当前位置:文档之家› 角度传感器调整指南

角度传感器调整指南

角度传感器调整指南
角度传感器调整指南

PLC设置-5V~+5V,AD采样值为-27648~0~27648。

程序将值除以8,使用的采样值为-3456~0~3456。

接线板电压为10V,加一个上拉电阻为1.5K。传感器转比为2.5。

考虑传感器行程为60度。那么电位器转的角度为150度。

假如电位器为5K,有效行程为330度。那么传感器移动电阻范围 2.3K,电压变化为3.54V,AD变化范围为2446。

希望水平传感器零点为电阻值1.3~1.6K,电压2V~2.45V,

AD 1450~1750.(极限是1300~1900)

希望垂直传感器零点为电阻值0.3~0.6K,电压0.46V~0.9V,

AD 300~600.(极限是200~750)

假如电位器为4.6K,有效行程为330度。那么传感器移动电阻范围 2.1K,电压变化为3.44V,AD变化范围为2378。

希望水平传感器零点为电阻值1.3~1.6K,电压 2.15V~2.6V,

AD 1480~1800.(极限是1300~1950)

希望垂直传感器零点为电阻值0.3~0.6K,电压0.5V~1.0V,

AD 350~680.(极限是200~800)

设置时要考虑实际的耙管状态

绞车编码器说明:

正转是指绞车放钢丝时,编码器的数值在增加。

反转是指绞车放钢丝时,编码器的数值在减少。

将编码器测量后再换算的值为A

正系数是指,在零点上加数值A是最后显示值。

不是正系数是指,在满量程上减数值A是最后显示值。

META_SLS激光传感器操作说明

Meta Vision Systems Smart Laser Probe Operating Manual ? Meta Vision Systems Ltd. March 2011 Version 1.0 Part number: DOC-S1E-10

Foreword This manual describes the operation of the Smart Laser Probe seam tracking system. Meta Vision Systems Ltd. has made every effort to ensure that the information presented in this user manual is correct. If you have any comments on the manual, please send them to us on the form at the end of this manual. Any questions about information contained in this manual or requests for further information should be forwarded to your equipment provider or Meta Vision Systems at the address below. This manual and its contents is copyright ? Meta Vision Systems Ltd. No part of this manual may be copied or distributed without the written consent of Meta Vision Systems. Meta Vision Systems Ltd. Oakfield House Oakfield Industrial Estate Eynsham Oxfordshire OX29 4TH UNITED KINGDOM Tel: +44 (0)1865 887900 Fax: +44 (0)1865 887901Meta Vision Systems Inc. 8084 TransCanada Highway St-Laurent Québec H4S 1M5 CANADA Tel: +1 514 3330140 Fax: +1 514 3338636 Web page: https://www.doczj.com/doc/c316575785.html, Email: support@https://www.doczj.com/doc/c316575785.html,

传感器仿真软件使用说明书

传感器仿真软件使用说明 书 The Standardization Office was revised on the afternoon of December 13, 2020

THSRZ-2型传感器系统综合实验装置仿真软件使用说明书THSRZ-2型传感器系统综合实验装置仿真软件 ................. 错误!未定义书签。 实验一属箔式应变片――单臂电桥性能实验。 ................. 错误!未定义书签。 实验二金属箔式应变片――半桥性能实验 ......................... 错误!未定义书签。 实验三金属箔式应变片――全桥性能实验 ......................... 错误!未定义书签。 实验四直流全桥的应用――电子秤实验 ............................. 错误!未定义书签。 实验五交流全桥的应用――振动测量实验 ......................... 错误!未定义书签。 实验六扩散硅压阻压力传感器差压测量实验 ..................... 错误!未定义书签。 实验七差动变压器的性能实验 ............................................. 错误!未定义书签。 实验八动变压器零点残余电压补偿实验 ............................. 错误!未定义书签。 实验九励频率对差动变压器特性的影响实验 ..................... 错误!未定义书签。 实验十差动变压器的应用――振动测量实验 ..................... 错误!未定义书签。 实验十一电容式传感器的位移特性实验 ............................. 错误!未定义书签。 实验十二容传感器动态特性实验 ......................................... 错误!未定义书签。 实验十三直流激励时霍尔式传感器的位移特性实验 ......... 错误!未定义书签。 实验十四流激励时霍尔式传感器的位移特性实验 ............. 错误!未定义书签。 实验十五霍尔测速实验 ......................................................... 错误!未定义书签。 实验十六霍尔式传感器振动测量实验 ................................. 错误!未定义书签。 实验十七磁电式转速传感器的测速实验 ............................. 错误!未定义书签。 实验十八压电式传感器振动实验 ......................................... 错误!未定义书签。 实验十九电涡流传感器的位移特性实验 ............................. 错误!未定义书签。 实验二十被测体材质、面积大小对电涡流传感器的特性影响实验错误!未定义书签。 实验二十一电涡流传感器测量振动实验 ............................. 错误!未定义书签。 实验二十二光纤传感器的位移特性实验 ............................. 错误!未定义书签。 实验二十三光纤传感器的测速实验 ..................................... 错误!未定义书签。 实验二十四光纤传感器测量振动实验 ................................. 错误!未定义书签。 实验二十五光电转速传感器的转速测量实验 ..................... 错误!未定义书签。 实验二十六 PT100温度控制实验 .......................................... 错误!未定义书签。 实验二十七集成温度传感器的温度特性实验 ..................... 错误!未定义书签。 实验二十八铂电阻温度特性实验 ......................................... 错误!未定义书签。 实验二十九热电偶测温实验 ................................................. 错误!未定义书签。 实验三十 E型热电偶测温实验 .......................................... 错误!未定义书签。 实验三十一热电偶冷端温度补偿实验 ................................. 错误!未定义书签。 实验三十二气敏传感器实验 ................................................. 错误!未定义书签。 实验三十三湿敏传感器实验 ................................................. 错误!未定义书签。 实验三十四转速控制实验 ..................................................... 错误!未定义书签。

传感器选用的基本原则

传感器选用的基本原则 现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理地选用传感器,是在进行某个量的测量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也就可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。 1、根据测量对象与测量环境确定传感器的类型 要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。 在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。 2、灵敏度的选择 通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽员减少从外界引入的厂扰信号。 传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。 3、频率响应特性 传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。 传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。 在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过火的误差。 4、线性范围 传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。 但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给

超声波模块参考

编号:_________________ 版本:_________________ 超声波测距、测温、测光模块 使用说明书 Sonar_V1.00 2007-08-08 开发者: 保密级别: 拟制者: 拟制日期: 审核者:审核日期: 批准者:批准日期: E-mail:xiaochekf@https://www.doczj.com/doc/c316575785.html, https://www.doczj.com/doc/c316575785.html, 07-8-17

测距、测温、测光模块说明书版权声明 朝阳科技公司保留对此文件修改之权利且不另行通知。朝阳科技公司所提供之信息相信为正确且可靠之信息,但并不保证本文件中绝无错误。请于向朝阳科技公司提出订单前,自行确定所使用之相关技术文件及规格为最新之版本。若因贵公司使用本公司之文件或产品,而涉及第三人之专利或著作权等智能财产权之应用及配合时,则应由贵公司负责取得同意及授权,本公司仅单纯贩售产品,上述关于同意及授权, 非属本公司应为保证之责任。又未经朝阳科技公司之正式书面许可,本公司之所有产品不得使用于医疗器材,维持生命系统及飞航等相关设备。 修订记录 日期版本编写及修订者编写及修订说明2007/08/08 V1.00

测距、测温、测光模块说明书 目录 修订记录 (2) 1规格参数 (4) 1.1 主要功能 (4) 1.2 基本参数 (4) 1.3 使用限制 (4) 2使用说明 (5) 2.1 电源输入 (5) 2.2 通讯方式 (5) 3原理介绍 (7) 3.1 超声波测距原理及系统组成 (7) 3.2 超声波发射电路 (8) 3.3 温度补偿 (8) 3.4 光照度测量 (9) 4测量偏差的产生 (10) 5模块功能测试 (11) 6实物照片 (13)

接近传感器工作原理及分类和选型

接近传感器工作原理及分类和选型 接近传感器被广泛用于各种自动化生产线,机电一体化设备及石油、化工、军工、科研等多种行业,那什么是接近传感器呢? 接近传感器 接近传感器,是指代替限位开关等接触式检测方式,以无需接触检测对象进行检测为目的的传感器的总称。其能将检测对象的移动信息和存在信息转换为电气信号。 在转换为电气信号的检测方式中,包括利用电磁感应引起的检测对象的金属体中产生的涡电流的方式、捕测体的接近引起的电气信号的容量变化的方式、利石和引导开关的方式。由感应型、静电容量型、超声波型、光电型、磁力型等构成。 接近传感器是利用振动器发生的一个交变磁场,当金属目标接近这磁场并达到感应距离时,在金属目标内发生涡流,因此导致振动衰减,以至接近传感器的振动器停振。接近传感器的振动器振动及停振的变化被后级放大电路处理并转换成开关信号,触发驱动控制器件,因此达到接近传感器的非接触式之检测的目的。这就是接近传感器的运作原理。 技术优势①由于其能以非接触方式进行检测,所以不会磨损和损伤检测对象物。②由于采用无接点输出方式,因此寿命延长(磁力式除外)采用半导体输出,对接点的寿命无影响。③与光检测方式不同,适合在水和油等环境下使用检测时几乎不受检测对象的污渍、油和水等的影响。此外,还包括特氟龙外壳型及耐药品良好的产品。④与接触式开关相比,可实现高速响应。⑤能对应广泛的温度范围。⑥不受检测物体颜色的影响:对检测对象的物理性质变化进行检测,所以几乎不受表面颜色等的影响。⑦与接触式不同,会受周围温度、周围物体、同类传感器的影响,包括感应型、静电容量型在内,传感器之间相互影响。因此,对于传感器的设置,需要考虑相互干扰。此外,在感应型中,需要考虑周围金属的影响,而在静电容量型中则需考虑周围物体的影响。 当金属检测体接近传感器的感应区域,开关能无接触,无压力、无火花、迅速发出电气指令,准确反应出运动机构的位置和行程,即使用于一般的行程控制,其定位精度、操作频

超声波传感器选型时需要考虑哪些环境因素

超声波传感器选型时需要考虑哪些环境因素 关键因素:如何区分受保护和不受保护的环境? 在选择超声波传感器时了解周围环境是非常重要的。这是选择传感器时的首要考虑因素。这需要环顾你使用传感器时所处的环境,这可能与室外元素一样简单,也可能与传感器环境中的人或动物类型一样复杂。接下来工采网小编来说说在不同环境中超声波传感器的使用情况。 保护环境/室内传感器 考虑在天气条件下是否使用传感器会损坏传感器内部的电气元件。工采网提供了许多能够承受户外恶劣条件的传感器。这些传感器也可以在需要更窄的光束时使用,即使在用户自己舒适的家中也是如此。首先,找到传感器的放置位置,并确定可能与传感器接触的位置。 接下来需要考虑的是水分; 关于这个问题有用户曾经询问过工采网技术人员:传感器会以任何形式暴露在潮湿环境中吗?如图1所示,与传感器正面接触的湿气可能渗入我们所有EZ / AE传感器的开口中,这会对传感器造成无法修复的损坏。其中传感器的灰尘和苛刻的处理也有可能影响测距并可能造成损坏。“受保护环境”传感器的另一个考虑因素是,谁将接触传感器或与传感器交互。对传感器正面的敲击(与幼儿相同)可能会造成损坏。EZ / AE传感器和所有开放式传感器都是“受保护环境”传感器的示例。如果用户在选择将传感器用于受保护的环境,请确保您的应用程序适用。了解传感器周围环境可确保传感器满足这些传感器已知的200,000+ MTBF小时数。 非保护环境/室外传感器 对WR(耐候)传感器的考虑要宽松得多。如图2所示,闭合换能器只有传感器铝的部分暴露,允许IP67的耐候性,室外元素可能需要。

如果用户只打算在天气晴朗的条件下使用传感器,则可能不需要IP67等级,但用户可能希望WR传感器可以提供更窄的波束宽度。当传感器的灰尘,湿气或苛刻的处理不可避免时,工采网提供的的WR传感器的NE是用户应用的理想选择。此外IP67级传感器还可以处理刺激性化学品,或者可以与耐化学品密封配对,例如F-Option,适用于存在柴油或腐蚀性气体的环境。 如图3所示,工采网提供各种外壳类型的WR传感器,包括用于具有特定安装要求的应用的管螺纹。如果用户在“非保护”环境中工作,则可以选择最适合您需求的传感器外壳。 一旦知道环境,选择完美的MaxBotix传感器既简单又容易。然后,用户可以将其归类为“受保护”或“不受保护”,并从“传感器选择指南”中选择相应的选项,以找到适合您应用需求的传感器。ISweek工釆网作为国内领先的传感器及仪器仪表的工业品采购交易服务平台,为顺应市场发展需求,汇集了来自全球的高品质工业科技传感器产品,致力于为全球工业科技产品的采购商,供应商,贸易商,生产制造商提供全产业链的一站式产品销售和采购服务。如果您仍然不确定哪种传感器适合您,请联系我们,我们将很乐意为您提供帮助。

pf20系列压力传感器手册

efector 500电子压力传感器操作说明

1显示屏菜单结构P.3 (图) 2编程P.4 1.选择参数; 2.设定数值*; 3.参数值确定。 * 当参数调至最大设定值,继续调整参数值将从最小的设定值重新开始循环。在设置开关点(SPx,rPx)或模拟输出信号(ASP,AEP)的限制之前选定显示单位,这将避免单位转换中舍入误差的发生,得到更精确的设定值。 3安全提示 ●安装之前请阅读产品说明; ●请检查该产品是否适合你的使用; ●用户如未遵循本手册的操作说明或技术数据进行操作,可能发生 人身伤害或财产损失; ●在所有应用中,请检查本产品的材料(参看技术数据)是否适用 于所测量的物质。 4控制和显示说明 (图)P.20 5功能及特性 ●该压力传感器检测系统压力;

● 显示屏指示当前系统压力; ● 5.1 程序设定 通过设定各类参数,所测信号的赋值是不同的,可应用于各自不同的应用。(见9、11.1节) 5.2 EHEDG 3A 部件已通过EHEDG 和3A 认证。 5.3 应用 1)如显示到负值小数点后两位,小数点前的0不会显示。如:-0.05显示为-.05 不同显示单位的标示方式封装与设备中,选取传感器上各自的标示或填入空白的标示。 勿使静态或动态的过压超过给定的过载压力。 任何高于爆破压力的瞬时压力都会损伤设备(损伤危险)!

6操作模式 6.1 运行模式(Run mode) 正常操作模式。 当所需电压已经提供时,设备处于运行模式。根据设定参数监视并产生输出信号。 显示屏指示当前系统压力(见11.1节)。 红色发光二极管指示输出的状态切换。 6.2 显示模式(Display mode) 参数指示和参数值设定。 按下Mode/Enter按键,设备进入可以读取参数值的显示模式。此时内部的传感、处理和输出功能仍然继续进行。 ●用Mode/Enter按键选取需要设定的参数; ●按下Set按键,相应的参数值会显示15秒。再经过15秒设备返回运行模式。 6.3 编程模式(Programming mode) 参数值的设定。 看见参数值时,按住Set键5秒以上,设备进入编程模式。Set键改变参数值,按下Mode/Enter键确定新的参数值。该模式期间设备仍将按之前的参数继续进行感应、处理和输出计算,直到新的参数值确定。如果15秒内未按下任何按键,设备将返回运行模式。 7安装 装配和拆除传感器时,确定系统没有承受压力。 7.1 工艺适配器 该设备可采用单独购买的ifm适配器作为其附件。 首先将适配器(C)安装到传感器上,然后传感器+适配器通过螺母、钳位法兰或其他类似原件(B)装上工艺连接件。 (图)P.23

邦纳超声波传感器使用说明

超声波传感器 使用说明书 浙江亚龙教育装备股份有限公司

一、超声波传感器介绍: (一)、超声波传感器参数表 (二)、外观介绍 图1-1 如1-1图所示:左边绿色指示灯为电源和信号强度指示灯,右边黄色指示灯为信号输出指示灯,TEACH为调节按钮

(三)、工作原理 图1-2 工作原理图 如图1-2所示:可分为四个区域,最小和最大工作范围,近限和远限设定点。(1)检测物体在最小和最大工作范围内,电源指示灯变为绿色,代表物体在 可工作区域内; (2)检测物体在近限和远限设定点内,信号指示灯变为黄色,代表物体在 设定点范围内,有信号输出; (3)检测物体在最小和最大工作范围外,电源指示灯变为红色,信号指示灯变为白色,代表物体在工作范围外,无信号输出。 (四)、参数设置 1、近限和远限手动设置 (1)进入编程模式:长按TEACH Push Button 直到OUT灯变红; (2)设置低限:短按TEACH Push Button,设置完成OUT灯闪烁; (3)设置高限:短按TEACH Push Button,设置完成退出编程模式,进入RUN 模式OUT灯变回初始状态; (4)低限或高限没有设置完成前,长按TEACH Push Button,退出编程模式; (5)在编程模式下,低限设置前,如果时间超过120秒,退出编程模式

(五)、超声波传感器接线说明 图1-3 棕色(bn):+24v 蓝色(bu):0V(模拟量输出公共端) 白色(wh):模拟量输出端 黑色(bk):开关量信号端 灰色(gy):远程终端 屏蔽线(shiled):接地端

mm 数字 量68mm 28mm 6000 320000 二、西门子S7-224XP 与超声波传感器使用说明 (一)接线原理图 图1-4 (二)编程思路 S18UIA 传感器输出为4~20ma 的电流,西门子224XP 系列PLC 模拟量输入为0~10v 满量程为0~32000;所以在模拟量输出端外加500欧姆的电阻转化为2~10v 的电压。 此处实例: 下限高度为28mm 上限高度为68mm 由公式y=kx+b 可以计算出 K=650;b=-12200 图1-5

ph传感器操作手册

pH传感器 操作说明书 中国区代理商: 上海卯林机电设备有限公司 地址:上海市闵行区外环路352号D205室 电话: 传真: email:

网址:目录 1. 安全预防措施 (3) 健康与安全 (3) 环境保护 (3) 化学品 (3) 2 pH传感器 (4) 测量原理 (4) 技术规格 (4) 耐压型pH流通池 (4) 3 设置................................................................................................ (5) 安装 (5) 传感器安装.................................................................................................................................................... .. (5) 耐压型密闭式流通池....................................................................................................................................... (5) 敞开式流通池 (6) 4. 传感器接线 (7)

ph传感器输入接线.........。. (7) 5. 传感器调试 (8) 开始使用前的准备 (8) 安装 (8) 校准与标准化 (8) 校准.................................................................................................................................... . (9) 标准化 (10) 高级维护选项 (10) 6. 传感器维修 (11) 6 .1 传感器清洗.......................................................................................................................................... .. (11) 传感器保存.......................................................................................................................................... (11) 7. 维修 (12)

超声波传感器URM37 V4.0使用说明

一、简介 URM37 V3.2上已经很好的实现了超声波开关量、串口(TTL和RS232电平可选)、脉冲输出功能、模块还可以控制一个舵机的旋转组成一个空间超声波扫描仪。为了方便客户使用模块,在出厂时可以根据客户需要配置其相应的参数,也可以根据客户具体需求定制软件,使他成为一个专用的模块。 当前版本URM37 V4.0在V3.2基础上对功能进行了升级使其具有更好的智能功能,机械尺寸与引脚接口以及通信命令兼容V3.2,在V3.2基础上做了如下更改: ●串口电平选择由原来的跳针方式改为通过按键设置,用户可以轻松的选择TTL电平输 出或是RS232电平输出(重启之后模式生效)。 ●修改了测距算法,使测量盲区减小,精度提高。 ●具有模拟电压输出功能,电压和测量距离正比。 ●宽电压支持+3.3V-5.0V。 ●具有电源接反保护功能。 ●自动测量时间间隔可修改。 ●修改舵机控制角度为0-180,兼容市面大部分舵机。 ●测量时长为100ms。 二、产品参数 1.产品规格 ●工作电源:+3.3V~+5.0V ●工作电流:<20mA ●工作温度范围:-10℃~+70℃ ●超声波距离测量: ●最大测量距离―500cm ●最小测量距离―5cm ●分辨率-1cm ●精度-1% ●模块尺寸22mm ×51 mm ●模块重量:约25g ●超声波一次测量时间为100ms 2.技术说明 ●由于使用了更好的测距处理方法,使测量距离更远更稳定,在测量上完全兼容V3.2, 但是我们可以做到在0.3-3M的距离上稳定2mm的精度,如果有需要可以和公司联系定制。 ●模块使用RS232串口通讯可靠性更高,同时可以通过电脑串口采集数据,编写通讯程 序非常的便捷。 ●串口电平工作方式是TTL还是RS232选择方式为按键设置或者软件设置(重启之后模 式生效)。 ●模块可以通过脉宽输出的方式将测量数据输出,这样使模块使用更简单。 ●模块可以预先设定一个比较值,在自动测量模式下,测量距离小于这个值后管脚 COMP/Trig输出一个低电平,这样模块能够方便的作为一个超声波接近开关使用。 ●模块提供一个舵机控制功能,在非自动测量模式下,可以和一个舵机组组成一个180 度测量组件用于机器人扫描0~180度范围障碍物。 ●模块内带温度补偿电路提高测量的精度。 ●模块内带123字节内部EEPROM,可以用于系统记录一些调电不丢失的系统参数。

张力传感器选型指南

德国Dr.Brandt张力传感器选型指南 张力计主要用于在线测量和显示生产过程中的板带材张力值。完整的张力计包括两个用于测量板带材张力大小的传感器和一个信号处理仪表,由张力传感器检测板带材作用在测张辊上的负载大小,信号处理仪表对传感器的信号经过调整和处理后提供给控制系统使用。 德布兰特公司提供的张力传感器基于应变式测量原理,采用直流电压驱动应变桥测量电路,能够高精度、快速响应力的变化,极适合各种金属轧机、连续热处理炉、金属处理线、及造纸设备对张力控制的应 用要求。 技术特点 1.基于应变计测量技术,测量精度高,响应快速 2.结构坚固、耐锈蚀、具有极强的过载能力 3.良好的温度补偿处理 4.量程及外形尺寸可定制,满足几乎所有设备结构 5.内置标定电阻便于系统初始化及日后的维护 6.张力仪表配置灵活,稳定可靠 7.上千套经验证的设备应用经验 测量原理 板带材张力B的大小是通过安装在测张辊与设备框架之间的张力传感器间接进行测量,张力传感器测得的力取决于板带张力大小,以及偏转角"α" 和"β",忽略测张辊的变形,则得出以下计算公式: 针对水平测力方向:FHmeasure=B×cosα-B×cosβ= B×(cosα-cosβ)

针对垂直测力方向:FVmeasure=B×sinα+B×sinβ= B×(sinα+sinβ) 针对双向轴测力:传感器同时在水平和垂直方向产生输出信号,测力值见上述公式 德布兰特张力传感器根据测量力的方向不同,德布兰特提供如下几种类型的张力传感器: HBZ、PFP系列:只测量平行于轴承座安装面方向的力(见E37.1资料) VBZ、PFN系列:只测量垂直于轴承座安装面方向的力(见E37.2资料) HVBZ系列:可同时测量与轴承座安装面呈水平和垂直方向的力(见E37.4资料),极适合变包角张力测量应用BME系列:特殊形式张力传感器,专用于连续热处理炉生产线德布兰特全系列张力传感器包括上/下连接板,整个传感器采用单块高强度铝或特种钢加工制造 1.窄带张力测量 通常只需要测量测张辊一侧的支撑力即可,即使测量测张辊两侧的支撑力,也仅需要测量两侧支撑力的和。 2.宽带张力测量 需要使用两个张力传感器分别测量测张辊两侧的支撑力,提供测张辊两侧力差及力合。 3.厚带张力测量 一般只允许带材与测量辊有较小的包角,带材几乎水平运行,此时产生一个几乎垂直的合力,则水平安装的VBZ系列张力传感器为合适的选择(见图1);或者选择垂直安装的HBZ系列张力传感器,(见图2)。从机械安装角度选择VBZ 更优。 4.90°包角的薄带张力测量 带材大多数情况下为水平/垂直方向运行,张力传感器安装面呈45°的HBZ系列为合适的选择(见图3),合力为带材实际张力的1.41倍,测量信号内包括0.7倍的测张辊及轴承座重量。设备工程师常倾向于选择图4结构,HBZ 张力传感器只针对水平方向力有信号输出,大小等于实际的带材张力,辊重不产生信号。

邦纳传感器-操作说明

一、传感器适用范围 iVu系列图像传感器用于监视标签、零件和包裹的大小、方向、定位、外形、位置等。这个传感器集成了一个彩色的触摸屏,可用于图像装入、设置和简单的配置组态且不需连接电脑。 一些实例应用: ?日期/签码检测 ?标签检测 ?零件蚀点检测 ?零件方向检测 ?零件外形检测 ?工件上的钻孔检测 ?印制工件检测 ?包装正确性检测(如:检测包装单在箱体的内部或上面;测试小瓶瓶盖良好) ?泡罩包装检测 ?区域传感器适合检测固定的工件。 二、简单描述: 提供此向导的目的是为快速掌握iVu系列传感器的必要信息。它提供了此传感器的总揽,而且以图解的方式说明了如何设定传感器来检测标签、工件、包装等。 三、邦纳传感器报价税后是:14200RMB 四、使用步骤 1、退出演示模式(只第一次使用时进行此操作) 第一次给iVu 系列传感器上电,它会进入演 示模式。演示模式以保存的图像和检测参数来示 范如何配置传感器,而不需要考虑聚焦、光源或 是触发。在这种模式下,你可以学到如何对这三 种传感器形式进行调整,观察到调整对整个图像 的影响。要退出演示模式,可以通过主菜单-系统 -传感器类型,然后选择退出演示模式。当退出演 示模式后,传感器重启进入正常操作模式。 注意:你可以随时通过“主菜单-系统-传感器类 型-选择进入演示模式”的方式回到演示模式。当退出演示模式时,需要重启传感器实现图形模式匹配设置,通过以下步骤更改传感器类型: 1)在屏幕的左下角,点击此图标, 显示如下主菜单

2)在主菜单中点击图标,显示如下系统菜单 3)点击传感器型号,在监视器上选择工具,再点击”Apply应用”图标 4)点击主屏幕左上角的图标,就是可以回到主屏幕(如果没有演示模式就不用进行上述操作了)

超声波换能器使用说明书

超声波换能器使用说明书 一、概述 超声波筛分系统是一种简单实用、可靠的筛分系统,是当前网孔堵塞的最有效的解决方法。可广泛应用于制药、冶金、化工、选矿、食品等要求精细筛分过滤的行业,筛分过滤精度高,有效解决因团聚、静电、强吸附性卡堵网孔等筛分难题,是国内筛分行业的一项重大突破。 二、结构 超声波震动筛电源:38KHz高频大功率超声波电源。内置微电脑芯片,可根据物料的不同状态进行全程数字频率自动跟踪,无需人工调整,操作简单方便。长时间工作振荡器发热量低,工作状态稳定。 ●HF链接电缆线:超声波换能与超声波振动筛电源之间采用电缆链接。 ●连接器:航空链接插件。 ●换能器:高性能超声波转换器件。 ●超声波网架:由外网架于共振器组成。 ●筛网:适用于10目~635目。 三、工作原理 超声波筛分系统由超声波振动筛电源、HF链接电缆、换能器、共振器组成。超声波振动筛电源产生的高频电通过换能器转换成高频正弦形式的纵向振荡波,这些震荡波传到共振器上使共振器产生共振,然后由共振器将振动均匀传输至筛面。筛网上的物料在做低频三次元振动的同时,叠加上超声波振动,即可防止网孔堵塞,又可提高筛分产量和精度。 四、技术参数 超声波振动筛电源: 电源输入整机电流高频电流工作频率工作模式环境温度 AC220V±10% ≤0.6A ≤0.4A 38KHz 连续、脉冲-10~35℃50~60Hz 五、使用说明 1、首先将换能器锁定在贴好网的网架上(锁定力度为40~50kg),然后将超声波网架装入振动筛。 2、超声波振动筛电源与旋振筛分别供电,旋振筛为三相供电,超声波振动筛电源为单相供电,两者均需可靠接地。 3、超声波振动筛电源后面板OUT为超声波输出,请把超声波HF连接线插入锁紧,并检查链接可靠。HF链接电缆的航空插头另一端与换能器链接,并保证密封固定牢固。 4、接好超声波振动筛电源的电源及超声波HF链接电缆,检查无误后打开超声波电源开关。随着“滴”的声响,超声波振动筛电源启动,显示窗口显示“振动幅度XXXμm”,并进入自检状态。通过调整振幅旋钮,即可调整振动幅度(建议振动幅度100~150μm,有利于筛网的寿命)。 5、超声波谐振动电源有2种工作状态:连续“—”工作状态和脉冲“”工作状态,正常为连续“—”工作状态下,按摩式建,进入脉冲“”工作状态。在脉冲“”状态下按连续建,返回连续工作状态。 六、其他注意事项 在使用超声波振动系统前,请仔细阅读本注意项,按说明操作,以免造成设备不必要的损坏。 1、超声波振动筛电源工作输入电压为交流220V。 2、在能够满足生产要求的情况下,振动幅度最大不要超过200μm. 3、网架没有负载即网架没有绷网的时候,请勿打开超声波振动筛电源。否则,容易造成电源过流和网架及换能器的损坏。 4、筛网一定要绷紧,否则影响超声波输入及振动效果。

传感器选型指导

传感器选型指导 下面的每种传感器-电化学型、催化型、固态型、红外线和光电离探测器的应用都必须满足区域内空气的质量和安全所要求的标准。一些基本的要求如下: 1.传感器将被设计成为小型、外表粗糟的小盒子。传感器必 须适用于危险地点和苛刻的环境,同时它必须是防爆的。传感器必须是合算的,是为在工业生产区域内使用而设计的,安置的费用也是合理的。 2.对于便携式仪器,仪器具有合理的能源消耗,仪器所选的 电源为市场容易得到的电池。仪器体积小、方便,容易携带。在工业 环境中使用非常安全。由于使用在危险区域,仪器必须具有安全合格证。 3.仪器的操作和维护将是很容易完成,只要工厂内的职工经 过简单的专业培训即可。 4.安装固定传感器时,在某一周期内,传感器的功能将会达 到连续可靠,该周期长达30天。传感器在工业环境下至少工作二年或更长,在合理的费用基础之上进行更新和替换。传感器可安装在由控制器或计算机控制的集散系统管理的多点系统中。 5.仪器的费用是合理的。为了有效的保护某一区域,可安装 多个传感器。 本手册讨论了五种传感器中的四种,均满足以上的标准。只有光电离探测器除外。光电离探测器是一种好的探测器,但是受到光的限制,因为它有相对短的寿命和频繁的维护要求,不适合固定点应用。然而,只要用户考虑了限制的条件,固定的光电离探测器还是可用的。 其他类型的传感器虽然满足以上的标准,但也有一些限制。例如,热传导传感器大部分应用于高 浓度,而不常用于气体监视。 选择传感器所考虑的因素 就传感器而言,经常问的问题之一是:“什么传感器最好?”。当然,这个问题不能一两句就说清楚。每个传感器有自己的性能和限制,因此一个给定传感器的适应性很大程度取决于使用过程中的应用。因此为了选择一个正确的传感器,首先必须确定应用的要求。102页总图显示了各种应用的要求和检测的技术。制造厂商提供传感器的粗略的标定。

CTD操作手册

Sea-Bird 911 plus CTD温盐深探测系统技术手册 东方红2号船实验室 2003年7月

第一部分系统简介 Sea-Bird 911 plus CTD温盐深探测系统是由美国Sea-Bird公司生产的,目前世界上最先进的海洋水文调查仪器之一。本系统包括水下单元(SBE 9plus)、甲板单元(SBE 11plus)和采水系统(CAROUSEL WATER SAMPLER)三部分。水下单元由铠装电缆与甲板单元相连,并通过装有Sea-Bird公司提供的CTD数据采集软件的计算机,对整套系统进行设置和操作,所采集的数据实时显示在计算机屏幕上,并实时进行纪录。 具体技术指标如下: 一、水下单元(SBE 9plus) SBE 9plus为Sea-Bird 911 plus CTD系统的水下单元,可与SBE 11plus组成SBE 911plus CTD直读式CTD。也可与SBE 17plus V2 SEARAM组成SBE 917plus CTD自容式CTD。主机采用模块化设计,易于更换及维护。 SBE 9plus共提供5路频率输入,压力传感器1路,温度和电导传感器各2路。另外还为附加传感器提供了8路扩展电压信号输入。 1、温度传感器 此传感器采用压力保护(pressure-protected)高速(high-speed)热敏电阻,电路部分采用Wein bridge oscillator电路。Wein bridge oscillator电路中热敏电阻为感应部分,其余由一个高精度电阻和两个有极性电容,另外还有一个晶振组成。此电路区别与一般电桥的地方就是多了一个晶振。晶振的特性是它会根据不同的输入电压输出不同频率的电信号而且质量好的晶振精度很高。从这个意义上讲它使传感器的精度更高。环境温度变化可引起热敏电阻阻值变化,因此引起电压及晶振输出频率的变化,通过温度、阻值、电压和频率之间的一一对应关系在经过简单的运算即可得出对应的温度值。 2、电导传感器 电导传感器的原理与温度传感器相同,不同之处就是热敏电阻替换成电解池(Cell resistance)。海水不同的电导率对应Cell resistance相应的电压输出。 3、压力传感器 压力传感器采用Paroscientific Digiquartz 压力传感器,核心部分可能是一种可将外来压力直接转换为频率信号的晶体,不同于温度和电导传感器是在电路中并联晶振。此传感器较其它传感器有很好工作特性,但价格昂贵。 以上三个传感器均提供一路变频信号输出至主机即SEB plus 9 CTD,每个传感器使用两个12位高速并行输出计数器,一个用于累计每一个采样周期晶振产生脉冲的个数,另一个记录采样时间,并将数据传输至甲板单元,甲板单元将此数据转化为晶振原始频率。每个计数器可累计4096个脉冲,最小采样周期为1/24s,因此传感器最大输出频率不得超过F=4096/(1/24)=98304Hz。 4、高度传感器 发射频率200kHz 发射脉宽250ms 量程100m 最大倾角14度 模拟输出0~5VDC 数字输出RS-232,波特率(可选)9600,4800,2400或1200

别懵,这里有你需要的传感器选型准则!

别懵,这里有你需要的传感器选型准则! 随着信息时代的发展,人们在运用信息的进程中,首要任务便是获取精确可靠的信息,而传感器是抓取自然环境和生产领域中信息的首要途径及手段。 在现代化工业生产尤其是自动化生产的进程中,通过控制各个生产节点上安装上速度、压力、温度、位移等传感器,来监督和控制生产进程中的各个参数,使工业设备在正常情况或最佳情况下运作,并使产品达到最佳质量,大幅提高工业生产的效率。传感器的作用不言而喻,但是在工作中我们该如何选择合适的传感器呢? 下面给你六大准则,让你选择传感器再无忧愁!!!! 1、根据测量对象与测量环境确定类型 要进行-个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。 在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。 2、依据灵敏度的选择 通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,

与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽量减少从外界引入的干扰信号。 传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。 3、判断频率响应特性 传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真。实际上传感器的响应总有-定延迟,希望延迟时间越短越好。传感器的频率响应越高,可测的信号频率范围就越宽。 在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过大的误差。 4、根据传感器的线性范围 传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。 但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便。 5、根据传感器的稳定性 传感器使用一段时间后,其性能保持不变的能力称为稳定性。影响传感器长期稳定性的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。 在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减小环境的影响。 别蒙!这里有你需要的传感器选型准则 6、传感器的精度不可忽视

传感器使用说明

1、震动传感器 震动传感器原理:当模块有震动,模块输出低电平接口说明: VCC——两节电池盒正极 GND——两节电池盒负极 DO——模块当有震动,此脚输出低电平 2、雨水检测传感器 原理:当有水滴在模块的平板上,模块输出低电平接口说明: VCC——两节电池盒正极 GND——两节电池盒负极 DO——模块当检测到有水,此脚输出低电平AO——不用

3、土壤湿度传感器 原理:当传感器插在水里面,使两边导通,传感器输出低电平 接口说明: VCC——两节电池盒正极 GND——两节电池盒负极 DO——模块当检测到水,此脚输出低电平 AO——不用 4、有毒气体传感器 原理:当打起火机并吹灭火,打火机放出有毒气体,传感器输出低电平 接口说明:

VCC——两节电池盒正极 GND——两节电池盒负极 DO——模块当检测到有毒气体,此脚输出低电平 AO——不用 5、触摸传感器 原理:当传感器的圆圈上检测到有手触摸时,传感器输出高电平 接口说明: VCC——两节电池盒正极 GND——两节电池盒负极 DO——模块当检测到手触碰时,此脚输出高电平 AO——不用 6、以上模块使用说明 第一到第四种传感器的DO输出脚接LED的负极,LED的正极接两节电池盒的正极,即可实现传感器感应控制LED的亮和灭;这四种传感器都有一个滑动变阻器,用螺丝刀扭动滑动变阻器,使模块上的感应指示灯在亮和灭的临界点,即可实现传感器感应LED的亮和灭;扭

动滑动变阻器原因是调节灵敏度,用螺丝刀扭动滑动变阻器,使模块上的感应指示灯在亮和灭的临界点即灵敏度最高,这样模块才有反应。 第五种传感器刚好相反以及不需要调节电位器,触摸传感器输出的是高电平,所以D0连接LED的正极,LED的负极连接到电池盒的负极。

相关主题
文本预览
相关文档 最新文档