其峰值粘度衰减最终粘度逐度增加。 板栗淀粉糊冷却时,粘度继续上升,说明板栗淀粉较难糊化,冷却到55℃,粘度维持不变,表示板栗淀粉糊粘度较稳定。板栗淀粉糊的粘度比玉米和小麦淀粉高,而比薯类淀粉低。①在相同温度条件下,随着淀粉浓度的增加,淀粉糊粘度升高,这是因为板栗淀粉含量增加,使部分淀粉分子相互结合聚合度增加。板栗淀粉的粘度随温度升高而降低,因为溶液温度升高,促进分子运动,提高了分子间的相互作用,增大了液体的体积,使每一分子平均占有体积增大,从而使液体的粘度下降。②pH值对板栗淀粉粘度有一定的影响,在酸性条件下,随pH值的增大,板栗淀粉糊的粘度升高,但在碱性条件下,pH值对板栗淀粉糊的粘度影响较小,表明板栗淀粉糊的粘度在碱性条件下较稳定。③蔗糖、NaCL对板栗淀粉糊粘度的影响,在食品加工中,常常需要加入各种添加剂,它们的存在可能会影响到淀粉糊的

粘度,从而影响加工过程和产品的品质,在5%的淀粉乳中分别加入3%的NaCL和10%的蔗糖,糖类的存在使淀粉的粘度增加,而食盐则使淀粉糊的粘度降低,蔗糖分子中有多个羟基,易溶于水,是一种吸水剂。它的存在相对减少了膨胀糊化淀粉颗粒的水分,使淀粉好似在较少的水中糊化,粘度增加;食盐是一种强电解质,在水中会发生电离,产生的离子会影响体系中水分子和淀粉分子之间的相互作用,阻碍淀粉糊化,降低淀粉糊的粘度。 结论 板栗淀粉糊的粘度受浓度、温度、pH值和食品添加剂的影响,一般随淀粉乳浓度的增加而增大;随温度的升高略有下降;随pH值的增大而提高,并且在碱性条件下,糊的粘度比较稳定;常用食品添加剂蔗糖的存在使板栗淀粉糊的粘度增加,而食盐则使板栗淀粉糊的 粘度降低。

几种粘度的定义与区别

特性粘度(dL/g): 定义为当高分子溶液浓度趋于零时的比浓粘度。即表示单个分子对溶液粘度的贡献,是反映高分子特性的粘度,其值不随浓度而变。常以[η]表示。由于特性粘度与高分子的相对分子质量存在着定量的关系,所以常用[η]的数值来求取相对分子质量,或作为分子量的量度。 定义:高聚物溶液的浓度较稀时,其相对粘度的对数值与高聚物溶液质量浓度的比值,即为该高聚物的特性粘度。特性粘度的定义是当高聚物溶液浓度趋于零时的“比浓粘度”(ηsp/c)或比浓对数相对粘度(lnηr/c ),即:limc→0 ηsp/c=lnηr/c=[η] 特性粘度的量值取决于高聚物的相对分子质量和结构、溶液的温度和溶剂的特性,当温度和溶剂一定时,对于同种高聚物而言,其特性粘数就仅与其相对分子质量有关。因此,如果能建立相对分子质量与特性粘数之间的定量关系,就可以通过特性粘数的测定得到高聚物的相对分子质量。 当溶剂和温度一定时,分子结构相同的高聚物,其相对分子质量与特性粘数之间的关系可以用Mark-Houwinkxw 方程来确定,即:[η]=kM a 测定仪器:乌氏粘度计、毛细管粘度计 粘度的度量方法分为绝对粘度和相对粘度两大类。 绝对粘度分为动力粘度和运动粘度两种;相对粘度有恩氏粘度、赛氏粘度和雷氏粘度等几种表示方法。 1、动力粘度Pa?S(帕?秒) 定义:面积各为1m2并相距1m的两层流体,以1m/s的速度作相对运动时所产生的内摩擦力。单位:N?s/㎡(牛顿秒每米方)既Pa?S(帕?秒)。度量流体粘性大小的物理量,记为μ。 粘度数值上等于单位速度梯度下流体所受的剪应力。速度梯度也表示流体运动中的角变形率,故粘度也表示剪应力与角变形率之间比值关系。按国际单位制,粘度的单位为Pa?S(帕?秒)。有时也用泊或厘泊(1泊=10-1帕·秒,1厘泊=10-2泊)。粘度是流体的一种属性,不同流体的粘度数值不同。同种流体的粘度显著地与温度有关,而与压强几乎无关。气体的粘度随温度升高而增大,液体则减小。粘度可通过实验求得,也可用粘度计测量。 对于牛顿流体,剪切应力与剪切速率之比为常数,称为牛顿粘度,对于非牛顿流体,剪切应力与剪切速率之比随剪切应力而变化,所得的粘度称在相应剪切应力下的“表观粘度”,塑料属于后一种情况。 测定仪器:旋转流变仪、毛细管流变仪 2、运动粘度m2/s 在流体力学的许多公式中,粘度常与密度ρ以μ/ρ的组合形式出现,故定义v=μ/ρ,由于v 的单位m2/s中只有运动学单位,故称运动粘度。 3、恩氏粘度 我国的国家标准为石油产品恩氏粘度测定法GB/T266-88。这是一种过去常用的相对粘度,其定义是在规定温度下,200ml液体流经恩氏粘度计所需时间(s),与同体积的蒸馏水在20℃事流经恩氏粘度计所需时间(s)之比称为恩氏粘度。 4、雷氏粘度 此粘度主要在英国和日本沿用。其定义是以50ml试油在规定温度60℃或98.9℃下流过雷氏粘度计所需时间,单位为秒。 5、赛氏通用粘度 美国多习惯用这种粘度单位,其定义是在某规定温度下从赛氏粘度计流出60ml液体所需时间,单位为秒。美国标准方法为ASTM D88

相关主题
文本预览
相关文档 最新文档