当前位置:文档之家› 无钥匙进入系统〔PKE〕方案介绍

无钥匙进入系统〔PKE〕方案介绍

无钥匙进入系统〔PKE〕方案介绍
无钥匙进入系统〔PKE〕方案介绍

#1楼主:PKE方案汇总NXP,NEC,PIC

贴子发表于:2010/2/23 20:36:57

不断增加中,目前有方案:

PIC方案

NEC方案

NXP方案

文章由网上收集而来。

当我们经历过,我们就获得一份财富。当我们记录着每次经历,我们的财富将得到有效的利用。

【添加到收藏夹】[回复][编辑][引用][结贴][管理]

论坛等级: E币:8296(E币换礼)访问E空间

#2 PIC方案介绍

贴子回复于:2010/2/23 20:37:38

智能无线通讯要求自动操作,即不需要使用者按任何按钮,系统可以自己检测或发送信号,100%独立,在不同的环境下可以自学习和自适应,在有噪音的环境下可以排除噪音正常的工作。

上述智能无线通讯系统有很多的要求,第一个要求是体积小、成本低,解决方案用一个智能的单片机来实现,单片机由数字和模拟前端组合成一个芯片;第二个要求是经济的双向通讯,基站命令用125KHz 低频发送,高频响应,用低频发送成本逐渐降低;第三个要求是通讯距离在2米以上,其应答器有高度的输入灵敏度,在3毫伏左右;工作在有噪声的环境下,因为在一般环境下有很多的噪音干扰,所以在设计系统的时候要求有高度的灵敏度非常重要;此外就是消除天线的方向性,因为控制信号不可能一直从一个方向发来,特别是随身携带的单元,发送的方向不可能控制,所以在应答器板上使用三个方向的天线XYZ,不管信号从哪个方面来都可以接收到;再者是对电池寿命的要求,因为有一些电池是用来作汽车里面胎压检测系统的,不可能每6个月打开换电池,所以采用唤醒滤波器以减少电流使用;最后是数据的安全性要求,发送信号加密,收到信号时再解密,使用加密解密的算法有很多,Microchip用Keylock算法。

图1所示是一个智能被动无匙门禁系统,图示系统和普遍使用的系统有相似的地方也有完全不同的地方,左边基站由一个单片机和高频的发送器和低频发送器与接

收器组成,基站发出125KHz的低频命令,当右面的智能接收器收到信号时会处理信号,信号达到一定的要求使用高频或低频作为响应。智能的接收器有3个接

收方向XYZ,不管信号从哪个方向送来都可以接收到这个信号,而且使用者不需要任何的按钮。这样的智能接收器可以自动的接收信号、发送信号和处理信号。

图2所示是PKE应答器原理图,图中的PIC16F639是由PIC16F636和MCP2030构成,其中MCP203 2是模拟前

端,PIC16F636是另外一个单片机,使用PIC16F636和模拟前端组合在一起主要是因为PIC16F636有Keyl ock加密解密的功能,如

果使用者不需加密解密功能则可以使用2030模拟前端和其他的单片机组合。

应用示例

在汽车系统应用中有很多智能应答器的使用,如智能车辆出入系统、引擎防盗锁止系统(如图3所示)和胎压监测系统(TPMS)。

智能PKE应答器不仅适用在汽车里面,也可以应用在其它地方,如车库开门关门、公共停车场,很多汽车如果有智能应答器,汽车靠近停车场时门会自动打开。

胎压检测系统(如图4所示)的显示组主要由三个单位组成:一个在轮胎里面,图中左下角由智能单片机、胎压传感器和高频发送器组成;右角上方是基站,主要

由一个单片机和一个高频的接收器组成;右方下角是低频触发器,一般放在靠近轮胎很近的车身部分,使用时每3或4秒低频触发器会发出一个启动命令给轮胎单

位,轮胎里面的智能单片机收到的信号达到要求时,会告诉胎压传感器去测量轮胎的温度和胎压,然后再由高频发送器把胎压的数据发给基站。

可编程数字唤醒滤波器

使用唤醒滤波器的目的主要是减少工作电流,从而可以延长电池的寿命。一般情况下,数字部分一直保持在睡眠状态,以达到最低的电流使用。而模拟前端不停地寻找输入信号,只有在达到预定的波形也即输入信号达到要求时,模拟前端才会去唤醒滤波器。

智能被动无钥门禁(PKE)系统设计

图5所示为一个具有无电池和后备电池的应答器电路,有些情况下,如果电池接触不好系统会没有电,可以用磁场来短暂的给供电,这样应答器在没有电池的情况下照样可以工作。

系统工作要求是,在应答器方面需要有低频的电线,高频发送器,以及一些系统可选后备电子的电路,此外还要有一个智能的单片机和单片机的部件;基站系统要求有低频发送器、高频接收器、天线、单片机和单片机的固件部分。

双向通讯距离有一些参数,应答器需要天线调谐及Q,天线定位使用三维天线,接收灵敏度,输出信号的调制深度;基站需要输出功率和接收的灵敏度。

天线设计低频普遍是采用125KHz,现在使用LC谐振电路;天线类型使用空心线圈或者铁氧体的磁心,LC的谐振频率和基站的载波频率相同,范围被动标

签在1米左右,主动标签在5米左右。高频率从315MHz到960MHz,最常见的是315MHz和433MHz,使用偶极电线刻在PCB上,范围相对高

得多,被动标签大概在5米左右,主动标签在100米左右。

图6所示为一个磁通量和天线感应电压关系的公式,这里主要是说明在判断感应电压的时候看到很多的因素:比如线圈的匝数、接触器线圈表面积、频率、接收电线和发送天线的角度都会影响到天线感应的电压。

图7所示为一个天线感应电压和距离的关系,大图上显示了基站和接收器靠的很近的时候,信号的电压是200V,小图则显示了距离到3米的时候,电压的信号只有达到5毫伏峰值,可以看出信号输入的灵敏度在这里是非常关键的。

我们可以作一下总结,一个智能无线通讯系统需要可靠的自动操作,具体包括智能的双向通讯、低系统成本、低频输入高灵敏度(这一点比较关键),低功耗以及安全的数据加密和解密,结论是用一个智能的单片机构建系统可以达到所有要求,因此可以作为一个可靠的解决方案。

当我们经历过,我们就获得一份财富。当我们记录着每次经历,我们的财富将得到有效的利用。

[回复][编辑][引用][管理]

论坛等级: E币:8296(E币换礼)访问E空间

#3 NXP方案介绍

贴子回复于:2010/2/23 20:38:32

汽车安全与防盗最初的电子化开始于1994年的引擎防盗(IMMO),恩智浦半导体(当时的飞利浦半导体)作为第一家半导体公司把RFID的电子标签技术

成功的应用于汽车电子引擎锁:通过汽车与钥匙间的125kHz的无线通讯实现电子身份识别,来判断启动汽车引擎。这一技术极大的提高了汽车的安全性,很快

就在欧洲以及北美地区广泛应用,并在短短几年时间内使欧洲的汽车失窃率大幅降低了90%,因而成为整个欧洲的汽车标准配置。

遥控钥匙

(RKE)

的出现为人们带来了很好的用户体验,满足了人们对便利性及舒适性的要求,但由于其射频单向通讯的技术限制,在安全性上有其自身的不足。恩智浦半导体(以下

简称NXP)适时推出的集成方案(Combi)把引擎防盗和遥控钥匙合二为一,用一颗芯片来实现,既提高了系

统的安全性,又降低了整个钥匙的成本,逐渐替

代独立的遥控钥匙成为欧美日市场上的主流方案。当然,在射频通讯上其依然保留单向通讯,安全性并没有本质的提高。

图一

2003,NXP推出了无钥匙系统(PKE

或称PEPS),彻底改变了汽车安防应用领域的发展前景,给用户带来了全新舒适与便利的体验:车主在整个驾车过程中都完全不需要使用钥匙,只需要随身携

带。当车主进入车子附近的有效范围时,车子会自动检测钥匙并进行身份识别,如成功会相应的打开车门或后备箱;当车主进入车内,只需要按引擎启动按钮,车子

会自动检测钥匙的位置,判断钥匙是否在车内,是否在主驾位置,如成功则发动引擎。千万不要小瞧这个看似不起眼的改变,它在简化你的生活方面发挥着重大作

用。无钥匙系统绝不仅仅是带来了舒适与方便,其在安全性方面也有了本质的提高,通过低频和射频的双向通讯,汽车与钥匙之间可以完成复杂的双向身份认证,在

安全性方面与引擎防盗类似,要远好于传统的遥控钥匙。从2003年少量高端车型成功量产无钥匙系统开始,全球市场用了两到三年的时间推广普及这一技术,目

前,几乎全球每一个主流车厂都有应用NXP的无钥匙产品,覆盖中高端的车型,甚至是低端车型。

我们一起看一下这一技术到底是如何实现的。如

图二所示,无钥匙系统共需要检测判断三种区域:灰色的车外区域,淡粉色的车内区域以及灰白色的主驾位置。其中灰色的阴影区包括三部分,分别表示主驾,副

驾,后备箱的车门控制的有效区域,当车主带着钥匙进入这一位置时,车子跟钥匙间就可以建立起有效通

讯,通过低频信号的场强检测,车子可以判断出钥匙的相应

位置,由此决定打开对应的车门。淡粉色的车内区域是整个PKE系统设计的难点,要精确的判断钥匙是否在车内,来决定车门状态以及发动机是否可以启动。在一

些高端车型的设计中还会检测灰白色的主驾区域,钥匙是否有效,主驾位置是否有人,避免诸如儿童误操作导致的引擎启动;另外还可能包括后备箱内区域的检测,

为防止钥匙被误锁入后备箱。综上所述,我们可以发现在无钥匙系统中,区域检测是一个非常重要且区别于以往各种汽车安防产品的技术,因而区域检测的精度就成

为衡量一个无钥匙系统好坏的重要参数。目前市场上主要有两种相应技术,其一是通过调节低频信号灵敏度强弱进而根据通讯是否稳定进行模糊判断,其精度有限但

实现方便;其二是基于接收低频信号的强度检测来判断,即RSSI(Received Signal StrengthIndication),根据低频信号的大小来计算钥匙与车内低频天线的相对距离,通过多根低频天线交叉覆盖范围,精确定位钥匙的具体位

置。NXP的产品全部采用第二种技术。为达到理想的性能参数,NXP提供了最小2.5mV的三维低频接受前端的信号灵敏度,而典型的灵敏度值可以达到

1mV。不同于其他解决方案的逐次逼近式(SuccessiveApproximation) ADC,NXP采用12位的Sigma-Delta (Σ-Δ)ADC,通过多点采样平均来消除噪声干扰,目前已经实现的最好的车内车外检测精度高达2cm。目前,车厂通常要求的车内车外检测精度为

5~10cm。

图二

钥匙系统的结构框图如图三所示,左侧为汽车端,包括主控制器(Body

ControlUnit),车门把手和后备箱把手触发模块,引擎一键启动模块,引擎防盗基站模块(IMMOBasestation),低频发射模块和射频

接收模块。其中三个绿色的模块主要是用来触发整个系统,当车主拉动车门或按下一键启动按钮,相应的模块会发送中断信号来唤醒主控MCU,开始整个通讯过

程。常见的无钥匙系统工作模式分两大类:触发模式和扫描模式(polling),其中触发模式分为机械触发和电子感应触发,这里需要综合考虑系统成本和系

统性能,例如整个系统的响应时间。引擎防盗基站模块是低频通讯模块(125KHz),用来实现跟钥匙的近距离通讯,发动引擎,这一功能是备用方案,又称

“无电模式”,只有在钥匙电池耗尽或者有意外干扰无钥匙系统导致无法正常工作时才会采用。这种情况下,用户只需要手持钥匙放在固定位置(例如凹槽),钥匙

就可以跟基站建立通讯,进行身份认证来启动引擎。NXP的无钥匙系统PCF7952和PCF7953的一大特色就是芯片本身集成了引擎防盗功能,完全兼容

NXP的所有Transponder产品,包含PCF7936。这极大的提高了系统的可靠性而且不需要额外增加成本,具体细节后续还会提到。

图3:无钥匙系统的结构框图。

频发射模块和射频接收模块是无钥匙系统的基本通讯链路,低频发射采用125KHz,为上行链路,由车子端发送至钥匙端;射频接收采用315MHz或

434MHz,为下行链路,由钥匙端发送至车子端。之所以采用125KHz,一方面是为了兼容引擎防盗的相关技术,更为重要的是125KHz的信号对距离

敏感,可以实现精确的距离检测,起到关键的定位作用。射频则采用传统RKE的频段,一方面兼容遥控钥匙的基本功能,更利用了其通讯速度快的优势,这里需要

着重声明的是,所谓的通讯速度是指钥匙跟车子间用于认证加密的数据传输,为保证在较短时间内完成无钥匙开门或点火的过程,需要采用较高的波特率(一般为

8~20kbps),通常不建议采用低端的SAW发射模块(1kbps左右),而采用基于锁相环技术的发射芯片来实现,例如NXP的PCF7900,其在

FSK的模式下最高波特率可达到20kbps。同样是为了这个目的,射频频段也有采用更高频的868MHz或9 15MHz的趋势。如图所示,低频发射模块

包括多个低频天线,安装于车门把手内用来实现无钥匙进入(Keyless

Entry),安装于车身内部的用来实现无钥匙启动(一键启动KeylessStart)。

钥匙端的具体框图如图四所示,主芯片是NXP的

PCF7952或PCF7953,射频发射芯片采用NXP的PCF7900,相应的在车子端的射频接收芯片是NXP的P QJ7910。

PCF7952/53具有低频模拟前端(LF

FrontEnd),用来连接外围3D天线。在无钥匙系统中,钥匙端需要外置3D低频天线,可以接收检测外部空间的3D能量场强,分别为X,Y,Z轴,通

过叠加3个方向上的能量,可以保证钥匙在任何角度都能检测到同样的场强。其中的一轴天线还被复用为IMMO的功能,实现无电模式下的引擎启动。通过上行和

下行链路,钥匙跟汽车可以建立起双向通讯,进行复杂的身份认证。最新的一代认证技术称为交互认证技术(Mutual-Authentication),不

仅仅需要汽车来认证钥匙,同时也需要钥匙来判断车子是否合法,任何错误都会导致整个通讯结束,以此来保证系统的安全性。通讯距离是由低频上行链路

125KHz决定,通常的PKE系统工作有效距离为2.5m左右,而实际有效开关门距离为1.5m~2m。除了车内外检测精度以外,钥匙端的功耗也是衡量

一个无钥匙系统好坏的重要指标,PCF7952自带的电源管理模块可以最大程度的降低整个系统功耗,一套成熟的无钥匙系统方案,钥匙端在一颗2032的

3V锂电池供电的情况下,电池寿命可以长达三年。

图4:钥匙端的模块框图。

无钥匙系统之后,汽车安全与防盗产品将会走向何方?NXP已经给出了确切的答案:Keylink,即下一代的汽车钥匙。它最大的突破在于,把车钥匙跟外围

的智能终端联系起来,使钥匙可以跟诸如手机,PDA等设备实现近距离的无线连接,借助于手机等智能终端的显示功能和强大的处理能力,一个无比广阔的应用空

间摆在了我们面前:

- 随时查询车辆状态,门窗状态,油箱油量,车内温度…手机屏幕上的显示应有尽有

- 寻找汽车,通过钥匙跟手机的配合,手机的GPS导航帮你轻松找到停车地点

- 轻松制定出行路线,在电脑前将选定的出行路线存入钥匙。进入汽车时,车载导航仪将自动导入出行信息

- 车辆维护,车辆的出厂记录,维修记录,全部都存在钥匙中,便于维护。

类似以上的应用还有很多很多,下面这则新闻则是Keylink的又一新应用,可以让我们更近距离地了解这一技术,也以此作为本文的结束:

2008

年10月22日——宝马(BMW)技术研发部与恩智浦半导体(NXPSemiconductors,由飞利浦创建的独立半导体公司)推出全球第一款多功能

车钥匙原型。这款产品原型具备非接触支付功能,个人进入控制以及先进的公共交通电子车票功能,以实现更强的移动性体验。配备了恩智浦的SmartMX安全

芯片,这款产品原型首次实现了通过车钥匙让驾驶者进行快速、安全和便捷的电子支付,为未来的消费者开创了激动人心的全新应用环境。

作者:周翔,恩智浦半导体汽车电子市场经理

当我们经历过,我们就获得一份财富。当我们记录着每次经历,我们的财富将得到有效的利用。

[回复][编辑][引用][管理]

论坛等级: E币:8296(E币换礼)访问E空间

#4 PIC16F639详细方案

贴子回复于:2010/2/23 20:44:36

钥匙设计包括一片集成了三轴向模拟前端(Analog Front-End, AFE)的PIC16F639单片机。

采用一片PIC18F2680 单片机来实现低频发射器。

设计经过优化,只需稍作修改便可集成到现有典型平台中。从可由客户、经销商或工厂在生产线后端进行编程的许多可扩展功能的整体概念来讲,操作灵活性是至关重要的。

图1.PKE 原理框图

一.工作原理概述

当低频(LF)发射器检测到触发输入时,将发送一条编码的125 kHz

报文。该信号范围内的任何应答器均会接收这条报文,并对编码的数据字段进行验证。如果发射器被识别,将发送一条RF (433.92 MHz)

KEELOQ® 编码报文。一个标准的RKE 接收器对该数据包进行解码,如果被识别,将进行相应的操作。

为降低电流消耗,LF 发射器不会持续轮询应答器。触发事件将把发射器从休眠模式或掉电模式(参见图1-1)唤醒。触发输入的可能类型或来源如下:

通过网络传输的命令门把手上红外信号简易微动开关,由门把手装置激活容性临近探测器,该探测器可检测手靠近门把手时的现场变化为简化起见,本文档所述的应用采用微动开关输入。报文发送后,LF 发射器将持续轮询应答器。这有助于对方向和范围进行估计。

应答器钥匙以常规按键RKE 钥匙方式工作。当检测到有效LF 现场报文时,单片机将如同按下第六个虚拟按键一样作出响应,并发送一个独特的功能码。

RF 接收器/ 解码器组合包括一个KEELOQ 安全IC。典型的解码器为HCS500、HCS512或HCS515。本设计采用用户可编程的PIC® 中档单片机。

图2:低频发射器原理图

图3.使用PIC16F639 单片机的应答器钥匙原理图

图4.RF 接收器/ 解码器原理图

当我们经历过,我们就获得一份财富。当我们记录着每次经历,我们的财富将得到有效的利用。

[回复][编辑][引用][管理]

论坛等级: E币:8296(E币换礼)访问E空间

#5 NEC单片机方案

贴子回复于:2010/2/23 20:47:03

汽车市场主要的防盗方式包括发动机防盗锁止系统(IMMO)、遥控门锁(RKE)、无钥匙门禁(PKE)、双向智能钥匙、红外线侦测、气流侦测和GPS卫星定位等,其中以IMMO和RKE的应用最为广泛。无钥匙门禁系统(PKE)在RKE基础之上发展起来,作为新一代防盗技术正在逐步发展壮大,目前已经从高档车市场逐步进入中档车市场。

资源介绍

μPD78F0503和μPD78F0881是NEC电子ALL FLASH的78K0系列的汽车级产品,采用NEC电子第三代Flash技术,降低功耗的同时,也降低了Flash的工作电压,仅为2V。

这两款单片机不仅包括UART接口、8/16位定时器、CSI接口、多路10位A/D等通用模块,同时集成了8 MHz内部高速时钟和240kHz内部低速

时钟。当时钟达到20MHz时,指令最短执行时间仅为0.1μs。提供POC(上电清零电路)和LVI(低电压检测电路),这使得整个系统不需外加复位电

路就能保证正常复位,LVI提供16个压差为0.15V的电压供选择。内部Flash具有自编程功能,可作为模拟EEPROM。内置看门狗定时器、按键中

断、乘法器/除法器、时钟输出/蜂鸣器输出电路等。

μPD78F0881是78K0/Fx2系列的产品,它是专用的车身控制器,内部集成10路定时器,包括4路16位定时器和6路8位定时器,此外还集成了CAN和LIN的模块,支持1通道CAN和1通道的LIN接口,用做车身接点的控制。

PKE工作原理

PKE工作原理为:当低频(LF)发射器检测到触发输入时,将发送一条编码的低频报文。该信号范围内的任何应答器均会接收这条报文,并对编码的数据字段进

行验证。如果发射器被识别,将发送一条RF加密编码报文。一个标准的RKE接收器对该数据包进行解码,如果被识别,将进行相应的操作。

PKE应用要求基站和应答器(钥匙)单元之间进行双向通讯。当驾驶员靠近PKE系统的感应区域时,只要触及车门把手或者按下把手上的某一按键,驾驶员携带

的PKE系统的身份识别“钥匙”就会接收到基站发送的低频信号,如果这个信号与“钥匙”中保存的身份识别信息一致,“钥匙”将被唤醒。这个过程能够防止随

机噪声或其他干扰信号唤醒“钥匙”,延长电池寿命。“钥匙”上的三维全向天线输入电路能够保证“钥匙”在任何方位都能检测到汽车发出的唤醒信号。如图1所

示。

“钥匙”被唤醒后将分析汽车发出的认证口令,并发送相应高频信号,为了提高安全性,这些信号都经过加密处理。汽车将接收到的信号和内部保存的信息相比较,

如果验证通过,则打开车门锁。驾驶员进入车内,只需按一下启动键,汽车发动机就会启动。当然,驾驶员在按键的时候,PKE系统首先需要检测“钥匙”设备是

否在车内,然后完成同样的认证过程后才会启动发动机。当驾驶员离开汽车,只需按一下车把手或者车把手上的某一按键,车门就会上锁,汽车在真正锁定之前,同

样要检测驾驶员的位置,并需经过同样的验证过程。

系统设计

对应基站和钥匙的双向通信,PKE在RKE基础上增加了短距离的LF通信。

在目前的设计中,RF发射频率采用433.92MHz,LF的发射频率采用19kHz。本设计的钥匙端和基站端的框图如图2和图3所示。

钥匙端使用NEC电子78k0系列8位单片机μPD78F0503微控制器,来完成用户按键的数据编码、加密组帧,再通过SAW声表谐振器电路发射至

UHF频段;当它接收到19kHz的LF信号时,利用三个正交放置的线圈作为低频接收天线,由低功耗低频唤醒芯片AS3931解调后,再将数据传送给单片

机进行数据判断,如果数据正确,则发送一条RF加密报文。

在低频天线的设计中,由于应答器(钥匙)体积较小,且放置在用户的口袋或手提包中时,因此天线指向具有随机性,即应答器天线正对基站天线方向的机会最高只有33%,因此,应答器中的低频天线必须采用小尺寸的全向天线。

在实际应用中,应答器(钥匙)连续等待并检测输入信号,这会减少电池使用寿命。因此,为减小工作电流,在AS3931搜寻有效输入信号的同时,数字MCU

部分可以处于待机模式。只有当AS3931检测到有效输入信号并输出有效唤醒信号(WAKE低有效)时,数字MCU部分才被唤醒。MCU可以设置唤醒信号

的格式,只有在输入信号达到要求时,器件才将检测到的输出有效沿传送到MCU。

汽车智能门锁(无钥匙进入启动)系统的介绍

汽车智能门锁(无钥匙进入\启动)系统介绍 摘要:简要介绍汽车无钥匙进入、起动系统的功能、组成、工作原理及流程。 1.绪论 随着汽车的普及和发展,人们对汽车的智能化和舒适性要求越来越高。为满足人们对汽车的这些要求,汽车无钥匙进入、启动系统应运而生。汽车无钥匙进入、启动系统包括无钥匙进入、无钥匙启动两大功能,简称CAPE(Car Access Passive Entry),是在RKE(Remote Keyless Entry 遥控门禁系统)基础上发展起来的汽车电子技术。作为新一代的防盗及驾驶技术迅速发展壮大,并且已从高端车市场逐步进入中级车市场。 2.功能 无钥匙进入包括无钥匙解锁车辆、无钥匙上锁车辆、无钥匙开启后备箱。驾驶者不需要拿出钥匙,只需将智能钥匙装在身上或放在放在随身包,靠近车外天线1m,直接拉动车门或按动车门把手开关按钮后,车门门锁自动解锁或自动上锁,并可以被打开或锁死。无钥匙启动即驾驶员不用拿出钥匙,只要钥匙在车,踩制动踏板或离合器底部开关后,直接按下起停开关,车辆即可启动。 3.结构 CAPE系统由无钥匙进入/启动控制器CAPE ECU、启停开关、电子转向柱锁ESCL(Electronic Steering Column Lock)、门把手、后备箱开启按钮、天线、智能钥匙UID(User Identifier Device)、车身控制模块BCM(Body Control Module)、发动机控制模块ECM(Engine Control Module)等零部件组成,各零部件在整车中的位置如图1所示。

图1 CAPE系统各零部件在整车中位置 3.1 无钥匙进入/启动控制器 无钥匙进入/启动控制器是整个系统的核心。它负责接收门把手传感器信号、后背门开启按钮信号、制动踏板信号、档位开关信号、离合器开关信号;控制低频天线发出低频信号,与储存在智能钥匙的低频信号比较,实现与UID之间的认证,实现车辆的无钥匙进入、启动功能。 3.2 起停开关 起停开关代替传统的点火开关,安装在副仪表板点烟器左侧,方便驾驶员按下起停开关。驾驶员可以通过按下起停开关接通ACC、IG、START继电器,进行车辆电源的ACC、ON、START、OFF之间的转换。开关部包括2组开关、带IMMO(Immobilizer)线圈、带IMMO基站芯片。2组开关防止一路开关失效,另一路开关可以备用起动,IMMO线圈、IMMO基站芯片作为钥匙亏电或电量低时,与CAPE ECU通信,实现与ECM防盗认证,从而起动车辆。 3.3门把手 汽车前门把手(左前门/右前门各一)封装低频天线以及触摸传感器或电容传感器。门把手天线用于在门把手周围特定区域发射征询低频信号,与随身携带的UID认证。认证通过后,才允许进入或退出。传感器用于触发被动进入退出动作。 3.4后备厢开启按钮 汽车后备厢开启按钮是从行厢被动开启的开关,安装在后背门右牌照灯右侧。它负责触发CAPE ECU控制低频天线发送低频信号,与UID认证,认证通过后,才允许开启行厢。

汽车无钥匙进入系统原理是什么

汽车无钥匙进入系统原理是什么? 车辆装配有5 到6 根低频天线(其实就是线圈绕组,核心是铁氧体或者其他类似的磁导率大的物质。可以等效于一个电感),一般是左右门上各一根,车内两根,后备箱一根,后保险杠一根。首先使用低频交变电压去驱动由天线及电容组成的谐振电路(一般125KHz 居多,也有厂商使用134KHz,还有其他的,但是极少),使用低频的原因是低频谐振电路形成磁场而非电场(即磁场占统治地位),而且其磁场范围容易控制,这一点非常重要。通过调整驱动电压的大小来确定覆盖范围(当覆盖的函数为Area>=B,此处B 为边界磁场强度值,换句话说就是以天线为圆心,B 为半径的圆),这样通过一定的设置来划分出不同的区域。比如车内的区域来作为一键启动使用。后备箱区域来作为后备厢检测使用。后保险杠天线被用来做后备箱开启探测使用。两边门把手天线覆盖的区域可以用作两边门解锁使用。 当用户携带合法钥匙,触发相应的功能后(比如门把手上的按钮或者没把手内侧的电容传感器或者车内的一键启动按钮或者后尾箱的开启按钮等触发设备),相应的天线便开始被驱动来搜索其覆盖范围内是否有合法钥匙存在,当钥匙收到低频触发命令后,通过射频返回给车辆ECU 认证信息,ECU 对认证信息进行解码解密,密码正确后执行相应的功能。

针对大家的疑问,多写一些: 首先,随着技术的进步,系统的应用也是变化的。所以可能我所说的情况和你实际的感受有差异,但是原理是相同的。 车辆可以设计成(外部)天线一直发送低频信号,就是当用户离开车,关上门之后就触发搜索,当系统发现钥匙离开了系统之前设定的一个区域后,车辆自动上锁。同理,当人回来的时候,当系统发现钥匙进入系统预先设定的一个区域后,车辆自动解锁。我们公司的产品是当钥匙在远离车辆之后接近车辆时,首先进入区域1,触发迎宾灯功能,车辆迎宾灯开启,电动座椅,电动方向盘自动移位。继续前行,进入区域2,车辆自动解锁。反之,离开车辆时,走出区域3,车辆自动上锁,继续前行,走出区域4,迎宾灯(这时叫做伴你回家灯)自动关闭。 但是,只需要外部天线以一定时间间隔发低频信号,如果一直发,一两天不开车电瓶就没电了,而且也不能每天一直这样发,系统一般设计为3 天左右天线会持续搜寻钥匙,之后系统关闭,就变回我之前说的那样。 其次,在车辆启动后,车内天线是不会搜钥匙的,至少我们公司的是这样的,有些公司设计为即使车辆启动后也搜钥匙,其实没有必要而且钥匙电池寿命会缩短,而且,最重要的,会出现问题,比如搜不到钥匙经常报警啊之类的。钥匙跟手机放一起容易找不到钥匙,尤其是

汽车无钥匙进入系统

汽车无钥匙进入系统,简称PKE(PASSIVE KEYLESS ENTER),该产品采用了世界最先进的RFID无线射频技术和最先进的车辆身份编码识别系统,率先应用小型化、小功率射频天线的开发方案,并成功的融合了遥控系统和无钥匙系统,沿用了传统的整车电路保护,真正的实现双重射频系统,双重防盗保护,为车主最大限度的提供便利和安全。 汽车无钥匙系统--不是传统的钥匙,而是一个智能钥匙,或者说智能卡。如果你的车是高端车型,你打开车门时用的正是这种钥匙。雷诺、奔驰、宝马等高端汽车制造商已经采用了“无钥匙”系统。当你踏进指定范围时,该系统即可识别出你就是授权的驾驶者并自动开门。技术的发展推动了产品的更新,进入系统由原先的机械钥匙变为遥控系统,随着RFID技术的广泛运用和汽车市场的需求,遥控进入系统被无钥匙进入系统替代已经成为必然趋势,目前,中高级轿车的顶级配置都采用了无钥匙进入系统,例如:日产天籁、丰田卡罗拉、福特致胜、本田雅阁,并且市场销售和客户反馈都非常好,它所带来的便利。 一键启动系统功能说明。 1.全智能RFID (射频识别) 车主靠近汽车时自动开门,熄火离开汽车后自动锁门 2.暂停RFID (射频识别) 可依车主需要如修车或洗车,暂时停止RFID功能声光防盗或静音防盗 防盗启动时可设定声光或静音报警以达到吓阻作用 3.确认车主身份启动 配备世界顶级车俩的车主身份识别系统,先进的RFID无线射频技术识别车主,钥匙启动点火时,系统自动感应智能钥匙是否存在。若智能钥匙不在感应区则自动断油以保护车被不正常启动,这样确保汽车即使被点火了也无法开走. 4.自动设防暂停RFID时熄火后1分钟可自动进入静音防盗,但是不锁门 5.自动上锁及开锁车启动后放开脚煞车则自动上锁,熄火后自动开锁 6.自动车锁控制车主靠近汽车1-2米自动开锁,熄火离开汽车3米自动锁门 7.车门未关提示 锁门时车门未关好会马上声光报警提示车主关门,防止一时的疏忽大意

汽车智能无钥匙进入控制系统功能简介

汽车智能无钥匙进入控制系统功能简介 1.功能:无钥匙进入——感应式自动开关门锁 a.当您走进距车辆2.5-3.5米时,门锁会自动打开并解除防盗。 b.当您离开车辆2.5-3.5米时,门锁会自动锁上并进入防盗状态,车喇叭响一声,同时车灯亮一次.;如有车门没有关或没有关好,车辆会发出4声报警提示。 2.功能:智能车窗——锁车后自动关闭车窗 当您离开车辆时,忘记关闭车窗,不必担心,车窗会自动升起。并在中途停顿一次以防夹手。大大提高了汽车安全防范水平,也就不怕因忘记关闭车窗而发生漏雨、淋水等意外事件的发生了---更不会有车厢变成池塘的情况出现 4. 整车防盗----电路、油路、启动三点锁定,对车辆进行电路、油路、启动三点同时进 行锁定,当防盗器被非法拆除,车辆将照样无法启动。(如您使用的是具有网络功能的产品,盗车贼在非法拔掉防盗器时或在剪断线路后,甚至切断汽车电源时,车辆均会拨打您预设的报警电话)防盗、反劫,系统线束电脑编码,安全隐蔽,提高被动安全水平建议客户智能钥匙和原车钥匙分开使用 场景再现:在您没发觉爱车钥匙丢失或被他人捡到时考虑到严重后果吗?不要紧! 只要安装安全系统,在没有电子芯片情况下即使拥有原车钥匙,车辆都无法启动; 当您独行遇到劫匪拦截车辆时,再也没有必要与劫匪争执,只需携带智能钥匙安全离开车辆,劫匪驾驶车辆一旦熄火后,车辆将无法启动 6.低电量报警 当智能钥匙的电池电量低于规定标准时,智能钥匙靠近车时系统将报警提示(喇叭响4次) 7.刹车落锁 当钥匙门打开(ACC)给车供电或启动车辆,第一脚踩刹车车锁自动上锁,防止被小偷开门抢劫及乘客(小孩)误开门产生危险;熄火自动开锁,方便上下车

汽车智能门锁无钥匙进入启动系统介绍

汽车智能门锁(无钥匙进入启动)系统介绍

————————————————————————————————作者:————————————————————————————————日期:

汽车智能门锁(无钥匙进入\启动)系统介绍 摘要:简要介绍汽车无钥匙进入、起动系统的功能、组成、工作原理及流程。1.绪论 随着汽车的普及和发展,人们对汽车的智能化和舒适性要求越来越高。为满足人们对汽车的这些要求,汽车无钥匙进入、启动系统应运而生。汽车无钥匙进入、启动系统包括无钥匙进入、无钥匙启动两大功能,简称CAPE(CarAcces s Passive Entry),是在RKE(Remote Keyless Entry 遥控门禁系统)基础上发展起来的汽车电子技术。作为新一代的防盗及驾驶技术迅速发展壮大,并且已从高端车市场逐步进入中级车市场。 2.功能 无钥匙进入包括无钥匙解锁车辆、无钥匙上锁车辆、无钥匙开启后备箱。驾驶者不需要拿出钥匙,只需将智能钥匙装在身上或放在放在随身包内,靠近车外天线1m内,直接拉动车门或按动车门把手开关按钮后,车门门锁自动解锁或自动上锁,并可以被打开或锁死。无钥匙启动即驾驶员不用拿出钥匙,只要钥匙在车内,踩制动踏板或离合器底部开关后,直接按下起停开关,车辆即可启动。 3.结构 CAPE系统由无钥匙进入/启动控制器CAPE ECU、启停开关、电子转向柱锁ESCL(Electronic Steering Column Lock)、门把手、后备箱开启按钮、天线、智能钥匙UID(User IdentifierDevice)、车身控制模块BCM(Body Control Module)、发动机控制模块ECM(Engine Control Module)等零部件组成,各零部件在整车中的位置如图1所示。

汽车无钥匙进入系统原理是什么精选文档

汽车无钥匙进入系统原 理是什么精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

汽车无钥匙进入系统原理是什么? 车辆装配有 5 到 6 根低频天线(其实就是线圈绕组,核心是铁氧体或者其他类似的磁导率大的物质。可以等效于一个电感),一般是左右门上各一根,车内两根,后备箱一根,后保险杠一根。首先使用低频交变电压去驱动由天线及电容组成的谐振电路(一般 125KHz 居多,也有厂商使用 134KHz,还有其他的,但是极少),使用低频的原因是低频谐振电路形成磁场而非电场(即磁场占统治地位),而且其磁场范围容易控制,这一点非常重要。通过调整驱动电压的大小来确定覆盖范围(当覆盖的函数为 Area>=B,此处 B 为边界磁场强度值,换句话说就是以天线为圆心,B 为半径的圆),这样通过一定的设置来划分出不同的区域。比如车内的区域来作为一键启动使用。后备箱区域来作为后备厢检测使用。后保险杠天线被用来做后备箱开启探测使用。两边门把手天线覆盖的区域可以用作两边门解锁使用。 当用户携带合法钥匙,触发相应的功能后(比如门把手上的按钮或者没把手内侧的电容传感器或者车内的一键启动按钮或者后尾箱的开启按钮等触发设备),相应的天线便开始被驱动来搜索其覆盖范围内是否有合法钥匙存在,当钥匙收到低频触发命令后,通过射频返回给车辆 ECU 认证信息,ECU 对认证信息进行解码解密,密码正确后执行相应的功能。

针对大家的疑问,多写一些: 首先,随着技术的进步,系统的应用也是变化的。所以可能我所说的情况和你实际的感受有差异,但是原理是相同的。 车辆可以设计成(外部)天线一直发送低频信号,就是当用户离开车,关上门之后就触发搜索,当系统发现钥匙离开了系统之前设定的一个区域后,车辆自动上锁。同理,当人回来的时候,当系统发现钥匙进入系统预先设定的一个区域后,车辆自动解锁。我们公司的产品是当钥匙在远离车辆之后接近车辆时,首先进入区域 1,触发迎宾灯功能,车辆迎宾灯开启,电动座椅,电动方向盘自动移位。继续前行,进入区域 2,车辆自动解锁。反之,离开车辆时,走出区域 3,车辆自动上锁,继续前行,走出区域 4,迎宾灯(这时叫做伴你回家灯)自动关闭。 但是,只需要外部天线以一定时间间隔发低频信号,如果一直发,一两天不开车电瓶就没电了,而且也不能每天一直这样发,系统一般设计为 3 天左右天线会持续搜寻钥匙,之后系统关闭,就变回我之前说的那样。 其次,在车辆启动后,车内天线是不会搜钥匙的,至少我们公司的是这样的,有些公司设计为即使车辆启动后也搜钥匙,其实没有必要而且钥匙电池寿命会缩短,而且,最重要的,会出现问题,比如搜不到钥匙经常报警啊之类的。钥匙跟手机放一起容易找不到钥匙,尤其是

汽车智能门锁(无钥匙进入启动)系统的介绍

汽车智能门锁 (无钥匙进入启动) 系统介绍 摘要:简要介绍汽车无钥匙进入、起动系统的功能、组成、工作原理及流程1. 绪论 随着汽车的普及和发展,人们对汽车的智能化和舒适性要求越来越高。为满足人们对汽车的这些要求,汽车无钥匙进入、启动系统应运而生。汽车无钥匙进入、启动系统包括无钥匙进入、无钥匙启动两大功能,简称CAPE(Car Access Passive Entry ), 是在RKE(Remote Keyless Entry 遥控门禁系统) 基础上发展起来的汽车电子技术。作为新一代的防盗及驾驶技术迅速发展壮大,并且已从高端车市场逐步进入中级车市场。 2. 功能 无钥匙进入包括无钥匙解锁车辆、无钥匙上锁车辆、无钥匙开启后备箱。驾驶者不需要拿出钥匙,只需将智能钥匙装在身上或放在放在随身包,靠近车外天 线1m,直接拉动车门或按动车门把手开关按钮后,车门门锁自动解锁或自动上锁,并可以被打开或锁死。无钥匙启动即驾驶员不用拿出钥匙,只要钥匙在车,踩制动踏板或离合器底部开关后,直接按下起停开关,车辆即可启动。 3. 结构 CAPE系统由无钥匙进入/启动控制器CAPE EC、U启停开关、电子转向柱锁ESCL(Electronic Steering Column Lock) 、门把手、后备箱开启按钮、天线、智能钥匙UID(User Identifier Device) 、车身控制模块BCM(Body Control Module) 、发动机控制模块ECM(Engine Control Module) 等零部件组成,各零部件在整车中的位置如图 1 所示。

图 1 CAPE 系统各零部件在整车中位 置 3.1 无钥匙进入/ 启动控制器 无钥匙进入/启动控制器是整个系统的核心。它负责接收门把手传感器信号、后背门开启按钮信号、制动踏板信号、档位开关信号、离合器开关信号;控制低频天线发出低频信号,与储存在智能钥匙的低频信号比较,实现与UID 之间的认证,实现车辆的无钥匙进入、启动功能。 3.2 起停开关 起停开关代替传统的点火开关,安装在副仪表板点烟器左侧,方便驾驶员按下起停开关。驾驶员可以通过按下起停开关接通ACC、IG、START 继电器,进行车辆电源的ACC 、ON、START、OFF之间的转换。开关部包括 2 组开关、带IMMO ( Immobilizer )线圈、带IMMO 基站芯片。2 组开关防止一路开关失效,另一路开关可以备用起动,IMMO 线圈、IMMO 基站芯片作为钥匙亏电或电量低时,与CAPE ECU 通信,实现与ECM 防盗认证,从而起动车辆。 3.3 门把手 汽车前门把手(左前门/ 右前门各一)封装低频天线以及触摸传感器或电容传感器。门把手天线用于在门把手周围特定区域发射征询低频信号,与随身携带的UID 认证。认证通过后,才允许进入或退出。传感器用于触发被动进入退出动作。 3.4 后备厢开启按钮 汽车后备厢开启按钮是从行厢被动开启的开关,安装在后背门右牌照灯右侧。它负责触发CAPE ECU 控制低频天线发送低频信号,与UID 认证,认证通过后,才允许开启行厢。

RKE系统介绍

无钥匙进入汽车防盗系统简介 汽车被盗是越来越严重的社会问题,汽车防盗装置也越来越受重视,中国已将汽车防盗装置纳入汽车强制性标准,将于2007年9月1日正式实施。“无钥匙进入汽车防盗系统”是在汽车防盗芯片基础上加入了加密方式研制而成。 无钥匙进入汽车防盗系统由安装在汽车上的防盗主机和车主随身携带的电子钥匙组成。在电子钥匙中集成了无线通信芯片、微功耗处理器和电池。平时,电子钥匙处于睡眠状态,耗电极低;当电子钥匙接近汽车时,汽车上的防盗器主机发送的信号会激活电子钥匙,然后两者之间通过应答进行密码的验证工作,密码验证正确后,汽车电路、油路接通,汽车可以正常启动和运行。由于采用的是“询问一应答”式的双向通信方式,以及加密算法完成通信的加密,其安全性很高。 无钥匙进入汽车防盗系统的主要功能: 1、无匙进入——感应式自动开关门锁。当您走进距车辆1-2米时,门锁会自动打开并解除防盗。当您离开车辆2-3米时,门锁会自动上锁并进入防盗状态。如果当您离开时有一个车门没有关或没有关好,车辆会发出提示报警。当您上车启动车辆后,第一脚刹车,四门将会自动落锁,在城市堵车或夜晚独行时,防止开门抢包等意外事件发生。 2、身份识别系统——在射频识别技术的基础上,开发出了适合汽车防盗需要的改进系统。当您进入车辆时,车辆能辨认出真正的车主,防盗主机和您随身携带的电子钥匙之间自动通讯,验证密码,接通汽车电路和油路,汽车可以正常启动和运行。如果车主不在车内,车辆将无法启动,非车主想启动汽车将引发汽车报警。 3、完备的密码身份识别器(电子钥匙)加密系统——无法复制,采用射频识别技术芯片加上软件,完全达到了无法复制。解决了电子复钥匙复制的问题。 4、绝不误动作——采用了先进防冲突技术,极大的增强了系统的可靠性。 5、防盗系统还可以分别实现手机直接控制汽车、接收汽车的防盗报警信息(遇到非法者进入车内时,及时通知车主)、反劫功能(遇盗抢,可以通过无线网络拦截车辆)、应急报警(通过无线网络自动通知相关人员,采取及时车辆反劫行动)、防拆探测报警等独特功能,从而使车主可以高枕无忧,真正实现车辆的防盗、防劫。 综上所述,它有四大特点: 1、非常人性化:它取消了按键,进入或解除防盗警戒,开关车门均无须按键操作,也就是说,你不用掏电子钥匙不用任何操作。 2、完备的硬、软件加密系统保证密钥无法复制。 3、可靠性高:最先进的防冲突技术保证防盗器绝不出现误动作。 4、微功耗休眠体制保证电子钥匙电池使用寿命达2年以上。 名词释义: RKE-----REMOTE KEYLESS ENTRE,严格说属于主动遥控无钥匙进入 PKE-----PASSIVE KEYLESS ENTRE,严格说属于被动遥控无钥匙进入

无钥匙启动系统 (1)

无钥匙启动系统 从前,我们这样开车:将钥匙插入车门锁,打开车门;坐进车内,钥匙插入方向盘下的动力锁内,轻轻转动,爱车启动。后来,有了防盗锁我们开门时可以不用插钥匙,只需按下防盗钥匙的开锁键,就可以进入车内。现在,我们可以始终将钥匙放在口袋里,靠近爱车一定距离时,车门锁便会自动打开;进入车内,只需按动启动按钮(或旋钮),爱车就点火启动了,实现这种功能的就是目前正流行的“无钥匙进入系统。 ■工作原理 常见的无钥匙进入系统,也称智能钥匙系统,是由发射器、遥控中央锁控制模块、驾驶授权系统控制模块三个接收器及相关线束组成的控制系统组成。遥控器和发射器集成在车钥匙上,车辆可根据智能钥匙发来的信号,进入锁止或不锁止状态,甚至可自动关闭车窗和天窗。 这种系统采用RFID(无线射频识别)技术,通常,当车主走近车辆约1米以内时,门锁就会自动打开并解除防盗;当离开车辆时,门锁会自动锁上并进入防盗状态。当车主进入车内时,车内检测系统会马上识别智能卡,这时只需轻轻按动启动按钮(或旋钮),就可以正常启动车辆,整个过程,车钥匙无须拿出。 ■成本不菲 配备“无钥匙进入系统”肯定会给车辆带来一定的成本增加。另外,如果钥匙弄丢了需要重新另配钥匙的成本也不菲。智能钥匙一般都包括电子钥匙和机械钥匙,当电子钥匙没电或因故障无法使用时,用户也可以使用原始机械方式启动车子,一旦丢失了整把智能钥匙(包括电子钥匙和机械钥匙),需要重新配新的电子钥匙,而且剩下的另一把备用钥匙也将失效,需到4S店处更换。此外,为应急而设置的机械钥匙其实内置了ID码,复制牙齿部分是不能发动车辆的,但牙齿可以用来打开车门,故如果丢失机械钥匙,最好还是把全车锁都更换掉,那就不仅仅是更换一把钥匙的价钱了。 ■集成三大功能 无钥匙进入系统包含自动解锁、智能点火和识别车主三个基本功能。部分品牌车型还具备锁

相关主题
文本预览
相关文档 最新文档