当前位置:文档之家› 羟基磷灰石的使用方法

羟基磷灰石的使用方法

羟基磷灰石的使用方法
羟基磷灰石的使用方法

羟基磷灰石填料

——纯化蛋白、多肽、核酸

分离机理:羟基磷灰石具有独特的分离机理,是唯一直接用于蛋白质和核酸纯化的无机层析填料,高度耐碱,生物安全性最高。其中磷酸离子与带正电的蛋白质以离子键结合,具有离子交换特性,可由NaCl浓度梯度或磷酸钠浓度梯度洗脱,其中的Ca2+离子与带负电蛋白质的自由羧基以金属螯合方式结合,该结合方式对NaCl不敏感,可由磷酸钠浓度梯度洗脱。因此该填料既可以用磷酸钠单梯度洗脱,也可以采用NaCl梯度洗脱后以低浓度磷酸钠缓冲液平衡,再以磷酸钠浓度梯度洗脱的双梯度洗脱模型,以达到更高的分辨率。

羟基磷灰石类型选择:羟基磷灰石因陶瓷化工艺不同分为2种类型:I型和II型,I型对蛋白质具有更大的保留,对普通蛋白质具有更大的动态载量,主要纯化大部分蛋白质(分子量一般在100kd一下);II型由于孔径较I型大,因而对抗体和部分重组疫苗等大分子量蛋白质的动态载量更高,而对HSA几乎无保留,因而更适合于抗体的纯化,同时II型对核酸具有更大的保留,能够分辩单、双链、超螺旋等各种高级结构的DNA,因而也适合纯化核酸。

●高动态载量、高流速、高产率

●更好的化学稳定性和机械强度,更长的寿命

●刚性结构,保证了其在PH>6.5的范围内使用,可用NaOH清洗

●良好的批次重现性,容易放大化

●可随意选用阳离子和金属螯合两个模式分离纯化蛋白或其他分子

●能用于层析系统、重力流柱、AcroPrep多孔板等

应用

●碱性蛋白的纯化(免疫球蛋白)

●抗体纯化

●酸性蛋白(白蛋白)

●去除DNA和内毒素

●纯化磷多肽

●分离纯化复杂的蛋白混合物

●纯化质粒

流动相:平衡液:5mM的磷酸钠缓冲液,PH=6.8

洗脱液:0.5M的磷酸钠缓冲液,或2M的氯化钠缓冲液,PH=6.8

使用步骤:建议使用干法填柱

Step 1:setup take a cell lysate and draw it into the syringe through the tubing tip

Draw any residual sample into syringe

Attach syringe and tubing tip to a pre-equilibrated

Bio-canal column

步骤1:平衡安装

首先用至少5倍柱体积的平衡液预平衡柱子,将细胞裂解吸入注射器,并安装在柱头上。Step 2:binding sample

Slowly load the lysate onto the column

The proteins will bind to the resin and non-proteins will flow through the column

步骤2:上样

将细胞裂解液慢慢注入柱子中,蛋白会结合在柱子中的填料中,非蛋白将会流出柱子Step 3:washing column

After loading the column,add a syringe with wash buffer

Wash any remaining non-specifically bound proteins off the column with wash buffer (collect fraction3 if needed)

步骤3:淋洗柱子

上样后,用淋洗液(一般为平衡液)将所有的非蛋白清洗分离出柱子。如果上样量超出柱子的载样量,如果需要,可以考虑收集。

Step 4:elution

Attach a syringe with elution buffer

Slowly elute your protein with elution buffer

This will allow you to capture>90% of your protein in the first elution fraction

步骤4:洗脱

选择合适的洗脱液,用注射器将目标蛋白洗脱并收集,如果需要,可以自行配制不同浓度梯度的洗脱液进行必要的梯度洗脱。

保存:长时间应保存在1MNaOH溶液中,至于室温密封保存

注意:长时间保存在1MNaOH溶液中的层析柱,上样前一定注意PH值,建议使用洗脱液将PH值洗下来,再使用平衡溶液平衡后上样。

建议使用标准层析设备(如AKTA)以达到更好的分离纯化效果

羟基磷灰石的制备及表征

羟基磷灰石的制备及表征 一、实验目的 1.掌握纳米羟基磷灰石的制备及原理 2.了解羟基磷灰石的表征方法及生物相容性 二实验原理 羟基磷灰石(hydrrosyapatite,HAP)分子式为Ca10(PO4)6(OH)2是自然骨无机质的主要成分,具有良好的生物相容性和生物活性,可以引导骨的生长,并与骨组织形成牢固的骨性结合。HAP是生物活性陶瓷的代表性材料,生物活性材料是指能够在材料和组织界面上诱导生物或化学反应,使材料与组织之间形成较强的化学键,达到组织修复的目的。HAP在组成上与人体骨的相似性,使HAP与人体硬组织以及皮肤、肌肉组织等都有良好的生物相容性,植入体内不仅安全、无毒,还能引导骨生长,即新骨可以从HAP植入体与原骨结合处沿着植入的体表面或内部贯通性空隙攀附生长,材料植入体内后能与骨组织形成良好的化学键结合。HAP主要的生物学应用作骨组织代替材料,磷酸钙类生物陶瓷材料在临床应用中遇到的最大困难之一是材料强度差,尤其是韧性低,且机械可加工性差,导致其在临床应用中受到了极大的限制。为了改善HAP陶瓷的脆性和强度问题,一般会在其中添加ZrO2和碳纤维或是Al2O3和玻璃等物质进行增韧。纳米级羟基磷灰石的制备方法很多,主要分为固相法和液相法两大类。固相法合成在一定条件下(高温、研磨)让磷酸盐与钙盐充分混合发生固相反应,合成HAP粉末。液相法合成是在水液中,一磷酸盐和钙盐为原料,在一定条件下发生化学反应,生成溶解度较小的HAP晶粒,包括化学沉淀法。水热合成法、溶胶-凝胶法、自然烧法、微乳液法、微波法等。 化学沉淀法因具有实验条件要求不高、反应容易控制,适合制备纳米材料等优点从而得到广泛应用。沉淀法通常是在溶液状态下将不同化学成分的物质混合,在混合溶液中加入适量的沉淀剂得到纳米材料的前驱沉淀物,再将此沉淀物结晶进行干燥或煅烧制得相应的纳米材料。金属离子在沉淀过程是不平衡的,需要控制溶液中的沉淀剂的浓度,使沉淀过程缓慢发生,才会使溶液中的沉淀处于平衡状态,使沉淀能均匀的出现在整个溶液中。此法制备纳米HAP大多采用无机钙盐和磷酸盐反应得到。常采用的钙盐有:CaCl2、Ca(OH)2、Ca(NO)2等,常采用的磷酸盐有:K2HPO4、Na3PO4、(NH4)2HPO4、和H3PO4,发生酸碱中和反应反应生成HAP纳米颗粒。沉淀法的影响因素主要有HP值、合成温度、反应原料纯度、反应原料浓度、反应物的混合步骤、沉淀剂的选择和添加速率等。采用化学沉淀法制备HAP纳米颗粒,需要的设备简单,相应的生产的经济成本也较低,很容易实现工业上大批量的生产。但化学沉淀法制备HAP也存在问题,制备所得的纳米HAP颗粒粒径均匀性差,并且团聚现象严重。化学沉淀法制备HAP的主要原理是在含有可溶性钙盐和磷酸盐的水溶液中,加入适量的沉淀剂,在特定条件,使溶液中两种溶剂发生化学反应,形成不溶性的水合氧化物从溶液中析出,再进行加入脱水对得到的溶液进行离心干燥,进而得到HAP纳米粉体。反应方程式如下: 10Ca(OH)2+6H3PO4→Ca10(PO4)6(OH)2+18H2O 三实验设备及材料

纳米羟基磷灰石综述

纳米羟基磷灰石制备方法及应用 赖荣辉 西南民族大学化学与环境保护工程学院高分子化学与物理 摘要 羟基磷灰石(HA)具有良好的生物相容性和生物活性,被广泛的应用于骨修复和药物载体中。但是其本身容易团聚,而形成较大的晶体,使得其生物学性能下降。合成纳米级的羟基磷灰石,使得羟基磷灰石具有较大的比表面积,而具有较好的生物学性能。本文综述了近年来合成纳米羟基磷灰石的进展和几种主要的合成方法包括:水热法、超声法、溶胶-凝胶法、自燃烧法。并对纳米羟基磷灰石的一些改性方法做了简述。最后还对纳米羟基磷灰石的一些应用做了简述。 关键词:羟基磷灰石;制备方法;生物材料;纳米晶体 0 前言 羟基磷灰石,英文名Hydroxyapatite(HA),其化学式为Ca10(PO4)6(OH)2作为一种现代的纳米生物材料,是动物和人体骨骼和牙齿的主要无机成分,具有良好的生物相容性。故常用作骨修复材料和药物载体[1] 1 纳米羟基磷灰石的合成方法 一、自燃烧法 自燃烧法是一种利用硝酸盐与羧酸反应,在低温下实现原位氧化、自发燃烧、快速合成产物前驱体粉末的方法[2]。王欣宇等[3, 4]通过自燃烧法投制备纳米羟基磷灰石粉,他们结合络合物机理和氧化还原反应机理,以柠檬酸为络合剂并通过其具有还原性与硝酸盐混合均匀后进行充分络合,在加热条件下就会发生氧化还原反应,在较低的温度下就可以燃烧。其反应方程式如下:

C6H8O7 + Ca2+ = C6H6O7Ca + 2H+(l) 5C6H6O7Ca + l8NO3- + l8H+ = 30CO2 +9N2 + 24H2O + 5CaO (2)9Ca(NO3)2+ 5C6H8O7 = 30CO2 + 9N2 +20H2O + 9CaO (3)王欣宇等最后所得的自燃烧法制备纳米羟基磷灰石的最佳条件为n(H2O): n (Ca2+)= 30 ~ 35时,可使自燃烧反应进行,反应时间短。对于该反应体系pH的最佳范围为2 ~ 3。最佳的加热温度为80℃,自燃烧产物粉末煅烧的最佳温度为750℃。采用上述最佳工艺条件制备出的HAP 粉末,经超声分散,分散介质为水,然后用粒度分析仪测定粉末的二次平均粒径为494.6±l0.l nm。可见,虽然他们得到了纳米级的羟基磷灰石,但是其平均粒径对于现在的临床研究来说仍然太大了,并且在自燃烧法的反应过程复杂,过程的煅烧温度750℃过高,不利于控制。 二、水热法 水热法是在特定的密闭容器(高压釜)里,用水溶液作反应介质,通过对反应容器加热,创造一个高温、高压的反应环境,使得通常难溶或不溶的物质溶解并且重结晶,从而得到纳米结构的晶体。其优点是可以通过控制水热条件(温度、反应时间、前驱物形式等)面得到不同的粉体晶粒物相和形貌[5],徐光亮, 聂轶霞[5]等人利用CaCO3和CaHPO4·2H2O按一定的n(Ca)/n(P)混合在高温高压下合成纳米羟基磷灰石,并且通改变反应的条件:前驱物配比、水热反应温度、以用反应时间等来研究羟基磷灰石合成的最佳反应条件。对于水热法,仍存在一些缺点,因为水热反应耍要在一个高温高压的反应条件下进行,过程不易控制。并且,反应时间耍8h以上才能达到最佳反应,反应时间过长。 另,据报道,任强,罗宏杰等[6]人通过低温燃烧/水热法联合法制备了纳米羟基磷灰石。该方法充分发挥了低温燃烧法(LCS)和水热法的优势,具有制备温度低、反应速度快、制备效率高以及粉体的纯度高、粒度小(40 nm~80 nm)且均匀等优点。该次实验主要用Ca(NO)2,(NH4)2HPO4和柠檬酸(C6H8O7H2O),通过羟基磷灰石中的Ca:P=5:3,并根据燃烧化学基本理论来参加反应。该实验的主要环节是反应温度的确定和硝酸钙与磷酸氢二铵和柠檬酸的比例,其最佳比例为Ca(NO3)2·4H2O:(NH4)2HPO4:C6H8O7·H2O=5:3:2.2。实验的具体过程是:

羟基磷灰石研究进展

羟基磷灰石研究进展 摘要:由于羟基磷灰石( HA) 不但与人体骨骼晶体成分和结构基本一致,而且其生物 相容性、界面生物活性均优于医用钛、硅橡胶及植骨用碳材料等植入医用材料,另外有极好骨传导性和与骨结合的能力, 无毒副作用, 无致癌作用,所以被广泛用作硬组织修复材料和骨填充材料的生理支架以及疾病、意外事故中的骨修复材料。同时,羟基磷灰石具有良好的生物活性,具有特殊的晶体化学特点,是较好的生物材料,被广泛应用于骨组织的修复与替代技术.目前,羟基磷灰石涂层的制备方法有等离子喷涂法、激光熔覆法、电结晶液相沉积法、溶胶-凝胶法等。对于制备要求较高、具有表面活性的吸附材料羟基磷灰石而言,溶胶- 凝胶法是较为合适的方法,本文羟基磷灰石涂层进行了研究。主要从羟基磷灰石的合成制备,复合材料涂层种类及HA涂层影响因素,应用等方面对羟基磷灰石进行介绍,并对其进行研究展望。 关键词:羟基磷灰石制备复合材料涂层研究进展 前言 羟基磷灰石是一种磷酸钙生物陶瓷, 与人体自然骨和牙齿等硬组织中的无机质在 化学成分和晶体结构上具有相似性,是一类重要的骨修复材料,分子式为Ca10 ( PO4) 6 ( OH ) 2 , 简写为HA 或HAP,Ca/ P 物质的量比理论值为1. 67, 属磷酸钙陶瓷中的一种生物活性材料。从分子结构( 如图1) 可以看出, 它易与周围液体发生离子交换。HA 属六方晶系, 空间群为P63/m。其结构为六角柱体, 与c轴垂直的面是一个六边形, a、b 轴的夹角为120 °, 晶胞常数a= b= 9. 324 A , c= 6. 881A 。单位晶胞含有10 个 [ Ca]2+、6个[ PO4]3-和2个 [ OH]-, 这样的结构和组成使 得H A 具有较好的稳定性。 磷灰石是自然界广泛分布的 磷酸钙盐矿物,根据其结构通 道中存在的阴离子的种类, 可分为氟-、氯-、羟磷灰石等 不同亚种矿物。其中,羟基磷 灰石(hydroxyapatite,缩写为 HA或HAp)的研究和应用最 广泛。羟基磷灰石是人体和动 物的骨骼和牙齿的主要无机 成分,具有良好的生物相容性和生物活性,HA材料对动物体人体无毒、无害、无致 癌作用,可增强骨愈合作用,能与自然骨产生化学结合,HA植入人体后对组织无刺 激和排斥作用,能与骨形成很强的化学结合,用作骨缺损的充填材料,为新骨的形成提供

羟基磷灰石研究进展

2010-2011 第2学期《生物医用材料》期中考试 姓名: 学号: 学院: 专业: 班级: 任课老师:

羟基磷灰石研究进展 摘要:由于羟基磷灰石( HA) 不但与人体骨骼晶体成分和结构基本一致,而且其生物 相容性、界面生物活性均优于医用钛、硅橡胶及植骨用碳材料等植入医用材料,另外有极好骨传导性和与骨结合的能力, 无毒副作用, 无致癌作用,所以被广泛用作硬组织修复材料和骨填充材料的生理支架以及疾病、意外事故中的骨修复材料。同时,羟基磷灰石具有良好的生物活性,具有特殊的晶体化学特点,是较好的生物材料,被广泛应用于骨组织的修复与替代技术.目前,羟基磷灰石涂层的制备方法有等离子喷涂法、激光熔覆法、电结晶液相沉积法、溶胶-凝胶法等。对于制备要求较高、具有表面活性的吸附材料羟基磷灰石而言,溶胶- 凝胶法是较为合适的方法,本文羟基磷灰石涂层进行了研究。主要从羟基磷灰石的合成制备,复合材料涂层种类及HA涂层影响因素,应用等方面对羟基磷灰石进行介绍,并对其进行研究展望。 关键词:羟基磷灰石制备复合材料涂层研究进展 前言 羟基磷灰石是一种磷酸钙生物陶瓷, 与人体自然骨和牙齿等硬组织中的无机质在 化学成分和晶体结构上具有相似性,是一类重要的骨修复材料,分子式为Ca10 ( PO4) 6 ( OH ) 2 , 简写为HA 或HAP,Ca/ P 物质的量比理论值为1. 67, 属磷酸钙陶瓷中的一种生物活性材料。从分子结构( 如图1) 可以看出, 它易与周围液体发生离子交换。HA 属六方晶系, 空间群为P63/m。其结构为六角柱体, 与c轴垂直的面是一个六边形, a、b 轴的夹角为120 °, 晶胞常数a= b= 9. 324 A , c= 6. 881A 。单位晶胞含有10 个[ Ca]2+、6个[ PO4]3-和2个 [ OH]-, 这样的结构和组成使 得H A 具有较好的稳定性。 磷灰石是自然界广泛分布的 磷酸钙盐矿物,根据其结构通 道中存在的阴离子的种类, 可分为氟-、氯-、羟磷灰石等 不同亚种矿物。其中,羟基磷 灰石(hydroxyapatite,缩写为 HA或HAp)的研究和应用最 广泛。羟基磷灰石是人体和动 物的骨骼和牙齿的主要无机 成分,具有良好的生物相容性和生物活性,HA材料对动物体人体无毒、无害、无致 癌作用,可增强骨愈合作用,能与自然骨产生化学结合,HA植入人体后对组织无刺 激和排斥作用,能与骨形成很强的化学结合,用作骨缺损的充填材料,为新骨的形成提供

羟基磷灰石的制备及其表征实验方案

实验方案 课题六 纳米羟基磷灰石的制备与表征 小组成员 段东斑、陆文心、耿明宇 1.背意义景 羟基磷灰石(Hydroxyapatite,简称HA,化学分子式:(Ca10 (PO4)6(OH)2)是人体和动物骨骼的主要无机成份。在人体骨中,HA 大约占60%,它是一种长度为20~40nm,厚1.5~3.0nm 的针状结晶,其周围规则地排列着骨胶原纤维[36]。齿骨的结构也类似于自然骨,但齿骨中HA 的含量高达97%。医学领域长期以来广泛使用的金属和有机高分子等生物医学材料,其成分和自然骨完全不同,用来作为齿骨的代材料(人工骨、人工齿)填补骨缺损材料,其生物相容性和人体适应性尚不令人满意。而羟基磷灰石具有无毒、无刺激性、无致敏性、无致突变性和致癌性,是一种生物相容性材料,可与骨发生化学作用,有很好的骨传导性。因此,近二十年来,研究接近或类似于自然骨成份的无机生物医学材料极其活跃,其中特值得重视的是与骨组织生物相容性最好的HA 活性材料的研究、临床应用。近年来,随着人们对纳米领域的认识与关注,医学界也相继开始了对纳米HA 粒子(或称超细HA 粉)的研究,HA 纳米粒子与普通的HA 相比具有不同的理化性能:如溶解度较高、表面能较大、生物活性更好、具有抑癌作用等,可以作为药物载体用于疾病的治疗,是一种生物相容性良好的治疗材料。 目前,人们已经开发出多种方法来制备纳米HA,如水解法、水热反应法、溶胶一凝胶法及最近发展的微乳液法等,其中化学沉淀法是各种水溶性的化合物经混合、反应生成不溶性的沉淀,然后将沉淀物过滤、洗涤、煅烧处理,得到符合要求的粉体。化学沉淀法因工艺简单、成本低、颗粒小等优点被广泛应用。但是目前对这种方法的研究还处于初级阶段,制备出的纳米粒子粒径不均一,分散性差且有易团聚的现象。为此,我们希望对化学沉淀法制备HA纳米粒子的条件的进行深入研究,分析各种因素对纳米HA晶型与粒径的影响,为HA的工业化生产提供依据。 2.1实验基本原理 目前报道,常用的制备羟基磷灰石粉体的钙的反应物有Ca(NO3)2、Ca(OH)2、CaCl2、CaO、Ca(OC2H5)2等,常用的磷的反应物有(NH4)2HPO4、H3PO4、K2HPO4、Na2HP04和((CH3O)3PO)等。 以硝酸钙和磷酸氢二氨为例,反应方程式为: Ca(N03)2·4H20+6(NH4)2HP04+8NH3·H20=Ca10 (P04)6(OH)2+20NH4N03+6H20 以氢氧化钙和磷酸盐为例,反应方程式为: 10Ca(OH)2+6H3P04= Ca10(PO4)6(OH)2+18H20 不同反应物合成HA的方法有一定差异,但总体而言,化学沉淀法的实质是羟基磷灰石的溶解平衡的逆反应,即 10Ca2++6PO43-+2OH- = Ca10(PO4)6(OH)2 Ksp=2.34*10-59 2.2实验条件的选择与调控。 影响化学沉淀法的工艺参数主要有:Ca/P 摩尔比、pH 值、磷酸的加入速度、反应温

纳米羟基磷灰石的制备及其在医学领域的应用

纳米羟基磷灰石的制备及其在医学领域的应用 漳州师范学院 化学与环境科学系 08科学教育

摘要: 生物陶瓷纳米羟基磷灰石在自然界中以自然骨、牙中的无机矿物成分为主要形式。人工合成的纳米羟基磷灰石材料具有与自然矿物相似的结构、形态、成分,表现出良好的生物相容性和生物活性,广泛应用于医学领域。本文综合论述了纳米羟基磷灰石在物理化学方面的应用并对其在医学领域的应用进行了详细的论述和展望。 关键词:纳米羟基磷灰石、医学领域、合成方法及应用 Abstract: Biological nanometer hydroxyapatite ceramics in nature to natural bone and tooth the inorganic mineral composition as the main form. Synthetic nano hydroxyapatite orbital implant material has and natural mineral similar structure、shape、composition、show good biocompatibility and biological activity,widely used in medical field. The paper discusses the nano hydroxyapatite in physical chemistry and its application in medical field of applied discussed in detail and prospected. Keywords: nano hydroxyapatite,medical field,synthesis method and application

羟基磷灰石在生物医用材料中的研究进展

《生物医用材料》期末论文 学院:材料与化工学院 专业:材料科学与工程 学生姓名: 学号: 任课教师:唐敏 2010年6月20日

羟基磷灰石在生物医用材料中的研究进展 材料与化工学院 07材料科学与工程卢仁喜 摘要:羟基磷灰右是一种优质的医用生物材料,在生物医用材料和医学研究领域有着广泛的应用和研究。本文在综合了一些文献的基础上,对羟基磷灰石在生物医用材料的研究上做了总结和概括,并且提出了一些自己的看法。 关键字:羟基磷灰石生物医用材料进展 1.引言 生物材料(biomaterials)是对生物体进行治疗和置换损坏的组织、器官或增进其功能的材料。随着材料科学、生命科学与生物技术的发展,越来越多的生物材料得到广泛应用,人们开始在分子水平上去认识材料和机体问的相互作用,力求使无生命的材料通过参与生命组织的活动,成为有生命组织的一部分。其中金属材料、生物陶瓷材料、高分子材料、聚合物及其复合材料是应用最广泛的生物材料。近年来,常用的骨骼替代品是金属、塑料以及陶瓷等,其中以钛和钛合金为主。但是由于它们的惰性,它们不能很好的与生物体本身产生相容性,作为硬组织植入材料,它们与骨之间只是一种机械嵌连的骨整合,而非化学骨性结合,致使植入后与骨组织之间结合较差,常引起植入失效。同时金属的耐磨性和耐腐蚀性较差,腐蚀产牛的离子会对人体组织产生不良影响。羟基磷灰石(Hydroxyapatite,HA)生物陶瓷材料具有优良的生物活性和生物相容性,被认为是一种最具潜力的人体硬组织替换材料。但是HA的力学性能较差,抗弯强度和断裂韧性指标均低于人体致密骨,限制了它们单独在人体负重部位的使用。但是由于它本身的特点,以及自然界再也找不出与它具有类似生物相容性的陶瓷材料,同时他又可以同多种材料进行复合来改变它在某一方面的劣势。所以,近年来羟基磷灰石及其复合物的研究受到广泛关注。 2.羟基磷灰石及特点 羟基磷灰石(Hydroxyapatite,HA)是一种微溶于水的弱碱性磷酸钙盐,它是脊椎动物骨和齿的主要无机成分,在人骨中约占72%,齿骨中则高达97%,其生物相容性及活性良好,对人体无毒副作用,可增强骨愈合作用,能与自然骨产生化学结合,被认为是最有前途的人工齿及人工骨的替代材料。目前有关羟基磷灰石的研究已经取得了很大的进展,人工合成HA的方法主要有沉淀法、水热反应法和溶胶一凝胶法。然而,羟基磷灰石的烧结性能差,力学性能特别是冲击韧性不足以作为骨替代的理想材料,因此必须通过与其它材料复合来提高有关性能,使之得以在临床上推广应用。所以,基于羟基磷灰石在力学上的性质,它在生

纳米羟基磷灰石及其复合生物材料的特征及应用_李瑞琦

中国组织工程研究与临床康复 第 12 卷 第 19 期 2008–05–06 出版
Journal of Clinical Rehabilitative Tissue Engineering Research May 6, 2008 Vol.12, No.19
学术探讨
纳米羟基磷灰石及其复合生物材料的特征及应用★
李瑞琦,张国平,任立中, 沙子义,高宏阳,董 威, 赵 峰,王 伟
Characteristics and application of nano-hydroxyapatite and its composite biomaterials
Li Rui-qi, Zhang Guo-ping, Ren Li-zhong, Sha Zi-yi, Gao Hong-yang, Dong Wei, Zhao Feng, Wang Wei Abstract: Pubmed database and China Journal Full-text Database were both retrieved to screen out the articles, which
summarize and review the advanced progress of nano-hydroxyapatite (nHA) and its composite biomaterials. The nHA biomaterials are compounded with secondary phase or multiphase materials, contributing towards favourable histological reaction, together with satisfactory intensity and rigidity. Furthermore, the biomaterials may produce the scaffold of tissue regeneration. The nHA composite biomaterials are divided into nHA/natural polymer composites and nHA/artificial polymer composites. The former consists of nHA compounded with collagen, bone morphogenetic protein and polysaccharide materials, while the latter comprises the composites of nHA/polyamide, polyester or polyvinyl alcohol. Although the biocompatibility and bioactivity of nHA composites have been ensured, it is still a problem of tissue engineering materials that how to match the degradation velocity of composite biomaterials with bone growth speed. Li RQ, Zhang GP, Ren LZ, Sha ZY, Gao HY, Dong W, Zhao F, Wang W.Characteristics and application of nano-hydroxyapatite and its composite biomaterials.Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu 2008;12(19):3747-3750 [https://www.doczj.com/doc/c29245167.html,/zglckf/ejournal/upfiles/08-19/19k-3747(ps).pdf]
Department of Orthopaedics, First Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei Province, China Li Rui-qi ★ , Studying for master's degree, Associate chief physician, Department of Orthopaedics, First Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei Province, China li_ruiqi2008@126. com Received:2008-04-24 Accepted:2008-05-04
摘要:检索 Pubmed 数据库和中国期刊全文数据库文献,对应用较为广泛的纳米羟基磷灰石及其复合生物材料研究进展
加以总结。纳米羟基磷灰石复合生物材料是在纳米羟基磷灰石中加入第二相或多相材料,以获得有利的组织学反应、满 意的强度和刚性,并为组织再生合成支架材料。纳米羟基磷灰石复合生物材料大致分为纳米羟基磷灰石 /天然高分子复合 材料和纳米羟基磷灰石 /人工高分子复合材料 2 类。前者包括纳米羟基磷灰石与胶原、骨形态发生蛋白、多糖类材料复合 而成的生物材料,并各具特点。后者是由纳米羟基磷灰石与聚酰胺、聚酯、聚乙烯醇等多种人工高分子生物材料复合而 成。在保证复合材料良好生物相容性和活性的前提下,如何使复合生物材料的降解速率与骨生长速度相匹配是组织工程 材料研究中有待解决的一个主要问题。 关键词:生物材料;羟基磷灰石类;纳米技术;复合体;综述文献 李瑞琦,张国平,任立中 , 沙子义,高宏阳,董威 , 赵峰,王伟.纳米羟基磷灰石及其复合生物材料的特征及应用[J].中国组 织工程研究与临床康复,2008,12(19):3747-3750 [https://www.doczj.com/doc/c29245167.html,/zglckf/ejournal/upfiles/08-19/19k-3747(ps).pdf]
加,提高了粒子的活性,从而有利于组织的结 0 引言 羟基磷灰石因其化学成分和晶体结构与 人体骨骼组织的主要无机矿物成分基本相同, 引入人体后不会产生排异反应,故其作为骨修 复替代材料在国内外的临床应用历史已有几 十年。并已被动物实验及临床研究证实具有无 毒、无刺激性、良好的生物活性、良好的生物 相容性和骨传导性、较高的机械强度及化学性 质稳定等特点,是较好的生物材料[1]。但因羟 基磷灰石的颗粒和脆性较大、缺乏可塑性、体 内降解缓慢、生物力学强度和抗疲劳破坏强度 较低,难于被机体完全替代、利用,使其临床 应用受到限制。近年来,随着纳米知识与技术 的不断发展,人们发现人体骨骼中的羟基磷灰 石主要是纳米级针状单晶体结构 。纳米级的 羟基磷灰石与人体内组织成分更为相似,具有 更好的生物学性能。根据“纳米效应”理论, 单位质量的纳米粒子表面积明显大于微米级 粒子,使得处于粒子表面的原子数目明显增
ISSN 1673-8225 CN 21-1539/R CODEN: ZLKHAH
[2]
合[3]。基于此,纳米羟基磷灰石及其复合生物材 料成为当今研究的重心和热点。 1 问题的提出:
问题1:什么是纳米羟基磷灰石复合生物材料? 问题2:纳米羟基磷灰石复合生物材料的分类? 问题3:纳米羟基磷灰石选择天然高分子材料进行复 合的原因,复合生物材料的特点及用途如何? 问题4:纳米羟基磷灰石选择人工高分子材料进行复 合的原因,复合生物材料的特点及用途如何?
河 北医 科大学 第 一医院骨科 河 北省石家庄市 050031 李 瑞琦 ★,男 , 1966 年生,山西 省岚县人,汉族, 1990 年山西医科 大学毕业, 在读硕 士,副主任医师, 主 要从 事骨与 软 骨 缺损 的修复 研 究。 li_ruiqi2008@ https://www.doczj.com/doc/c29245167.html,
中图分类号:R318 文献标识码:A 文章编号:1673-8225 (2008)19-03747-04 收稿日期:2008-04-24 修回日期:2008-05-04 (54200804240026/J·Y)
2
问题的解决
问题1:纳米羟基磷灰石复合生物材料的定义
纳米羟基磷灰石复合生物材料主要是指在 纳米羟基磷灰石中加入第二相或多相材料, 从而 获得有利的组织学反应、满意的强度和刚性,并 为组织再生合成支架材料[4]。羟基磷灰石以纳米 级纤维填充于有机基质, 有机基质为骨修复材料
3747

羟基磷灰石的研究进展及其应用--盛亚雄

羟基磷灰石的研究进展及其应用 课程:材料科学前沿 姓名:盛亚雄 学号:1026010127 班级:10级材料科学1班 完成时间:2013年6月13日

目录 摘要 (2) 前言 (2) 1 羟基磷灰石的组成和晶体结构 (2) 2 羟基磷灰石的制备 (3) 3 羟基磷灰石复合材料 (4) 4 羟基磷灰石的应用 (5) 5羟基磷灰石的发展趋势 (7) 6结语 (8) 参考文献 (8)

羟基磷灰石的研究进展及其应用 摘要羟基磷灰石具有良好的生物活性,是较好的生物材料,故被广泛应用于 骨组织修复和替代技术。而又因具有特殊晶体化学特点,除作为医用生物材料外,还用作无机生物材料和激光器基质材料,尤其在环境治理、湿度传感器等研究领域具有重要意义。目前,羟基磷灰石的制备方法有溶胶-凝胶法、沉淀法、水热法、干式法和微乳液法等。对于制备要求较高,具有表面活性的吸附材料羟基磷灰石而言,溶胶-凝胶法是较为合适的方法。此外,本文还对羟基磷灰石复合材料进行了研究。以及对羟基磷灰石的应用了做出介绍和展望。 关键词羟基磷灰石制备复合材料环境材料生物陶瓷发展趋势 前言 磷灰石是自然界广泛分布的磷酸钙盐矿物,根据其结构通道中存在的阴离子的种类,可分为氟磷灰石和氯磷灰石等不同亚种矿物。其中,羟基磷灰石的研究和应用最广泛。由于羟基磷灰石(HA)不但与人体骨骼的晶体成分和化学结构基本一致,而且生物相容性和界面生物活性均优于医用钛、硅橡胶及植骨用碳材料等植入医用材料,另外有极其良好的骨传导性和骨结合的能力,无毒副作用,无致癌作用,因此被广泛用于作为硬组织修复和骨填充材料的生物支架及疾病、意外事故中的修复材料,是目前生物材料研究的热点。此外,大量研究表明,羟基磷灰石具有良好的离子交换性能,能吸附并回收利用地方饮用水中过量的氟离子和工业废水中的重金属离子,可以用作一种新型的环境功能矿物材料。多孔羟基磷灰石陶瓷耐热、耐湿范围广,灵敏度高,是一种新型的湿敏半导体陶瓷材料。本文的目的主要是介绍羟基磷灰石的制备,以及简单介绍一下羟基磷灰石复合材料,并且对其在生物材料和功能材料等方面的应用做出展望,这对今后羟基磷灰石的进一步的开发和研究具有重大意义。 1 羟基磷灰石的化学组 成和晶体结构 羟基磷灰石的化学式为 Ca10PO46OH2简写为HA或HAP, Ca/P的物质的量之比为1.67。其分 子结构为六方晶体,属于P63/m空 间群。晶胞常数为晶胞常数a= b= 9. 324 A , c= 6. 881A。单位晶胞含有

羟基磷灰石HA陶瓷生产实验...doc

羟基磷灰石 (HA) 陶瓷生产实验 1.实验目的 1.1 初步训练方案设计、实验、生产、检验等的能力; 1.2 培养查阅文献、市场调研、搜集和整理资料、设计、项目管理、 科学实验、生产制造、分析问题和解决问题、发表见解的初步能力; 1.3 掌握羟基磷灰石的基本性质、功能和用途,以及几种制备羟基磷 灰石的原理和方法; 1.4 实践利用湿化学法中的沉淀法制备羟基磷灰石粉体; 1.5 熟悉和掌握相关仪器设备的使用。 2.实验原理 羟基磷灰石 [Hydroxyapatite ,HA ;分子式: Ca10 (PO4 )6(OH) 2] 的化学组成和结晶结构类似于人骨骼系统中的磷灰石,优良的生物活性和生物相容性是其最大的优点,人体骨细胞可以在羟基磷灰石上直接形成化学结合,在普通合成的生物材料中添加少量纳米羟基磷灰石可显著改善材料对成骨细胞的粘附和增殖能力,促进新骨形成,因此 适宜于做骨替代物。羟基磷灰石的钙磷摩尔比为 1.67 ,与天然骨相 近。 目前生产羟基磷灰石的方法主要分为湿法合成和干法合成,其中湿法包括溶胶 -凝胶法、沉淀法和水热法三种[3,4,5] 。 2.1 溶胶 - 凝胶法 溶胶 - 凝胶法是近些年来才发展起来的新方法,已经引起了广泛

的关注。找到合适的、能够合成最终的羟基磷灰石的溶胶一凝胶体系 是其合成的关键。其原理是:将醇盐溶解在选定的有机溶剂中,在其 中加蒸馏水使醇盐发生水解、聚合反应后生成溶胶,再将 Ca2+溶胶缓慢滴加到 (PO 4)3-溶胶中,加水变为凝胶,凝胶经老化、洗涤、真空状态下低温干燥,得到干凝胶,再将干凝胶高温煅烧.就得到羟基磷灰石的纳米粉体。该方法的优点为:合成及烧结温度低、可存分子水平上混合钙磷的前驱体,使溶胶具有高度的化学均匀性。缺点是化学过程比较复杂、醇盐原料价格昂贵、有机溶剂毒性大,对环境易造成污染等。 2.2 沉淀法 沉淀法是制备羟基磷灰石粉体最典型的方法。这种方法通常采用把一定浓度的磷酸氢铵和硝酸钙反应或者磷酸与氢氧化钙在一定的 温度下搅拌反应生成羟基磷灰石沉淀,反应过程中使用氨水(NaOH 溶液 1mol/L )调节 pH 值,把沉淀物高温煅烧从而得到羟基磷灰石 粉体。其典型工艺: Ca(NO 3)2与磷酸盐 [(NH 4 )3 PO4、(NH 4 )2 HPO 4、NH 4H2 PO4 ]溶液进行反应,沉淀经过滤、干燥,制成粉末颗粒。 2.3. 水热法 水热法其特点是在特制的密闭的反应器(高压釜)内,水溶液为 反应介质。在高温高压环境中,不受沸点的限制,可以使介质的温度 上升到200-400 ℃,使原来难溶或不溶的物质溶解并重新结品的方法。这种方法通常采用磷酸氢钙等为原料的水溶液体系。在高压釜中制备 HA 粉体。其典型的工艺为:以 CaCl2 [ 或 Ca(NO 3 )2 ]与 NH 4H2 PO4

羟基磷灰石合成方案

羟基磷灰石合成方案 羟基磷灰石基本信息:羟基磷灰石(Ca 10(PO 4 ) 6 (OH) 2 ,M=1004),熔点:1650℃, 比重:3.16g/cm3,溶解度:0.4ppm,Ca/P:1.67 合成方法:化学共沉淀法 原料:四水合硝酸钙(Ca(NO 3) 2 ·4H 2 O,M=236.15)、磷酸氢二铵((NH 4 ) 2 HPO 4 , M=132.06)和氨水(NH 3·H 2 O,M=35.05)。 反应方程式: 需要设备:搅拌器、恒温水浴锅、酸度计、离心机、pH试纸、烧杯(2L、1L、500ml),量筒(500ml或1L),1L容量瓶(2个),分液漏斗(500ml,2个),玻璃棒,保鲜膜。 实验步骤 1、配制浓度为0.5mol/L硝酸钙和磷酸氢二氨溶液; 2、将恒温水浴锅恒温至50℃,用量筒量取1000ml浓度为0.5mol/L硝酸钙溶液倒入大烧杯中,并将烧杯置于恒温水浴锅中,再用分液漏斗滴加氨水将溶液的pH值调节至10~11; 3、在搅拌器的不停搅拌下,用量筒量取600ml、0.5mol/L磷酸氢二氨溶液,将其装入分液漏斗,然后缓慢加入烧杯中。在滴加的过程中,使用pH酸度仪实时监测并通过滴加氨水来控制其pH值保持在10~11。当磷酸氢二铵溶液滴加完后,用适量的水冲洗漏斗。继续搅拌30分钟,用保鲜膜封闭烧杯口; 4、静置陈化24小时; 5、将反应产物用离心机离心分离。除去上清液,加入蒸馏水,用玻璃棒搅拌均匀后,继续离心3~5分钟:重复步骤多次,直至测得的pH值在7~8之间(一般需要离心4—5次);向沉淀物中加入酒精,再离心清洗2次,最后得到纯净的HA乳状胶体; 5、将HA乳状胶体倒入培养皿中,置于恒温为70℃干燥箱中干燥24小时; 6、将干燥后的HA粉体置于马弗炉中,700℃烧结2小时,得到羟基磷灰石粉末。

化学沉淀法制备羟基磷灰石实验流程及细节节

化学沉淀法制备羟基磷灰石实验流程及细 节 羟基磷灰石 分子式:Ca10(PO4)6(OH)2 简称:HA HAP 熔点:1650℃ 密度:3.16g/cm3 溶解度:0.4mpp 化学沉淀法反应方程式: 7Ca(OH)2+3Ca(H2PO4)2= Ca10(PO4)6(OH)2+12H2O 21.81g 7.719g×4 1、配置3000 ml Ca( OH) 2、1000 ml Ca( H2PO4)2溶液,按照Ca /P为1. 67混合于三角瓶恒 温水浴70℃.搅拌2h小时,放置沉淀24小时。 (1)水浴锅加入热水,提高升温速度,但最高直接加入到65℃ (2)Ca(OH)2=21.81g Ca( H2PO4)2=7.719g×4 (3)当恒温水浴锅温度达到70℃时,将氢氧化钙溶于800ml水中,倒入水浴锅中盛有2000ml蒸馏水的5000ml大烧杯中,再用200ml将小烧杯中剩余氢氧化钙 尽量全部冲洗下去,并加入到大烧杯中。 (4)将3000ml氢氧化钙加入到大烧杯中加热搅拌,搅拌棒搅拌轴线与烧杯轴线尽量重合,防止大烧杯不稳、晃动、试液溅出。 (5)将磷酸二氢钙分四次加入,每一份7.719g溶于200ml倒入大烧杯中,检查小烧杯底部有无杂质,用100ml水将剩余磷酸二氢钙溶解加入大烧杯。时间间隔15 分钟,全部加入后恒温搅拌1小时取出沉淀。加入磷酸二氢钙时,用小烧杯沿 大烧杯壁倒入。 2、放入离心机中离心; 并置于玛瑙罐中以无水乙醇为分散剂,在星型球磨机以350 r / min 球磨2 h,在烘干箱100 ℃干燥24 h。 (1)将大烧杯内的水倒掉,取出沉淀物放入离心管内离心,8ml、转速3200r/min、转9min。四支离心管重量相当的对角线防止,提高转速时要匀速转动旋钮。 (2)9min钟后,关闭离心机,取出离心管。将离心管内水倒掉,用勺子取出离心管内沉淀物放入玛瑙罐中,尽量将离心管内壁刮干净,玛瑙管内玛瑙球数量、形状 等尽量均匀。 (3)玛瑙管两两对角线放入星型球磨机内球磨,卡扣卡紧。星型球磨机以350 r / min 球磨2 h (4)球磨结束后,从玛瑙罐内倒入小烧杯,用纸将口扎紧,放入烘干箱内烘干。3、将得到的烘干块体研磨,过200 目筛子后置于高温炉750 ℃保温1 h得到纳米HA粉 体。将晶化处理的n-HA粉体与Mg粉按不同比例均匀混合,在200 MPa下将混合均匀的含镁HA粉体进行压片,试样直径为10 mm的圆柱形片,其质量为0. 45 g。将压制好的压

水热法制备纳米羟基磷灰石毕业论文

本科生毕业论文(设计) 题目水热法制备纳米羟基磷灰石专业材料物理

水热法制备羟基磷灰石 摘要:羟基磷灰石具有良好的生物相容性能,在许多领域都得到了广泛的应用,其对蛋白质吸附问题更是成为了生物材料领域的一个研究热点。本文采用硝酸钙 (Ca( NO3)2·4H2O)和磷酸铵(( NH4)3PO4·3H2O)为原料,在水热的条件下合成了羟基磷灰石粉体。借助X射线衍射仪( XRD)、透射电镜(TEM)对经过烧结样品的物相和微观形貌进行了分析,研究了水热温度对合成羟基磷灰石粉体的影响,并且用紫外可见光光度计测试其对蛋白质的吸附性能,研究结果表明,在设计的温度范围内,水热温度越高,反应生成的HA粉体结晶度就越高,颗粒越细小,微观性能优良,且制备的HA颗粒对蛋白质的吸附性能更好。 关键词:羟基磷灰石纳米晶体;水热法;生物陶瓷材料;蛋白质吸附

Hydrothermal synthesis of hydroxyapatite Abstract:Hydroxyapatite has been widely used in biomedical field as its good biocompatibility. The protein adsorption attracted increasing attention in the field of HA based biomaterials. In this paper, hydroxyapatite was synthesized by the hydrothermal method using calcium nitrate (Ca(NO3)2) and ammonium phosphate ((NH4)3PO4) as raw materials. The structure and morphology of synthesized HA were characterized by XRD and TEM. The protein adsorption of HA was tested by the UV-VIS spectrophotometer. The results showed that the higher hydrothermal temperature was contributed to higher crystallinity and smaller particles. Nano HA powders which had good crystallinity were synthesized when the concentration of reactants is 0.2mol/L and the hydrothermal temperature is 180℃,which led to better adsorption properties of HA to the bovine serum albumin ( BSA). Key words:Hydroxyapatite ;Hydrothermal;Nano particles;Protein adsorption

在模拟体液中沉淀法制备碳酸根羟基磷灰石

第44卷第1期2016年1月 硅酸盐学报Vol. 44,No. 1 January,2016 JOURNAL OF THE CHINESE CERAMIC SOCIETY https://www.doczj.com/doc/c29245167.html, DOI:10.14062/j.issn.0454-5648.2016.01.08 在模拟体液中沉淀法制备碳酸根羟基磷灰石 蔡银,李平,朱沛志 (扬州大学,江苏扬州 225000) 摘要:以Ca(NO3)2-(NH4)2HPO4-NH4HCO3模拟体液(SBF)为反应体系,采用沉淀法制备出不同掺杂量碳酸根羟基磷灰石(CHA)。利用X射线衍射、Fourier变换红外光谱、航向电子显微镜、热重以及X射线光电子谱等多种表征手段研究了CHA 的组成、粒径以及CO32–替代的类型及含量。结果表明:在pH = 10,反应温度为95 ℃时,合成的粉末为B型取代为主的混合型取代CHA;随着CO32–掺杂量的增加,CHA结晶度降低,颗粒尺寸减小至粒径为10~20 nm,长度约35 nm。 关键词:羟基磷灰石;碳酸根羟基磷灰石;沉淀法;模拟体液 中图分类号:TQ174 文献标志码:A 文章编号:0454–5648(2016)01–0050–06 网络出版时间:2015–12–23 17:19:59 网络出版地址:https://www.doczj.com/doc/c29245167.html,/kcms/detail/11.2310.TQ.20151223.1719.008.html Synthesis of Carbonated Hydroxyapatite in Simulated Body Fluid SBF by Precipitation Method CAI Yin, LI Ping, ZHU Peizhi (Yangzhou University, Yangzhou 225000, Jiangsu, China) Abstract: Carbonated hydroxyapatite (CHA) with different carbonate contents was synthesized by a simple precipitation method in Ca(NO3)2-(NH4)2HPO4-NH4HCO3 simulated body fluid (SBF) reaction system. The composition, particle size and carbonate contents were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), thermo-gravimetry and differential thermal analysis (TG-DTA) and X-ray photoelectron spectroscopy (XPS), respectively. The CHAs synthesized at pH value of 10 and 95 show the following characteristics, ℃i.e., (1) the substitution of carbonate in CHA lattice is mainly B type, and (2) the crystallinity of CHAs decreases and the average particle size with the length of ~35nm reduces to 10 ~ 20 nm when the carbonate content increases. Keywords: hydroxyapatite;carbonated hydroxyapatite; precipitation method; simulated body fluid 羟基磷灰石(HA)是自然骨中无机成分的重要组成部分,具有良好的生物相容性和骨传导性[1]。由于目前合成出来的HA不包含CO32–,与自然骨相比,HA在性能上与自然骨还存在很大的差异。为了进一步提高生物活性,与自然骨更加接近,从仿生学角度来讲,人工合成的碳酸根羟基磷灰石(CHA)在组成、结构、颗粒尺寸上愈接近于自然骨,其生物活性愈好[2]。 CO32–是骨磷灰石(HA)中掺杂量最多的离子,质量分数约为4%~8%,对骨矿力学性能具有重要影响。骨磷灰石中CO32–存在三类替换,替代HA中的OH–形成A型取代,替代PO43–形成B型取代,或者同时替代OH-和PO43–形成AB型混合取代[3]。自然骨中的CHA是以B型取代为主的混合型取代,掺杂CO32–的HA更接近于自然骨,具有比HA更好的生物相容性。 研究表明,含CO32–的CHA,粒径较小,溶解度高,表面能大,可以改善骨矿的生物活性和力学 收稿日期:2015–06–29。修订日期:2015–07–31。基金项目:江苏省六大人才高峰资助(137060029) 第一作者:蔡银(1992—),女,硕士研究生。 通信作者:朱沛志(1971—),男,教授。Received date: 2015–06–29. Revised date: 2015–07–31. First author: CAI Yin (1992–), female, Master candidate Email: caiyin525@https://www.doczj.com/doc/c29245167.html, Correspondent author: ZHU Peizhi (1971–), male, Professor E-mail: pzzhu@https://www.doczj.com/doc/c29245167.html,

相关主题
文本预览
相关文档 最新文档