当前位置:文档之家› 【数学建模实例】管道运输与订购优化模型

【数学建模实例】管道运输与订购优化模型

【数学建模实例】管道运输与订购优化模型
【数学建模实例】管道运输与订购优化模型

数学建模-铺路问题的最优化模型

铺路问题的最优化模型 摘要 本文采用了两种方法,一种是非线性规划从而得出最优解,另一种是将连续问题离散化利用计算机穷举取最优的方法。 根据A地与B地之间的不同地质有不同造价的特点,建立了非线性规划模型和穷举取最优解的模型,解决了管线铺设路线花费最小的难题。 问题一:在本问题中,我们首先利用非线性规划模型求解,我们用迭代法求出极小值(用Matlab实现),计算结果为总费用最小为748.6244万元,管线在各土层中在东西方向上的投影长度分别为15.6786km,3.1827 km,2.1839 km,5.8887km,13.0661km。然后,我们又用穷举法另外建立了一个模型,采用C语言实现,所得最优解为最小花费为748.625602万元,管线在各土层中在东西方向上的投影长度分别为15.70km,3.20km,2.20km,5.90km,13.00km。 问题二:本问题加进了一个非线性的约束条件来使转弯处的角度至少为160度,模型二也是如此。非线性规划模型所得计算结果为最小花费为750.6084万元,管线在各土层中在东西方向上的投影长度分别为14.4566km,4.3591km,2.5984km,6.5387km,12.0472km。遍历模型所得最优解为最小花费为750.821154万元,管线在各土层中在东西方向上的投影长度分别为14.10km,4.30km, 2.70km,6.70km,12.20km。 问题三:因为管线一定要经过一确定点P,我们将整个区域依据P点位置分成两部分,即以A点正东30km处为界,将沙土层分成两部分。非线性规划模型最小花费为752.6432万元,管线在各土层中在东西方向上的投影长度分别为21.2613km,3.3459km,2.2639km,3.1288km,2.4102km,7.5898km。遍历模型最小花费为752.649007万元,管线在各土层中在东西方向上的投影长度分别为21.30km,3.30km,2.30km,3.10km,2.40km,7.60km。 关键词:非线性规划逐点遍历穷举法

数学建模飞机运输问题

多变量有约束最优化问题 摘要 本文以一家运输航空公司的一架飞机运载能力100吨和运载货物的容量50000立方英尺有限的情况下,有三种货物(即x1、x2、x3)需要运输,公司规定每吨货物收取一定的费用,而要运输的每种货物的吨数都有规定的上限(最多不超过30吨、40吨、50吨),并且公司规定由于飞机需要保养与维护,飞机须停飞115天,因此每年只有250天的工作时间。在此情况下每天怎样安排运输三种货物使公司每年获得最大利润w。对于此问题只用线性规划的一般方法建立相应的数学模型,在用数学软件求出在给定限行区域内的最优解(w、x1、x2、x3),在对这些最优解进行分析与讨论,确定其为有效最优解。并以此作为公司对三种货物运输安排方式。 对于问题一,求使得运输航空公司获得最大利润w的x1、x2、x3三种货物的吨数,建立相应的数学模型。再根据运输能力最多100吨和运载货物容积的最大50000立方英尺,还有每天公司规定的每种货物的运输上限即x1种货物最多运输30吨,x2种货物最多运输40吨,x3种货物最多50吨,建立约束条件。并用数学软件mathematica进行求解,即为所求的最优解(也就是w=21875,x1=30,x2=7.5,x3=50)。

对于问题二中,要求计算每个约束的影子价格。我们将利用问题一中建立的目标函数和约束条件,将其编写成源程序输入到Lindo软件中进行求解。再将得到的界进行讨论与和模型的稳健性分析并且通过其在题意的理解,解释其含义。 问题三中,对于公司将耗资改装飞机以扩大运货区来增加运输能力,且旧飞机使用寿命为5年,每架飞机的改造要花费200000美元,可以增加2000立方英尺的容积。重量限制仍保持不变。假设飞机每年飞行250天,这些旧飞机剩余的使用寿命约为5年。根据此问题我们将建立数学规划模型,利用Lindo软件计算其影子价格和利润并且与前面进行比较,进行分析。 关键词:线性规划、mathematica软件的应用、Lindo的软件应用。

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

管道运输与订购优化模型(CAI) 数学建模

钢管订购和运输优化模型 要铺设一条1521A A A →→→ 的输送天然气的主管道, 如图一所示(见反面)。经筛选后可以生产这种主管道钢管的钢厂有721,,S S S 。图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位km)。 为方便计,1km 主管道钢管称为1单位钢管。 一个钢厂如果承担制造这种钢管,至少需要生产500个单位。钢厂i S 在指定期限内能生产该钢管的最大数量为i s 个单位,钢管出厂销价1单位钢管为i p 万元,如下表: 1单位钢管的铁路运价如下表: 1000km 以上每增加1至100km 运价增加5万元。 公路运输费用为1单位钢管每公里0.1万元(不足整公里部分按整公里计算)。 钢管可由铁路、公路运往铺设地点(不只是运到点1521,,,A A A ,而是管道全线)。

问题: (1)请制定一个主管道钢管的订购和运输计划,使总费用最小(给出总费用)。 思考题: (2)请就(1)的模型分析:哪个钢厂钢管的销价的变化对购运计划和总费用 影响最大,哪个钢厂钢管的产量的上限的变化对购运计划和总费用的影响最大,并 给出相应的数字结果。 (3)如果要铺设的管道不是一条线,而是一个树形图,铁路、公路和管道构 成网络,请就这种更一般的情形给出一种解决办法,并对图二按(1)的要求给出 模型和结果。 7

一. 基本假设: 1. 沿铺设的主管道以有公路或者有施工公路。 2. 在主管道上,每公里卸1单位的钢管。 3. 公路运输费用为1单位钢管每公里0.1万元(不足整公里部分按整公里计算) 4. 在计算总费用时,只考虑运输费和购买钢管的费用,而不考虑其他费用。 5. 在计算钢厂的产量对购运计划影响时,只考虑钢厂的产量足够满足需要的情况, 即钢厂的产量不受限制。 6. 假设钢管在铁路运输路程超过1000km 时,铁路每增加1至100km ,1单位钢管 7

数学建模运输问题

运输问题 摘要 本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。 关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。 关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。即最短路线为:1-5-7-6-3-4-8-9-10-2-1。但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。 关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。得到优化结果为:第一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。 关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。根据matlab运行结果分析得出4条最优路线分别为:1-5-2,1-4-3-8,1-7-6,1-9-10。最短总路线为245公里,最小总费用为645。 关键词: Floyd算法 Kruskal算法整数规划旅行商问题 一、问题重述 某运输公司为10个客户配送货物,假定提货点就在客户1所在的位置,从第i个客户到第j个客户的路线距离(单位公里)用下面矩阵中的 i j=L位置上的数表示(其中∞表示两个客户之间无直接的路线到i j(,1,,10) (,) 达)。 1、运送员在给第二个客户卸货完成的时候,临时接到新的调度通知,让他先给 客户10送货,已知送给客户10的货已在运送员的车上,请帮运送员设计一个到客户10的尽可能短的行使路线(假定上述矩阵中给出了所有可能的路线选择)。 2、现运输公司派了一辆大的货车为这10个客户配送货物,假定这辆货车一次能 装满10个客户所需要的全部货物,请问货车从提货点出发给10个客户配送

数学建模中常见的十大模型

数学建模中常见的十大 模型 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。

数学建模运输优化模型

2012年数学建模培训第二次测试论文 题目运输优化模型 姓名马鹏 系(院)数学系 专业信息与计算科学、应用数学 2012 年8 月27 日 运输优化模型

[摘要]在社会的经济生产活动中,产地(厂家)与客户都会想方设法合理调拨资源、降低运输费用,实现利益最大化,完成资源优化配置。本文在运输费单价恒定,各产地发量一定,各客户的需求量也一定的条件下,努力解决多个特定目标实现问题。力求最优的运输方案。在确定问题为不平衡的运输问题时,先虚设一个产地,将问题装华为平衡运输问题,将问题转化为目标规划问题,按照目标规划问题的建模思想逐步建立模型。 本文的主要特点在于,将不平衡的线性规划问题合理地转化为目标规划问题,在求解时充分利用LINGO软件求解。 关键词: lingo 目标规划线性规划运输优化问题运费最少 一.问题重述

运输功能是整个现代物流七大基本功能之一,占有很重要的地位,运输成本在整个物流系统中所占的比重也很大,运输成本的有效控制对物流总成本的节约具有举足轻重的作用。通过物流流程的改善能降低物流成本,能给企业带来难以预料的效益,影响运输成本的因素是多样化、综合性的,这就要求对运输成本的分析要采用系统的观点,进行综合分析。由于影响物流运输成本的因素很多,控制措施既涉及运输环节本身,也涉及供应链的整个物流流程。要想降低物流运输成本,就必须运用系统的观点和方法,进行综合分析,发现问题,解决问题,使物流运输活动更加优化、物流运输成本更加合理化。 本文已知把一种产品从产地一、二运到客户1、2、3处,产地的发量、客户的收量及各产地到各客户的运输单价已知。本文要解决问题是:客户1为重要部门,必须全部满足需求量;满足客户2、3至少75%的的需求量;使总运费尽量少;从产地2到客户1的运量至少有1000个单位。 二.问题分析 根据题目中所给出的条件知:有现成的两个产地和需要产品的三个客户。且两个产地的产量不同,运送到各个客户的运费单价不同。三个客户所需的货物量不同。而三个客户对两个产地的总需求为2000+1500+5000=8500(单位),而两个产地总的发量为3000+4000=7000(单位),故需求量大于发量,属于需求量和发量不平衡问题。且提出四个不同的目标。故使用目标规划实现建模。首先设置目标约束的优先级,建立目标约束按目标的优先级,写出相应的目标规划模型 。再接着使用LINGO 软件实现模型的求解,并作出相应结果的分析。 三.模型假设 (1) 产品的运输过程不存在任何的导致产品发量和产品收量不相符的问题。产 品安全送到客户处。即有:产品的发量就等于产品的收量。 (2) 产品的运输单价始终恒定,不存在中途因为某种原因而导致产品的单价变 化问题。即运费只取决于所运输的产品的数量。 (3) 产地的生产量(即发量)有极限值,不可能超出本产地正常的生产范围。 (4) 客户需求量在一定的范围内或或是特定的具体值。 四.符号说明 基于题目及所要建立的模型所要用到的变量及参数,作如下符号说明: (1)产地用i A (2,1i =其中)表示,表示第产地i ;)2,1(=i a i 表示其发量; (2)客户用j B (其中j=1,2,3)表示,表示客户j;)3,2,1(=j b j 表示其需求量; (3)用ij c 1,2,3j 2;,1i ==其中表示产地i A (2,1i =其中)往客户j B (其中j=1,2,3)处运输产品的单位费用; (4)用z 表示总的运输费用; (5)用ij x 1,2,3j 2;,1i ==其中表示产地i A (2,1i =其中)运往客户j B (其

数学建模最优路径设计

2015高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名 参赛队员(打印并签名) :1 2 指导教师或指导教师组负责人(打印并签名):

(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期:2015年7 月27 日赛区评阅编号(由赛区组委会评阅前进行编号):

2015高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

数学建模面试最优化问题

C题面试时间问题 有4名同学到一家公司参加三个阶段的面试:公司要求每个同学都必须首先找公司秘书初试,然后到部门主管处复试,最后到经理处参加面试,并且不允许插队(即在任何一个阶段4名同学的顺序是一样的)。由于4名同学的专业背景不同,所以每人在三个阶段的面试时间也不同,如下表所示(单位:分钟): 这4名同学约定他们全部面试完以后一起离开公司.假定现在时间是早晨8:00问他们最早何时能离开公司? 面试时间最优化问题 摘要: 面试者各自的学历、专业背景等因素的差异,每个面试者在每个阶段的面试时间有所不同,这样就造成了按某种顺序进入各面试阶段时不能紧邻顺序完成,即当面试正式开始后,在某个面试阶段,某个面试者会因为前面的面试者所需时间长而等待,也可能会因为自己所需时间短而提前完成。因此本问题实质上是求面试时间总和的最小值问题,其中一个面试时间总和就是指在一个确定面试顺序下所有面试者按序完成面试所花费的时间之和,这样的面试时间总和的所有可能情况则取决于n 位面试者的面试顺序的所有排列数 根据列出来的时间矩阵,然后列出单个学生面试时间先后次序的约束和学生间的面试先后次序保持不变的约束,并将非线性的优化问题转换成线性优化目标,最后利用优化软件lingo变成求解。 关键词:排列排序0-1非线性规划模型线性优化 (1)

(一)问题的提出 根据题意,本文应解决的问题有: 1、这4名同学约定他们全部面试完以后一起离开公司。假定现在的时间是早晨8:00,求他们最早离开公司的时间; 2、试着给出此类问题的一般描述,并试着分析问题的一般解法。 (二)问题的分析 问题的约束条件主要有两个:一是每个面试者必须完成前一阶段的面试才能进入下一阶段的面试(同一个面试者的阶段次序或时间先后次序约束),二是每个阶段同一时间只能有一位面试者(不同面试者在同一个面试阶段只能逐一进行)。 对于任意两名求职者P、Q,不妨设按P在前,Q在后的顺序进行面试,可能存在以下两情况: (一)、当P进行完一个阶段j的面试后,Q还未完成前一阶段j-1的面试,所以j阶段的考官必须等待Q完成j-1阶段的面试后,才可对Q进行j阶段的面试,这样就出现了考官等待求职者的情况。这一段等待时间必将延长最终的总时间。 (二)、当Q完成j-1的面试后,P还未完成j阶段的面试,所以,Q必须等待P完成j阶段的面试后,才能进入j阶段的面试,这样就出现了求职者等待求职者的情况。同样的,这个也会延长面试的总时间。 以上两种情况,必然都会延长整个面试过程。所以要想使四个求职者能一起最早离开公司,即他们所用的面试时间最短,只要使考官等候求职者的时间和求职者等候求职者的时间之和最短,这样就使求职者和考官的时间利用率达到了最高。他们就能以最短的时间完成面试一起离开公司。这也是我们想要的结果。 (三)模型的假设 1.我们假设参加面试的求职者都是平等且独立的,即他们面试的顺序与考官无关; 2.面试者由一个阶段到下一个阶段参加面试,其间必有时间间隔,但我们在这里假定该时间间隔为0; 3.参加面试的求职者事先没有约定他们面试的先后顺序; 4.假定中途任何一位参加面试者均能通过面试,进入下一阶段的面试。即:没有中途退出面试者; 5.面试者及各考官都能在8:00准时到达面试地点。 (四)名词及符号约束 1. aij (i=1,2,3,4;j=1,2,3)为求职者i在j阶段参加面试所需的时间 甲乙丙丁分别对应序号i=1,2,3,4 2.xij (i=1,2,3,4;j=1,2,3) 表示第i名同学参加j阶段面试的开始时间(不妨把早上8:00记为面试的0时刻) (2)

城市物流配送方案优化模型_数学建模

天津大学数学建模选拔赛 题目城市物流配送方案优化设计 摘要 所谓物流配送就是按照用户的货物(商品)订货要求和物流配送计划,在物流配送节点进行存储、分拣、加工和配货等作业后,将配好的货物送交收货人的过程。本文就如何设计该城市的配送方案和增设新的配送网点并划分配送范围展开讨论。 第一问中,首先,在设计合理的配送方案时,我们要知道评价一个配送方案的优劣需考虑哪些指标。根据层次分析法所得各指标的权重及各因素之间关系可知:合理的配送方案需要优化货车的调度以及行驶路线。 然后,根据该城市的流配送网络路网信息以及客户位置及需求数据信息,用EXCEL 进行数据统计并用matlab绘制物流信息图,在图中可以清晰地看出客户位置密集和稀疏的区域。之后,我们运用雷达图分割法将城市分为20个统筹区(以及100个二级子区域)。 接着,我们针对一个二级子区域分析货车行驶的最佳路线。利用聚类分析和精确重心法在二级子区域N1中设置了7个卸货点,该目标区域内的用户都将在该区域的卸货点取货。我们利用图论中的Floyd算法和哈密尔顿圈模型求解往返最短路线问题,得知最短路线为1246753 配送中心配送中心,最短路程为 →→→→→→→→ 84.4332KM,最短运货用时为2.11小时。 最后,根据用户位置和需货量,计算出货车数量和车次,并给出了其中一种合理的针对整个城市的货车调度配送方案。 第二问中,我们建立了多韦伯模型,通过非线性0-1规划,确定了城市增加的5个

一.问题重述 配送是指在经济合理区域范围内,根据客户要求,对物品进行拣选、加工、包装、分割、组配等作业,并按时送达指定地点的物流活动,即按用户定货要求,在配送中心或其它物流结点进行货物配备,并以最合理方式送交用户。 配送是从用户利益出发、按用户要求进行的一种活动,因此,在观念上必须明确“用户第一”,把用户利益作为设计配送方案时首先要考虑的问题。城市的配送系统不但要考虑企业自身和用户的利益,也应从公众利益出发,尽量减少交通拥挤和废物排放。这无疑更增加了配送系统管理的难度,有效解决该问题对于改善城市出行环境和提高企业服务水平具有重要意义。 基于以上背景,为某企业设计其配送方案,建立数学模型分析如下问题: (1)假设该公司在整个城区仅有一个配送中心(107.972554615162,26.6060305362822)。附件1中给出了企业顾客位置和需求数据。附件2为配送网络路网信息。由于顾客需求为平均量,为克服需求高峰车辆不够的情况,实际中通常对每辆车的装载量进行限制,实际载货量为规定满载量的70%。司机工作时间为每天8小时。不考虑车辆数量限制,请为企业设计合理的配送方案。(每件产品规格:长:27.5CM,宽:9CM,厚:5CM)。配送用车请参考实际货车规格自己选定。 (2)适当增加配送中心数量,能降低配送成本,假设计划增设5个配送中心,请为各配送网点划分配送范围。 二、问题背景和问题分析 2.1问题背景 所谓物流配送就是按照用户的货物(商品)订货要求和物流配送计划,在物流配送节点(仓库、商店、货物站、物流配送中心等)进行存储、分拣、加工和配货等作业后,将配好的货物送交收货人的过程,城市物流配送是指在城市范围内进行的物流配送业务活动,城市物流配送系统的服务对象归类为:政府、工业、商业、农业、大众客户。城市物流配送已随客户需求变化从“少品种、大批量、少批次、长周期”向“多品种、小批量、多批次、短周期”转变。随着中国城市化进程的进一步加快,不管是从城市经济发展,还是从城市空间结构、城市交通运输布局及城市基础设施建设来考虑,每个城市都面临一个对原有的物流配送系统进行改造、建立新的物流配送系统的问题,这就是城市物流配送系统优化提出的原因。[1] 2.2问题分析 对于第一问,为了得到最优的配送方案,我们着重从货车的调度和货车的行走路线进行设计。首先我们需要对城市进行分区,并设计货车在所有区域内进行统筹调度的方法。然后,我们针对某一个小的区域,运用图论的知识,寻找货车运送完全部货物的最短路线,实现用户、社会和公司总体利益的最大化。 对于第二问,我们需要找到五个新增配送中心的位置并且划分各个配送网点的配送范围。这是一个典型的多韦伯问题。期间我们不但要注意使得配送中心到用户的距离之和最短。同时也要满足配送中心尽量偏重用户需求量大的地区的要求。

数学建模课程设计——优化问题

在手机普遍流行的今天,建设基站的问题分析对于运营商来说很有必要。本文针对现有的条件和题目的要求进行讨论。在建设此模型中,核心运用到了0-1整数规划模型,且运用lingo 软件求解。 对于问题一: 我们引入0-1变量,建立目标函数:覆盖人口最大数=所有被覆盖的社区人口之和,即max=15 1j j j p y =∑,根据题目要求建立约束条件,并用数学软件LINGO 对其模型求解,得到最优解。 对于问题二: 同样运用0-1整数规划模型,建立目标函数时,此处假设每个用户的正常资费相同,所以68%可以用减少人口来求最优值,故问题二的目标函数为:max=∑=15 1j j j k p 上述模型得到最优解结果如下: 关键字:基站; 0-1整数规划;lingo 软件

1 问题的重述.........................3 2 问题的分析.........................4 3 模型的假设与符号的说明...................5 3.1模型的假设...................... 5 3.2符号的说明...................... 5 4 模型的建立及求解...................... 5 4.1模型的建立...................... 5 4.2 模型的求解...................... 6 5 模型结果的分析.......................7 6 优化方向..........................7 7 参考文献..........................8 8、附录........................... 9

数学建模实验答案_简单的优化模型

实验03 简单的优化模型(2学时) (第3章简单的优化模型) 1. 生猪的出售时机p63~65 目标函数(生猪出售纯利润,元): Q(t) = ( 8 – g t )( 80 + rt ) – 4t–640 其中,t≥0为第几天出售,g为每天价格降低值(常数,元/公斤),r为每天生猪体重增加值(常数,公斤)。 求t使Q(t)最大。 1.1(求解)模型求解p63 (1) 图解法 绘制目标函数 Q(t) = ( 8 – g t )( 80 + rt ) – 4t–640 的图形(0 ≤t≤ 20)。其中,g=0.1, r=2。 从图形上可看出曲线Q(t)的最大值。 (2) 代数法 对目标函数 Q(t) = ( 8 – g t )( 80 + rt ) – 4t–640 用MATLAB求t使Q(t)最大。其中,r, g是待定参数。(先对Q(t)进行符号函数求导,对导函数进行符号代数方程求解) 然后将代入g=0.1, r=2,计算最大值时的t和Q(t)。 要求: ①编写程序绘制题(1)图形。

②编程求解题(2). ③对照教材p63相关内容。 相关的MATLAB函数见提示。 ★要求①的程序和运行结果:程序: 图形: ★要求②的程序和运行结果:程序:

运行结果: 1.2(编程)模型解的的敏感性分析p63~64 对1.1中(2)所求得的符号表达式t(r,g),分别对g和r进行敏感性分析。 (1) 取g=0.1,对t(r)在r=1.5:0.1:3上求r与t的关系数据,绘制r与t的关系图形(见教材p65)。 (2) 取r=2,对t(g)在g=0.06:0.01:0.15上求g与t的关系数据,绘制g与t 的关系图形(见教材p65)。 要求:分别编写(1)和(2)的程序,调试运行。 ★给出(1)的程序及运行结果: 程序:

数学建模运输问题

华东交通大学数学建模 2012年第一次模拟训练题 所属学校:华东交通大学(ECJTU ) 参赛队员:胡志远、周少华、蔡汉林、段亚光、 李斌、邱小秧、周邓副、孙燕青 指导老师:朱旭生(博士) 摘要: 本文的运输问题是一个比较复杂的问题,大多数问题都集中在最短路径的求解问题上,问题特点是随机性比较强。 根据不同建模类型 针对问题一 ,我们直接采用Dijkstra 算法(包括lingo 程序和手算验证),将问题转化为线性规划模型求解得出当运送员在给第二个客户卸货完成的时,若要他先给客户10送货,此时尽可能短的行使路线为:109832V V V V V →→→→,总行程85公里。 针对问题二,我们首先利用prim 算法求解得到一棵最小生成树: 121098436751V V V V V V V V V V V →→→→→→→→→→ 再采用Dijkstra 算法求得客户2返回提货点的最短线路为12V V →故可得到一条理想的回路是:121098436751V V V V V V V V V V V →→→→→→→→→→ 后来考虑到模型的推广性,将问题看作是哈密顿回路的问题,建立相应的线性规划模型求解,最终找到一条满足条件的较理想的的货车送货的行车路线: 121098436751V V V V V V V V V V V →→→→→→→→→→。 针对问题三,我们首先直接利用问题二得一辆车的最优回路,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,最终可为公司确定合理的一号运输方案:两辆车全程总和为295公里(见正文);然后建立线性规划模型得出二号运输方案:两辆车全程总和为290公里(见正文); 针对问题四,

数学建模 四大模型总结

四类基本模型 1 优化模型 1.1 数学规划模型 线性规划、整数线性规划、非线性规划、多目标规划、动态规划。 1.2 微分方程组模型 阻滞增长模型、SARS 传播模型。 1.3 图论与网络优化问题 最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。 1.4 概率模型 决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。 1.5 组合优化经典问题 ● 多维背包问题(MKP) 背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。如何将尽可能多的物品装入背包。 多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。如何选取物品装入背包,是背包中物品的总价值最大。 多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。该问题属于NP 难问题。 ● 二维指派问题(QAP) 工作指派问题:n 个工作可以由n 个工人分别完成。工人i 完成工作j 的时间为ij d 。如何安排使总工作时间最小。 二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。 二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。 ● 旅行商问题(TSP) 旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。 ● 车辆路径问题(VRP) 车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在

数学建模 运输调度

运输调度优化 摘要 本文针对运输最少成本问题,建立产销运输优化模型,利用lingo 优化软件工具,合理进行运输。 问题一:属于产销平衡运输问题,即∑∑=n j i b a 1 m 1 ,可得:最少运费为6910和运输方 问题二:属于产销不平衡运输问题,应满足∑∑≠j j i b a 1 i 1 ,23 1 2b x i = ∑,可得:最少运 关键词:产销运输 LINGO 优化模型 一、问题重述 (1)求最优调拨方案; (2)如产地的产量变为130,又B 地区需要的115单位必须满足,试重新确定最优调拨方案。 二、问题分析

2.1问题一 对于表一中销量总和与产量总和相等,可确定为产销平衡运输问题,考虑现实问题,对客观实际因素没给出,因给于假设。 问题二 对于所给数据可知销量总和不等于产量总和,因此确定为产销运输不平衡问题, 由此为了满足B 地区的需求,要给于一定限制。 三、符号说明 1 、i A 某场地 2 、i a 某场地的产量 3、j B 某销地 4、i b 某销地的销售量 5、ij a 从第i 产地向第j 个销地运输每单位物资的运价 6、ij x 从第i 个产地向第j 个销地运输量 四、模型假设 1、各地产地产量均能如期产出相应产量,销地也能销出如期的货物量。 2、某产地与某销地单位运价保持不变,且与货物数量无关。 五、模型建立与求解 5、1有m 个产地和n 个销地。产地Ai 的产量为)21(m i a i ,, =;销地Bj 的销量 )n 21(,,=j b j 。从第i 个产地向第j 个销地运输每单位物资的运价为j i a ,从第i 个产地 向第j 个销地运输量ij x 。可得运费最少为: 对两种情况进行讨论,∑∑=n j i b a 1 m 1 ,即运输问题的总产量等于其总销量,这样的运输 问题称为产销平衡的运输问题。∑∑≠j j i b a 1 i 1 即运输问题的总产量不等于总销量,这样的 运输问题称为产销不平衡的运输问题。

数学建模一等奖-输油管布置的优化模型

输油管布置的优化模型 摘要 本文建立了输油管线布置的优化问题.为了使两家炼油厂到铁路线上增建的车站的管线铺设费用最省,依据题目提供的有关数据及相关信息,设计出了总费用最少的输油管布置方案以及增建车站的具体位置,最终在讨论分析后,对模型做出了评价和推广. 模型Ⅰ:对问题1,根据两炼油厂到铁路线距离和两炼油厂间的不同距离以及共用管线与非共用管线的两种不同情况,给出了四种处理方案,并从图形上加以说明. 模型Ⅱ:对问题2,建立了最优模型.在单目标非线性规划模型中,将输油管道铺设分为两个过程.先将输油管道从城区铺设到城郊区域边界线上一点,再从该点铺设到铁路线上.这样,总的费用就化为这两个过程的管道费用之和.本模型兼顾到管线的铺设费用,在城区铺设管线需增加的拆迁和工程补偿等附加费用,运用Lingo9.0数学软件得到新增车站的建设位置、管线的具体布置方案及管线费用最小值281.6893万元. 模型Ⅲ:根据炼油厂的实际能力,借助题目提供的输送A、B两厂原油的管线铺设费用,在模型Ⅱ的基础上建立最优模型,给出管线最佳布置方案及相应的最省管线铺设费用为250.9581万元. 关键词:输油管共用管线非共用管线 Lingo9.0 非线性规划

一、问题重述 某油田计划在铁路线一侧建造两家炼油厂,同时在铁路线上增建一个车站,用来运送成品油。由于这种模式具有一定的普遍性,油田设计院希望建立管线建设费用最省的一般数学模型和方法。 现欲解决下列问题: 问题1:针对炼油厂到铁路线距离和两炼油厂间距离的各种不同情形,提出设计方案。在方案设计时,若有共用管线,考虑共用管线与非共用管线相同或不同的情形。 问题2:设计院目前需对一更为复杂的情形(两炼油厂的具体位置)进行具体的设计。两炼油厂的具体位置如下图: 若所有管线的费用均为7.2万元/千米。铺设在城区的管线还需增加迁拆和工程补偿等附加费用,为对此附加费用进行估计,聘请三家工程咨询公司(其中一具有甲级资质,公司二和公司三具有乙级资质)进行了估算。估算结果如下表所示: 工程咨询公司公司一公司二公司三附加费用(万元/千米)212420 要求我们为设计院给出管线布置方案及相应的费用。 问题3:在实际问题中,为进一步节省费用,可以根据炼油厂的生产能力,选用相应的油管。这时的管线铺设费用将分别降为输送A厂成品油为5.6万元/千米,输送B厂成品油为6.0万元/千米,共用管线费用为7.2万元/千米,拆迁等附加费用同上。请给出管线最佳布置方案及相应的费用。

数学建模运输问题送货问题

数学建模论文 题目:送货问题 学院(直属系):数学与计算机学院 年级、专业: 2010级信息与计算科学 姓名:杨尚安 刘洋 谭笑 指导教师:蒲俊 完成时间:2012年 3 月 20 日 摘要 本文讨论的是货运公司的运输问题,根据各公司需求和运输路线图,建立了线性规划模型和0-1规划模型,对货运公司的出车安排进行了分析和优化,得出运费最小的调度方案。 对于问题一,由于车辆在途中不能掉头,出车成本固定,要使得总成本最小,即要使在一定的车辆数下,既满足各公司的需求,又要尽量减小出车次数。故以最小出车数为目标函数,建立线性规划模型,并通过lingo求解,得出最小出车数27次。接着考虑车的方向问题,出车分为顺时针和逆时针,建立0-1模型,并求解,得出满足问题一的调度方案(见附录表1)。 对于问题二,车辆允许掉头,加上车辆装载货物和空装时运输费不同,,要使总成本最小,故可以通过修改原目标函数,建立线性规划模型和0-1规划模型,求解,得出最佳派出车辆3辆并列出满足问题二的调度方案。 对于问题三第一小问,增加了运输车辆的类型。即装载材料的方法很多,在上述分析的基础上,通过增加约束条件,建立新的线性规划模型,并求解,得出满足问题三的调度方案。在第二小问中,由于给出部分公司有道路相通,可采用 运筹学中的最短路问题的解决方法加以解决。 关键字:线性规划模型 0-1规划模型调度

一、问题重述 某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。路线是唯一的双向道路(如图1)。货运公司现有一种载重 6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输车平均速度为60公里/小时(不考虑塞车现象),每日工作不超过8小时。运输车载重运费1.8元/吨公里,运输车空载费用0.4元/公里。一个单位的原材料A,B,C 分别毛重4吨、3吨、1吨,原材料不能拆分,为了安全,大小件同车时必须小件在上,大件在下。卸货时必须先卸小件,而且不允许卸下来的材料再装上车,另外必须要满足各公司当天的需求量(见表1)。问题: 1、货运公司派出运输车6辆,每辆车从港口出发(不定方向)后运输途中不允许掉头,应如何调度(每辆车的运载方案,运输成本)使得运费最小。 2、每辆车在运输途中可随时掉头,若要使得成本最小,货运公司怎么安排车辆数?应如何调度? 3、(1)如果有载重量为4吨、6吨、8吨三种运输车,载重运费都是1.8元/吨公里,空载费用分别为0.2,0.4,0.7元/公里,其他费用一样,又如何安排车辆数和调度方案?(2)当各个公司间都有或者部分有道路直接相通时,分析运输调度的难度所在,给出你的解决问题的想法(可结合实际情况深入分析)。 二、符号说明 x表示为一个车装一单位A和两单位C; 1 x表示为一个车装六单位C; 2 x表示为一个车装两单位B; 3 x表示为一个车装一单位B和三单位C; 4 S表示最小运输次数; x表示为一个车装一单位A和一单位C; 5

相关主题
文本预览
相关文档 最新文档