当前位置:文档之家› 半导体技术

半导体技术

半导体技术
半导体技术

1.20世纪上半叶对半导体产业发展做出贡献的4种不同产业。P2

答:真空管电子学、无线电通信、机械制表机、固体物理

2. 列出5个集成时代,指出每个时代的时间段,并给出每个时代每个芯片上的元件数。P4

答:小规模集成电路20世纪60年代前期2-50个芯片

中规模集成电路20世纪60年代到70年代前期20-5000个芯片

大规模集成电路20世纪70年代前期到70年代后期5000-100000个芯片超大规模集成电路20世纪70年代后期到80年代后期100000-1000000个芯片

甚大规模集成电路20世纪90年代后期至今大于1000000个芯片

3. 列出提高微芯片制造技术相关的三个重要趋势,简要描述每个趋势。P8 答:1、提高芯片性能:提高速度和降低功耗。1)、器件做的越小,芯片上的器件就越多,芯片的速度就提高;2)、使用材料,通过芯片表面的电路和器件来提高电信号的传输。

2、提高芯片可靠性

3、降低芯片成本

原因:根本原因是得益于CD尺存的减小;半导体产品市场的大幅度增长。4. 什么是芯片的关键尺寸?这种尺寸为何重要?P9

答:芯片的物理尺寸特征被称为特征尺寸,最小的特征尺寸称为关键尺寸。

将CD作为定义制造复杂性水平的标准,也就是如果你拥有在硅片上制造某种CD的能力,那你就能加工其他所有特征尺寸,由于这些尺寸更大,因此更容易生产。例如,如果芯片上的最小尺寸是0.18um,那么这个尺寸就是CD。半导体产业使用“技术节点”这一术语描述在硅片制造中使用的可应用CD

5. 什么是摩尔定律?它预测了什么?这个定律正确吗?P10

答:1964年摩尔预言在一块芯片上的晶体管数大约每隔一年翻一番(后来在1975年被修正为预计每18个月翻一番)。摩尔定律惊人的准确!

6. 以B掺入Si中为例,说明什么是受主杂质、受主杂质电离过程和P型半导体。

答:在硅晶体中掺入硼,硼是Ⅲ族元素,硼替代原有硅原子位置,由于Ⅲ族元素最外层只有3个价电子,与周围硅原子产生共价键时,产生一个空穴,而本身接受一个电子称为带负电的离子,通常我们称这种杂质为受主杂质。这种半导体主要依靠受主提供的空穴导电,这种依靠空穴导电的半导体称为p型半导体。7. 以As掺入Ge中为例,说明什么是施主杂质、施主杂质电离过程和N型半导体。

答:在As中掺入Ge ,Ge 是V族元素杂质,Ge杂质会替代原来硅原子的位置,与周围的硅原子形成共价键,多余的一个电子便成了能够导电的自由电子,本身变成带正电的离子,通常我们称这种杂质为施主杂质。这种半导体依靠施主提供的电子导电,这种依靠电子导电的半导体称为n型半导体。

8. 半导体内的载流子三种运动:载流子的扩散运动,载流子的热运动和载流子的漂移运动。

9. 双极晶体管有多少个电极、结和类型?电极的名称分别是什么?类型名称分别是什么?P46

答:有三电极和两个pn结、两种类型。电极名称:发射极、基极、集电极。

类型名称:pnp、npn.

10. 场效应管(FET)的两种基本类型是什么?他们之间的主要区别是什么?

P50

答:结型(JFET)和金属-氧化物型(MOSFET)半导体。

区别是:MOSFET作为场效应晶体管输入端的栅极由一层薄介质与晶体管的其他两极绝缘。JFET的栅极实际上同晶体管其他电极形成物理的pn结。

11. 半导体级硅有多纯?P64 答:9个9

12.多晶:晶胞不是有规律地排列

单晶:晶胞在三维方向上整齐地重复排列

13.什么是晶体缺陷?P73

答:晶体缺陷指的是在重复排列的晶胞结构中出现的任何中断。研究晶体缺陷是非常重要的,因为它对半导体的电学特性有破坏作用。在硅中主要存在三种普遍的缺陷形式:

点缺陷:原子层面的局部缺陷,包括空位缺陷、间隙原子缺陷和Frenkel缺陷位错:错位的晶胞

层错:晶体结构的缺陷

14. 什么是物质的四种形态?试分别描述之。P87

答:固体,物质存在的一种状态。与液体和气体相比固体有比较固定的体积和形状、质地比较坚硬。

液体,四大物质状态之一,没有确定的形状,但有一定体积,具有移动与转动等运动性。气体,无形状无体积的可变形可流动的流体。气体是物质的一个态。

等离子体(电离的气体),一种中性、高能量、离子化的气体,包含中性原子或分子、带电离子和自由电子。

15. 吸收和吸附之间有什么不同?P91-92

答:吸收:物质吸取其他实物或能量的过程。气体被液体或固体吸取,或液体被固体所吸取。在吸收过程中,一种物质将另一种物质吸进体内与其融和或化合。吸收是气体或液体进入其他材料的主要方式.

吸附是气体或液体被束缚在固体表面,被吸附的分子通过化学束缚或者物理吸引这样的弱束缚黏在物体表面。

16. 什么是酸?列出在硅片厂中常用的三种酸。P95

答:酸是一种包含氢并且氢在水中裂解形成水合氢离子H3O+的溶液。硅片厂中常用的酸有HF,HCL, H2SO4, HNO3, H3PO4

17. 什么是碱?列出在硅片厂中常用的三种碱。P96

答;碱是一类含有OH根的化合物,在溶液中发生水解生成氢氧根离子OH-。硅片厂中常用的碱有NaOH, NH4OH, KOH

18. 什么是溶剂?列出在硅片厂中常用的三种溶剂。P97

答;溶剂是一种能够溶解其他物质形成溶液的物质。硅片厂中常用的溶剂有:去离子水,异丙醇、三氯乙烯、丙酮、二甲苯

19. 说明五类净化间沾污。P107

答:沾污指的是半导体制造过程中引入半导体硅片的任何危害芯片成品率及电学性能的不希望有的物质。

净化间沾污有:颗粒、金属杂质、有机物沾污、自然氧化层、静电释放。

20. 什么是等离子体?它对工艺腔有什么益处?P181

答:等离子体是一种中性、高能量、离子化的气体,包含中性原子或分子、带电离子和自由电子。等离子体可以提供发生在硅表面的气体反应所需要的大部分

能量,因此被广泛应用于晶片制造的各个步骤;另一个应用是通过等离子体刻蚀选择性的去除金属。

21. 硅片中氧化膜的用途:1、器件保护和隔离2、表面钝化3、栅氧电介质4、

掺杂阻挡

5、金属层间的介质层

22. 如果热生长氧化层厚度为20000A,那么硅消耗多少?9200A. P215 答:硅损耗率为46%:20000×0.46=9200(A)

23. 氧化生长模式215

答;干氧法:硅直接暴露在高纯氧高温氛围中氧化生长氧化层

湿氧法:携带水蒸气的氧气代替干氧,氧化生长中,会生成二氧化硅薄膜和氢气,氢气会被束缚在固态二氧化硅层中,使得氧化层密度比干氧小,且反应更快。

24. 什么是快速热处理(RTP)?相比于传统炉其6大优点是什么?P228 答;快速热处理是在非常短的时间内将单个硅片加热至400~1300℃温度范围内的一种方法;

优点:1、温度均匀性好2、杂质运动最小3、硅片间的重复性4、产量高5、由于快速加热产生应力,增加了强度6、有利于绝对温度的测量25. 什么是薄膜?列举并描述可接受的薄膜的8个特征。P242

答;薄膜是指一种在衬底上生长的薄固体物质。如果一种固体物质具有三维尺寸,那么薄膜是指某一维(通常是厚度)远远小于另外两维上的尺寸。

特征:1、好的台阶覆盖能力2、填充高的深宽比间隙能力3、好的厚度均匀性4、高纯度和高密度5、受控制的化学剂量6、高度的结构完整性和低的膜应力7、好的电学特性8、对衬底材料或下层膜好的粘附性

26. 列举并描述薄膜生长的三个阶段。P244

答;晶核形成,成束的稳定小晶核形成,晶核形成于硅片表面,是进一步生长的基础

聚集成束,也称为岛生长,随机生长的岛束按表面迁移率和束密度来生长。

形成连续的膜,岛束汇集成固态膜层并延伸铺满衬底表面。

27.化学气相淀积(CVD):通过气体混合的化学反应在硅片表面淀积一层固体膜的工艺.

28.并描述CVD反应中的8个步骤。P247

答;1、气体传输至淀积区域:反应气体充反应腔入口区域流动到硅片表面的淀积区域;

2、膜先驱物的形成:气相反应导致膜先驱物和副产物的形成;

3、膜先驱物附着在硅片表面:大量膜先驱物运输到硅片表面;

4、膜先驱物粘附:膜先驱物粘附在硅片表面

5、膜先驱物扩散:膜先驱物向膜生长区域的表面扩散;

6、表面反应:表面化学反应导致膜淀积和副产物的生成;

7、副产物从表面移除:吸附表面反应的副产物;

8、副产物从反应表面腔移除:反应的副产物从淀积区域随气流流动到反应腔出口并排出。

29. 什么是外延?解释自掺杂和外扩散。P267

答;外延就是在单晶衬底上淀积一层薄的单晶层,新淀积的这层称为外延层。

自掺杂:掺杂杂质从衬底蒸发,或者是由于淀积过程中氯对硅片表面的腐蚀而自发进行的一种掺杂不均匀的现象。

外扩散:衬底作为掺杂杂质源扩散到外延层的一种不规则掺杂形式,称为外扩散。

30.分辨率:光刻中的一个重要的性能指标,是将硅片上两个邻近的特征图形区分开来的能力。

31. 描述非晶材料。为什么这种硅不能用于硅片?P65

答:非晶材料指的是非晶固体材料,它们没有重复的结构,并且在原子级结构上体现的是杂乱的结构。非晶硅对生产半导体器件所需的硅片来讲是没有任何用处的,这是因为器件的许多电学和机械性质都与它的原子级结构有关,这就要求重复性的结构使得芯片与芯片之间的性能有重复性。

32. 解释负性和正性光刻的区别。P314

答;负性光刻:是把与掩膜板上相反的图形复制到硅片表面,曝光后,光刻胶会因交联而变得不可溶解,并会硬化,交联的光刻胶便不能在溶剂中被洗掉,是的光刻胶上图形与投影掩膜板上的图形相反。

正性光刻:是把与掩膜板上相同的图形复制到硅片上,曝光后的区域经历一种光化学反应,使得其在显影液中软化并可以溶解,形成的光刻胶的图形与投影掩膜板上的相同。

两者的区别在于光刻胶的种类不同。

33.列出光刻的8个步骤,并对每一步做出简要解释。P316

答:1、气相成底膜处理:目的是增强硅片和光刻胶之间的粘附性;

2、旋转涂胶:采用旋转的方式使得所涂光刻胶较为均匀;

3、软烘:目的是去除光刻胶中的溶剂;

4、对准和曝光:目的是将掩膜板上的图形转移到涂胶的硅片上,且光能激活

光刻胶中的光敏成分;

5、曝光后烘培:对紫外光刻胶在100到110度之间进行烘培。紧随在光刻胶曝光之后;

6、显影:硅片表面光刻胶中产生图形的关键步骤,将光刻胶上可溶解区域被化学显影剂溶解,将可见的图形留在硅片表面;

7、坚膜烘培:显影后的热烘指的就是坚膜烘培,目的在于挥发掉存留的光刻胶溶剂,提高光刻胶对硅片表面的粘附性;

8、显影后检查:目的在于去顶光刻图形的质量。

34. 列出并解释两种形式的光波干涉。P344

答:相长干涉,两列波相位相同彼此相加

相消干涉,两列波相位不同彼此相减

35. 什么是空间相干?为什么在光刻中控制它?P348

答:光是一种电磁波,在传播过程中,具有相同相位的不同光波在交汇点具有空间相干。空间相关可以通过光学系统加以控制,使图像中可能形成的干涉图像最小。如果不控制,在光刻胶上干涉结果看起来可能是亮暗点的粒状图形,被称做斑纹。

36. 什么是数值孔径?陈述它的公式,包括近似公式。P353

答;透镜收集衍射光的能力称之为透镜的数值孔径。透镜数值孔径越大,其成像质量越高。其公式为NA=nsinθ=nr/f

其中n为图像介质的折射率,θ为主光轴与透镜边缘的夹角,r为透镜半径,f 为透镜焦距

37. 什么是抗反射涂层,它是怎样减小驻波的?P354

答;抗反射涂层:曝光光线通过投影掩膜板后再光刻胶上形成图案,在光刻胶下面最终要被刻蚀形成图案的底层薄膜,在这层薄膜上涂上反光的涂层,就称为抗反射涂层。

抗反射涂层通过抑制曝光光束减少不想要的光反射,从而避免了入射光波与反射光波之间的干涉,抑制了驻波的产生。

38. 陈述分辨率公式。影响光刻分辨率的三个参数是什么?计算扫描光刻机的分辨率,假设波长是248nm,NA是0.65,k是0.6。P358

答:在光刻中,分辨率定义为清晰分辨出硅片上间隔很近的特征图像的能力。分辨率对任何光学系统都是一个重要的参数,并且对光刻非常关键,因为我们需要在硅片上制造出极小的器件尺寸。分辨率公式R为:k 表示工艺因子,范围是0.6~0.8,λ为光源的波长,NA为曝光光学系统的数值孔径。因而,影响光刻分辨率的三个参数为波长、数值孔径和工艺因子。

39. 给出焦深和焦面的定义。写出计算焦深的公式。P359

答:焦点周围的一个范围,在这个范围内图像连续地保持清晰,这个范围被称为焦深,也称为景深。焦点是沿透镜中心出现最佳图像的点。焦深是焦点上面和下

面的范围,在该范围内能量相对为常量。焦深方程为( 在光刻中,对图像质量起关键作用的两个因素是分辨率和焦深。当数值孔径增加后,透镜就可以捕获更多的光学细节并且系统的分辨能力也增加了,相应地焦深就会减小。增加图像分辨率对亚微米特征尺寸是必须的,然而,焦深减小的结果是严重缩减了光学系统的工艺宽容度。所以在半导体制造中,既要获得更好的分辨率来形成关键尺寸的图形,又要保持合适的焦深。)

40. 刻蚀工艺有哪两种类型?简要描述各类刻蚀工艺。P405

答:两种基本刻蚀工艺:干法刻蚀和湿法腐蚀。

干法刻蚀是把硅片表面暴露于气态中产生的等离子体,等离子体通过光刻胶中开出的窗口,与硅片发生物理或化学反应,从而去掉曝露的表面材料。是亚微米尺寸下刻蚀器件的最主要方法。

湿法腐蚀,利用液体化学试剂(例如酸、碱、溶剂)以化学方式去除硅片表面的材料。一般适用于尺寸较大的情况。

41. 讨论刻蚀残留物,他们为什么产生以及要怎样去除?P410

答:刻蚀残留物是刻蚀以后留在硅片表面不想要的材料,主要覆盖在腔体内壁或被刻蚀图形的底部。

它的产生有多种原因,例如被刻蚀膜层中的污染物、选择了不合适的化学刻蚀剂、腔体中的污染物、膜层中不均匀的杂质分布。

刻蚀残留物是IC制造过程中的硅片污染源,并能在去除光刻胶过程中带来一些问题。为了去除刻蚀残留物,有时在刻蚀完成后会进行过刻蚀。在一些情况下,刻蚀残留物可以在去除光刻胶的过程中或用湿法化学腐蚀去掉。

42. 什么是刻蚀中的等离子体诱导损伤,以及这些损伤带来什么问题?P411 答:包含带能离子、电子和激发分子的等离子体可引起对硅片上的敏感器件引起等离子体诱导损伤。一种主要的损伤是非均匀等离子体在晶体管栅电极产生陷阱电荷,引起薄栅氧化硅的击穿。另一种器件损伤是能量离子对曝露的栅氧化层的轰击。在刻蚀过程中,这种损伤在刻蚀的时候能在栅电极的边缘发生。

43. 倒掺杂P466

答:在阱的同一区域内,先采用高能量、大剂量的杂质注入,然后采用低能量、浅结深和小掺杂剂量的注入。

倒掺杂技术使得源漏极在衬底深处的掺杂浓度较大,而表面掺杂浓度较小,这样既保证了沟道打开时有足够的载流子浓度形成电流,又使沟道关闭时,源漏间漏电流因为表面载流子浓度低而降低。

44. 简述离子注入P443

答:离子注入是通过高压离子轰击把杂质引入硅片的过程,杂质通过与硅片发生原子级的高能碰撞,才能被注入,是一种向硅衬底中引入可控制数量的杂质,以改变其电学性能的方法。它是一个物理过程,不发生化学反应。

45. 硅片制造的常用杂质. P442

答:受主杂质:硼、铝、镓、铟;

施主杂质:氮、磷、砷、锑。

46. 列举并解释扩散的三个步骤.P445

答:硅中固态杂质的热扩散需要三个步骤:预淀积、推进和激活。

预淀积:在预淀积过程中,硅片被送入高温扩散炉中,杂质原子从源区转移到扩散炉内。然后杂质仅进入了硅片中很薄的一层,且其表面浓度是恒定的。预淀积为整个扩散过程建立了浓度梯度。

推进:这是个高温过程,用以使淀积的杂质穿过硅晶体,在硅片中形成期望的节深。

激活:这时的温度要稍微升高一点,使杂质原子与晶格中的硅原子键合。这个过程激活了杂质原子,改变了硅的电导率。

47. 杂质的固溶极限P446

答:在一定的温度下,硅能吸收的杂质数量是一定的,称之为固溶度极限。

48. 什么是射程?解释能量与射程之间的关系。P450

答;离子射程指的是离子注入过程中,离子穿入硅片的总距离。注入机的能量越高,意味着杂质原子能穿入硅片越深,射程就越大。

49. 描述注入过程中的两种主要能量损失机制。P451

答:50注入离子在穿行硅片的过程中与硅原子发生碰撞,导致能量损失,并最终停止在某一深度。两个主要能量损失机制是电子阻碍和核阻碍。电子阻碍是杂质原子与靶材料的电子发生反应造成的。核阻碍是由于杂质原子与硅原子发生碰撞,造成硅原子的移位。

50. 离子束扩散和空间电荷中和P458

答:由于电荷之间的相互排斥,所以一束仅包含正电荷的离子束本身是不稳定的,容易造成离子束膨胀,即离子束的直径在行程过程中不断增大,最终导致注入不均匀。

离子束扩大可以用二次电子中和正离子的方法缓解,被称为空间电荷中和。

半导体材料课程教学大纲

半导体材料课程教学大纲 一、课程说明 (一)课程名称:半导体材料 所属专业:微电子科学与工程 课程性质:专业限选 学分: 3 (二)课程简介:本课程重点介绍第一代和第二代半导体材料硅、锗、砷化镓等的制备基本原理、制备工艺和材料特性,介绍第三代半导体材料氮化镓、碳化硅及其他半导体材料的性质及制备方法。 目标与任务:使学生掌握主要半导体材料的性质以及制备方法,了解半导体材料最新发展情况、为将来从事半导体材料科学、半导体器件制备等打下基础。 (三)先修课程要求:《固体物理学》、《半导体物理学》、《热力学统计物理》; 本课程中介绍半导体材料性质方面需要《固体物理学》、《半导体物理学》中晶体结构、能带理论等章节作为基础。同时介绍材料生长方面知识时需要《热力学统计物理》中关于自由能等方面的知识。 (四)教材:杨树人《半导体材料》 主要参考书:褚君浩、张玉龙《半导体材料技术》 陆大成《金属有机化合物气相外延基础及应用》 二、课程内容与安排 第一章半导体材料概述 第一节半导体材料发展历程 第二节半导体材料分类 第三节半导体材料制备方法综述 第二章硅和锗的制备 第一节硅和锗的物理化学性质 第二节高纯硅的制备 第三节锗的富集与提纯

第三章区熔提纯 第一节分凝现象与分凝系数 第二节区熔原理 第三节锗的区熔提纯 第四章晶体生长 第一节晶体生长理论基础 第二节熔体的晶体生长 第三节硅、锗单晶生长 第五章硅、锗晶体中的杂质和缺陷 第一节硅、锗晶体中杂质的性质 第二节硅、锗晶体的掺杂 第三节硅、锗单晶的位错 第四节硅单晶中的微缺陷 第六章硅外延生长 第一节硅的气相外延生长 第二节硅外延生长的缺陷及电阻率控制 第三节硅的异质外延 第七章化合物半导体的外延生长 第一节气相外延生长(VPE) 第二节金属有机物化学气相外延生长(MOCVD) 第三节分子束外延生长(MBE) 第四节其他外延生长技术 第八章化合物半导体材料(一):第二代半导体材料 第一节 GaAs、InP等III-V族化合物半导体材料的特性第二节 GaAs单晶的制备及应用 第三节 GaAs单晶中杂质控制及掺杂 第四节 InP、GaP等的制备及应用 第九章化合物半导体材料(二):第三代半导体材料 第一节氮化物半导体材料特性及应用 第二节氮化物半导体材料的外延生长 第三节碳化硅材料的特性及应用 第十章其他半导体材料

半导体封装技术向高端演进 (从DIP、SOP、QFP、PGA、BGA到CSP再到SIP)

半导体器件有许多封装形式,按封装的外形、尺寸、结构分类可分为引脚插入型、表面贴装型和高级封装三类。从DIP、SOP、QFP、PGA、BGA到CSP再到SIP,技术指标一代比一代先进。总体说来,半导体封装经历了三次重大革新:第一次是在上世纪80年代从引脚插入式封装到表面贴片封装,它极大地提高了印刷电路板上的组装密度;第二次是在上世纪90年代球型矩阵封装的出现,满足了市场对高引脚的需求,改善了半导体器件的性能;芯片级封装、系统封装等是现在第三次革新的产物,其目的就是将封装面积减到最小。 高级封装实现封装面积最小化 芯片级封装CSP。几年之前封装本体面积与芯片面积之比通常都是几倍到几十倍,但近几年来有些公司在BGA、TSOP的基础上加以改进而使得封装本体面积与芯片面积之比逐步减小到接近1的水平,所以就在原来的封装名称下冠以芯片级封装以用来区别以前的封装。就目前来看,人们对芯片级封装还没有一个统一的定义,有的公司将封装本体面积与芯片面积之比小于2的定为CSP,而有的公司将封装本体面积与芯片面积之比小于1.4或1.2的定为CSP。目前开发应用最为广泛的是FBGA和QFN等,主要用于内存和逻辑器件。就目前来看,CSP的引脚数还不可能太多,从几十到一百多。这种高密度、小巧、扁薄的封装非常适用于设计小巧的掌上型消费类电子装置。 CSP封装具有以下特点:解决了IC裸芯片不能进行交流参数测试和老化筛选的问题;封装面积缩小到BGA的1/4至1/10;延迟时间缩到极短;CSP封装的内存颗粒不仅可以通过PCB板散热,还可以从背

面散热,且散热效率良好。就封装形式而言,它属于已有封装形式的派生品,因此可直接按照现有封装形式分为四类:框架封装形式、硬质基板封装形式、软质基板封装形式和芯片级封装。 多芯片模块MCM。20世纪80年代初发源于美国,为解决单一芯片封装集成度低和功能不够完善的问题,把多个高集成度、高性能、高可靠性的芯片,在高密度多层互联基板上组成多种多样的电子模块系统,从而出现多芯片模块系统。它是把多块裸露的IC芯片安装在一块多层高密度互连衬底上,并组装在同一个封装中。它和CSP封装一样属于已有封装形式的派生品。 多芯片模块具有以下特点:封装密度更高,电性能更好,与等效的单芯片封装相比体积更小。如果采用传统的单个芯片封装的形式分别焊接在印刷电路板上,则芯片之间布线引起的信号传输延迟就显得非常严重,尤其是在高频电路中,而此封装最大的优点就是缩短芯片之间的布线长度,从而达到缩短延迟时间、易于实现模块高速化的目的。 WLCSP。此封装不同于传统的先切割晶圆,再组装测试的做法,而是先在整片晶圆上进行封装和测试,然后再切割。它有着更明显的优势:首先是工艺大大优化,晶圆直接进入封装工序,而传统工艺在封装之前还要对晶圆进行切割、分类;所有集成电路一次封装,刻印工作直接在晶圆上进行,设备测试一次完成,有别于传统组装工艺;生产周期和成本大幅下降,芯片所需引脚数减少,提高了集成度;引脚产生的电磁干扰几乎被消除,采用此封装的内存可以支持到800MHz的频

半导体材料的发展现状与趋势

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs 等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构

的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,

半导体工艺及芯片制造技术问题答案(全)

常用术语翻译 active region 有源区 2.active ponent有源器件 3.Anneal退火 4.atmospheric pressure CVD (APCVD) 常压化学气相淀积 5.BEOL(生产线)后端工序 6.BiCMOS双极CMOS 7.bonding wire 焊线,引线 8.BPSG 硼磷硅玻璃 9.channel length沟道长度 10.chemical vapor deposition (CVD) 化学气相淀积 11.chemical mechanical planarization (CMP)化学机械平坦化 12.damascene 大马士革工艺 13.deposition淀积 14.diffusion 扩散 15.dopant concentration掺杂浓度 16.dry oxidation 干法氧化 17.epitaxial layer 外延层 18.etch rate 刻蚀速率 19.fabrication制造 20.gate oxide 栅氧化硅 21.IC reliability 集成电路可靠性 22.interlayer dielectric 层间介质(ILD) 23.ion implanter 离子注入机 24.magnetron sputtering 磁控溅射 25.metalorganic CVD(MOCVD)金属有机化学气相淀积 26.pc board 印刷电路板 27.plasma enhanced CVD(PECVD) 等离子体增强CVD 28.polish 抛光 29.RF sputtering 射频溅射 30.silicon on insulator绝缘体上硅(SOI)

半导体集成电路封装技术试题汇总(李可为版)

半导体集成电路封装技术试题汇总 第一章集成电路芯片封装技术 1. (P1)封装概念:狭义:集成电路芯片封装是利用(膜技术)及(微细加工技术),将芯片及其他要素在框架或基板上布置、粘贴固定及连接,引出接线端子并通过可塑性绝缘介质灌封固定,构成整体结构的工艺。 广义:将封装体与基板连接固定,装配成完整的系统或电子设备,并确保整个系统综合性能的工程。 2.集成电路封装的目的:在于保护芯片不受或者少受外界环境的影响,并为之提供一个良好的工作条件,以使集成电路具有稳定、正常的功能。 3.芯片封装所实现的功能:①传递电能,②传递电路信号,③提供散热途径,④结构保护与支持。 4.在选择具体的封装形式时主要考虑四种主要设计参数:性能,尺寸,重量,可靠性和成本目标。 5.封装工程的技术的技术层次? 第一层次,又称为芯片层次的封装,是指把集成电路芯片与封装基板或引脚架之间的粘贴固定电路连线与封装保护的工艺,使之成为易于取放输送,并可与下一层次的组装进行连接的模块元件。第二层次,将数个第一层次完成的封装与其他电子元器件组成一个电子卡的工艺。第三层次,将数个第二层次完成的封装组成的电路卡组合成在一个主电路版上使之成为一个部件或子系统的工艺。第四层次,将数个子系统组装成为一个完整电子厂品的工艺过程。 6.封装的分类?

按照封装中组合集成电路芯片的数目,芯片封装可分为:单芯片封装与多芯片封装两大类,按照密封的材料区分,可分为高分子材料和陶瓷为主的种类,按照器件与电路板互连方式,封装可区分为引脚插入型和表面贴装型两大类。依据引脚分布形态区分,封装元器件有单边引脚,双边引脚,四边引脚,底部引脚四种。常见的单边引脚有单列式封装与交叉引脚式封装,双边引脚元器件有双列式封装小型化封装,四边引脚有四边扁平封装,底部引脚有金属罐式与点阵列式封装。 7.芯片封装所使用的材料有金属陶瓷玻璃高分子 8.集成电路的发展主要表现在以下几个方面? 1芯片尺寸变得越来越大2工作频率越来越高3发热量日趋增大4引脚越来越多 对封装的要求:1小型化2适应高发热3集成度提高,同时适应大芯片要求4高密度化5适应多引脚6适应高温环境7适应高可靠性 9.有关名词: SIP :单列式封装 SQP:小型化封装 MCP:金属鑵式封装 DIP:双列式封装 CSP:芯片尺寸封装 QFP:四边扁平封装 PGA:点阵式封装 BGA:球栅阵列式封装 LCCC:无引线陶瓷芯片载体 第二章封装工艺流程 1.封装工艺流程一般可以分为两个部分,用塑料封装之前的工艺步骤成为前段操作,在成型之后的工艺步骤成为后段操作

半导体封装技术

随着半导体技术的发展,摩尔定律接近失效的边缘。产业链上IC 设计、 晶圆制造、封装测试各个环节的难度不断加大,技术门槛也越来越高,资 本投入越来越大。由单个企业覆盖整个产业链工艺的难度显著加大。半导 体产业链向专业化、精细化分工发展是一个必然的大趋势。 全球半导体产业整体成长放缓,产业结构发生调整,产能在区域上重新分 配。半导体产业发达地区和不发达地区将会根据自身的优势在半导体产 业链中有不同侧重地发展。封装产能转移将持续,外包封装测试行业的增 速有望超越全行业。 芯片设计行业的技术壁垒和晶圆制造行业的资金壁垒决定了,在现阶段, 封装测试行业将是中国半导体产业发展的重点。 在传统封装工艺中,黄金成本占比最高。目前采用铜丝替代金丝是一个大 的趋势。用铜丝引线键合的芯片产品出货占比的上升有助于提高封装企 业的盈利能力。 半导体封装的发展朝着小型化和多I/O 化的大趋势方向发展。具体的技术 发展包括多I/O 引脚封装的BGA 和小尺寸封装的CSP 等。WLSCP 和 TSV 等新技术有望推动给芯片封装测试带来革命性的进步。 中国本土的封装测试企业各有特点:通富微电最直接享受全球产能转移; 长电科技在技术上稳步发展、巩固其行业龙头地位;华天科技依托地域优 势享受最高毛利率的同时通过投资实现技术的飞跃。 中国本土给封装企业做配套的上游企业,如康强电子和新华锦,都有望在 封装行业升级换代的过程中提升自己的行业地位。 风险提示:全球领先的封装测试企业在中国大陆直接投资,这将加大行 业内的竞争。同时用工成本的上升将直接影响半导体封装企业的盈利能 力。 半导体封装产能持续转移 半导体封装环节至关重要 半导体芯片的大体制备流程包括芯片设计->圆晶制造->封装测试。所谓半导体 ?封装(Packaging)?,是半导体芯片生产过程的最后一道工序,是将集成电路用绝缘的材料打包的技术。封装工艺主要有以下功能:功率分配(电源分配)、信号分配、散热通道、隔离保护和机械支持等。封装工艺对于芯片来说是必须的,也是至关重要的一个环节。因为芯片必须与外界隔离,以防止空气中的杂质对芯片电路的腐蚀而造成电气性能的下降。另外,封装后的芯片也更便于安装和运输。可以说封装是半导体集成电路与电路板的链接桥梁,封装技术的好坏还直接影响到芯片自身的性能和PCB 的设计与制造, 产业分工精细化 随着半导体产业的发展,?摩尔?定律持续地发酵,IC 芯片集成度以几何级数 上升,线宽大幅下降。以INTEL CPU 芯片为例,线宽已经由1978 年推出的8086 的3 μm 发展到2010 年推出Core i 7 的45nm , 对应的晶体管集成度由2.9 万只发展到7.8 亿只。产业链上IC 设计、晶圆制造、封装测试各个环节的难度不断加大,技术门槛也越来越高。同时随着技术水平的飞升和规模的扩大,产业链中的多个环节对资本投入的要求也大幅提高。由单个企业做完覆盖整个产业链工艺的难度越来越大。在这样的大环境下,产业链向专业化、精细化分工发展是一个必然的大趋势。 目前全球的半导体产业链大致可以归纳为几大类参与者:IDM 集成设备制造商;

半导体材料的发展简史

半导体材料的发展简史 半导体的发现实际上可以追溯到很久以前,1833年,英国巴拉迪最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。不久,1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。半导体的这四个效应,(jianxia霍尔效应的余绩──四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。 半导体材料是半导体工业的基础,它的发展对半导体工业的发展具有极大的影响。如果按化学成分及内部结构,半导体材料大致可以分为以下几类:一是元素半导体材料,包括锗(Ge)、硅(Si)、硒(Se)、硼(B)等。20世纪50年代,锗在半导体工业中占主导地位,但锗半导体器件的耐高温和抗辐射性能较差,到20世纪60年代后期逐渐被硅材料取代。用硅制造的半导体器件,耐高温和抗辐射性能较好,特别适宜制作大功率器件。因此,硅已成为应用最多的一种半导体材料,目前的集成电路大多数是用硅材料制造的。二是化合物半导体,它是由两种或两种以上的元素化合而成的半导体材料。它的种类很多,重要的有砷化镓(GaAs)、磷化铟(InP)、锑化铟(InSb)、氮化镓(GaN)、碳化硅(SiC)、硫化镉(CdS)等。其中砷化镓是除硅之外研究最深入、应用最广泛的半导体材料。由于砷化镓是一种直接带隙的半导体材料,并且具有禁带宽度宽、电子迁移率高的优点,因而砷化镓材料不仅可直接研制光电子器件,如发光二极管、可见光激光器、近红外激光器、量子阱大功率激光器、红外探测器和高效太阳能电池等,而且在微电子方面,以半绝缘砷化镓(Si-GaAs)为基体,用直接离子注入自对准平面工艺研制的砷化镓高速数字电路、微波单片电路、光电集成电路、低噪声及大功率场效应晶体管,具有速度快、频率高、低功耗和抗辐射等特点。碳化硅由于其抗辐射能力强、耐高温和化学稳定性好,在航天技术领域有着广泛的应用。氮化镓材料是近十年才成为研究热点,它是一种宽禁带半导体材料(Eg=3.4eV),具有纤锌矿结构的氮化镓属于直接跃迁型

(完整版)半导体工艺试卷及答案

杭州电子科技大学研究生考试卷(B卷)

1、什么是CMOS器件的闩锁效应?描述三种阻止闩锁效应的制造技术。(12分) 答:闩锁效应就是指CMOS器件所固有的寄生双极晶体管(又称寄生可控硅,简称SCR)被触发导通,在电源和地之间形成低阻抗大电流的通路,导致器件无法正常工作,甚至烧毁器件的现象。这种寄生双极晶体管存在CMOS器件内的各个部分,包括输入端、输出端、内部反相器等。当外来干扰噪声使某个寄生晶体管被触发导通时,就可能诱发闩锁,这种外来干扰噪声常常是随机的,如电源的浪涌脉冲、静电放电、辐射等。闩锁效应往往发生在芯片中某一局部区域,有两种情况:一种是闩锁只发生在外围与输入、输出有关的地方,另一种是闩锁可能发生在芯片的任何地方,在使用中前一种情况遇到较多。 2、为什么要用区熔法生长硅晶体?比较FZ和CZ优缺点。(10分) 答:(1)原因:因为区熔法可以得到低至1011cm-1的载流子浓度。区熔生长技术的基本特点是样品的熔化部分是完全由固体部分支撑的,不需要坩埚。柱状的高纯多晶材料固定于卡盘,一个金属线圈沿多晶长度方向缓慢移动并通过柱状多晶,在金属线圈中通过高功率的射频电流,射频功率技法的电磁场将在多晶柱中引起涡流,产生焦耳热,通过调整线圈功率,可以使得多晶柱紧邻线圈的部分熔化,线圈移过后,熔料在结晶为为单晶。另一种使晶柱局部熔化的方法是使用聚焦电子束。整个区熔生长装置可置于真空系统中,或者有保护气氛的封闭腔室内 (2)CZ和FZ区别:CZ是直拉法,就是首先把多晶硅置于坩埚内加热熔化,然后采用小的结晶“种子”——籽晶,再慢慢向上提升、结晶,获得大的单晶锭。 (3)CZ和FZ优缺点比较:FZ是水平区域熔化生长法,就是水平放置、采用感应线圈加热、并进行晶体生长的技术。直拉法在Si单晶的制备中更为常用,占75%以上。直拉法制备Si单晶的优点是:1)成本低;2)能制备更大的圆片尺寸,6英吋(150mm)及以上的Si单晶制备均采用直拉法,目前直拉法已制备出400mm(16英吋)的商用Si单晶;3)制备过程中的剩余原材料可重复使用;4)直拉法制备的Si单晶位错密度低,0~104cm-2。直拉法制备Si单晶的主要缺点是,由于使用坩埚,Si单晶的纯度不如区熔法。区熔法制备Si单晶的主要优点是,由于不使用坩锅,可制备高纯度的硅单晶,电阻率高达2000Ω-mm,因此区熔法制备的Si单晶主要用于功率器件及电路。区熔法制备Si单晶的缺点是:1)成本高; 3、什么是LOCOS和STI?为什么在高级IC工艺中,STI取代了LOCOS?(12分) 答:(1)LOCOS:即“硅的局部氧化”技术(Local Oxidation of Silicon)CMOS工艺最常用的隔离技术就是LOCOS(硅的选择氧化)工艺,它以氮化硅为掩膜实现了硅的选择氧化,在这种工艺中,除了形成有源晶体管的区域以外,在其它所有重掺杂硅区上均生长一层厚的氧化层,称为隔离或场氧化层。-常规的LOCOS工艺由于有源区方向的场氧侵蚀(SiN边缘形成类似鸟嘴的结构,称为“鸟喙效应”bird beak)和场注入的横向扩散,使LOCOS工艺受到很大的限制。STI:浅沟槽隔离(STI)是用于隔绝活动区域的制造方法,它会使实际电流不同于模拟结果。具体情况取决于电晶体位置。 (2)取代原因:LOCOS结构影响了有源区长度,为了减小鸟嘴,出现了改进的LOCOS 结构,PBL和PELOX结构。PBL(poly buffer LOCOS多晶衬垫LOCOS)结构是在掩蔽氧化层的SiN和衬底SiO2之间加入一层薄多晶,这样减小了场氧生长时SiN薄膜的应力,也减小了鸟嘴。PELOX(poly encapsulated Locol Oxidation多晶镶嵌LOCOS)结构是在SiN层的顶部和侧部嵌如多晶或非晶薄膜,然后在生长场氧,它同样能减小鸟嘴。因为两种结构增加了工艺的复杂性,故LOCOS一般用于0.5~0.35μm的工艺中。为了更有效的隔离器件的需要,尤其是对于DRAM器件而言;对晶

半导体纳米材料的制备方法

摘要:讨论了当前国内外主要的几种半导体纳米材料的制备工艺技术,包括物理法和化学法两大类下的几种,机械球磨法、磁控溅射法、静电纺丝法、溶胶凝胶法、微乳液法、模板法等,并分析了以上几种纳米材料制备技术的优缺点关键词:半导体纳米粒子性质;半导体纳米材料;溶胶一凝胶法;机械球磨法;磁控溅射法;静电纺丝法;微乳液法;模板法;金属有机物化学气相淀积引言 半导体材料(semiconductormaterial)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)。相对于导体材料而言,半导体中的电子动能较低,有较长的德布罗意波长,对空间限域比较敏感。半导体材料空间中某一方向的尺寸限制与电子的德布罗意波长可比拟时,电子的运动被量子化地限制在离散的本征态,从而失去一个空间自由度或者说减少了一维,通常适用体材料的电子的粒子行为在此材料中不再适用。这种自然界不存在,通过能带工程人工制造的新型功能材料叫做半导体纳米材料。现已知道,半导体纳米粒子结构上的特点(原子畴尺寸小于100nm,大比例原子处于晶界环境,各畴之间存在相互作用等)是导致半导体纳米材料具有特殊性质的根本原因。半导体纳米材料独特的质使其将在未来的各种功能器件中发挥重要作用,半导体纳米材料的制备是目前研究的热点之一。本文讨论了半导体纳米材料的性质,综述了几种化学法制备半导体纳米材料的原理和特点。

2.半导体纳米粒子的基本性质 2.1表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 随着纳米材料粒径的减小,表面原子数迅速增加。例如当粒径为10nm 时,表面原子数为完整晶粒原子总数的20%;而粒径为1nm时,其表面原子百分数增大到99%;此时组成该纳米晶粒的所有约30个原子几乎全部分布在表面。由于表面原子周围缺少相邻的原子:有许多悬空键,具有不饱和性,易与其他原子相结合而稳定下来,故表现出很高的化学活性。随着粒径的减小,纳米材料的表面积、表面能及表面结合能都迅速增大。 超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2*10-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。 因此想要获得发光效率高的纳米材料,采用适当的方法合成表面完好的半导体材料很重要。 2.2量子尺寸效应 量子尺寸效应--是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。当半导体材料从体相减小到某一临界尺寸(如与电子的德布罗意波长、电子的非弹性散射平均自由程和体相激子的玻尔半径相等)以后,其中的电子、空穴和激子等载流子的运动将受到强量子封

半导体封装前沿技术

最新封装技术与发展 芯片制作流程 封装大致经过了如下发展进程: 结构方面:DIP 封装(70 年代)->SMT 工艺(80 年代LCCC/PLCC/SOP/QFP)->BGA 封装(90 年代)->面向未来的工艺(CSP/MCM) 材料方面:金属、陶瓷->陶瓷、塑料->塑料; 引脚形状:长引线直插->短引线或无引线贴装->球状凸点; 装配方式:通孔插装->表面组装->直接安装 封装技术各种类型 一.TO 晶体管外形封装 TO (Transistor Out-line)的中文意思是“晶体管外形”。这是早期的封装规格,例如TO-92,TO-92L,TO-220,TO-252 等等都是插入式封装设计。近年来表面贴装市场需求量增大,TO 封装也进展到表面贴装式封装。 TO252 和TO263 就是表面贴装封装。其中TO-252 又称之为D-PAK,TO-263 又称之为D2PAK。D-PAK 封装的MOSFET 有3 个电极,栅极(G)、漏极(D)、源极(S)。其中漏极(D)的引脚被剪断不用,而是使用背面的散热板作漏极(D),直接焊接在PCB 上,一方面用于输出大电流,一方面通过PCB 散热。所以PCB 的D-PAK 焊盘有三处,漏极(D)焊盘较大。

二.DIP 双列直插式封装 DIP(DualIn-line Package)是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100 个。封装材料有塑料和陶瓷两种。采用DIP 封装的CPU 芯片有两排引脚,使用时,需要插入到具有DIP 结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP 封装结构形式有:多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP (含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式)等。 DIP 封装具有以下特点: 1.适合在PCB (印刷电路板)上穿孔焊接,操作方便。 2. 比TO 型封装易于对PCB 布线。 3.芯片面积与封装面积之间的比值较大,故体积也较大。以采用40 根I/O 引脚塑料双列直插式封装(PDIP)的CPU 为例,其芯片面积/封装面积=(3×3)/(15.24×50)=1:86,离1 相差很远。(PS:衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1 越好。如果封装尺寸远比芯片大,说明封装效率很低,占去了很多有效安装面积。) 用途:DIP 是最普及的插装型封装,应用范围包括标准逻辑IC,存贮器LSI,微机电路等。Intel 公司早期CPU,如8086、80286 就采用这种封装形式,缓存(Cache )和早期的内存芯片也是这种封装形式。 三.QFP 方型扁平式封装 QFP(Plastic Quad Flat Pockage)技术实现的CPU 芯片引脚之间距离很小,管脚很细,一般大规模或超大规模集成电路采用这种封装形式,其引脚数一般都在100 以上。基材有陶瓷、金属和塑料三种。引脚中心距有1.0mm、0.8mm、0.65mm、0.5mm、0.4mm、0.3mm 等多种规格。 其特点是: 1.用SMT 表面安装技术在PCB 上安装布线。 2.封装外形尺寸小,寄生参数减小,适合高频应用。以0.5mm 焊区中心距、208 根I/O 引脚QFP 封装的CPU 为例,如果外形尺寸为28mm×28mm,芯片尺寸为10mm×10mm,则芯片面积/封装面积=(10×10)/(28×28)=1:7.8,由此可见QFP 封装比DIP 封装的尺寸大大减小。 3.封装CPU 操作方便、可靠性高。 QFP 的缺点是:当引脚中心距小于0.65mm 时,引脚容易弯曲。为了防止引脚变形,现已出现了几种改进的QFP 品种。如封装的四个角带有树指缓冲垫的BQFP(见右图);带树脂保护环覆盖引脚前端的GQFP;在封装本体里设置测试凸点、放在防止引脚变形的专用夹具里就可进行测试的TPQFP 。 用途:QFP 不仅用于微处理器(Intel 公司的80386 处理器就采用塑料四边引出扁平封装),门陈列等数字逻辑LSI 电路,而且也用于VTR 信号处理、音响信号处理等模拟LSI 电路。四.SOP 小尺寸封装 SOP 器件又称为SOIC(Small Outline Integrated Circuit),是DIP 的缩小形式,引线中心距为1.27mm,材料有塑料和陶瓷两种。SOP 也叫SOL 和DFP。SOP 封装标准有SOP-8、SOP-16、SOP-20、SOP-28 等等,SOP 后面的数字表示引脚数,业界往往把“P”省略,叫SO (Small Out-Line )。还派生出SOJ (J 型引脚小外形封装)、TSOP (薄小外形封装)、VSOP (甚小外形封装)、SSOP (缩小型SOP )、TSSOP (薄的缩小型SOP )及SOT (小外形晶

半导体工艺(精)

半导体的生产工艺流程 -------------------------------------------------------------------------------- 一、洁净室 一般的机械加工是不需要洁净室(clean room)的,因为加工分辨率在数十微米以上,远比日常环境的微尘颗粒为大。但进入半导体组件或微细加工的世界,空间单位都是以微米计算,因此微尘颗粒沾附在制作半导体组件的晶圆上,便有可能影响到其上精密导线布局的样式,造成电性短路或断路的严重后果。 为此,所有半导体制程设备,都必须安置在隔绝粉尘进入的密闭空间中,这就是洁净室的来由。洁净室的洁净等级,有一公认的标准,以class 10为例,意谓在单位立方英呎的洁净室空间内,平均只有粒径0.5微米以上的粉尘10粒。所以class后头数字越小,洁净度越佳,当然其造价也越昂贵。 为营造洁净室的环境,有专业的建造厂家,及其相关的技术与使用管理办法如下: 1、内部要保持大于一大气压的环境,以确保粉尘只出不进。所以需要大型鼓风机,将经滤网的空气源源不绝地打入洁净室中。 2、为保持温度与湿度的恒定,大型空调设备须搭配于前述之鼓风加压系统中。换言之,鼓风机加压多久,冷气空调也开多久。 3、所有气流方向均由上往下为主,尽量减少突兀之室内空间设计或机台摆放调配,使粉尘在洁净室内回旋停滞的机会与时间减至最低程度。 4、所有建材均以不易产生静电吸附的材质为主。 5、所有人事物进出,都必须经过空气吹浴(air shower) 的程序,将表面粉尘先行去除。 6、人体及衣物的毛屑是一项主要粉尘来源,为此务必严格要求进出使用人员穿戴无尘衣,除了眼睛部位外,均需与外界隔绝接触(在次微米制程技术的工厂内,工作人员几乎穿戴得像航天员一样。) 当然,化妆是在禁绝之内,铅笔等也禁止使用。 7、除了空气外,水的使用也只能限用去离子水(DI water, de-ionized water)。一则防止水中粉粒污染晶圆,二则防止水中重金属离子,如钾、钠离子污染金氧半(MOS) 晶体管结构之带电载子信道(carrier channel),影响半导体组件的工作特性。去离子水以电阻率(resistivity) 来定义好坏,一般要求至17.5MΩ-cm以上才算合格;为此需动用多重离子交换树脂、RO逆渗透、与UV紫外线杀菌等重重关卡,才能放行使用。由于去离子水是最佳的溶剂与清洁剂,其在半导体工业之使用量极为惊人! 8、洁净室所有用得到的气源,包括吹干晶圆及机台空压所需要的,都得使用氮气(98%),吹干晶圆的氮气甚至要求99.8%以上的高纯氮!以上八点说明是最基本的要求,另还有污水处理、废气排放的环保问题,再再需要大笔大笔的建造与维护费用! 二、晶圆制作 硅晶圆(silicon wafer) 是一切集成电路芯片的制作母材。既然说到晶体,显然是经过纯炼与结晶的程序。目前晶体化的制程,大多是采「柴可拉斯基」(Czycrasky) 拉晶法(CZ 法)。拉晶时,将特定晶向(orientation) 的晶种(seed),浸入过饱和的纯硅熔汤(Melt) 中,并同时旋转拉出,硅原子便依照晶种晶向,乖乖地一层层成长上去,而得出所谓的晶棒(ingot)。晶棒的阻值如果太低,代表其中导电杂质(impurity dopant) 太多,还需经过FZ悬浮区熔法法(floating-zone) 的再结晶(re-crystallization),将杂质逐出,提高纯度与阻值。

半导体封装技术大全

半导体封装技术大全 1、BGA(ball grid array) 球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,是多引脚LSI 用的一种封装。封装本体也可做得比QFP(四侧引脚扁平封装)小。例如,引脚中心距为1.5mm 的360 引脚BGA仅为31mm 见方;而引脚中心距为0.5mm 的30 4 引脚QFP 为40mm 见方。而且BGA不用担心QFP 那样的引脚变形问题。该封装是美国Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有 可能在个人计算机中普及。最初,BGA的引脚(凸点)中心距为1.5mm,引脚数为225。现在也有一些LSI 厂家正在开发500 引脚的BGA。BGA的问题是回流焊后的外观检查。现在尚不清楚是否有效的外观检查方法。有的认为,由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。美国Motorola 公司把用模压树脂密封的封装称为OMPAC,而把灌封方法密封的封装称为 GPAC(见OMPAC 和GPAC)。 2、BQFP(quad flat package with bumper) 带缓冲垫的四侧引脚扁平封装。QFP 封装之一,在封装本体的四个角设置突起(缓冲垫) 以防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器和ASIC 等电路中采用此封装。引脚中心距0.635mm,引脚数从84 到196 左右(见QFP)。 3、碰焊PGA(butt joint pin grid array) 表面贴装型PGA 的别称(见表面贴装型PGA)。 4、C-(ceramic) 表示陶瓷封装的记号。例如,CDIP 表示的是陶瓷DIP。是在实际中经常使用的记号。 5、Cerdip 用玻璃密封的陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。带有玻璃窗口的Cerdip 用于紫外线擦除型EP ROM 以及内部带有EPROM 的微机电路等。引脚中心距2.54mm,引脚数从8 到42。在日本,此封装表示为DIP-G(G 即玻璃密封的意思)。 6、Cerquad 表面贴装型封装之一,即用下密封的陶瓷QFP,用于封装DSP 等的逻辑LSI 电路。带有窗口的Cerquad 用于封装EPROM 电路。散热性比塑料QFP 好,在自然空冷条件下可容许1. 5~ 2W 的功率。但封装成本比塑料QFP 高3~5 倍。引脚中心距有1.27mm、0.8m m、0.65mm、 0.5mm、 0.4mm 等多种规格。引脚数从32 到368。 7、CLCC(ceramic leaded chip carrier) 带引脚的陶瓷芯片载体,表面贴装型封装之一,引脚从封装的四个侧面引出,呈丁字形。带有窗口的用于封装紫外线擦除型EPRO M 以及带有EPROM 的微机电路等。此封装也称为 QFJ、QFJ-G(见QFJ)。 8、COB(chip on board) 板上芯片封装,是裸芯片贴装技术之一,半导体芯片交接贴装在印刷线路板上,芯片与基板的电气连接用引线缝合方法实现,芯片与基板的电气连接用引线缝合方法实现,并用树脂覆盖以确保可靠性。虽然COB 是最简单的裸芯片贴装技术,但它的封装密度远不如TAB 和倒片焊技术。 9、DFP(dual flat package) 双侧引脚扁平封装。是SOP 的别称(见SOP)。以前曾有此称法,现在已基本上不用。 10、DIC(dual in-line ceramic package) 陶瓷DIP(含玻璃密封)的别称(见DIP). 11、DIL(dual in-line) DIP 的别称(见DIP)。欧洲半导体厂家多用此名称。 12、DIP(dual in-line package) 双列直插式封装。插装型封装之一,引脚从封装两侧引出,封装材料有塑料和陶瓷两种。 DIP 是最普及的插装型封装,应用范围包括标准逻辑IC,存贮器LSI,微机电路等。引脚中心距2.54mm,引脚数从6 到64。封装宽度通常为15.2mm。有的把宽度为7.52m m 和10.16mm 的封装分别称为skinny DIP 和slim DIP(窄体型DIP)。但多数情况下并不加区分,只简单地统称为DIP。另外,用低熔点玻璃密封的陶瓷DIP 也称为cerdip(见cerdip)。 13、DSO(dual small out-lint) 双侧引脚小外形封装。SOP 的别称(见SOP)。部分半导体厂家采用此名称。 14、DICP(dual tape carrier package) 双侧引脚带载封装。TCP(带载封装)之一。引脚制作在绝缘带上并从封装两侧引出。由于利用的是TAB(自动带载焊接)技术,封装外形非常薄。常用于液晶显示驱动LSI,但多数为定制品。另外,0.5mm 厚的存储器LSI 簿形封装正处于开发阶段。在日本,按照E

半导体工艺要点(精)

半导体工艺要点 1、什么是集成电路 通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路互连,“集成”在一块半导体单晶片(如硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能 2、集成电路设计与制造的主要流程框架 设计-掩模板-芯片制造-芯片功能检测-封装-测试 3、集成电路发展的特点 特征尺寸越来越小 硅圆片尺寸越来越大 芯片集成度越来越大 时钟速度越来越高 电源电压/单位功耗越来越低 布线层数/I/0引脚越来越多 4、摩尔定律 集成电路芯片的集成度每三年提高4倍,而加工特征尺寸(多晶硅栅长)倍,这就是 摩尔定 5、集成电路分类 6、半导体公司 中芯国际集成电路制造有限公司(SMIC) 上海华虹(集团)有限公司 上海先进半导体制造有限公司 台积电(上海)有限公司 上海宏力半导体制造有限公司TI 美国德州仪器 7、直拉法生长单晶硅 直拉法法是在盛有熔硅或锗的坩埚内,引入籽晶作为非均匀晶核,然后控制温度场,将籽晶旋转并缓慢向上提拉,晶体便在籽晶下按籽晶的方向长大。

1.籽晶熔接: 加大加热功率,使多晶硅完全熔化,并挥发一定时间后,将籽晶下降与液面接近,使籽晶预热几分钟,俗称“烤晶”,以除去表面挥发性杂质同时可减少热冲击 2.引晶和缩颈:当温度稳定时,可将籽晶与熔体接触。此时要控制好温度,当籽晶与熔体液面接触,浸润良好时,可开始缓慢提拉,随着籽晶上升硅在籽晶头部结晶,这一步骤叫“引晶”,又称“下种”。“缩颈”是指在引晶后略为降低温度,提高拉速,拉一段直径比籽晶细的部分。其目的是排除接触不良引起的多晶和尽量消除籽晶内原有位错的延伸。颈一般要长于20mm 3.放肩:缩颈工艺完成后,略降低温度,让晶体逐渐长大到所需的直径为止。这称为“放肩”。在放肩时可判别晶体是否是单晶,否则要将其熔掉重新引晶。单晶体外形上的特征—棱的出现可帮助我们判别,<111>方向应有对称三条棱,<100>方向有对称的四条棱。 4.等径生长:当晶体直径到达所需尺寸后,提高拉速,使晶体直径不再增大,称为收肩。收肩后保持晶体直径不变,就是等径生长。此时要严格控制温度和拉速不变。 5.收晶:晶体生长所需长度后,拉速不变,升高熔体温度或熔体温度不变,加快拉速,使晶体脱离熔体液面。 8、直拉法的两个主要参数:拉伸速率,晶体旋转速率悬浮区熔法 倒角是使晶圆边缘圆滑的机械工艺 9、外延层的作用 EpitaxyPurpose 1、Barrier layer for bipolar transistor 2、Reduce collector resistance while keep high breakdown voltage. 3、Improve device performance for CMOS and DRAM because much lower oxygen, 4、carbon concentration than the wafer crystal Epitaxy application,bipolar transistor Epitaxy application, CMOS

ZnO半导体材料的制备与合成..

ZnO半导体材料的制备与合成 (安徽工业大学,材料科学与工程) 摘要: 氧化锌半导体材料以其优良的光电性能在光电子、传感器、透明导体等领域得到广泛应用。综述了氧化锌半导体功能材料在敏感材料、压电材料、导电薄膜等方面的性能、应用及薄膜的制备技术, 相对于三维块体材料, 氧化锌薄膜可以适应大规模集成电路的需要, 更具发展前途和研究价值。氧化锌薄膜的性质随掺杂组分和制备条件的不同而表现出很大的差异性。 1.关键词: 氧化锌; 半导体材料; 薄膜; 光电性能 Abstract: Znicoxide has a wide range of technological applications as semiconductive material including photoelectron, sense organ, tansparent conductor and others. This paper concentrates on the properties and applications o f ZnO in sensitive ma terials, piezoe lectric m aterials and conductive film, also on techniques which the thin film was prepared by. Contrasting with monolith materia ls, the ZnO thinfilm can meet the demands of molectron and possesses a grea tdevelopment futureand resea rchvalue. The ZnO thin film can be doped with a variety of ions and prepared with m any techniques to exhibit different properties. K ey words: ZnO; semiconductive mteria ;l thin film; optica l and electrical property. 1稀磁性半导体 1.1从磁性角度出发,半导体材料可以划分为非磁半导体(nonmagneticsemiconductor)、稀磁半导体(diluted magnetic semiconductor,DMSs)和磁半导体(magnetic semiconductor)三种类型。磁性半导体集半导电性和磁性于一体,可以同时利用电子的电荷和自旋,兼备常规半导体电子学和磁电子学的优越性,被认为是21世纪最重要的电子学材料。在自旋电子领域展现出非常广阔的应用前景,引起了人们对其研究的浓厚兴趣。 1.2稀磁半导体定义及研究意义 稀磁半导体材料按照磁性元素的种类可以分为磁性过渡金属元素基稀磁半导体和磁性稀土金属元素基稀磁半导体;按照半导体材料来分可以分为化合物半导体基稀磁半导体和单质半导体基稀磁半导体。目前,人们主要从事的是II一Ⅵ和III.V族化合物基的稀磁半导体的研究,半导体基一般有InP、bias、GaAs、GaSb、GaN、GaP、ZnO、ZnS、ZnSe、ZnTe等,磁性元素一般为过渡金属元素Mn、Fe、Co、Ni、Cr等。然而,由于大多过渡金属元素在IⅡ.V族半导体材料中的溶解度很低,导致III.V族基的DMS材料的自旋注入效率很低,难以获得大的磁性,实际应用价值不大,相比之下,ZnO在这方面具有较大的优势。Jin等人的实验证明,过渡金属元素在ZnO中具有较高的溶解度,其中Co、Mn的溶解度分别达到50mol%和30mol%,此外,在ZnO中很容易实现重电子掺杂(>1021锄。

相关主题
文本预览
相关文档 最新文档