当前位置:文档之家› 广义相对论的验证

广义相对论的验证

广义相对论的验证
广义相对论的验证

广义相对论的验证

第一个水星近日点的运动试验

爱因斯坦的预测证明,在弯曲的时空中,光线必然沿着一个弯曲的轨迹行进,在加速参照系中,光的运行轨迹必定是曲线。因此,根据相对性

原理,光在任何时空中的运动轨迹也一定是弯曲的。爱因斯坦为了检验这

一假设,选择了太阳系的太阳引力场来进行计算,计算结果表面当遥远的

星光掠过太阳表面时,将会发生一点七秒的偏转。这一结论将可以通过全

日食时进行观测检验。

二战结束的1919年,在英国天文学家爱丁顿的支持与鼓励下,英国科

学界为了证实爱因斯坦的结论,派出了两支远征队分赴两地观察日全食,

经过认真的观测和研究得出最后的结论,星光的确在太阳附近发生了一点

七秒的偏转,英国皇家学会和皇家天文学会正式宣读了这一观测报告,爱

因斯坦根据光线受引力场折射的计算结果与现实如此之吻合。

第二个是光线在引力场的偏移试验

在一个足够大的引力场的作用下,空间和时间将发生“弯曲”。这一理论显然完全不同于人们对空间和时间的经验认识,也颠覆了以牛顿经典物理学为基础的空间、时间理论。爱因斯坦以惊人的天才提出了这一理论,并已经对其进行了近乎完美的数学论证。

当时担任剑桥大学天文台台长的爱丁顿组织了两支观测队,一支由当时的格林尼治天文台台长弗兰克·华生·戴森率领,前往巴西的索布拉尔;另一支则由爱丁顿亲自带队,前往非洲西部的普林西比岛,当时这是观测日食效果最好的两个地点。Robin Carchpole博士说,爱丁顿在某种意义上说是这两支队伍共同的“智力领袖”。两支队伍采用了不同的观测方法。格林尼治天文台的队伍在观测完日食时的恒星位置之后,于6个月后返回同一地点,此时太阳已经离开原来天区,这些恒星能够在夜间观察到,并且完全不再受太阳引力场的影响。他们将6个月后的恒星位置与日食时的恒星位置进行比较,以判断太阳对光线的影响。爱丁顿则采取另一种方法,请身在英国的研究人员在夜间观察金牛座的这批恒星(由于身处地球不同位置,普林西比只能在白天看到这些星星,英国却可以在夜里看到),将所得的恒星位置与他观察到的进行比较。由于两种方法的不同,在弗兰克·华生·戴森还在准备进行第二次对比观测的时候,爱丁顿已经于1919年6月非正式地宣布了他的观测结果。

第三个是光谱线的红向移动试验

广义相对论认为,光线在引力场中传播时,它的频率会发生变化.当光线从引力场强的地方则如太阳附近)传播到引力场弱的地方(例如地球附近)时,其频率会略有降低,波长稍增,即发生引力红移.当光线反向传播时,频率增加,波长变短,即发生引力蓝移.爱因斯坦在1911年计算出,从太阳射到地球的光线的相对引力红移变化是.这个数值很小,测量起来相当困难.

白矮星的质量大,半径小,其发出光的引力红移效应较显著.1925年天文学家亚当斯(W.S.Adams)观测了一颗白矮星天狼A,测到的引力红移与广义相对论的理论基本相符.20世纪60~70年代测得太阳光谱线的引力红移值与理论值的不确定度已小于5%~7%.

在地面附近高度相差几十米的两点间传播的光线也应产生引力红移.只是这种引力红移的变化更小,只有的数量级,一般实验手段难以观测到.1958年穆斯堡尔效应的发现提供了精确完成地面上引力红移实验的可能性.1959年庞德(R.V.Pound)和雷布卡(C.Rebka)把钴57发射的射线从22.6m高的塔顶射向地面的接收器,运用穆斯堡尔效应测量塔底处的频率改变量.这实际是一个引力蓝移实验.他们的实验相当成功,实际测量值与理论值的不确定度

在5%之内.

第四个雷达回波延迟实验

在上面讨论的三大验证实验之外,夏皮罗(I.Shapiro)于1964年提出用雷达回波延迟实验检验广义相对论的建议.广义相对论认为,物质的存在和运动造成周围时空的弯曲,光线在大质量物体附近的弯曲可以看作一种折射,相当于光速的变慢.从地球上向某一行星发射一束雷达波,雷达波到达行星表面后被反射回地球,就可以测出来回一次所需的时间.将雷达波经由太阳附近传播的来回时间与远离太阳附近传播的来回时间相比较,就可以得到雷达回波延迟的时间.夏皮罗领导的小组先后对水星、金星、火星进行了雷达回波延迟实验,后期的实验数据与广义相对论理论值的不确定度已在1%左右.20世纪80年代初,利用在火星表面登陆的“海盗号”探测器反射雷达波,已使雷达回波延迟实验测量值的不确定度减小到0.1%,有力地支持了广义相对论理论.这被认为是广义相对论的第四个重大验证实验.

广义相对论基础

广义相对论基础 Introduction to General Relativity 课程编号:S070200J15 课程属性:学科基础课学时/学分:60/3 预修课程:大学理论物理、高等数学 教学目的和要求: 本课程为物理学、天文学研究生的学科基础课,同时也是为今后有可能接触到引力理论的其它学科研究生的学科基础课。主要介绍爱因斯坦的广义相对论。使学生具有在今后接触到引力场问题时,能通过阅读有关书籍文献对更深入的问题进行了解的能力。本课强调弄清物理和几何图像。本课不涉及引力场量子化、引力和其它作用之统一以及以抽象数学工具表现时空几何等问题。本课也扼要对广义相对论的观测和实验检验,黑洞问题和宇宙学问题进行简要地介绍。 内容提要: 第一章张量分析基础 张量代数,联络,协变微商,测地线方程,Killing矢量。 第二章引力场方程 引力与度规,引力红移,黎曼曲率张量,Bianchi恒等式,引力场方程。 第三章场方程的应用(Ⅰ) 西瓦兹解,西瓦兹场中质点的运动,光线偏折,引力透镜效应,雷达回波,0Kruskal坐标和黑洞,Keer度规。 第四章场方程的应用(Ⅱ) 宇宙学原理,共动坐标系,Robertson-Walker度规,宇宙学红移,标准宇宙学模型简介。 主要参考书: 1. R, Adler, M.Bagin,M.Schiffer,Introduction to General Relativity(第二版),McGraw-Hill Book Company,New York,1975. 2. 俞允强,《广义相对论引论》,北京大学出版社,北京,1997。 3. S. Weinberg,Gravitation and Cosmology,John Wiley Sons,Inc.,New York,1972. 撰写人:邓祖淦(中国科学院研究生院) 撰写日期:2001年09日

狭义相对论和广义相对论

要了解狭义相对论和广义相对论的区别,我们首先要搞清楚,这两个理论大概说了什么? 狭义相对论 我们先从狭义相对论说起,其实狭义相对论解决了一个物理学的重大矛盾。在爱因斯坦之前,最成功的两个理论分别是牛顿提出的牛顿力学和麦克斯韦提出麦克斯韦方程。只不过,这两个理论有个矛盾,那就是:光速。 具体来说,牛顿的理论认为,速度可以不断地进行叠加,没有上限,只要你加得上去就行。可是,麦克斯韦方程得出的光速是一个固定值,似乎暗示着光速无论在什么惯性坐标系下都是一样的。要知道,我们在使用牛顿力学时,是需要先选定参考坐标的。因此,科学家就在思考,是不是存在一个奇怪的坐标系,让光速一直保持一个速度,它们管这个叫做以太。于是,一群科学家就拼了命地去找“以太”,然后他们接二连三地失败了。 后来,26岁的爱因斯坦提出了狭义相对论。

有人说他高举了奥卡姆剃刀原理才成功的,这个奥卡姆剃刀原理大意是:如无必须勿增实体。翻译过来就是,咋简单咋来。既然光速是不变的,那为啥还要假设“以太”? 于是,爱因斯坦就以“光速不变原理”和“相对性原理”为基础假设,推导出了狭义相对论。这个过程就有点像平面几何,就只有五条公设,但是能搞出一整套体系。而这里的相对性原理,说白了就是经典物理学的老套路,在研究运动时,需要先选个惯性参考系。 通过这两条假设,爱因斯坦出了很多奇葩的结论,比如:时间膨胀。说的是,如果你想对于我高速运动,那我看你的时间就会变慢,这种变慢可以理解成,如果你在高速的飞船里做操,那我这里看到的就是你在慢动作做操。而你自己其实感觉到的时间是正常流逝。所以,是以我参考系看你时间膨胀了。如果你也 看到,你也会发现我的时间也变慢了,因为我想对于你也是在高速运动的。

验证快速电子的动量与动能的相对论关系实验报告

验证快速电子的动量与动能的相对论关系 实验报告 摘要: 实验是验证快速电子的动量与动能的相对论关系,本实验是通过对快速电子的动量值及动能的同时测定来验证动量和动能之间的相对论关系;同时了解β磁谱仪测量原理、闪烁记数器的使用方法及一些实验数据处理的思想方法。通过实验过程完成实验内容,得到实验结果,获得实验体会。 关键字: 动量动能相对论β磁谱仪闪烁探测器定标 引言: 动量和能量是描述物体或粒子运动状态的两个特征参量,在低速运动时,它们之间的关系服从经典力学,但运动速度很高时,却是服从相对论力学。相对论力学理论是由伟大的科学家爱因斯坦建立的。 19世纪末到20世纪初期,相继进行了一些新的实验,如著名迈克尔逊—莫雷实验、运动电荷辐射实验、光行差实验等,这些实验的结果不能完全被经典力学和伽利略变换所解释,为解决这一矛盾,爱因斯坦于1905年创立了狭义相对论。 基于相对论的原理,可以解释所有这些实验结果,同时对低速运动的物体,相对论力学能过渡到经典力学。原子核发生β衰变时,放出高速运动的电子,其运动规律应服从相对论力学。通过测量电子的动能与动量,并分析二者之间的关系,可以达到加深理相对论理论的目的。 正文: 1905年,阿尔伯特·爱因斯坦的《论运动物体的电动力学》首次提出了崭新的时间空间理论——狭义相对论。其在1915年左右发表的一系列论文中给出了广义相对论最初的形式。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了近代物理学的基础。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非古典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。 本实验通过对快速电子的动量值及动能的同时测定,验证其动能与动量的关系,同时了解半圆聚焦β磁谱仪的工作原理。

广义相对论简介

广义相对论简介 引子 由牛顿力学到狭义相对论,基本观念的发展是,其一:由一切惯性系对力学规律平权到一切惯性系对所有物理规律平权;其二:由绝对时空到时空与运动有关。 爱因斯坦进一步的思考:非惯性系与惯性系会不平权吗?物质与运动密不可分,那么时空与物质有什么关系?关于惯性和引力的思考,是开启这一迷宫大门的钥匙,最终导致广义相对论的建立。 §1 广义相对论的基本原理 一、等效原理 1. 惯性质量与引力质量 实验事实:引力场中同一处,任何自由物体有相同的加速度。 根据上述事实及力学定律,可得任一物体的惯性质量 与引力质量 满足 常量,与运动物体性质无关,选择合适的单位,可令 = = , 即惯性质量与引力质量相等。从而,在引力场中自由飞行的物体,其加速度必等于 当地的引力强度 。 2. 惯性力与引力 已知在非惯性系中引入惯性力后,可应用力学规律,而惯性力。在 此基础上,讨论下述假想实验。 1) 自由空间中的加速电梯(如图1) 以 为参考系,无法区分ma 是惯性力还是引力。因此,也可以认为是在引力场中 匀速运动的电梯。 2) 引力场中自由下落的电梯S*(如图2) 以S*为参考系,无法区分是二力平衡 还是无引力。因此,也可认为S*是 自由空间中匀速运动的电梯。 以上二例表明,由 = , 可导出惯性力与引力的力学效应不可区分, 或者说,一加速参考系与引力场等效。当然,由于真实引力场大范围空间内不均匀, 图 图1 图 2

因此,这种等效只在较小范围空间内才成立,我们称之为局域等效。 3. 等效原理 弱等效原理:局域内加速参考系与引力场的一切力学效应等效。 强等效原理:局域内加速参考系与引力场的一切物理效应等效。 广义相对论的等效原理是指强等效原理。 4.对惯性系的再认识——局域惯性系 按牛顿力学的定义,惯性定律成立的参考系叫惯性系。恒星参考系是很好的惯性 系,不存在严格符合此定义的真正的惯性系。惯性系之间无相对加速度。 按爱因斯坦的定义,狭义相对论成立的参考系,或(总)引力为零的参考系叫惯 性系。因此,以引力场中自由降落的物体为参考的局域参考系是严格的惯性系,简 称为局惯系。引力场中任一时空点的邻域内均可建立局惯系,在此参考系内运用狭 义相对论。同一时空点的各局惯系间无相对加速度,不同时空点的各局惯系间有相 对加速度。 二、广义相对性原理 原理叙述为:一切参考系对物理规律平权,即物理规律在一切参考系中的表述形 式相同。 为了在广义相对性原理的基础上建立广义相对论理论,爱因斯坦所做的进一步工 作是使引力几何化,即把引力场化作时空几何结构加以表述。对广义相对论普遍理 论的研究数学上涉及黎曼几何、张量分析等,超出本简介范围,下面只作浅显的说 明。 §2 引力场的时空弯曲 一、弯曲空间的概念 从高维平直空间可观测低维平直空间与弯曲空间的差异。 平面——二维平直空间内:测地线(即两点间距离的极值线)为直线,三角形内 角和=,圆周长=。 球面——二维弯曲空间:测地线为弧线,如图。三角形(PMN)的内角和>, 圆周长<。 故通过测量可判定空间弯曲。(如图3) Array二、引力场的空间弯曲 讨论爱因斯坦转盘(如图4) 相对惯性系S以角速度均匀 转动的参考系。由S系可推知 系中的测量结果(狭义相对论) 图 3

广义相对论的理解

11、广义相对论的几 个疑难问题 1、暗物质的本质:现代宇宙学观测表明宇宙中存在暗物质和暗能量。但是它们的起源仍然是个谜。我们能找到的普通物质仅占整个宇宙的4%,各种测算方法都证实,宇宙的大部分是不可见的。要说宇宙中仅仅就是暗色尘云和死星体是很容易的,但已发现的有力证据说明,事实并非如此。正是对宇宙中未知物质的寻找,使宇宙学家和粒子物理学家开始合作,最有可能的暗物质成分是中微子或其它两种粒子:neutralino和axions(轴子),但这仅是物理学的理论推测,并未探测到,据认为,这三种粒子都不带电,因此无法吸收或反射光, 但其性质稳定,所以能从创世大爆炸后的最初阶段幸存下来。 天文学家已经证明:宇宙中的天体从比我们银河系小100万倍的星系到最大星系团,都是由一种物质形式所维系在一起的,这种物质既不是构成我们银河系的那种物质,也不发光。这种物质可能包括一个或更多尚未发现的基本粒子组成,该物质的聚集产生导致宇宙中星系和大尺寸结构形成的万有引力。同时,这些粒子可能穿过地面实验室。 美国能源部LANL实验室的液体闪烁体中微子探测器、加拿大Sudbury中微子观测站和日本超级神冈加速器实验的最新结果给出 有力的证据:中微子以各种形式“振荡”,因此必定会具有质量。虽然质量很小,但宇宙中大量的中微子加起来可使总的质量达到相当高。美国费米国家实验室新的加速器实验MiniBooNE和MINOS将研究中微子震荡和中微子质量。 尚未发现的其它粒子有可能存在,例如一种称为超对称的新对称理论预言有一种大的新类型的粒子,其中有些可解释暗物质。现正在费米实验室TeV能级加速器进行的和计划在CERN正建造的大型强子对撞机(LHC)上开展的实验,以及地下低温暗物质寻找和空间利用伽马射线大面积天体望远镜所进行的实验,目的都是要寻找超对称粒子。 阿尔法磁谱仪(AMS)安装在国际空间站上,寻找反物质星系和

几个狭义相对论验证试验的重新分析

几个狭义相对论验证实验的重新分析 尽管相对论解释了许多实验,但是否揭示了导致实验的本质原因,需要继续研究.1971年美国科学家在地面将精度为0.000000001秒的铯原子钟对准,把其中4台原子钟放到喷气式飞机上绕地球一圈,然后返回地球与地面上静止的原子钟比较,结果是绕了地球一圈的这4个原子钟比地面上的慢了59毫微秒(0.000000059秒),与广义相对论的计算结果误差为10%.后来将这个实验的喷气式飞机换成宇宙飞船,实验数据更接近广义相对论的计算结果.物理学家曾经利用原子钟高速运动时钟减缓寿命的延长,说明狭义相对论的正确,笔者认为这是不妥的.因为原子钟在高速运动过程中,地面上的时钟相对于它也在高速运动,为什么地面上的时钟不减缓呢?因为原子钟在实验中有一定的飞行高度,在飞行过程中实际是变速运动,加速运动的物体可以产生引力场,根据广义相对论引力场中时间延缓,所以对此应当重新分析.引力场强度不变,时钟的快慢不变,强度变大,时钟延缓,反之时钟加速.1971年,为了验证相对论的时间变化,美国进行了原子钟环球飞行实验,其结果是:时钟向东飞行时慢了59×10-9,往西飞行时快了273×10-9 .广义相对论的计算值与实验结果有一定的偏差(尤其钟快现象).总之,在实验中的三组原子钟相互看来,实验中既有“动钟变慢”现象,也有“动钟变快”现象. 一般认为,来自外层空间的宇宙线轰击地球大气,产生了大量的μ介子,这些μ子具有很宽的能量范围,飞行速度有大有小,高能量的μ子速度非常接近光速c ,可大于0.9954c.μ子寿命很短暂,产生后会很快衰变掉,各个μ子的实际寿命有长有短,但是当我们统计群体μ子的平均寿命时发现,其平均寿命是恒定的.一群μ子衰变掉一半所需的时间,称为半衰期,常被用作寿命的标志,大量的实验统计出静止μ子的半衰期T = 1.53×10-6秒,恒定不变.在μ子和介子实验中,μ子和介子作有加速的圆周运动,实验证实作这样运动的μ子和介子的平均寿命大于静止μ子和介子的平均寿命.因为1963年的一次实验中,人们在高1910米的山顶上,测量铅直向下的速度在0.9950C ~0.9954C 之间的 μ- 子数目,每小时平均有563 ± 10个;然后在离海平面3米高的地方测量相同速度的 μ- 子数目,平均每小时408 ± 9个. μ- 子从山顶运动到海平面所需时间应为:()()s s m m 68 106.41030.995231910t -?=??-=. 这是静止 μ- 子半衰期()21T 的4倍多,如果高速运动的 μ- 子半衰期和静止时相等的话,人们预期在飞行经过1907米距离后,在海平面附近的 μ- 子数应不到 352 5634≈个.而当时实际测量却有408个,这清楚地表明,运动着

量子科学实验

量子科学实验 一、背景及科学意义 根据国务院第105次常务会议审议通过的“中国科学院创新2020规划”,中国科学院启动实施系列战略性先导科技专项,量子科学实验卫星(以下称量子卫星)所属空间科学战略性先导科技专项是首批启动的先导专项之一。在2008年立项的中科院重大创新项目“空间尺度量子实验关键技术”的基础上,经过近一年的科学目标与有效载荷配置论证、工程立项综合论证,于2011年12月23日正式立项启动。 量子科学实验卫星工程将借助于卫星平台,一方面将在国际上首次实现千公里级的无条件安全的量子通信,促进广域乃至全球范围量子通信网络的最终实现;另一方面,将是国际上首次在宏观大尺度上对量子理论本身展开实验检验,在更深层次上为认识量子物理的基础科学问题、拓宽量子力学的研究方向做出重要贡献。量子科学实验卫星所发展起来的技术,还将为在空间尺度对广义相对论效应、量子引力等物理学基本原理的深入检验奠定基础,促进整个物理学的发展。 量子科学实验卫星总重量631公斤,将由“长征二号丁”运载火箭在酒泉卫星发射中心发射,运行于500公里太阳同步轨道,轨道倾角97.37°,设计在轨运行寿命2年。有效载荷有量子密钥通信机、量子纠缠发射机、量子纠缠源及实验控制与处理机和高速相干激光通信机。卫星配置两套独立的有效载荷指向机构,通过姿控指向系统协同控制,可与地面上相距千公里量级的两处光学站同时建立量子光链路,光轴指向精度优于3.5urad。 二、科学目标 1、进行星地高速量子密钥分发实验,并在此基础上进行广域量子密钥网络实验,以期在空间量子通信实用化方面取得重大突破。 2、在空间尺度进行量子纠缠分发和量子隐形传态实验,开展空间尺度量子力学完备性检验的实验研究。 三、研制历程

就目前的实验验证来说量子力学与广义相对论谁是最精确的物理学分支

就目前的实验验证来说,量子力学与广义相对论谁是最精确 的物理学分支? 【芦苇声的回答(35票)】: 要破题,首先要准确定义什么叫「精确」。 对「精确」的理解,一般来说有三种: 能测量到的效应最小、最微弱;实验结果与理论预言值偏差最小;实验本身的误差(统计误差+系统误差)最小。如果从实验科学的角度出发,我们采取的是第三种理解。这实际上涉及到两个概念:Accuracy(准度)和Precision(精度)。准度描述的是实验的结果和「真值」——真理的值、绝对意义上的真正的值——之间的差距;「精度」描述的是实验结果和统计意义上的「平均值」之间的差距,也就是「不确定度」。这两者的意义是差了十万八千里的,不可混淆。「真值」是客观存在的,比如光速的值,是客观存在的,但人类未必可以准确地得知。以前的科学工作者,一般采用一个广受承认的理论预言值或预测值,作为「真值」,以方便描述实验的准度。但现代科学认为,所有的物理理论都是「有效理论」,都有其适应范围,否定「普适理论」的存在,即使现今的理论未有找到不适用的反例,未必代表以后没有(参见牛顿绝对时空观和狭义相对论的历史)。从这个意义上来说,「精度」比「准度」更适合用来衡量物理学实验的精确性——因为你

不知道你所用的理论是否是「正确的」,失去了标尺,比较也就失去了意义。 那么从这两个概念出发,我们可以判断: 理解1不是个好定义,因为它的精度和准度都有可能很差,比如家用体重秤,以千克为单位可以给你小数点后4位的数字,但误差可能达到500克;理解2定义的是准度,但没有涉及到精度,从上面的讨论中可知,它不是一个好的标准;这是当今实验科学采用的理解。而我们说一个理论「精确」,需要做到两件事: 实验的误差要尽可能地小(理解3意义下)。理论的预言值与实验测量值的差别要尽可能地小。这里有一篇文章: The Most Precisely Tested Theory in the History of Science 作者是Union College in Schenectady, NY的物理系副教授。他介绍了理解1和理解3意义下的两个「最精确」的实验。理解1意义下,相对论胜出,因为它能测量到的效应是 。理解3意义下,QED(量子电动力学)胜出,那就是著名的 实验,测量的是电子的反常磁矩。g是粒子磁矩,狄拉克方程里用g表示,也称为「g因子」。狄拉克方程预言

广义相对论的学习总结

广义相对论的学习总结 1.引言 1.1前言 经过过去一年对广义相对论的学习,基本对广义相对论的基本原理和运用有了比较完整的认识。这篇文章是为了总结自己学习的体会,尽量用自己的语言谈谈对广义相对论的理解。由于作者水平有限,也为了文章的简洁,所以省去数学推导,仅保留基本的数学公式和方法说明。 广义相对论是爱因斯坦一大理论成果,可以解释宏观世界一切物体的运动,可以在一切坐标系下运用,本身又保持了相当完美的对称性和简洁性。随着空间探测技术的发展,广义相对论的许多结论都得到了证明,而广义相对论和量子力学构成了现代物理的两大支柱。 1.2导语 在具体介绍广义相对论的内容之前,我想用自己的语言,对广义相对论的思想和研究问题步骤做一个小的总结和介绍。总的来说,广义相对论是建立在四个假设之上,通过这四个假设,爱因斯坦认为惯性场和引力场等效,以及所有参考系的平权性。然后爱因斯坦把引力场认为是一种几何效应。是由于质量在空间上的分布不均匀,导致空间的空间扭曲。 在数学上,用张量来代表物理量,以满足物理规律在所有参考系下都成立。用黎曼几何来刻画弯曲空间,联络来描述引力强度,曲率

张量来描述空间弯曲,度规张量来描述引力势。 接下来便是构建场运动方程。我们可以用惠曼的名言总结道:“物质告诉时空如何弯曲,时空告诉物质如何运动。”按照爱因斯坦的想法,引力是由于质量空间分布不均匀造成的几何效应。所以爱因斯坦场方程左边应该是反映时空的几何性质的张量,右边是能动张量。再继续利用能量守恒定律,便可以推出爱因斯坦场方程。 应用爱因斯坦的场方程,得到了很多新奇的结论和实验预言,并且以“水星进动”和“引力红移”为代表的实验验证了广义相对论的正确性。 广义相对论还预言了引力弯曲效应极大情况下黑洞的存在。 而广义相对论作为宇宙学的理论基础,特别是近几十年观测技术的进步,使得宇宙学建立起了相对完整的理论系统。 2.基本假设 广义相对论建立在以下假设下。 2.1等效原理 广义相对论用的是强等效原理。 引力场与惯性场的的一切物理效应都是局域不可分辨的。 2.2马赫原理 惯性力起源于物质间的相互作用,起源于受力物体相对于遥远星系的加速运动,而且与引力有着相同或相近的物理根源。

广义相对论的实验验证

广义相对论的实验验证 (1)厄缶实验 19世纪末,匈牙利物理学家厄缶用扭秤证实了惯性质量与引力质量在极高的精确度下,彼此相等。厄缶实验的设计思想极为简单。扭秤的悬丝下吊起一横杆,横杆两端悬吊着材料不同、重量相同的重物。达到平衡后,使整个装置沿水平旋转180°,若惯性质量与引力质量相等,由于无额外转矩出现,整个装置 将始终保持平衡。最后厄缶以10-9的精度,证实了两种质量的等同。由于利用简单而巧妙的实验得到精度 极高的测量结果,厄缶获得德国格廷根大学1909年度的本纳克(Benecke )奖。 1933年6月20日,爱因斯坦在英国格拉斯哥大学作题为《广义相对论的来源》的讲话,表示他提出等效性原理的当时。并不知道厄缶实验。尽管如此,这并不能贬低厄缶实验的意义,它应该作为全部广义相对论的重要奠基石。鉴于这一实验的精确度直接影响广义相对论理论的可靠性,以后几十年来,人们对这一实验的兴趣有增无减。1960~1966年,狄克(Robert Henry ,Dicke ,1916~)等人为提高厄缶实验的精度,把厄缶的扭秤横杆改成三角形水平框架,又把石英悬丝表面蒸镀铝膜以避免静电干扰,并将整个装 置置于真空容器中,使实验的精度推进了两个数量级,达到(1.3±1.0)×10-11。1972年,前苏联的布拉 金斯基(Braginsky )和班诺夫(Panov )对厄缶实验又做了重大的改进。他们采用电场中的振荡法,旋转 由激光反光光斑记录在胶片上,使实验结果又在狄克的基础上提高了两个数量级,即9×10-13。 (2)水星近日点进动的观测 在经典力学这座坚固的大厦中,牛顿力学犹如擎天大柱,已经经受住了两个世纪的考验。把引力作为力的思想似乎根深蒂固。随着时间的推移,牛顿力学的成功事例在不断地增多。1705年哈雷(Edmund Halley ,1656~1742)用牛顿力学计算出24颗彗星的结果,并指出在1531年、1607年和1688年看到的大彗星,实际上是同一颗,这就是后人所称的哈雷彗星。克雷洛(Alxis Claude Clairaut ,1713~1765)在仔细地研究了哈雷的报告后,又根据牛顿力学计入了木星与土星对彗星轨道的影响,预言人们将在1758年圣诞节观测到这颗彗星,果然它如期而至。后来人们又先后在1801年、1802年、1804年以及1807年发现木星与土星轨道间有四颗小行星,它们的轨道也都与牛顿引力理论的计算结果相符。19世纪40年代,法国的勒威耶(Urbain Jean Jeseph Leverrier ,1811~1877)、英国的亚当斯(John Couch Adems ,1819~1892)分别对天王星的轨道偏差做了计算,由此导致了海王星的发现,这又是牛顿力学的一次辉煌的胜利。 尽管牛顿力学获得一次又一次的巨大成功,人们还是发现有一个现象不能由它得到解释。从1859年起,勒威烈接受了阿拉戈的建议。开始把观测的重点放在众星的微小摄动上。他的观测与计算表明,水星的近日点每百年的进动量大约比牛顿引力理论计算值多出40弧秒。1845年,他提出,水星的反常运动是受到一颗尚未发现的行星的影响,他称这颗行星为“火神星”,但是始终未能从观测中发现这颗火神星。1882年.美国天文学家纽科姆(Simon Newcomb ,1835~1909)对水星的进动又做了更加详细的计算。计算结果表明,水即B 点的进动量应为43″/百年。开始,他认为这是发出黄道光的弥散物质使水星的运动受到了阻尼,后来又有人企图用电磁理论作出解释,但是都没有获得成功。 1915年,爱因斯坦的广义相对论建立后,史瓦西(Karl Sahwarzschild ,1873~1916)很快地找到了球对称引力场情况下的引力场方程解,后来被称为史瓦西解,或史瓦西度规。爱因斯坦认为太阳的引力场适用于史瓦西解,由此应该对水星的近日点进动作出解释。他认为,水星应按史瓦西场中的自由粒子方式运动;其轨迹就是按史瓦西度规弯曲的空间中的测地线。按这种假设计算,水星每公转一周,它的近日点的进动角应为)1(242222 2 e c T a -=πε,其中a 为水星公转轨道的半长轴,e 为椭圆轨道的偏心率,T 为水星年周期。当把水星年折合为地球年以后,计算出水星近日点的近动角为43″/百年。这一结果恰好与纽科姆的结果相符,它不但解决了牛顿引力理论多年的悬案,而且为广义相对论提供了有力的证据,它成为验证广义相对论的三大有名的实验判据之一。 在获得这个实验判据的当时。正是爱因斯坦废除他原来的引力场方程,并建立新的场方程后的不久。

爱因斯坦《狭义与广义相对论浅说》

狭义与广义相对论浅说 爱因斯坦 .

第一部分狭义相对论·············································································································· ····································································································································································································································· ················································································································································································································· ······································································································· ················································································· ····································································· ············································································································ ············································································································ ························································································································································································································· ··························································································· ······················································································· ······································································································· ··························································································· ······································································································· ··································································································· ·········································································································· ························································································································································································································· ········································ ····························· ······················································································· ·························································································································································································· ················································ ······················································ ······················································································· ···································································· ··················································································· ··················································································· ···························································· ····················································································································································································································· ······························································································· ··············································································· ······························································································· ····························································································· ····················································································· ····························································································· ······································································· (4) 1.几何命题的物理意义 4 2.坐标系 5 3.经典力学中的空间和时间7 4.伽利略坐标系8 5.相对性原理(狭义)8 6.经典力学中所用的速度相加定理10 7.光的传播定律与相对性原理的表面抵触10 8.物理学的时间观12 9.同时性的相对性14 10.距离概念的相对性15 11.洛伦兹变换16 12.量杆和钟在运动时的行为19 13.速度相加定理斐索实验20 14.相对论的启发作用22 15.狭义相对论的普遍性结果22 16.经验和狭义相对论25 17.闵可夫斯基四维空间27 第二部分广义相对论29 18.狭义和广义相对性原理29 19.引力场31 20.惯性质量和引力质量相等是广义相对性公设的一个论据32 21.经典力学的基础和狭义相对论的基础在哪些方面不能令人满意34 22.广义相对性原理的几个推论35 23.在转动的参考物体上的钟和量杆的行为37 25.高斯坐标41 26.狭义相对论的空时连续区可以当作欧几里得连续区43 27.广义相对论的空时连续区不是欧几里得连续区44 28.广义相对性原理的严格表述45 29.在广义相对性原理的基础上解引力问题47 第三部分关于整个宇宙的一些考虑49 30.牛顿理论在宇宙论方面的困难49 31.一个“有限”而又“无界”的宇宙的可能性50 32.以广义相对论为依据的空间结构53 附录54 一、洛伦兹变换的简单推导54 二、闵可夫斯基四维空间(“世界”)57 三、广义相对论的实验证实58 (1)水星近日点的运动59 (2)光线在引力场中的偏转60 (3)光谱线的红向移动62 四、以广义相对论为依为依据的空间结构64 五、相对论与空间问题65

爱丁顿到底有没有验证广义相对论

爱丁顿到底有没有验证广义相对论? 一个教科书中的神话 有一些进入了教科书的说法,即使被后来的学术研究证明是错了,仍然会继续广泛流传数十年之久。“爱丁顿1919年观测日食验证了广义相对论”就是这样的说法之一。即认为爱丁顿通过1919年5月的日全食观测,验证了爱因斯坦广义相对论对引力场导致远处恒星光线偏折的预言。这一说法在国内各种科学书籍中到处可见,稍举数例如下: 理查德·奥尔森等人编的《科学家传记百科全书》“爱丁顿”条这样写道:“爱丁顿……拍摄1919年5月的日蚀。他在这次考察中获得的结果……支持了爱因斯坦惊人的预言。”著名的伽莫夫《物理学发展史》、卡约里《物理学史》中都采用同样的说法。在非物理学或天体物理学专业的著作中,这种说法也极为常见,比如在卡尔·齐默所著《演化:跨越40亿年的生命纪录》一书中,为反驳“智能设计论”,举了爱因斯坦广义相对论对引力场导致远处恒星光线偏折的预言为例,说“智能设计论”无法提出这样的预言,所以不是科学理论。作者也重复了关于爱丁顿在1919年日食观测中验证了此事的老生常谈。这个说法还进入了科学哲学的经典著作中,波普尔在著名的《猜想与反驳》一书中,将爱丁顿观测日食验证爱因斯坦预言作为科学理论预言新的事实并得到证实的典型范例。他说此事“给人以深刻印象”,使他“在1919~1 920年冬天”形成了著名的关于“证伪”的理论。爱丁顿验证了广义相对论的说法,在国内作者的专业书籍和普及作品中更为常见。 长高的秘诀 有效增高 这个被广泛采纳的说法从何而来的呢?它的出身当然是非常“高贵”的。例如我们可以找到爱丁顿等三人联名发表在1920年《皇家学会哲学会报》(Philosophical Transactions of the Royal Society)上的论文,题为《根据1919年5月29日的日全食观测测定太阳引力场中光线的弯曲》,作者在论文最后的结论部分,明确地、满怀信心地宣称:“索布拉尔和普林西比的探测结果几乎毋庸置疑地表明,光线在太阳

广义相对论习题

名词解释:——1)惯性系疑难 ——由于引力作用的普遍存在,任一物质的参考系总有加速度,因而总不会是真正的惯性系。在表述物理规律时惯性系占有特殊的优越地位,但自然界却不存在一个真正的惯性系。 2)广义相对性原理——所有参考系都是等价的(一切参考系都是平权的)。 3)史瓦西半径 ——史瓦西半径是任何具重力的质量之临界半径。在物理学和天文学中,尤其在万有引力理论、广义相对论中它是一个非常重要的概念。1916年卡尔·史瓦西首次发现了史瓦西半径的存在,他发现这个半径是一个球状对称、不自转的物体的重力场的精确解。 一个物体的史瓦西半径与其质量成正比。太阳的史瓦西半径约为3千米,地球的史瓦西半径只有约9毫米。 小于其史瓦西半径的物体被称为黑洞。在不自转的黑洞上,史瓦西半径所形成的球面组成一个视界。(自转的黑洞的情况稍许不同。)光和粒子均无法逃离这个球面。银河中心的超大质量黑洞的史瓦西半径约为780万千米。一个平均密度等于临界密度的球体的史瓦西半径等于我们的可观察宇宙的半径 公式2 2Gm r c = 4)爱因斯坦约定——对重复指标自动求和。 5)一阶逆(协)变张量—— 'x T T T T x α μμ μαμ?''→?=? (n 1 个分量) 6)二阶逆(协)变张量——''x x T T T T x x αβ μνμν μναβμν??''→?=?? (n 2个分量)

1)广义相对论为什么要使用张量方程?—— 将物理规律表达为张量方程,使它在任何参考系下具有相同的形式,从而满足广义相对性原理。 2)反称张量的性质?——(a)当任意两个指标取同样值时,张量的该分量为零。 (b)n 维空间中最高阶的反称张量是n 阶的,这张量只有一个独立分量。 (c)n 维空间中的n-1阶反称张量只有1n 个独立分量。 3)仿射联络的坐标变换公式?它是张量吗? 4)仿射联络的性质? 5)一阶逆(协)变张量协变微商的公式?;,T T T μμααλλμλ=+Γ ;,T T T λμνμνμνλ=-Γ

广义相对论的实验验证

4、引力红移问题 由于采用穆斯堡尔效应,科学家在实验室中验证了引力红移。庞德(R.V..Pound )与瑞布卡(G .A .Rebka )哈佛塔的著名实验证明了引力场可以使光子产生蓝移。从而间接地证明了Einstein 广义相对论的引力红移的存在。这个实验运用光子在地面重力场中的能量守恒关系得出方程 )1(2 0c gh +=νν. 其中0ν是光子在塔顶的频率,ν是光子经过重力场后到达塔底的 频率,h 为塔高,g 为重力加速度。从上式可以看出光子频率的变化与它在引力场中运动的距离有关。在这个实验中,假设我们在塔顶与地面之间设定几个不同的测量点,根据上式,光子在这些不同的点上应当有不同的频率。1960年,哈佛大学的物理学家以千分之一的精度测出了沿垂向下落23米的伽玛射线的频率移动(伽玛射线是一种高能电磁辐射)。从1976年起.超稳定即精确度为一千万亿分之—的钟被放到了高空飞机上,那里的引力比地面上减弱的程度应当可以测量出来。这种飞行的电磁钟与在地面实验室里同样的钟作了比较。二者的速率确有差别,而且与广义相对论预言的结果完全一致。如果一个巨大的物体正好位于地球与恒星之间,那么来自恒星的光线就会受到时空弯曲的影响,它的传播路径就会被扭曲而偏离一定的角度。这种效应还会形成一种有趣的引力透镜现象,它使远处的恒星变得更亮,有时还会形成双像。 广义相对论频移的物理机制,爱因斯坦做出的解释是:“一个原子吸收或发出的光的频率与该原子所处在的引

力场的势有关”;而霍金的解释是“当光从地球引力场往上走,它失去能量,因而其频率下降”。笔者认为——广义相对论频移的本质是时空平权的反映,因为时空弯曲相当于距离的增加,等价于时间的延缓。

相对论

相对论(关于时空和引力的基本理论) 相对论是关于时空和引力的基本理论,主要由阿尔伯特·爱因斯坦创立,依据研究的对象不同分为狭义相对论和广义相对论。相对论的基本假设是相对性原理,即物理定律 与参照系的选择无关。 狭义相对论和广义相对的区别是,前者讨论的是匀速直线运动的参照系(惯性参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理 的假设下,广泛应用于引力场中。相对论极大地改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。它发 展了牛顿力学,推动物理学发展到一个新的高度。 狭义相对性原理是相对论的两个基本假定,在目前实验的观测下,物体的运动与相对 论是吻合很好的,所以目前普遍认为相对论是正确的理论。 研究发展编辑 研究历程 广义相对论 1905年5月的一天,爱因斯坦与一个朋友贝索讨论这个已探索了十年的问题,贝索按照马赫主义的观点阐述了自己的看法,两人讨论了很久。突然,爱因斯坦领悟到了什么,回到家经过反复思考,终于想明白了问题。第二天,他又来到贝索家,说:谢谢你,我的问题解决了。原来爱因斯坦想清楚了一件事:时间没有绝对的定义,时间与 光信号的速度有一种不可分割的联系。他找到了开锁的钥匙,经过五个星期的努力工作,爱因斯坦把狭义相对论呈现在人们面前。[1] 1905年6月30日,德国《物理学年鉴》接受了爱因斯坦的论文《论动体的电动力学》,在同年9月的该刊上发表。这篇论文是关于狭义相对论的第一篇文章,它包含 了狭义相对论的基本思想和基本内容。这篇文章是爱因斯坦多年来思考以太与电动力 学问题的结果,他从同时的相对性这一点作为突破口,建立了全新的时间和空间理论,并在新的时空理论基础上给动体的电动力学以完整的形式,以太不再是必要的,以太 漂流是不存在的。[2] 1907年,爱因斯坦撰写了关于狭义相对论的长篇文章《关于相对性原理和由此得出的结论》,在这篇文章中爱因斯坦第一次提到了等效原理,此后,爱因斯坦关于等效原 理的思想又不断发展。他以惯性质量和引力质量成正比的自然规律作为等效原理的根

相关主题
文本预览
相关文档 最新文档