当前位置:文档之家› 大规模缝内转向压裂技术研究与试验_谢朝阳

大规模缝内转向压裂技术研究与试验_谢朝阳

大规模缝内转向压裂技术研究与试验_谢朝阳
大规模缝内转向压裂技术研究与试验_谢朝阳

转向压裂

第一章概述 (2) 第二章技术原理 (4) 一、暂堵转向重复压裂技术原理: (4) 二、破裂机理研究 (5) 三、重复压裂裂缝延伸方式 (8) 第三章重复转向压裂时机研究 (11) 1、影响重复压裂效果因素 (11) 2、选井选层原则 (11) 3、压裂时机确定 (12) 第四章暂堵剂(转向剂) (12) 1、堵剂性能要求: (12) 2、堵剂体系 (12) 3、水溶性高分子材料堵剂 (13) 4、配套的压裂液 (15) 第五章转向压裂配套工艺技术 (16) 1、缝内转向压裂工艺技术 (16) 2. 缝口转向压裂工艺技术 (18) 3、控制缝高压裂技术 (19) 4、端部脱砂压裂技术 (20) 第六章工艺评价 (21) 1.裂缝监测 (21) 2.施工压力 (21) 3.产能变化 (21)

第一章概述 我国发现的油气藏中60%以上为低渗透油气藏,往往具有非连续、非均质、各向异性的特点。 低渗油藏必须进行压裂改造,才能获得较好的效果。随着开采程度的深入,老裂缝控制的原油已近全部采出,传统的平面水力裂缝设计方法和压裂技术已不能满足这类油藏开采的需求。可以实施暂堵转向重复压裂,在纵向和平面上开启新层,开采出老裂缝控制区以外的原油,有效的稳油控水、提高原油产量和油田采收率,实现油田的可持续发展。 目前,国内外的重复压裂实践主要有以下三种方式:①层内压

出新裂缝;②继续延伸原有裂缝;③转向重复压裂。 对于重复压裂中出现的裂缝转向,目前认为主要有三种不同方式:①地应力反转;②定向射孔诱导;③桥堵转向压裂工艺。 对于低渗储层,由于出现地应力场反转的难度较大,而采用定向射孔压裂造成裂缝转向,对储层伤害较大。近些年,利用桥堵作用堵塞裂缝,形成转向的新裂缝的压裂工艺(缝内转向与缝口转向),经过现场实践,增产显著,逐步成为低渗储层重复改造的首选工艺。 在大规模试验研究的基础上,经过工艺优化配套,建立了以缝内转向压裂工艺为主导的低渗透重复压裂新模式。它有效地在疏通原有人工主裂缝基础上形成了新的支裂缝,沟通了“死油区”,扩大油井泄油面积。 低渗透油田缝内转向压裂工艺的关键技术是缝内转向剂技术。依靠该技术产品,实现了裂缝延伸的暂时停止,达到了在缝内某一位置实现裂缝转向的目标。为证实缝内转向压裂沟通微裂缝和形成新裂缝,利用微地震法在施工时裂缝延伸进行动态监测。综合分析水力压裂裂缝延伸监测结果、重复压裂效果、施工压力特征,能证明缝内转向重复压裂在疏通原有裂缝的基础上,是否产生了沟通微裂缝或者形成新裂缝。 缝内转向压裂工艺在低渗透油田应用概况: 在老井上的应用概况: 2002-2007年,缝内转向压裂工艺在老井上推广应用487口井,增产效果明显。安塞油田应用332口井,日增油1.40t,陇东油田

最新压裂技术现状及发展趋势资料

压裂技术现状及发展趋势 (长城钻探工程技术公司) 在近年油气探明储量中,低渗透储量所占比例上升速度在逐年加大。低渗透油气藏渗透率、孔隙度低,非均质性强,绝大多数油气井必须实施压裂增产措施后方见产能,压裂增产技术在低渗透油气藏开发中的作用日益明显。 1、压裂技术发展历程 自1947年美国Kansas的Houghton油田成功进行世界第一口井压裂试验以来,经过60多年的发展,压裂技术从工艺、压裂材料到压裂设备都得到快速的发展,已成为提高单井产量及改善油气田开发效果的重要手段。压裂从开始的单井小型压裂发展到目前的区块体积压裂,其发展经历了以下五个阶段[1]:(1)1947年-1970年:单井小型压裂。压裂设备大多为水泥车,压裂施工规模比较小,压裂以解除近井周围污染为主,在玉门等油田取得了较好的效果。 (2)1970年-1990年:中型压裂。通过引进千型压裂车组,压裂施工规模得到提高,形成长缝增大了储层改造体积,提高了低渗透油层的导流能力,这期间压裂技术推动了大港等油田的开发。 (3)1990年-1999年:整体压裂。压裂技术开始以油藏整体为单元,在低渗透油气藏形成了整体压裂技术,支撑剂和压裂液得到规模化应用,大幅度提高储层的导流能力,整体压裂技术在长庆等油田开发中发挥了巨大作用。 (4)1999年-2005年:开发压裂。考虑井距、井排与裂缝长度的关系,形成最优开发井网,从油藏系统出发,应用开发压裂技术进一步提高区块整体改造体积,在大庆、长庆等油田开始推广应用。 (5)2005年-今:广义的体积压裂。从过去的限流法压裂到现在的直井细分层压裂、水平井分段压裂,增大储层改造体积,提高了低渗透油气藏的开发效果。 2、压裂技术发展现状 经过五个阶段的发展,压裂技术日趋完善,形成了三维压裂设计软件和压裂井动态预测模型,研制出环保的清洁压裂液体系和低密度支撑剂体系,配备高性能、大功率的压裂车组,使压裂技术成为低渗透油气藏开发的重要手段之一。 2.1 压裂工艺和技术

压裂技术详解

压裂技术详解 第一节压裂设备 1.压裂车: 压裂车是压裂的主要设备,它的作用是向井内注入高压、大排量的压裂液,将地层压开,把支撑剂挤入裂缝。压裂车主要由运载、动力、传动、泵体等四大件组成。压裂泵是压裂车的工作主机。现场施工对压裂车的技术性能要求很高,压裂车必须具有压力高、排量大、耐腐蚀、抗磨损性强等特点。 2.混砂车: 混砂车的作用是按一定的比例和程序混砂,并把混砂液供给压裂车。它的结构主要由传动、供液和输砂系统三部分组成。 3.平衡车: 平衡车的作用是保持封隔器上下的压差在一定的范围内,保护封隔器和套管。另外,当施工中出现砂堵、砂卡等事故时,平衡车还可以立即进行反洗或反压井,排除故障。 4.仪表车: 仪表车的作用是在压裂施工远距离遥控压裂车和混砂车,采集和显示施工参数,进行实时数据采集、施工监测及裂缝模拟并对施工的全过程进行分析。

5.管汇车: 管汇车的作用是运输管汇,如;高压三通、四通、单流阀、控制阀等。第二节压裂施工基本程序 1.循环: 将压裂液由液罐车打到压裂车再返回液罐车。循环路线是液罐车-混砂车-压裂泵-高压管汇-液罐车,旨在检查压裂泵上水情况以及管线连接情况。循环时要逐车逐档进行,以出口排液正常为合格。 2.试压: 关死井口总闸,对地面高压管线、井口、连接丝扣、油壬等憋压30-40Mpa,保持2-3min不刺不漏为合格。 3.试挤: 试压合格后,打开总闸门,用1-2台压裂车将试剂液挤入油层,直到压力稳定为止。目的是检查井下管柱及井下工具是否正常,掌握油水的吸水能力。 4.压裂: 在试挤压力和排量稳定后,同时启动全部车辆向井内注入压裂液,使井底压力迅速升高,当井底压力超过地层破裂压力时,地层就会形成裂缝。5.支撑剂: 开始混砂比要小,当判断砂子已进入裂缝,相应提高混砂比。 6.替挤:

(工艺技术)油田压裂新技术工艺

2012年4月8日星期日 1、黑油模型:指油质较重性质的油藏类型。黑油模型是最完善、最成熟,也是应用最为广 泛的模型。是油藏数值模拟的基础,其它模型大都是黑油模型的扩展。 (1) 黑油模型的基本假设:(1)油藏中的渗流是等温渗流。 (2)油藏中最多只有油、 气、水三相,每一相均遵守达西定律。 (3)油藏烃类只含有油、气两个组分。在油 藏状态下,油气两组分可能形成油气两相,油组分完全存在于油相内,气组分则可 以以自由气的方式存在于气相中,也可以以溶解气的方式存在于油相中,所以地层 内油相为油组分和气组分的某种组合。在常规油田中,一般不考虑油组分向气组分 挥发的现象。(4)油藏中气体的溶解和逸出是瞬间完成的,即认为油藏中油气两相 瞬时达到相平衡状态。(5)油水之间不互溶;天然气也假定不溶于水。 煤层气:赋存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主并部分游离于 煤孔隙中或溶解于煤层水中的烃类气体。 全国煤层气试验区分布图 J3-K1 哈尔滨 28 3、页岩气 页岩气形成的条件 (1) 岩性:形成页岩气的岩石除页岩外,还包括泥岩、粉砂岩、甚至很细的砂岩 (2) 物性:页岩最突出的特点是孔隙度和渗透率极低,典型的气页岩的基质渗透率处于微 达西~纳达西范围,因此气体在储层中的流动主要取决于页岩中天然裂缝的发育情况 (3 )矿物组成:粘土矿物和碳酸盐含量低、粉砂质或硅质(石英)含量较高比较有利。 (4)裂缝: 裂缝发育适中。 2012-4-9 4、压裂工艺成果 压裂工艺推陈出新,分段压裂、裂缝性气藏压裂、火山岩压裂、降滤压裂、重复压裂、转向 压裂、控缝高压裂等压裂技术得到了成功应用, 特别是水平井分段压裂技术的推广应用, 保障油气田增储上产方面发挥了巨大作用。 较好指标: 2、 乌鲁木齐 J1-2 J3-K1 J3-K1 J3-K1 J3-K1 J2 J1-2 J1-P2 J1-2 J1-2 西宁 兰州 J1-2 1-2 西安 P2 成都 2"| C-P 北京1 ? 济南3 9 C-P 长春 E J3-K1 1开滦 15 韩城 2大城 16 蒲县 3济南 17 柳林 4淮北 18 吴堡 5淮南 19 三交 6平顶山 20 临县 7荥巩 21 兴县 8焦作 22 丰城 9安阳 23 冷水江 10晋城 24 涟邵 11屯留 25 沈北 12阳泉 26 红阳 29 阜新 13澄合 27 铁法 30 辽河 14彬长 28 鹤岗 T3 武汉二 长沙 2 : P2 上海 P2 P2 福州 卢台北

国内大型压裂技术的应用与发展_张光生

第41卷第1期 辽 宁 化 工 Vol.41,No. 1 2012年1月 Liaoning Chemical Industry January,2012 收稿日期: 2011-09-19 国内大型压裂技术的应用与发展 张光生1,2,王维波1,杨冬玉1,廖 晶2,张红丽3,王雷波4,王华军1 (1. 西安石油大学石油工程学院, 陕西 西安 710065; 2. 河南油田勘探开发研究院地质实验室, 河南 南阳 473132; 3. 中国石油川庆钻探长庆钻井公司第二工程项目部, 甘肃 庆阳 745100; 4. 北京恩瑞达科技有限公司压裂套管堵漏项目部, 北京 100192) 摘 要:大型压裂在我国的应用与发展已有十余年时间,但大型压裂目前尚无明确的界定标准。国内近年来形成了低渗透薄互层油藏大型压裂、大型酸化压裂改造、大型加砂压裂、低伤害大型压裂等一系列成熟的大型压裂技术。大型压裂具有地质条件复杂多样、机组功率大、施工规模大、增产效果显著等特点,在今后很长时期内将继续担当低渗透油气层勘探试油,新井投产和油层改造的重任。 关 键 词:大型压裂;低渗;薄互层油藏;裂缝;酸化压裂 中图分类号:TE 357 文献标识码: A 文章编号: 1004-0935(2012)01-0046-05 1 中小规模压裂向大型压裂的变化 水力压裂凭借由地面向井内泵注液体的能量,使油层破裂,继而填以支撑剂,形成并保持裂缝,从而改善油气层导流能力,以达到油水井增产增注的目的。水力压裂技术是人们在认识地层、开发油气资源的长期实践中逐步总结出来的成果。 1947年7月世界第一口压裂井在美国堪萨斯州Hugoton 气田Kelpper 1井成功压裂[1] ,至今已有上百万井次的压裂作业。1954年中国开始应用水力压裂,20世纪70年代逐步对油层水力压裂基本原理、压裂工艺、压裂液、支撑剂、压裂工具、压裂设备、压裂施工中的事故预防和处理等问题进行研究和实践。五十多年来,水力压裂技术已由简单的、低液量、低排量压裂增产方法发展成为一项标准的开采工艺技术。最初的压裂作业,液量一般只有几立方米,而现代大型压裂作业液量已达几百立方米,支撑剂达上百吨。 大型压裂(Massive Hydraulic Fracturing,MHF)是相对于中小规模的压裂而言,虽然目前没有文献或者资料对大型压裂做出明确界定,但公开出版的文献中普遍将压裂液用量400 m 3 以上、加砂量50 m 3 以上、最高施工泵压60 MPa 以上,同时动用了数台较大功率机组且有较大排量和较长作业时间的压裂作业称为大型压裂。20世纪90年代国内开始实施大型压裂施工,迄今已完全具备大型、超大型压裂的技术能力。如果能制定明确的大型压裂标准,无疑将有利于行业技术实力的量化比较和品牌形象的树立。 2 国内大型压裂技术应用现状 2.1 应用现状 为研究致密气藏而发展起来的的水力压裂技术,其作业规模从小型发展到大型甚至超大型已成为压裂技术发展的一个重要方面。国内近年来将其广泛应用于油气藏增产改造,并取得良好增产效果。胜利、新疆、四川等油气田,屡屡以压裂液用量、加砂量、最高施工泵压等关键参数,不断刷新和创造国内大型压裂规模纪录。表1汇总了近年来国内部分大型压裂井况与施工参数。 大型压裂不仅应用于低渗透薄互层砂岩油藏、低孔-特低渗薄互层油藏、低渗砂砾岩油藏、潜山裂缝性变质岩油藏、火山岩油藏、致密页岩气藏、低压气藏、低渗透砂岩气藏等,而且也用于碳酸盐岩油气藏酸压改造,以及煤层气压裂[2,3] 。 2.2 主要技术的研究与开发 (1)低渗透薄互层油藏大型压裂技术 ① 二维流动的拟三维裂缝扩展模拟技术[4] 大型压裂技术的出现使人们认识到裂缝内过高的压力容易克服遮挡层岩石应力,使水力压裂的裂缝沿长、宽、高三个方向同时延伸。低渗透薄互层砂岩油藏隔层薄、强度低,裂缝的长高比往往小于4,以前只考虑流体一维流动的拟三维裂缝扩展模型就不够真实。根据低渗薄互层油藏大型压裂的特点,在适当假设的基础上,应用线弹性断裂理论,建立流体沿着裂缝高度和长度方向流动的拟三维裂缝扩展

压裂-工程技术试题(管理岗)

工程技术试题(管理人员) 填空题部分 1.破裂压力计算:直井:瞬时停泵压力+(射孔底界—射孔顶界)/2*100 、水平井:瞬时停泵压力+垂深、 2.如井下有封隔器,压裂时套管平衡压力一般采用地面泵压的1/3~1/5。 3.常用压裂管柱的规格:(1) 73mm(2?in )油管:外径73mm ,内径62mm 。内容积3.019L/m ,外容积 4.185 L/m 。(2)89mm(3in )油管:外径88.9mm ,内径76mm 。内容积4.536L/m ,外容积6.207 L/m 。 4.对于任意时间段的混砂比,可通过下式计算得出:平均混砂比= 砂量时间排量砂量 *64.0* % ,该式为石英砂(密度1.67×103Kg/m)混砂比计算公式,如果为其它支撑剂,则视其密度,式中系数作相应变化。 5.原地层的渗透率与有效厚度的乘积称为地层系数。 6.喷砂器的作用:向地层喷砂液,造成节流压差,保证封隔器所需的坐封压力。 7.压力系数是指某地层深度的地层压力与该深度的静水柱压力之比。 8.在进行井下作业时,压井液压力的下限要能够保持与地层压力平衡,而其上限则不应超过地层的破裂压力以避免压裂地层造成井喷。 9.理想的压裂液必须具有多种用途并满足以下条件:低滤失性,携砂性,降阻性,稳定性,配伍性,低残渣,易返排。 10.施工时液体的流动过程:压裂液罐-混砂装置-压裂泵车-管汇-地面管线-井口-井下管线-喷砂器-油套环空-射孔炮眼-地层。 11.地质构造的基本类型有四类:水平构造、倾斜构造、褶皱构造和断裂构造。 12.天然石油是从油、气田中开采出来的;人造石油是从煤或油页岩等干馏出来的。 13.根据圈闭的成因,圈闭分为构造圈闭、地层圈闭、岩性圈闭等。 14.一个油气藏必须具备两个基本条件:同一圈闭内油气聚集;具有统一的压力系统。 15.大庆长垣的原油属于石蜡基原油,含蜡量达20%~30%,凝固点为23~

体积压裂技术的研究与应用

体积压裂技术的研究与应用 摘要:对于低渗油藏,由于此类型的储油层密度高,渗透率较低,所以就不能使用常规的压裂形成单一裂缝的增产改造措施,因为此措施不能达到商业的开采价值,因而为了提升其商业开采价值就要探索新的压裂改造技术。在国内提出了体积压裂改造超低渗油藏的设想,其根据是参考国外的页岩气体积压裂技术。国内通过体积压裂的方法在靖安油田初次实验及应用。经实践后得出,虽然低渗油藏储层致密、渗透率低,但是在经体积压裂后,其形成了复杂缝网和增大改造体积,这样不仅在初期油量产出大,而且给与后期稳产极大支持。 关键词:低渗致密增产改造体积压裂缝网 一、体积压裂作用机理 “体积压裂”顾名思义,就是指将可以进行渗流的有效储集体通过压裂的方法“打碎”,这样就形成了一个网络裂缝,通过这样的压裂方式能使储层基质与裂缝壁面的接触面积达到最大化,使得油气可以从任何方向渗流到裂缝的距离最短化,将储层整体渗透率提高到一定的程度,从而使储层可以实现长、宽、高三维立体方向的改造。在工程的施工过程中,通过(1)低猫液体(2)大液量(3)高排量这三项,加以转向技术及材料的应用的辅助,利用直井分层压裂技术和水平井分段改造技术等手段,可以将裂缝网络系统形成规模最大化,储层动用率就会相应的提高,从而提高非常规油气藏采收率。 二、体积压裂的技术特征 2.1 体积压裂改造的条件 (1)地层有天然的裂缝且发育良好;(2)岩石中硅质成分含量高,容易在高压下产生裂缝。岩石在压裂过程中容易产生剪切力破坏,不是形成单一的裂缝,而是有利于形成复杂的网状裂缝,从而提高裂缝密度增加缝隙体积;(3)较小的敏感力度,适用于大型的滑溜水压裂。较弱的水敏地层,有利于提高压裂液的用液规模,同时使用滑溜水压裂,滑溜水黏度低,可以进入天然裂缝中,迫使天然裂缝延展距离增加缝隙体积,扩大了改造体积。 2.2 体积压裂改造技术 国内常用的体积压裂技术是滑溜水大型压裂技术。体积压裂工艺有两个特征。第一“两大”:大排量、大液量。第二“两小”:(1)小粒径低密度支撑剂,支撑剂一般采用70/100目和40/70目陶粒;(2)低砂比,最高砂比不超过支撑剂总量的20.0%。 2.3 体积压裂液体系

国内压裂技术进展

中国石油压裂酸化业务的发展综述 近些年,中国石油压裂酸化发展声势夺人,水平井裸眼分段压裂酸化工具等一批技术利器先后登场。从技术工艺来说,历经直井分层压裂、水平井分段压裂和井组整体压裂,由单纯追求裂缝长度发展到最大限度寻求被压开储层体积。 今年,一吨瓜尔胶一度高达每吨2.1万美元,两年前这一价格还仅为1950美元。作为传统压裂液,瓜尔胶身价倍增的推手正是全球如火如荼的压裂酸化业务。且不说压裂酸化在北美页岩气开发中大显身手,仅从中国石油压裂技术的发展就可窥见一斑。 时势造英雄 压裂酸化是一种旨在改善石油在地下流动环境,提高油井产量的储层改造工艺技术,虽应用年头不短,但整体发展速度相对较慢,不仅是工程技术产业链上的一块短板,而且在井下作业业务的庞大队伍中也势单力薄。 然而近些年,中国石油压裂酸化发展声势夺人,水平井裸眼分段压裂酸化工具等一批技术利器先后登场。昔日低调的角色为何成为今日的新秀? 时势造英雄。随着油气资源劣质化加剧,低渗透油气储量成为新增储量和上产主体,越来越多油气井需要储层改造。压裂酸化技术发展,不仅关系到稳定并提高单井产量“牛鼻子”工程的实施,而且影响着油气藏开发动用程度。 据统计,“十二五”期间,中国石油目标市场压裂酸化工作量需求约13.9万井次,年平均2.8万井次,2015年将比2010年增长30.5%,压裂层(段)数及加砂量将增长40%以上。 压裂酸化在建设“西部大庆”大舞台上充分证明了这一点。从“井井有油、口口不流”的“三低”油气藏,到如今“西部大庆”呼之欲出,以压裂为核心的井下技术作业,在长庆油田增储上产中起的作用不言而喻。40多年来,“吃压裂饭,过压裂年,唱压裂歌”的顺口溜无人不晓。 如今,要唱“压裂歌”的何止长庆油田一家。大庆油田薄互层水平井压裂和老井改造,川渝地区和塔里木地区的深井、高温高压储层改造及页岩气等非常规油气资源开发,都在热情地呼唤压裂酸化技术进步与更大规模应用。 在2012年勘探开发年会上,集团公司总经理周吉平把物探、钻完井及储层改造并列为三大核心工程技术。集团公司副总经理廖永远要求油田和工程技术企事业单位要“干优压裂活,吃好储改饭”。 整合出尖兵

缝网压裂应用效果的分析与认识

缝网压裂应用效果的分析与认识 发表时间:2014-12-15T13:18:52.247Z 来源:《科学与技术》2014年第10期下供稿作者:刘会红 [导读] 裂缝导流能力是指充填支撑剂的裂缝传导或输送储集层流体的能力。 大庆油田有限责任公司试油试采分公司地质大队刘会红 摘要分析缝网压裂机理并联系现场施工情况,分析和说明了缝网压裂的应用效果。通过12口缝网压裂井的试油资料,对缝网压裂井的打入地层压裂液、日产油量、返排率等重要参数进行分析评价。得出了缝网压裂的特征:增产效果明显;打入地层压裂液大;返排率高;排液时间长;使用范围广。 关键词:缝网压裂;渗透率;应用效果;导流能力 1 缝网压裂的基本原理 缝网压裂技术的作用机理有相同之处,大致如下:(1)裂缝必须以复杂的缝网形态进行扩展。(2)迫使裂缝发生剪切破坏,错断、滑移,而不是进行单一的张开型破坏。(3)储层岩石有显著的脆性特征。(4)存在天然裂缝及其相互沟通状况。(5)实施“分段多簇”射孔实施应力的干扰,增大储层体积,这是实现体积改造和技术成功的技术关键。 图1 缝网压裂效果示意图 2 缝网压裂的理论分析 裂缝导流能力 裂缝导流能力是指充填支撑剂的裂缝传导或输送储集层流体的能力。定义为在储层闭合压力下,裂缝支撑剂层的渗透率与裂缝支撑缝宽的乘积,单位是 D?cm。 (1) 3 缝网压裂技术的现场应用效果分析 2014年中浅层共统计了12口井的缝网压裂情况。 表1 现场12口压裂井打入地层液量及返排率 3.1 增产效果好,日产油量大。 采用缝网压裂技术的压裂井比同区块比邻井产量较高,是同区块邻井产量的3.51倍。在最近几年统计的缝网压裂中12口井有9口井达到工业油层,占总井数75%。具体如图2

水力压裂裂缝暂堵转向机理与转向规律研究

水力压裂裂缝暂堵转向机理与转向规律研究储层改造是页岩油气、致密油气等非常规油气开发的核心技术,通过水力压裂形成复杂裂缝网络,实现体积改造是水力压裂施工的目标。当储层可压性较差或应力差较大时,难以形成复杂裂缝网络,通过暂堵逼迫裂缝转向是增强缝网扩展复杂性的重要手段。 到目前为止,虽然现场实践已取得较好成效,但裂缝暂堵转向的力学机理、扩展规律和调控方法等尚处于探索阶段,迫切需要开展人工裂缝暂堵转向机理和规律研究。本文探索了新的实验方法,发展了水力压裂数值算法,通过岩芯测试、物理模拟和数值模拟研究,对非常规储层的可压性和转向能力、转向剂对裂缝的暂堵规律、裂缝转向扩展规律进行了研究,主要取得成果如下:(1)致密储层成缝能力测试与评价。 储层成缝能力(可压性)是裂缝转向的基础和重要影响因素。实验发现:(1)页岩存在强微观非均质性,并与矿物成分、天然裂隙和TOC含量等一起,是影响页岩储层成缝能力的重要因素。 (2)流体对页岩的岩石力学性质具有显著影响,并与页岩储层的超低含水饱和度、粘土含量、TOC和微纳米孔隙有关。(3)基于基质脆性、天然裂隙密度和声发射活动性,建立了综合评价致密储层成缝能力的新方法。 油田现场应用说明此方法是可行的。(2)裂缝转向机理和规律的真三轴模拟实验研究。 利用真三轴水力压裂物模实验装置,研究了纤维暂堵裂缝的转向扩展规律,得出裂缝转向的主要控制因素为储层成缝能力及其非均质性、水平主应力差、天然裂缝分布、初级裂缝宽度、纤维浓度、粘度与排量等,得到了暂堵形成的条件

与图版,并给出了裂缝发生转向时的临界应力差;并以人工裂缝倾角、地应力差、成缝能力和缝内流压为主要参数,建立了裂缝转向能力的评价模型。(3)基于PGD 法(Proper Generalized Decomposition),针对水力压裂裂缝转向和网络化扩展数值模拟需要,建立并求解了完全耦合条件下水力压裂裂缝扩展模型,PGD算法 适合于高效、快速求解以非线性、瞬态、耦合为特征的水力压裂问题,计算速度明显快于传统的有限元方法。 (4)应用PGD算法进行了裂缝转向的模拟,结论与真三轴物理模拟结果一致。裂缝转向主要控制因素为储层性质、水平主应力差、缝间干扰、裂缝暂堵效率、粘度与排量等。 在低应力差、较短裂缝间距条件下,缝间干扰强,裂缝端部较容易发生转向;天然裂缝剪切滑移对裂缝转向具有明显影响,在剪应力和流体压力联合作用下,裂缝更易转向;在转向处裂缝宽度和净压力发生突变,缝宽变窄,净压力降低。本文研究成果将为非常规油气转向压裂改造提供理论依据和技术支持。

延川南煤层气复杂缝网整体压裂技术研究与应用

油气藏评价与开发 第8卷第3期2018年6月 RESERVOIR EVALUATION AND DEVELOPMENT 收稿日期:2017-11-23。 第一作者简介:赖建林(1986—),男,工程师,非常规及低渗透储层改造研究。延川南煤层气复杂缝网整体压裂技术研究与应用 赖建林,房启龙,高应运,魏伟 (中国石化华东油气分公司石油工程技术研究院,江苏南京210031) 摘要:由于煤储层端割理和面割理发育的特点,压裂容易形成复杂的裂缝形态,常规双翼裂缝模型并不适用于煤层气压裂设计优化。为了提高煤层气整体压裂开发效果,提出了煤层复杂裂缝等效渗流表征方法,将复杂的网络裂缝等效为高渗透带,通过优化高渗透带的大小和渗透率,获得最佳的整体压裂裂缝长度和导流能力。同时采用三维裂缝模拟软件进行体积压裂施工参数优化,并开展3口井压裂施工和井下微地震裂缝监测试验。结果表明,压裂裂缝波及范围较广,复杂程度较高,压后平均日产气量1376.7m 3,为实现煤层气田整体压裂开发提供了技术支撑。 关键词:煤层气;整体压裂;缝网压裂;体积压裂;参数优化 中图分类号:TE357文献标识码:A Research and application of integral network-fracturing of coal-bed methane of southern Yanchuan Lai Jianlin,Fang Qilong,Gao Yingyun and Wei Wei (Petroleum Engineering Technology Research Institute,East China Company,SINOPEC,Nanjing,Jiangsu 210031,China )Abstract:Due to the well-developed end cleat and surface cleat,the complicated fracture morphology forms easily in the coal-bed fracturing,and the conventional double-wing fracture model is not suitable for the optimization of the coal-bed methane fracturing design.In order to improve the production of the coal-bed methane,we proposed a characterization method for the equivalent seep?age of the complex fracture,in which the complex network fracture was equivalent to the high permeability zone.By optimizing the size and permeability of the high permeability zone,we got the best overall fracturing fracture length and fracture conductivity.Meanwhile,we also optimized the pumping parameters by using 3D fracturing simulation software,and carried out the fracturing op?eration and down-hole micro-seismic monitor tests of 3wells.The results showed that the fracture length covers a wide field and the complexity after fracturing is high,and the average post-fracturing daily production is 1376.7m 3/d.It provides a technical sup?port to the integral fracturing development of coal-bed methane.Key words:coal-bed methane,integral fracturing,network fracturing,SRV fracturing,parameter optimization 由于我国煤层低饱和、低渗透、低压的特点,煤 层气井产量普遍较低,故需要进行一定的增产改造, 最常用的就是水力压裂技术[1]。国内外煤层气开发 井压裂施工普遍采用活性水压裂液造缝携砂,但压 裂后的裂缝展布规律无法直接观测,分析与模拟的 关键问题之一就是确定裂缝的几何形状及其动态延 伸规律,常用的二维模型包括PKN 模型、KGD 模型[2]。由于煤储层割理裂隙发育,压裂缝通常是复杂的网缝结构,采用均质二维模型进行压裂设计模拟优化存在不足。因此,本文采用高渗透带等效煤层复杂裂缝,通过优化高渗透带大小和渗透率来确定煤层气压裂施工参数,形成了复杂缝网整体压裂设计优化方法,并在延川南煤层气田产能建设中进行了推广应用,为进一步提高煤层气田开发效果奠定基础。

无水压裂技术研究进展

Journal of Oil and Gas Technology 石油天然气学报, 2018, 40(3), 167-172 Published Online June 2018 in Hans. https://www.doczj.com/doc/c315120344.html,/journal/jogt https://https://www.doczj.com/doc/c315120344.html,/10.12677/jogt.2018.403080 The Advancement of Waterless Fracturing Technology Qi Teng1, Yang Zhang1, Junyan Liu1, Wei Li1, Yiliu Sun2,3 1Research Institute of Petroleum Engineering, Tarim Oilfield Company, PetroChina, Korla Xinjiang 2State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing 3College of Petroleum Engineering, China University of Petroleum, Beijing Received: Dec. 28th, 2017; accepted: Jan. 28th, 2018; published: Jun. 15th, 2018 Abstract Shale gas was rich in China and its development was of great significance of energy strategy in China. At present, the technologies in shale development was mainly hydraulic fracturing, which was harmful to the shale reservoirs and in turn affected production after fracturing. Meanwhile, the shale gas reservoirs in China were widely distributed in remote west China where lacked wa-ter. Therefore, the waterless fracturing technology was urgently needed. In this paper, the four waterless fracturing technologies, including high energy gas fracturing, liquefied CO2 fracturing, foam fracturing and liquefied petroleum gas fracturing, were studied. Besides, the advantages, disadvantages, and the application status of the above 4 technologies were compared. By combin-ing the existing waterless fracturing technology with the actual geology and engineering situation, the waterless fracturing technology suitable for shale gas production in China is explored, which speeds up the commercial and efficient exploitation process of shale gas. Keywords Waterless Fracturing, High Energy Gas Fracturing, Liquefied CO2 Fracturing, Foam Fracturing, Liquefied Petroleum Gas Fracturing

暂堵压裂技术服务方案样本

八、技术服务方案 一. 暂堵重复压裂技术原理及特点 暂堵技术简介位于鄂尔多斯盆地陕北地区延长油藏大多数储油层都属于特低渗透、低压、低产油藏, 油层物性特别差, 非均质性很强, 油井自然产能也就相当低了。为了提高采收率, 绝大多数油井都进行过压裂改造, 可是由于各种原因, 油井产量还是下降的特别快, 油井依然处于低产低效的状态。因此, 为了达到进一步提高油井产量的目的, 我们必须做到以下两个方面的工作: 一、针对性的选择有开发前景的油井进行二次或者多次压裂改造, 以至于提高油井的单井产能; 二、由于我们在注水开发过程中, 注入水总是沿着老裂缝方向水窜, 导致大部分进行过压裂改造过的老井含水上升特别快, 水驱波及效率特别低。针对这部分老井, 如果还是采用常规重复压裂方法进行延伸老裂缝, 难以达到提高采收率的目的。为了探索这一部分老井的行之有效的增产改造措施, 我公司借鉴了国内许多其它大油田的暂堵重复压裂的成功的现场试验经验, 近两年来进行了多次油井暂堵压裂改造措施试验。现场施工结果表明: 在压裂施工前先挤入暂堵剂后, 人工裂缝压力再次上升的现象很明显, 部分老油井经过暂堵施工后, 其加沙压力大幅度上升, 暂堵重复压裂后, 产油量大幅度上升。为了确保有效的封堵老裂缝压开新裂缝, 并保持裂缝有较高的导流能力, 达到有较长时间的稳产期。该技术成果的成功研究与应用, 不但能够提高油井的单井 产量, 而且能够提高整个区块的开采力度, 从而为保持油田的增产稳产提供保障, 可取得可观的经济效益和社会效益。

堵老裂缝压新裂缝重复压裂技术, 即研究一种高强度的裂缝堵剂封堵原有裂缝, 当堵剂泵入井内后有选择性的进入并封堵原有裂缝, 但不能渗入地层孔隙而堵塞岩石孔隙, 同时在井筒周围能够有效地封堵射孔孔眼; 然后采用定向射孔技术重新射孔, 以保证重复压裂时使裂缝转向, 也即形成新的裂缝; 从而采出最小主应力方向或接近最小主应力方向泄油面积的油气, 实现控水增油。 水力压裂是低渗透油气藏改造的主要技术之一, 但经过水力压裂后的油气井, 在生产一段时间后, 会由于诸多原因导致压裂失效。另外, 还有些压裂作业实施后对产层造成污染, 也会使压裂打不到预期效果。对这类油气井, 想要增加产能, 多数必须采取重复压裂进行改造。 暂堵压裂技术主要用来解决油层中油水关系复杂、微裂缝十分发育的层位。注水油田经过一段时间的开采后, 大多数低渗透油层已处于高含水状态, 老裂缝控制的原油已接近全部采出, 裂缝成了主要出水通道, 但某些井在现有开采条件下尚控制有一定的剩余可采储量, 为了控水增油, 充分发挥油井的生产潜能, 我们采用暂堵重复压裂技术, 其实质是采用一种封堵剂有选择性地进入并有效封堵原有压裂裂缝和射孔孔眼, 再在新孔眼中进行压裂开新缝; 或部分封堵老裂缝, 在老裂缝封面再开新裂缝, 从而提供新的油流通道, 以保障重复压裂时使裂缝改向, 形成新的裂缝, 从而采出最小应力方向或接近最小主应力方向泄油面积的原油, 实现控水增油。 暂堵重复压裂技术就是重新构建泄油裂缝体系, 为提高油井的产量提供了一种技术手段, 最终的采油效果与所构建的新裂缝体系方向, 裂

特低渗透油藏大型压裂技术与应用

价值工程 器,使过电压保护系统趋于复杂,且成本升高,因而在实际中通常采 用不平衡保护技术代替。这一技术的原理是检测一组电容器中正常部分与受损部分之间在电流和电压等指标方面的差异,将这种差异作为保护的动作量,其数值大于整定值时,保护动作自动切除故障电容器组。 电容器组的接线方式不同,构成不平衡保护的方式也不相同, 其中主要有零序电流保护、 零序电压保护和差压保护。在线路正常运行情况下或者接地系统无故障时,三相电流或电压的向量和为零或者只有很小的不平衡电流;而当线路运行不正常或者接地系统发生故障时,零序电流和零序电压二次回路将出现较大电流和电压,使保护装置动作并发出信号或切除故障回路。 目前在城市电路系统或者主网变电站中,大部分采用的不平衡电压保护,是将电容器组的三相电压互感器二次头尾相接(A 相非 极性端连接B 相极性端, B 相非极性端连接 C 相极性端),并从A 相极性端和C 相非极性端引出二次线形成差电压回路,将此电压接入保护装置来判别,使之动作并发出信号或者切除故障回路。 不平衡保护技术的要点包括了八个方面:①与熔断器保护相配合,这样可以保证在整组电容器切除之前故障电容器便已被检出并切除,保证电容器系统的正常运行;②不平衡保护技术应具备相当的灵敏度,当由于单台电容器的切除引起剩余电容器的过电压低于5%时,应发出信号,而过电压超过额定电压1.1倍时,则应跳闸和闭锁。③不平衡保护的动作延时要较短,以便减小由于电容器内部燃弧型故障造成的损坏,防止剩余电容器的 过电压时间超过允许的限度。该延时应该足够短, 以防止在单相或者断相故障时不平衡保护中的电流互感器或电压互感器以及保护 继电器等设备受到过电压的损害。④不平衡保护的动作时间要选择恰当,防止在出现涌流、外电路发生接地故障、雷击、临近设备的投 切、 断路器三相合闸不同步等情况下出现的短时间不平衡,造成不平衡保护误动作,在一般情况下,电容器组的不平衡保护可以采用0.5s 的延时。⑤不平衡保护回路应该加设谐波滤过器,限制谐波电压的影响,而对于电容器组中性点可能出现的暂态过电压也应该采取保护措施。⑥不平衡保护应具有闭锁功能,动作跳闸的同时,应闭锁电容器组的自动投入,防止将故障的电容器组再次投入使用。⑦不平衡保护的动作值应大于由于系统和电容器公差引起的固有不平衡。⑧所有中性点不平衡检测接线,都应检测三相电压和电流的不平衡,以保证在每相中失去相同数量的电容器产生的过电压都能检测出来,除此之外,由于不平衡检测不能反应高压系统产生的过电压,因而不平衡保护系统必须要能承受系统高过电压。 电力电容器作为现代电力系统的重要组成部分,其保护技术的研究对于未来电气工程的发展有着十分重要的意义,虽然目前我国的电容保护技术还落后于西方发达国家,但只要我们积极探索与创新,以电流和电压保护为两个基准出发点,以不平衡保护等新技术作为引导,相信电力电容器的保护技术一定可以迈上更高的发展平台。 参考文献: [1]宋德萱.电容系统保护综述.上海同济大学出版社,2006 [2]涂全波.现代线路保护实践教程.成都电子科技大学出版社,2003[3]汪芳.查尔斯.柯里亚.电气工程中的细节.北京.中国教育出版社,2009.[4]刘冠军等.电容器教学论[M].高等教育出版社,2007. [5]李成笃.现代城市电力维护系统改革的几点思考.昌吉学院学报,2008. 0引言 特低渗透油藏孔喉细小,渗透率低[(1~10)×10-3μm 2],渗流阻力大,油井自然产能低甚至无自然产能[1]。目前,特低渗透油藏主要有 三种传统的开发方式[1~5] : ①直井弹性开发。对直井弹性开发来说,为保持单井控制储量规模必然要采取较大的井距,但较大的井距必然造成井间形不成有效驱替,因此基本属单井衰竭式开发,产量递减快,采收率低,经济效益差;②小井距注采开发方式。小井距注采开发虽能形成井间驱替,但较大的井网密度必然造成开发投资过大, 单控储量太低,加之注水见效后容易发生水淹,开发效益也较差;③ 水平井分段压裂开发方式。近年探索的水平井分段压裂方式尚不能实现注水开发,仍属单井衰竭式开采,加之单井投资较大、技术应用尚待完善,也难实现有效动用。总体上,特低渗油藏效益开发的技术瓶颈尚未取得突破。通过对特地渗透油藏开发技术调研和反复论证,认为要实现特低渗油藏高效开发,就必须立足注水开发;而且注水开发要有效益。要想做到这一点关键在于:一是少打井;二是大幅提高单井产能。要少打井有两种方式,即要么拉大排距,要么拉大井距,而特低渗油藏渗流半径小,拉大排距势必造成储量失控,因此拉大井距成为减少钻井的唯一选择。要保持大井距间有效渗流并有效提高产能,就必须实施大型压裂改造,在井间形成长裂缝渗流通道;要在井间形成较长的裂缝渗流通道,井排需沿地应力方向部署,对 排上油、 水井实施大型压裂,并要尽可能通过工艺优化,减少次要方向裂缝的产生,迫使主裂缝沿地应力方向尽可能延伸至设计距离,且—————————————————————— —基金项目:中国石油化工集团公司2010年开发风险控制评价项目“垦利油 田富112块沙三下复杂断块油藏开发风险评价研究” (编号:50-2010-js-00054)。 作者简介:李科(1978-),男,四川泸州人,工程师,毕业于江汉石油学院石油 工程专业,现从事压裂、酸化、钻井等技术研究和推广及管理工作。 特低渗透油藏大型压裂技术研究与应用 Research and Application of Large-scale Fracturing Technology in Ultra-low Permeability Reservoir 李科①Li Ke ;胡罡②Hu Gang (①中国石化胜利油田黄河钻井总公司北方分公司,东营257015;②中国石化胜利油田地质科学研究院,东营257015) (①North Company of Huanghe Drilling Company of Shengli Oilfield ,Sinopec ,Dongying 257015,China ; ②Geological Scientific Research Insititute of Shengli Oilfield ,Sinopec ,Dongying 257015,China ) 摘要:通过对特地渗透油藏开发技术调研和反复论证,认为“定向、定量地造长缝”的大型压裂技术是实现特低渗油藏效益开发的关键。针对 富112块沙三下段特低渗透砂岩地层,应用stimplan 整体压裂优化模拟软件开展了压裂工艺技术优化研究。实践证明,大型压裂技术不仅解决了 富112块沙三下段油藏的开发难题,而且对实现特低渗透油藏效益开发具有重要的参考价值。 Abstract:Through investigation and argumentation on the development technology of ultra-low permeability reservoir,the Large-scale fracturing technology which can form long fissure directionaly and guantitatively is considered as the key technology of the economic benefit development technology of ultra-low permeability reservoir.With the example of the parameters of Fu112Block ultra-low permeability oil reservoir,the Large-scale fracturing technology was studied and optimized using the Numerical Simulation Software (STIMPLAN)of Systematic Fracturing for Reservoir.Field application shows that the Large -scale fracturing technology both applies to Fu112Block reservoir and may have reference value to the ultra -low permeability reservoir for economic benefit development. 关键词:特低渗透;大型压裂;工艺技术;应用效果Key words:ultra-low permeability ;Large-scale fracturing ;technology ;application effect 中图分类号:TE65 文献标识码:A 文章编号:1006-4311(2012)01-0026-02 ·26·

相关主题
文本预览
相关文档 最新文档