当前位置:文档之家› TFTLCD+Gamma+Tuning校正原理与步骤

TFTLCD+Gamma+Tuning校正原理与步骤

TFTLCD+Gamma+Tuning校正原理与步骤
TFTLCD+Gamma+Tuning校正原理与步骤

landsat遥感影像地表温度反演教程(大气校正法)

基于辐射传输方程的Landsat数据地表温度反演教程一、数据准备 Landsa 8遥感影像数据一景,本教程以市2015年7月26日的=行列号为(128,049)影像(LC81280402016208LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 注:基本信息在影像头文件中均可查询到,采集时间为格林尼治时间。 二、地表温度反演的总体流程 三、具体步骤 1、辐射定标

地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射 定标。 (1)热红外数据辐射定标 选择Radiometric Correction/Radiometric Calibration。在File Selection对话框 中,选择数据LC81230322013132LGN02_MTL_Thermal,单击Spectral Subset 选择Thermal Infrared1(10.9),打开Radiometric Calibration面板。 (2)多光谱数据辐射定标 选择要校正的多光谱数据“LC81230322013132LGN02_MTL_MultiSpectral” 进行辐射定标。 Scale factor 不能改变,否则后续 计算会报错。保持默认1即可。

因为后续需要对多光谱数据进行大气校正,可直接单击Apply Flaash Settings,如下图。 注意与热红外数据辐射定标是的差 别,设置后Scale factor值为0.1。 2、大气校正 本教程选择Flaash 校正法。FLAASH Atmospheric Correction,双击此工具,打开辐射定标的数据,进行相关的参数设置进行大气校正。 注意:如果在多光谱数据辐射定标时Scale factor值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为0.1,若已设置,则默认值为1即可。 1)Input Radiance Image:打开辐射定标结果数据; 2)设置输出反射率的路径,由于定标时候;

简述回归分析的概念与特点

简述回归分析的概念与特点 回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。 方差齐性 线性关系 效应累加 变量无测量误差 变量服从多元正态分布 观察独立 模型完整(没有包含不该进入的变量、也没有漏掉应该进入的变量) 误差项独立且服从(0,1)正态分布。 现实数据常常不能完全符合上述假定。因此,统计学家研究出许多的回归模型来解决线性回归模型假定过程的约束。 研究一个或多个随机变量Y1 ,Y2 ,…,Yi与另一些变量X1、X2,…,Xk之间的关系的统计方法。又称多重回归分析。通常称Y1,Y2,…,Yi为因变量,X1、X2,…,Xk为自变量。回归分析是一类数学模型,特别当因变量和自变量为线性关系时,它是一种特殊的线性模型。最简单的情形是一个自变量和一个因变量,且它们大体上有线性关系,这叫一元线性回归,即模型为Y=a+bX+ε,这里X是自变量,Y是因变量,ε是随机误差,通常假定随机误差的均值为0,方差为σ^2(σ^2大于0)σ2与X的值无关。若进一步假定随机误差遵从正态分布,就叫做正态线性模型。一般的情形,差有k个自变量和一个因变量,因变量的值可以分解为两部分:一部分是由自变量的影响,即表示为自变量的函数,其中函数形式已知,但含一些未知参数;另一部分是由于其他未被考虑的因素和随机性的影响,即随机误差。当函数形式为未知参数的线性函数时,称线性回归分析模型;当函数形式为未知参数的非线性函数时,称为非线性回归分析模型。当自变量的个数大于1时称为多元回归,当因变量个数大于1时称为多重回归。 回归分析的主要内容为:①从一组数据出发确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。②对这些关系式的可信程度进行检验。③在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量选入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。④利用所求的关系式对某一生产过程进行预测或控制。回归分析的应用是非常广泛的,统计软件包使各种回归方法计算十分方便。

统计学原理-回归分析案例0204192330

美国各航空公司业绩的统计数据公布在《华尔街日报1998年鉴》(The Wall Street Journal Almanac 1998)上,有关航班正点到达的比率和每10万名乘客投诉的次数的数据如下: 航空公司名称航班正点率(%)投诉率(次/10万名乘客)西南(Southwest)航空公司81.8 0.21 大陆(Continental) 航空公司76.6 0.58 西北(Northwest)航空公司76.6 0.85 美国(US Airways)航空公司75.7 0.68 联合(United)航空公司73.8 0.74 美洲(American)航空公司72.2 0.93 德尔塔(Delta)航空公司71.2 0.72 70.8 1.22 美国西部(America West)航空公 司 环球(TWA)航空公司68.5 1.25 a. 画出这些数据的散点图 b. 根据再(a)中作出的散点图,表明二变量之间存在什么关系? c. 求出描述投诉率是如何依赖航班按时到达正点率的估计的回归方程 d. 对估计的回归方程的斜率作出解释 e. 如何航班按时到达的正点率是80%,估计每10万名乘客投诉的次数是多少?

1)作散点图: 2)根据散点图可知,航班正点率和投诉率成负直线相关关系。 3)作简单直线回归分析: SUMMARY OUTPUT 回归统计 Multiple R0.882607 R Square0.778996 Adjusted R Square0.747424 标准误差0.160818 观测值9 方差分析  df SS MS F Significance F 回归分析10.6381190.63811924.673610.001624残差70.1810370.025862 总计80.819156  Coefficient s标准误差t Stat P-value Lower 95%Upper 95%下限95.0%上限95.0% Intercept 6.017832 1.05226 5.7189610.000721 3.5296358.506029 3.5296358.506029 X Variable 1-0.070410.014176-4.967250.001624-0.10393-0.03689-0.10393-0.03689 4)y = -0.0704x + 6.0178

大气校正ENVI流程

在最初的遥感学习中,我总是分不清传感器定标、辐射定标、辐射校正、大气校正这几个概念的区别与联系。而且在不同的资料中,各个名词的解释又不一样。例如: 定标是将传感器所得的测量值变换为绝对亮度或变换为与地表反射率、表面温度等物理量有关的相对值的处理过程(赵英时等《遥感应用分析原理与方法》) 遥感器定标就是建立遥感器每个探测器输出值与该探测器对应的实际地物辐射亮度之间的定量关系;建立遥感传感器的数字量化输出值DN与其所对应的视场中辐射亮度值之间的定量关系(陈述彭)。辐射定标是将传感器记录的电压或数字值转换成绝对辐射亮度的过程(梁顺林《定量遥感》,2009) 其实,简单来说,辐射定标就是将记录的原始DN值转换为大气外层表面反射率,目的是消除传感器本身产生的误差,有多种方法:实验室定标、星上定标、场地定标。公式1就是将初始的DN值转换为辐射亮度,其中Lb是值辐射亮度值,单位是:W/cm2.μm.sr(瓦特/平方厘米.微米.球面度),Gain和Bias是增益和偏移,单位和辐射亮度值相同,可以看出,辐射亮度和DN值是线性关系。公式二是将辐射亮度值转换为大气表观反射率,式中:Lλ为辐射亮度值,d为天文单位的日地距离,ESU Nλ为太阳表观辐射率均值,θs是以度为单位的太阳高度角。不过总的来说,这部分的工作基本上不需要用户自己做,相关的系数都包含在数据的头文件或者元数据中了。例如用Env i打开Modis数据,就是反射率(大气外层表观反射率),辐射亮度

以及发射率三个数据类型(见dsbin:传感器定标http://bbs.esri https://www.doczj.com/doc/c73194739.html,/ESRI/viewthread.php?tid=56191)。 大气校正就是将辐射亮度或者表观反射率转换为地表实际反射率,目的是消除大气散射、吸收、反射引起的误差。主要分为两种类型:统计型和物理型。 统计型是基于陆地表面变量和遥感数据的相关关系,优点在于容易建立并且可以有效地概括从局部区域获取的数据,例如经验线性定标法,内部平场域法等,详细请参照玉妮小居新浪博客:辐射校正的统计模型https://www.doczj.com/doc/c73194739.html,/s/blog_5f4afe870100da1w. html。 另一方面,物理模型遵循遥感系统的物理规律,它们也可以建立因果关系。如果初始的模型不好,通过加入新的知识和信息就可以知道应该在哪部分改进模型。但是建立和学习这些物理模型的过程漫长而曲折。模型是对现实的抽象;所以一个逼真的模型可能非常复杂,包含大量的变量。例如6s模型,Mortran等。 而辐射校正指在光学遥感数据获取过程中,产生的一切与辐射有关的

多元线性回归模型原理

多元线性回归模型原理 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

研究在线性关系相关性条件下,两个或者两个以上自变量对一个因变量,为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型类似,只是在计算上为复杂需借助计算机来完成。 计算公式如下: 设随机y 与一般变量12,, k x x x 的线性回归模型为: 其中01,,k βββ是1k +个未知参数,0β称为回归常数,1, k ββ称为回归系数;y 称为被解释变量;12,, k x x x 是k 个可以精确可控制的一般变量,称为解释变 量。 当1p =时,上式即为一元线性回归模型,2k ≥时,上式就叫做多元形多元回归模型。ε是随机误差,与一元线性回归一样,通常假设 同样,多元线性总体回归方程为01122k k y x x x ββββ=++++ 系数1β表示在其他自变量不变的情况下,自变量1x 变动到一个单位时引起的因变量y 的平均单位。其他回归系数的含义相似,从集合意义上来说,多元回归是多维空间上的一个平面。 多元线性样本回归方程为:01122?????k k y x x x ββββ=++++ 多元线性回归方程中回归系数的估计同样可以采用最小二乘法。由残差平方 和:?()0SSE y y ∑=-= 根据微积分中求极小值得原理,可知残差平方和SSE 存在极小值。欲使SSE 达到最小,SSE 对01,,k βββ的偏导数必须为零。

将SSE 对01,,k βββ求偏导数,并令其等于零,加以整理后可得到1k +各方程式:?2()0i SSE y y β?=--=?∑ 通过求解这一方程组便可分别得到01,,k βββ的估计值0?β,1?β,···?k β回归系数的估计值,当自变量个数较多时,计算十分复杂,必须依靠计算机独立完成。现在,利用SPSS ,只要将数据输入,并指定因变量和相应的自变量,立刻就能得到结果。 对多元线性回归,也需要测定方程的拟合程度、检验回归方程和回归系数的显着性。 测定多元线性回归的拟合度程度,与一元线性回归中的判定系数类似,使用多重判定系数,其中定义为: 式中,SSR 为回归平方和,SSE 为残差平方和,SST 为总离差平方和。 同一元线性回归相类似,201R ≤≤,2R 越接近1,回归平面拟合程度越高,反之,2R 越接近0,拟合程度越低。2R 的平方根成为负相关系数()R ,也成为多重相关系数。它表示因变量y 与所有自变量全体之间线性相关程度,实际反映的是样本数据与预测数据间的相关程度。判定系数2R 的大小受到自变量x 的个数k 的影响。在实际回归分析中可以看到,随着自变量x 个数的增加,回归平方和()SSR 增大,是2R 增大。由于增加自变量个数引起的2R 增大与你和好坏无关,因此在自变量个数k 不同的回归方程之间比较拟合程度时,2R 不是一个合适的指标,必须加以修正或调整。 调整方法为:把残差平方和与总离差平方和纸币的分子分母分别除以各自的自由度,变成均方差之比,以剔除自变量个数对拟合优度的影响。调整的2R 为: 由上时可以看出,2 R 考虑的是平均的残差平方和,而不是残差平方和,因此,一般在线性回归分析中,2R 越大越好。 从F 统计量看也可以反映出回归方程的拟合程度。将F 统计量的公式与2R 的公式作一结合转换,可得: 可见,如果回归方程的拟合度高,F 统计量就越显着;F 统计量两月显着,回归方程的拟合优度也越高。

回归分析及独立性检验的基本知识点及习题集锦

回归分析的基本知识点及习题 本周题目:回归分析的基本思想及其初步应用 本周重点: (1)通过对实际问题的分析,了解回归分析的必要性与回归分析的一般步骤;了解线性回归模型与函数模型的区别; (2)尝试做散点图,求回归直线方程; (3)能用所学的知识对实际问题进行回归分析,体会回归分析的实际价值与基本思想;了解判断刻画回归模型拟合好坏的方法――相关指数和残差分析。 本周难点: (1)求回归直线方程,会用所学的知识对实际问题进行回归分析. (2)掌握回归分析的实际价值与基本思想. (3)能运用自己所学的知识对具体案例进行检验与说明. (4)残差变量的解释; (5)偏差平方和分解的思想; 本周内容: 一、基础知识梳理 1.回归直线: 如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫作回归直线。 求回归直线方程的一般步骤: ①作出散点图(由样本点是否呈条状分布来判断两个量是否具有线性相关关系),若存在线性相关关系→②求回归系数→ ③写出回归直线方程,并利用回归直线方程进行预测说明. 2.回归分析: 对具有相关关系的两个变量进行统计分析的一种常用方法。 建立回归模型的基本步骤是: ①确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量; ②画好确定好的解释变量和预报变量的散点图,观察它们之间的关系(线性关系). ③由经验确定回归方程的类型. ④按一定规则估计回归方程中的参数(最小二乘法); ⑤得出结论后在分析残差图是否异常,若存在异常,则检验数据是否有误,后模型是否合适等. 3.利用统计方法解决实际问题的基本步骤: (1)提出问题; (2)收集数据; (3)分析整理数据; (4)进行预测或决策。 4.残差变量的主要来源: (1)用线性回归模型近似真实模型(真实模型是客观存在的,通常我们并不知道真实模型到底是什么)所引起的误差。 可能存在非线性的函数能够更好地描述与之间的关系,但是现在却用线性函数来表述这种关系,结果就会产生误差。这 种由于模型近似所引起的误差包含在中。 (2)忽略了某些因素的影响。影响变量的因素不只变量一个,可能还包含其他许多因素(例如在描述身高和体重 关系的模型中,体重不仅受身高的影响,还会受遗传基因、饮食习惯、生长环境等其他因素的影响),但通常它们每一个因素的影响可能都是比较小的,它们的影响都体现在中。 (3)观测误差。由于测量工具等原因,得到的的观测值一般是有误差的(比如一个人的体重是确定的数,不同的秤可 能会得到不同的观测值,它们与真实值之间存在误差),这样的误差也包含在中。 上面三项误差越小,说明我们的回归模型的拟合效果越好。

landsat遥感影像地温度反演教程大气校正法

基于辐射传输方程的Landsat数据地表温度反演教程 一、数据准备 Landsa 8遥感影像数据一景,本教程以重庆市2015年7月26日的=行列号为(128,049)影像(LC81280402016208LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 标识日期采集时间中心经度中心纬度LC81280402016208LGN00 2016/7/26 3:26:56 106.11288 30.30647 …………………………注:基本信息在影像头文件中均可查询到,采集时间为格林尼治时间。 二、地表温度反演的总体流程 三、具体步骤 1、辐射定标 地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。

(1)热红外数据辐射定标 选择Radiometric Correction/Radiometric Calibration。在File Selection对话框 中,选择数据LC81230322013132LGN02_MTL_Thermal,单击Spectral Subset 选择Thermal Infrared1(10.9),打开Radiometric Calibration面板。 Scale factor 不能改变,否则后续 计算会报错。保持默认1即可。 (2)多光谱数据辐射定标 选择要校正的多光谱数据“LC81230322013132LGN02_MTL_MultiSpectral” 进行辐射定标。 因为后续需要对多光谱数据进行大气校正,可直接单击Apply Flaash Settings, 如下图。

注意与热红外数据辐射定标是的差 别,设置后Scale factor值为0.1。 2、大气校正 本教程选择Flaash 校正法。FLAASH Atmospheric Correction,双击此工具,打开辐射定标的数据,进行相关的参数设置进行大气校正。 注意:如果在多光谱数据辐射定标时Scale factor值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为0.1,若已设置,则默认值为1即可。 1)Input Radiance Image:打开辐射定标结果数据; 2)设置输出反射率的路径,由于定标时候; 3)设置输出FLAASH校正文件的路径,最优状态:路径所在磁盘空间足够大; 4)中心点经纬度Scene Center Location:自动获取;

第三章回归分析原理

第三章 回归分析原理 3·1、一元线性回归数学模型 按理说,在研究某一经济现象时,应该尽量考虑到与其有关各种有影响的因素或变量。但作为理论的科学研究来说,创造性地简化是其的基本要求,从西方经济学的基本理论中,我们可以看到在一般的理论分析中,至多只包含二、三个 变量的数量关系的分析或模型。 这里所讨论的一元线性回归数学模型,是数学模型的最简单形式。当然要注意的是,这里模型讨论是在真正回归意义上来进行的,也可称之为概率意义上的线性模型。 在非确定性意义上,或概率意义上讨论问题,首先要注意一个最基本的概念或思路问题,这就是总体和样本的概念。 我们的信念是任何事物在总体上总是存在客观规律的,虽然我们无论如何也不可能观察或得到总体,严格说来,总体是无限的。而另一方面,我们只可能观察或得到的是样本,显然样本肯定是总体的一部分,但又是有限的。 实际上概率论和数理统计的基本思想和目的,就是希望通过样本所反映出来的信息来揭示总体的规律性,这种想法或思路显然存在重大的问题。但另一方面,我们也必须承认,为了寻找总体的规律或客观规律,只能通过样本来进行,因为我们只可能得到样本。 在前面我们已经知道,用回归的方法和思路处理非确定性问题或散点图,实际上存在一些问题,亦即只有在某些情况下,回归的方法才是有效的。因此,在建立真正回归意义上建立其有效方法时,必须作出相应的假设条件。 基本假设条件: (1)假设概率函数)|(i i X Y P 或随机变量i Y 的分布对于所有i X 值,具有相同的方差2σ ,且2σ 是一个常数,亦即)(i Y Var =)(i Var μ=2σ。 (2)假设i Y 的期望值)(i Y E 位于同一条直线上,即其回归直线为 )(i Y E =i X βα+ 等价于 0)(=i E μ 这个假设是最核心的假设,它实际上表明)(i Y E 与i X 之间是确定性的关系。 (3)假设随机变量i Y 是完全独立的,亦即。j i u u Cov Y Y Cov j i j i ≠==,0),(),(

总结:线性回归分析的基本步骤

总结:线性回归分析的基本 步骤 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

线性回归分析的基本步骤 步骤一、建立模型 知识点: 1、总体回归模型、总体回归方程、样本回归模型、样本回归方程 ①总体回归模型:研究总体之中自变量和因变量之间某种非确定依赖关系的计量模型。Y X U β=+ 特点:由于随机误差项U 的存在,使得Y 和X 不在一条直线/平面上。 例1:某镇共有60个家庭,经普查,60个家庭的每周收入(X )与每周消费(Y )数据如下: 作出其散点图如下:

②总体回归方程(线):由于假定0EU =,因此因变量的均值与自变量总处于一条直线上,这条直线()|E Y X X β=就称为总体回归线(方程)。 总体回归方程的求法:以例1的数据为例 由于01|i i i E Y X X ββ=+,因此任意带入两个X i 和其对应的E (Y |X i )值,即可求出01ββ和,并进而得到总体回归方程。

如将()()222777100,|77200,|137X E Y X X E Y X ====和代入 ()01|i i i E Y X X ββ=+可得:0100117710017 1372000.6ββββββ=+=?????=+=?? 以上求出01ββ和反映了E (Y |X i )和X i 之间的真实关系,即所求的总体回归方程为:()|170.6i i i E Y X X =+,其图形为: ③样本回归模型:总体通常难以得到,因此只能通过抽样得到样本数据。如在例1中,通过抽样考察,我们得到了20个家庭的样本数据: 那么描述样本数据中因变量Y 和自变量X 之间非确定依赖关系的模型 ?Y X e β =+就称为样本回归模型。

主成分分析法概念及例题

主成分分析法 主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法 [编辑] 什么是主成分分析法 主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。 在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 [编辑] 主成分分析的基本思想

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 同样,在科普效果评估的过程中也存在着这样的问题。科普效果是很难具体量化的。在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。如上所述,主成分分析法正是解决这一问题的理想工具。因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。对作正交变换,令,其中为正交阵,的各分量是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。的各分量是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。 例如,在对科普产品开发和利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用和开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。 [编辑] 主成分分析法的基本原理 主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 [编辑] 主成分分析的主要作用

大气校正(ENVI)

大气校正(ENVI) 大气校正是定量遥感中重要的组成部分。本专题包括以下容: 大气校正概述 ENVI中的大气校正功能 1大气校正概述 大气校正的目的是消除大气和光照等因素对地物反射的影响,广义上讲获得地物反射率、辐射率或者地表温度等真实物理模型参数;狭义上是获取地物真实反射率数据。用来消除大气中水蒸气、氧气、二氧化碳、甲烷和臭氧等物质对地物反射的影响,消除大气分子和气溶胶散射的影响。大多数情况下,大气校正同时也是反演地物真实反射率的过程。

图1 大气层对成像的影响示意图 很多人会有疑问,什么情况下需要做大气校正,我们购买或者其他 途径获取的影像是否做过大气校正。 通俗来讲,如果我们需要定量反演或者获取地球信息、精确识别地物等,需要使用影像上真实反映对太的辐射情况,那么就需要做大气校正。我们购买的影像,说明文档中会注明是经过辐射校正的,其实这个辐射校

正指的是粗的辐射校正,只是做了系统大气校正,就跟系统几何校正的 意义是一样的。 目前,遥感图像的大气校正方法很多。这些校正方法按照校正后的 结果可以分为2种: 绝对大气校正方法:将遥感图像的DN(Digital Number)值转换为地表反射率、地表辐射率、地表温度等的方法。 相对大气校正方法:校正后得到的图像,相同的DN值表示相同的地物反射率,其结果不考虑地物的实际反射率。 常见的绝对大气校正方法有: 基于辐射传输模型 MORTRAN模型 LOWTRAN模型 ATCOR模型 6S模型等 基于简化辐射传输模型的黑暗像元法 基于统计学模型的反射率反演; 相对大气校正常见的是: 基于统计的不变目标法 直方图匹配法等。 既然有怎么多的方法,那么又存在方法选择问题。这里有一个总结供 参考: 1、如果是精细定量研究,那么选择基于基于辐射传输模型的大

回归分析的概念和分析

第七章回归分折 讨论随机变量与非随机变量之间的关系的问题称回归分析;讨论随机变量之间的关系的问题称相关分析.关于这两种问题,或统称回归分析,或统称相关分析都能够. 然而,自然界的众多的变量间,还有另一类重要关系,我们称之为相关关系.例如,施肥量与农作物产量之间的关系,这种关系虽不能用函数关系来描述,但施肥量与产量有关系,这种关系确实是相关关系,又比如,人的身高与体重的关系也是相关关系,尽管人的身高不能确定体重,但总的讲来,身高者,体也重些,总之,在生产斗争与科学实验中,甚至在日常生活中,变量之间的相关关系是普遍存在的.事实上,即使是具有确定性关系的变量间,由于实验误差的阻碍,其表现形式也具有某种的不确定性. 回归分折方法是数理统计中一个常用方法,是处理多个变量之

间相关关系的一种数学方法,.它不仅提供了建立变量间关系的数学表达---通常称为经验公式的一般方法,而且还能够进行分析,从而能判明所建立的经验公式的有效性,以及如何利用经验公式达到预测与操纵的目的.因而回归分析法得到了越来越广泛地应用.回归分析要紧涉及下列内容: (1)从一组数据动身,分析变量间存在什么样的关系,建立这些变量 之间的关系式(回归方程),并对关系式的可信度进行统计检验; (2)利用回归方程式,依照一个或几个变量的值,预测或操纵男一个变量的取值; (3)从阻碍某一个变量的许多变量中,推断哪些变量的阻碍是显著 的,哪些是不显著的,从而可建立更有用的回归方程, (4)依照预测和操纵所提出的要求,选择试验点,对试验进行设计. 我们在本章,重点讨论一元线性回归,对多元回归只作简单地介绍. §1 一元线性回归 一元线性回归分析中要考察的是:随机变量Y与一个一般变量x之间的联系。 对有一定联系的两个变量:

回归分析法观点及原理

回归分析法概念及原理 回归分析定义:利用数据统计原理,对大量统计数据进行数学处理,并确定因 变量与某些自变量的相关关系,建立一个相关性较好的回归方程(函数表达式),并加以外推,用于预测今后的因变量的变化的分析方法。 分类: 1.根据因变量和自变量的个数来分类: 一元回归分析;多元回归分析; 2. 根据因变量和自变量的函数表达式来分类: 线性回归分析;非线性回归分析; 几点说明: 1.通常情况下,线性回归分析是回归分析法中最基本的方法,当遇到非线性回 归分析时,可以借助数学手段将其化为线性回归;因此,主要研究线性回归问题,一点线性回归问题得到解决,非线性回归也就迎刃而解了,例如,取对数使得乘法变成加法等;当然,有些非线性回归也可以直接进行,如多项式回归等; 2.在社会经济现象中,很难确定因变量和自变量之间的关系,它们大多是随机 性的,只有通过大量统计观察才能找出其中的规律。随机分析是利用统计学原理来描述随机变量相关关系的一种方法; 3.由回归分析法的定义知道,回归分析可以简单的理解为信息分析与预测。信 息即统计数据,分析即对信息进行数学处理,预测就是加以外推,也就是适当扩大已有自变量取值范围,并承认该回归方程在该扩大的定义域内成立,然后就可以在该定义域上取值进行“未来预测”。当然,还可以对回归方程进行有效控制; 4.相关关系可以分为确定关系和不确定关系。但是不论是确定关系或者不确 定关系,只要有相关关系,都可以选择一适当的数学关系式,用以说明一个或几个变量变动时,另一变量或几个变量平均变动的情况。

回归分析主要解决的问题: 回归分析主要解决方面的问题; 1.确定变量之间是否存在相关关系,若存在,则找出数学表达式; 2.根据一个或几个变量的值,预测或控制另一个或几个变量的值,且要估计 这种控制或预测可以达到何种精确度。 回归模型: 回归分析步骤: 1. 根据自变量与因变量的现有数据以及关系,初步设定回归方程; 2. 求出合理的回归系数; 3. 进行相关性检验,确定相关系数; 4. 在符合相关性要求后,即可根据已得的回归方程与具体条件相结合,来确定事物的未来状况,并计算预测值的置信区间; 回归分析的有效性和注意事项: 有效性:用回归分析法进行预测首先要对各个自变量做出预测。若各个自变量可以由人工控制或易于预测,而且回归方程也较为符合实际,则应用回归预测是有效的,否则就很难应用; 注意事项:为使回归方程较能符合实际,首先应尽可能定性判断自变量的可能种类和个数,并在观察事物发展规律的基础上定性判断回归方程的可能类型;其次,力求掌握较充分的高质量统计数据,再运用统计方法,利用数学工具和相关软件从定量方面计算或改进定性判断。 回归分析中的几个常用概念: 实际值:实际观测到的研究对象特征数据值;

线性回归分析报告地基本步骤

步骤一、建立模型 知识点: 1、总体回归模型、总体回归方程、样本回归模型、样本回归方程 ①总体回归模型:研究总体之中自变量和因变量之间某种非确定依赖关系的计量模型。Y X U β=+ 特点:由于随机误差项U 的存在,使得Y 和X 不在一条直线/平面上。 例1:某镇共有60个家庭,经普查,60个家庭的每周收入(X )与每周 作出其散点图如下:

②总体回归方程(线):由于假定0EU =,因此因变量的均值与自变量总处于一条直线上,这条直线()|E Y X X β=就称为总体回归线(方程)。 总体回归方程的求法:以例1的数据为例

实用标准文案 由于()01|i i i E Y X X ββ=+,因此任意带入两个X i 和其对应的E (Y |X i )值,即可求出01ββ和,并进而得到总体回归方程。 如将()()222777100,|77200,|137X E Y X X E Y X ====和代入 ()01|i i i E Y X X ββ=+可得:0100117710017 1372000.6ββββββ=+=?????=+=?? 以上求出01ββ和反映了E (Y |X i )和X i 之间的真实关系,即所求的总体回归方程为:()|170.6i i i E Y X X =+,其图形为: ③样本回归模型:总体通常难以得到,因此只能通过抽样得到样本数据。如在例1中,通过抽样考察,我们得到了20个家庭的样本数据:

那么描述样本数据中因变量Y 和自变量X 之间非确定依赖关系的模型 ?Y X e β =+就称为样本回归模型。 ④样本回归方程(线):通过样本数据估计出?β ,得到样本观测值的拟合值与解释变量之间的关系方程??Y X β=称为样本回归方程。如下图所示: ⑤四者之间的关系: ⅰ:总体回归模型建立在总体数据之上,它描述的是因变量Y 和自变量X 之间的真实的非确定型依赖关系;样本回归模型建立在抽样数据基础之上,它描述的是因变量Y 和自变量X 之间的近似于真实的非确定型依赖关系。这种近似表现在两个方面:一是结构参数?β 是其真实值β的一种近似估计;二是残差e 是随机误差项U 的一个近似估计; ⅱ:总体回归方程是根据总体数据得到的,它描述的是因变量的条件均值

各种线性回归模型原理

一元线性回归 一元线性回归模型的一般形式:εββ++=x y 10 一元线性回归方程为:x y E 10)(ββ+= 当对Y 与X 进行n 次独立观测后,可取得n 对观测值 ,,,2,1),,(n i y x i i =则有i i i x y εββ++=10 回归分析的主要任务是通过n 组样本观测值,,,2,1),,(n i y x i i =对 10,ββ进行估计。一般用∧ ∧ 10,ββ分别表示10,ββ的估计值。 称x y ∧ ∧∧+=10ββ为y 关于x 的一元线性回归方程(简称为回归直线方程),∧ 0β为截距,∧ 1β为经验回归直线的斜率。 引进矩阵的形式: 设 ????????????=n y y y y 21,????????????=n x x x X 11121 ,????? ? ??????=n εεεε 21,??????=10βββ 则一元线性回归模型可表示为:εβ+=X y 其中n I 为n 阶单位阵。 为了得到∧ ∧ 10,ββ更好的性质,我们对ε给出进一步的假设(强假设) 设n εεε,,,21 相互独立,且),,2,1(),,0(~2n i N i =σε,由此可得: n y y y ,,,21 相互独立,且),,2,1(),,(~210n i x N y i =+σββ 程序代码: x=[]; y=[]; plot(x,y,’b*’) 多元线性回归 实际问题中的随机变量Y 通常与多个普通变量)1(,,21>p x x x p 有

关。 对于自变量p x x x ,,21的一组确定值,Y 具有一定的分布,若Y 的数学期望值存在,则它是Y 关于p x x x ,,21的函数。 12(,,,)p x x x μ是p x x x ,,21的线性函数。 212,, ,p b b b σ是与p x x x ,,21无关的未知参数。 逐步回归分析 逐步回归分析的数学模型是指仅包含对因变量Y 有显著影响自变量的多元线性回归方程。为了利于变换求算和上机计算,将对其变量进行重新编号并对原始数据进行标准化处理。 一、变量重新编号 1、新编号数学模型 令k x y αα=,自变量个数为1k -,则其数学模型为: 式中,1,2,3,,n α= (其中n 为样本个数) j x 的偏回归平方和为: k x :为k x α的算术平均值 j b :j x 的偏回归系数 jj c :为逆矩阵1-L 对角线对应元素 2 回归数学模型 新编号的回归数学模型为: 二、标准化数学模型 标准化回归数学模型是指将原始数据进行标准化处理后而建立的回归数学模型,即实质上是每个原始数据减去平均值后再除以离差

统计学多元回归分析方法

多元线性回归分析 在数量分析中,经常会看到变量与变量之间存在着一定的联系。要了解变量之间如何发生相互影响的,就需要利用相关分析和回归分析。回归分析的主要类型:一元线性回归分析、多元线性回归分析、非线性回归分析、曲线估计、时间序列的曲线估计、含虚拟自变量的回归分析以及逻辑回归分析等。 1.1 回归分析基本概念 相关分析和回归分析都是研究变量间关系的统计学课题。在应用中,两种分析方法经常相互结合和渗透,但它们研究的侧重点和应用面不同。 在回归分析中,变量y称为因变量,处于被解释的特殊地位;而在相关分析中,变量y与变量x处于平等的地位,研究变量y与变量x的密切程度和研究变量x与变量y的密切程度是一样的。 在回归分析中,因变量y是随机变量,自变量x可以是随机变量,也可以是非随机的确定变量;而在相关分析中,变量x和变量y都是随机变量。 相关分析是测定变量之间的关系密切程度,所使用的工具是相关系数;而回归分析则是侧重于考察变量之间的数量变化规律,并通过一定的数学表达式来描述变量之间的关系,进而确定一个或者几个变量的变化对另一个特定变量的影响程度。 具体地说,回归分析主要解决以下几方面的问题。 (1)通过分析大量的样本数据,确定变量之间的数学关系式。

(2)对所确定的数学关系式的可信程度进行各种统计检验,并区分出对某一特定变量影响较为显著的变量和影响不显著的变量。 (3)利用所确定的数学关系式,根据一个或几个变量的值来预测或控制另一个特定变量的取值,并给出这种预测或控制的精确度。 作为处理变量之间关系的一种统计方法和技术,回归分析的基本思想和方法以及“回归(Regression)”名称的由来都要归功于英国统计学F·Galton(1822~1911)。 在实际中,根据变量的个数、变量的类型以及变量之间的相关关系,回归分析通常分为一元线性回归分析、多元线性回归分析、非线性回归分析、曲线估计、时间序列的曲线估计、含虚拟自变量的回归分析和逻辑回归分析等类型。 1.2 多元线性回归 1.2.1 多元线性回归的定义 一元线性回归分析是在排除其他影响因素或假定其他影响因素确定的条件下,分析某一个因素(自变量)是如何影响另一事物(因变量)的过程,所进行的分析是比较理想化的。其实,在现实社会生活中,任何一个事物(因变量)总是受到其他多种事物(多个自变量)的影响。 一元线性回归分析讨论的回归问题只涉及了一个自变量,但在实际问题中,影响因变量的因素往往有多个。例如,商品的需求除了受自身价格的影响外,还要受到消费者收入、其他商品的价格、消费者偏好等因素的影响;影响水果产量的外界因素有平均气温、平均日照

遥感大气校正

实验四遥感图像的大气校正 实验目的:通过实习操作,掌握遥感图像大气校正的基本方法和步骤,掌握遥感图像波段计算及其应用。 实验内容: 环境小卫星的数据读取; 辐射定标、图像配准、大气校正; 植被反演、植被覆盖变化监测 1、实验相关知识及背景 ◆传感器定标就是将图像的数字量化值(DN)转化为辐射亮度值或者反射率或者表面 温度等物理量的处理过程;传感器定标可分为绝对定标和相对定标,绝对定标是获取图像上目标物的绝对辐射值等物理量。 ◆遥感图像的大气校正方法很多,这些校正方法按照校正后的结果可以分为2种:绝 对大气校正方法:将遥感图像的DN(Digital Number)值转换为地表反射率、地表辐射率、地表温度等的方法。相对大气校正方法:校正后得到的图像,相同的DN值表示相同的地物反射率,其结果不考虑地物的实际反射率。 ◆ENVI下FLAASH大气校正工具是基于MODTRAN4+辐射传输模型,FLAASH对图 像文件有以下几个要求: (1)数据是经过定标后的辐射亮度(辐射率)数据,单位是:(μW)/(cm2*nm*sr)。 (2)数据带有中心波长(wavelenth)值,如果是高光谱还必须有波段宽度(FWHM),这两个参数都可以通过编辑头文件信息输入(Edit Header)。 (3)数据类型支持四种数据类型:浮点型(floating)、长整型(long integer )、整型(integer)和无符号整型(unsigned int)。数据存储类型:ENVI标准栅格格式文件,且是BIP或者BIL。 (4)波谱范围:400-2500nm ◆浑善达克地区位于内蒙古草原锡林郭勒高原中部。近年来频频发生在京津地区的沙 尘暴与该地区生态环境恶化相关。据统计,京津地区沙尘暴70%的沙源来自于这个区域。通过对该区域植被覆盖度的定量反演,植被覆盖的变化检测,可以实现草原植被的高频率、大范围、高实时的变化监测。 2、实验步骤 根据环境小卫星CCD数据特点及草原植被变化监测的要求,采用以下处理流程: 一、数据预处理: https://www.doczj.com/doc/c73194739.html,D数据读取; 2.辐射定标; 3.大气校正; 4.研究区裁剪; 二、反演模型建立 1.归一化植被指数; 2.植被覆盖度;

利用MATLAB进行回归分析及应用

利用MATLAB进行回归分析 一、实验目的: 1.了解回归分析的基本原理,掌握MATLAB实现的方法; 2. 练习用回归分析解决实际问题。 二、实验内容: 题目1 社会学家认为犯罪与收入低、失业及人口规模有关,对20个城市的犯罪率y(每10万人中犯罪的人数)与年收入低于5000美元家庭的百分比1x、失业率2x和人口总数3x(千人)进行了调查,结果如下表。 (1)若1x~3x中至多只许选择2个变量,最好的模型是什么? (2)包含3个自变量的模型比上面的模型好吗?确定最终模型。 (3)对最终模型观察残差,有无异常点,若有,剔除后如何。 理论分析与程序设计: 为了能够有一个较直观的认识,我们可以先分别作出犯罪率y与年收入低于5000美元家庭的百分比1x、失业率2x和人口总数 x(千人)之间关系的散点图,根据大致分布粗略估计各因素造 3 成的影响大小,再通过逐步回归法确定应该选择哪几个自变量作为模型。

编写程序如下: clc; clear all; y=[11.2 13.4 40.7 5.3 24.8 12.7 20.9 35.7 8.7 9.6 14.5 26.9 15.7 36.2 18.1 28.9 14.9 25.8 21.7 25.7]; %犯罪率(人/十万人) x1=[16.5 20.5 26.3 16.5 19.2 16.5 20.2 21.3 17.2 14.3 18.1 23.1 19.1 24.7 18.6 24.9 17.9 22.4 20.2 16.9]; %低收入家庭百分比 x2=[6.2 6.4 9.3 5.3 7.3 5.9 6.4 7.6 4.9 6.4 6.0 7.4 5.8 8.6 6.5 8.3 6.7 8.6 8.4 6.7]; %失业率 x3=[587 643 635 692 1248 643 1964 1531 713 749 7895 762 2793 741 625 854 716 921 595 3353]; %总人口数(千人) figure(1),plot(x1,y,'*'); figure(2),plot(x2,y,'*'); figure(3),plot(x3,y,'*'); X1=[x1',x2',x3']; stepwise(X1,y) 运行结果与结论:

相关主题
文本预览
相关文档 最新文档