当前位置:文档之家› 微积分基本教程

微积分基本教程

微积分基本教程
微积分基本教程

微积分教程

微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

微积分的基本介绍

微积分学基本定理指出,求不定积分与求导函数互为逆运算[把上下限代入不定积分即得到积分值,而微分则是导数值与自变量增量的乘积],这也是两种理论被统一成微积分学的原因。我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。

微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,但是理论基础是不牢固的。因为“无限”的概念是无法用已经拥有的代数公式进行演算,所以,直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。

学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。所以,必须要利用代数处理代表无限的量,这时就精心构造了“极限”的概念。在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,相反引入了一个过程任意小量。就是说,除的数不是零,所以有意义,同时,这个小量可以取任意小,只要满足在德尔塔区间,都小于该任意小量,我们就说他的极限为该数——你可以认为这是投机取巧,但是,他的实用性证明,这样的定义还算比较完善,给出了正确推论的可能性。这个概念是成功的。

微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。

客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。

由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。

微积分的本质

【参考文献】刘里鹏.《从割圆术走向无穷小——揭秘微积分》,长沙:湖南科学技术出版社,2009

1.用文字表述:

增量无限趋近于零,割线无限趋近于切线,曲线无限趋近于直线,从而以直代曲,以线性化的方法解决非线性问题,这就是微积分理论的精髓所在。

2.用式子表示:

微积分的基本方法

微积分的基本原理告诉我们微分和积分是互逆的运算,微积分的精髓告诉我们我们之所以可以解决很多非线性问题,本质的原因在于我们化曲为直了,现实生活中我们会遇到很多非线性问题,那么解决这样的问题有没有统一的方法呢?

经过研究思考和总结,笔者认为,微积分的基本方法在于:先微分,后积分。

笔者所看到的是,现在的教材没有注意对这些基本问题的总结,基本上所有的教材每讲到积分时都还重复古人无限细分取极限的思想,讲到弧长时取极限,讲到面积时又取极限,最后用一个约等号打发过去。这样一来不仅让学生听得看得满头雾水,而且很有牵强附会之嫌,其实懂得微积分的本质和基本方法后根本不需要再那么重复。

微积分学的建立

从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。

公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。

到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。

十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。

十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。

牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。

牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。

德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一篇说理也颇含糊的文章,却有划时代的意义。它已含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,

远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。

微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。

前面已经提到,一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。微积分也是这样。

不幸的是,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场悍然大波,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。

其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的。比较特殊的是牛顿创立微积分要比莱布尼茨早10年左右,但是正式公开发表微积分这一理论,莱布尼茨却要比牛顿发表早三年。他们的研究各有长处,也都各有短处。那时候,由于民族偏见,关于发明优先权的争论竟从1699年始延续了一百多年。

应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的。他们在无穷和无穷小量这个问题上,其说不一,十分含糊。牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说。这些基础方面的缺陷,最终导致了第二次数学危机的产生。

直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础。才使微积分进一步的发展开来。

任何新兴的、具有无量前途的科学成就都吸引着广大的科学工作者。在微积分的历史上也闪烁着这样的一些明星:瑞士的雅科布?贝努利和他的兄弟约翰?贝努利、欧拉、法国的拉格朗日、柯西……

欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数学,微积分才是真正的变量数学,是数学中的大革命。微积分是高等数学的主要分支,不只是局限在解决力学中的变速问题,它驰骋在近代和现代科学技术园地里,建立了数不清的丰功伟绩。

微积分的基本内容

研究函数,从量的方面研究事物运动变化是微积分的基本方法。这种方法叫做数学分析。

本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。微积分的基本概念和内容包括微分学和积分学。

微分学的主要内容包括:极限理论、导数、微分等。

积分学的主要内容包括:定积分、不定积分等。

微积分是与科学应用联系着发展起来的。最初,牛顿应用微积分学及微分方程对第谷浩瀚的天文观测数据进行了分析运算,得到了万有引力定律,并进一步导出了开普勒行星运动三定律。此后,微积分学成了推动近代数学发展强大的引擎,同时也极大的推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。

一元微分

定义:设函数y = f(x)在某区间内有定义,x0及x0 + Δx在此区间内。如果函数的增量Δy = f(x0 + Δx) –f(x0)可表示为Δy = AΔx0 + o(Δx0)(其中A是不依赖于Δx的常

数),而o(Δx0)是比Δx高阶的无穷小,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = Adx。

通常把自变量x的增量Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。

几何意义

设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy -dy|比|Δy|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。

多元微分

多元微分又叫全微分,是由两个自变量的偏导数相对应的一元微分的增量表示的。

ΔZ=A*ΔX+B*ΔY+ο(ρ)为函数Z在点(x、y)处的全增量,(其中A、B不依赖于ΔX和ΔY,而只与x、y有关,ρ=[(x∧2+y∧2)]∧(1\2),A*ΔX+B*ΔY即是Z在点的全微分。

总的来说,微分学的核心思想便是以直代曲,即在微小的邻域内,可以用一段切线段来代替曲线以简化计算过程。

积分有两种:定积分和不定积分。

定积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,定积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。

一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。

其中:[F(x) + C]' = f(x)

一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值。

定积分和不定积分的定义迥然不同,定积分是求图形的面积,即是求微元元素的累加和,而不定积分则是求其原函数,它们又为何通称为积分呢?这要靠牛顿和莱布尼茨的贡献了,把本来毫不相关的两个事物紧密的联系起来了。详见牛顿——莱布尼茨公式。

一阶微分与高阶微分

函数一阶导数对应的微分称为一阶微分;

一阶微分的微分称为二阶微分;

.......

n阶微分的微分称为(n+1)阶微分

即:d(n)y=f(n)(x)*dx^n (f(n)(x)指n阶导数,d(n)y指n阶微分,dx^n指dx的n次方)

含有未知函数yt=f(t)以及yt的差分Dyt,D2yt,…的函数方程,称为常差分方程(简称差分方程);出现在差分方程中的差分的最高阶数,称为差分方程的阶。n阶差分方程的一般形式为

F(t,yt,Dyt,…,Dnyt)=0,

其中F是t,yt, Dyt,…,Dnyt的已知函数,且Dnyt一定要在方程中出现。

含有两个或两个以上函数值yt,yt+1,…的函数方程,称为(常)差分方程,出现在差分方程中未知函数下标的最大差,称为差分方程的阶。n阶差分方程的一般形式为F(t,yt,yt+1,…,yt+n)=0,

其中F为t,yt,yt+1,…,yt+n的已知函数,且yt和yt+n一定要在差分方程中出现。

常微分方程与偏微分方程的总称。含自变量、未知函数和它的微商(或偏微商)的方程

称为常(或偏)微分方程。未知函数为一元函数的微分方程,称为常微分方程。未知函数为多元函,从而出现多元函数的偏导数的方程,称为偏微分方程。

微积分的诞生及其重要意义

微积分的诞生是继Euclid几何建立之后,数学发展的又一个里程碑式的事件。微积分诞生之前,人类基本上还处在农耕文明时期。解析几何的诞生是新时代到来的序曲,但还不是新时代的开端。它对旧数学作了总结,使代数与几何融为一体,并引发出变量的概念。变量,这是一个全新的概念,它为研究运动提供了基础

推导出大量的宇宙定律必须等待这样的时代的到来,准备好这方面的思想,产生像牛顿、莱布尼茨、拉普拉斯这样一批能够开创未来,为科学活动提供方法,指出方向的领袖,但也必须等待创立一个必不可少的工具——微积分,没有微积分,推导宇宙定律是不可能的。在17世纪的天才们开发的所有知识宝库中,这一领域是最丰富的,微积分为创立许多新的学科提供了源泉。

微积分的建立是人类头脑最伟大的创造之一,一部微积分发展史,是人类一步一步顽强地认识客观事物的历史,是人类理性思维的结晶。它给出一整套的科学方法,开创了科学的新纪元,并因此加强与加深了数学的作用。恩格斯说:

“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发现那样被看作人类精神的最高胜利了。如果在某个地方我们看到人类精神的纯粹的和惟一的功绩,那就正是在这里。”

有了微积分,人类才有能力把握运动和过程。有了微积分,就有了工业革命,有了大工业生产,也就有了现代化的社会。航天飞机。宇宙飞船等现代化交通工具都是微积分的直接后果。在微积分的帮助下,万有引力定律发现了,牛顿用同一个公式来描述太阳对行星的作用,以及地球对它附近物体的作用。从最小的尘埃到最遥远的天体的运动行为。宇宙中没有哪一个角落不在这些定律的所包含范围内。这是人类认识史上的一次空前的飞跃,不仅具有伟大的科学意义,而且具有深远的社会影响。它强有力地证明了宇宙的数学设计,摧毁了笼罩在天体上的神秘主义、迷信和神学。一场空前巨大的、席卷近代世界的科学运动开始了。毫无疑问,微积分的发现是世界近代科学的开端。

微积分优先权大争论

历史上,微积分是由两位科学家,牛顿和莱布尼茨几乎同时发现的。在创立微积分方面,莱布尼茨与牛顿功绩相当。这两位数学家在微积分学领域中的卓越贡献概括起来就是:他们总结出处理各种有关问题的一般方法,认识到求积问题与切线问题互逆的特征,并揭示出微分学与积分学之间的本质联系;他们都各自建立了微积分学基本定理,他们给出微积分的概念、法则、公式和符号理论为以后的微积分学的进一步发展奠定了坚实而重要的基础。总之,他们创立了作为一门独立学科的微积分学。

微积分这种数学分析方法正式诞生以后,由于解决了许多以往靠初等数学无法作答的实际问题,所以逐渐引起科学家和社会人士的重视。同时,也带来了关于“谁先建立微积分”问题的争论。从牛顿和莱布尼茨还在世时就开始出现这种争论,英国和欧洲大陆各国不少科学家都卷入这场旷日持久的、尖锐而复杂的论战。这场论战持续了100多年的时间。

就创造与发表的年代比较,牛顿创造微积分基本定理比莱布尼茨更早。前者奠基于1665—1667年,后者则是1672—1676年,但莱布尼茨比牛顿更早发表微积分的成果。故发明微积分的荣誉应属于他们两人。

第二次数学危机及微积分逻辑上的严格化

微积分诞生之后,数学迎来了一次空前繁荣的时期。对18世纪的数学产生了重要而深远的影响。但是牛顿和莱布尼茨的微积分都缺乏清晰的、严谨的逻辑基础,这在初创时期是不可避免的。科学上的巨大需要战胜了逻辑上的顾忌。他们需要做的事情太多了,他们急于

去攫取新的成果。基本问题只好先放一放。正如达朗贝尔所说的:“向前进,你就会产生信心!”数学史的发展一再证明自由创造总是领先于形式化和逻辑基础。

于是在微积分的发展过程中,出现了这样的局面:一方面是微积分创立之后立即在科学技术上获得应用,从而迅速地发展;另一方面是微积分学的理论在当时是不严密的,出现了越来越多的悖论和谬论。数学的发展又遇到了深刻的令人不安的危机。例如,有时把无穷小量看作不为零的有限量而从等式两端消去,而有时却又令无穷小量为零而忽略不计。由于这些矛盾,引起了数学界的极大争论。如当时爱尔兰主教、唯心主义哲学家贝克莱嘲笑“无穷小量”是“已死的幽灵”。贝克莱对牛顿导数的定义进行了批判。

当时牛顿对导数的定义为:

当x增长为x+o时,x的立方(记为x^3)成为(x+o)的立方(记为(x+o)^3)。即x^3+3 x^2o+ 3x o^2+ o^3。x与x^3的增量分别为o和3 x^2o+ 3x o^2+ o^3。这两个增量与x的增量的比分别为1和3 x^2+ 3x o+ o^2,然后让增量消失,则它们的最后比为1与3 x^2。我们知道这个结果是正确的,但是推导过程确实存在着明显的偷换假设的错误:在论证的前一部分假设o是不为0的,而在论证的后一部分又被取为0。那么o到底是不是0呢?这就是著名的贝克莱悖论。这种微积分的基础所引发的危机在数学史上称为第二次数学危机,而这次危机的引发与牛顿有直接关系。历史要求给微积分以严格的基础。

第一个为补救第二次数学危机提出真正有见地的意见的是达朗贝尔。他在1754年指出,必须用可靠的理论去代替当时使用的粗糙的极限理论。但是他本人未能提供这样的理论。最早使微积分严格化的是拉格朗日。为了避免使用无穷小推理和当时还不明确的极限概念,拉格朗日曾试图把整个微积分建立在泰勒展开式的基础上。但是,这样一来,考虑的函数范围太窄了,而且不用极限概念也无法讨论无穷级数的收敛问题,所以,拉格朗日的以幂级数为工具的代数方法也未能解决微积分的奠基问题。

到了19世纪,出现了一批杰出的数学家,他们积极为微积分的奠基工作而努力,其中包括了捷克的哲学家B.Bolzano.曾著有《无穷的悖论》,明确地提出了级数收敛的概念,并对极限、连续和变量有了较深入的了解。

分析学的奠基人,法国数学家柯西在1821—1823年间出版的《分析教程》和《无穷小计算讲义》是数学史上划时代的著作。在那里他给出了数学分析一系列的基本概念和精确定义。

对分析基础做更深一步的理解的要求发生在1874年。那时的德国数学家外尔斯特拉斯构造了一个没有导数的连续函数,即构造了一条没有切线的连续曲线,这与直观概念是矛盾的。它使人们认识到极限概念、连续性、可微性和收敛性对实数系的依赖比人们想象的要深奥得多。黎曼发现,柯西没有必要把他的定积分限制于连续函数。黎曼证明了,被积函数不连续,其定积分也可能存在。也就是将柯西积分改进为Riemann积分。

这些事实使我们明白,在为分析建立一个完善的基础方面,还需要再深挖一步:理解实数系更深刻的性质。这项工作最终由外尔斯特拉斯完成,使得数学分析完全由实数系导出,脱离了知觉理解和几何直观。这样一来,数学分析所有的基本概念都可以通过实数和它们的基本运算表述出来。微积分严格化的工作终于接近封顶,只有关于无限的概念没有完全弄清楚,在这个领域,德国数学家Cantor做出了杰出的贡献。

总之,第二次数学危机和核心是微积分的基础不稳固。柯西的贡献在于,将微积分建立在极限论的基础上。外尔斯特拉斯的贡献在于逻辑地构造了实数论。为此,建立分析基础的逻辑顺序是

实数系——极限论——微积分

18世纪的分析学

驱动18世纪的微积分学不断向前发展的动力是物理学的需要,物理问题的表达一般都

2020春高等数学(三)-ii新版教学日历

哈尔滨理工大学教学日历撰写标准(试行) 一、课程基本信息 课程基本信息详实,课外联系方式与联系时间、地点明确; 二、课程目标(预期学习成果) 包含多维度、深层次的教学目标,与课程教学大纲相吻合,能够有效支持相关专业毕业要求,可衡量、可评价; 三、教材与教学资源 1、能够选择优秀教材与参考书,教材满足国家或专业要求; 2、课程能够为学生提供丰富有效的课外学习资源(包括在线课程、音视频资源、网上测试、网上答疑系统、期刊论文等)。 四、课程教学内容、教学策略与方法、教学日历 1、课程教学内容与课程目标有明确的对应关系,能支持课程目标达成; 2、教学策略与方法恰当,采用了讨论式、探究式、合作式学习等教学方式,能够帮助学生达成深层次教学目标; 3、教学日历中课程教学内容知识点清晰,知识结构与逻辑结构合理,各知识点学时安排恰当; 4、课外安排了足够的课外学习量(建议课内与课外学习时间比例为1:1—1:2之间),课外学习达到学时要求。 五、课程要求、考核方式与评分标准 1、明确课程对学生的要求,包括出勤、课堂表现、作业、学术诚信等有明确说明; 2、实施形成性考核,各考核项目设置比重合理,考核方式及内容能有效测试学生课程目标达成情况; 六、学习指导 能够为学生提供思想引领、学习方法、学习技巧、成功技巧等内容,有效指导学生达成课程目标。

哈尔滨理工大学 课程教学日历 2019––2020学年第2学期 一、课程基本信息 二、预期学习成果 (一)课程目标 1、掌握如数列的极限、函数的极限、一元函数的导数、多元函数的偏导数、一元函数的不定积分与定积分、多元函数的重积分等基本计算技巧,从而具备理工类各专业必须的实用计算能力;能够根据微分方程、无穷级数的类型与结构特点,掌握如一阶线性微分方程、二阶常系数微分方程的求解方法,从而具备一定的求解微分方程的能力;掌握如正项级数、交错级数敛散性的判别方法。

北大数学系本科课程

基础和专业基础必修课1301301数学分析(Ⅰ) 1301301 数学分析1301301 数学分析(Ⅲ) 1301302 高等代数(Ⅰ) 1301302 高等代数1301303 解析几何1301304 常微分方程1301305 近世代数1301306 复变函数1301307 微分几何1301308 拓扑学1301309 实变函数1301310 概率统计1301311 数学模型1301312 泛函分析1301313 偏微分方程 专业限定选修课1301401 整体微分几何1301402 计算方法1301403 运筹学1301404 组合学1301405 初等数学教学研究1301406 微分流形1301407 计算机应用(Ⅰ) 1301408 多复变变函数引论 专业任意选修课1301501图论1301502 模糊数学1301503 中学数学竞赛1301504 数学史1301505 数学软件1301506 计算代数1301507 初等数论1301508 交换代数1301509 偏微分方程数值计算1301510 数学方法论1301511 数学学习论1301512 模糊控制与模糊决策

1301513 矩阵论 1301514 微分方程定性及分岔理论基 础 1301515 代数几何 1301516 李群与李代数 1301517 控制论 另外一个版本: 北大数学科学学院本科生课程 课程号 00130011 课程名数学分析(一) 课程号 00130012 课程名数学分析(二) 课程号 00130013 课程名数学分析(三) 课程号 00130031 课程名高等代数(上) 课程号 00130032 课程名高等代数(下) 课程号 00130051 课程名解析几何 课程号 00130061 课程名解析几何习题课 课程号 00130072 课程名初等数论 课程号 00130081 课程名常微分方程 课程号 00130091 课程名计算机原理与算法语言 课程号 0013010. 课程名计算机实习 课程号 00130110 课程名复变函数 课程号 00130120 课程名微分几何学 课程号 00130130 课程名抽象代数(A) 课程号 00130140 课程名实变函数论 课程号 00130150 课程名偏微分方程 课程号 00130161 课程名拓朴学(一) 课程号 00130162 课程名拓朴学(二) 课程号 00130170 课程名泛函分析

微积分(大学数学基础教程答案)大学数学基础教程(二)多元函数微积分习题解答

习题 1—1 解答 1.设 x f (x, y ) xy ,求 y f (x ,y), f 1 ( x , 1 ), y f (xy, x y ), f 1 (x, y) 解 x f (x ,y ) xy ; y f 1 ( x , 1 ) y 1 xy y x ; f (xy, x y ) x 2 y ; 2 f 1 (x, y) y xy 2 x 2.设f (x, y ) ln x ln y ,证明:f (xy,uv ) f (x,u ) f (x,v ) f (y,u ) f (y,v) f (xy,uv ) ln(xy ) ln(uv ) (ln x ln y)(ln u ln v ) ln x ln u ln x ln v ln y ln u ln y ln v f (x,u ) f (x,v ) f (y,u ) f (y,v) 3.求下列函数的定义域,并画出定义域的图形: (1)f (x, y ) 1x 2 y 2 1; 4x y (2)f (x, y ) ; ln(1x y ) 2 2 2 x y z 2 2 2 (3)f (x, y ) 1; a b c 2 2 2 x y z (4)f (x, y, z ) . 1x 2 y z 2 2 解(1)D {(x, y) x 1, y 1 y 1 -1 O 1 x -1 (2)D (x, y) 0x y 1, y 4x

2 2 y 2 1 -1 1 O x -1 1

(3)D x y z 2 2 2 (x, y ) 1 a b c 2 2 2 z c -a -b O b y a x (4)( , , ) 0, 0, 0, 1 D x y z x y z x 2 y z 2 2 z 1 O y 1 1 x 4.求下列各极限: 1xy (1)lim x 0 x y 2 2 y 1 1 0 = 1 0 1 ln(x e y ln(1 e ) ) 0 (2)lim ln 2 x 1 2 1 2 0 x y y0 2 xy 4 (2 xy 4)(2 (3)lim lim x xy xy 0 0 ( xy x 2 xy 4) 4) 1 4

微积分教学大纲完整版

微积分教学大纲 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

《微积分》教学大纲 课程代码: 名称:微积分学 授课专业:工业设计专业 学时数:100 一、课程的目的和要求 学生能够通过本课程的学习,获得一元函数微积分学、多元函数微分学方面比较系统的知识。同时,这些知识的掌握也会给后续课程的学习打下基础。 更重要的是,在教学过程中使学生加深高等数学的辩证统一思想的理解,并利用这一思想解决一些实际问题。通过这门课程的学习,提高学生的空间想象能力、逻辑思维和创造性思维能力,全面提高学生的数学素质。 二、课程教学内容 第一部分函数 主要内容:函数的概念与性质,复合函数、初等函数的概念。 要求: 1、理解函数的概念,能列出简单实际问题中的函数关系。 2、理解函数的单调性、周期性、有界性和奇偶性; 3、理解反函数和复合函数的概念; 4、理解初等函数的概念和性质。 重点:函数的的概念与性质。 难点:列出问题中的函数关系,反函数和复合函数的概念。 第二部分极限与连续 主要内容:极限的概念,极限四则运算,无穷小、无穷大的概念,函数连续的概念。 要求: 1、了解数列极限、函数极限的概念(对极限的精确定义、证明不作要求); 2、掌握极限四则运算法则,会用两个重要极限求极限; 3、理解解无穷小与无穷大、高阶无穷小、同阶无穷小和等价无穷小的概念; 4、理解函数在一点连续和在一区间连续概念,了解函数间断的概念; 5、了解初等函数的连续性,了解在闭区间上连续函数的性质. 重点:极限的四则运算法则。 难点:极限的概念,连续的概念。 第三部分导数与微分 主要内容:导数和微分的概念,导数和微分的运算。 要求: 1、理解导数和微分的概念,理解导数的几何意义,了解函数的可导与连续之间的关系;

微积分课程教学基本要求

微积分课程教学基本要 求 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

(1) 微积分(I)教学基本要求(3学时/周, 48学时) (一)说明 《微积分(I)》称之为“直观微积分”,其特点是给极限以易懂的直观定义, 跨过极限理论证明的难点,尽快进入微积分的最基本的主线内容:一元函数的 微分、积分以及简单微分方程等. 这样使学生容易入门,先掌握实际应用广泛 的微积分基本内容,突出牛顿式的数学与物理概念、几何直观相结合的处理方法, 不拘泥于严格的数学证明,注重基本的计算能力和运用微积分方法分析和 解决实际问题能力的培养。 (1)这部分内容的极限概念主要以“无限趋向”直观的定义, 只介绍极限的精 ε-的极限证明, 但极限的保号性的运用要求掌握。 确定义,不要求用δ (2)连续函数在闭区间上的有界性,取最值性,及介值性的结论要求会运用. (3)这部分要求突出计算和应用。 由于学生从中学到大学在学习方法上有较大变化,为适应这个过程,建议在 教学中注意对学生学习方法和阅读教材与参考书的指导,堂上要有适当的例题 讲解。 (二)内容 1. 函数: 函数定义,基本初等函数; 隐函数, 参数方程表示的函数,复合函数。 函数的几个主要性质:有界性,奇偶性,单调性,周期性,凸凹性。 2极限: ε-”定义的证明题,只要只讨论函数的极限,强调“无限趋近”, 不要求“δ ε-”思想说明极限的保号及有界等性质. 求用“δ

极限的运算性质,两个重要极限,无穷小量,无穷大量.利用极限性质、等价无穷小、高阶无穷小计算极限。 3.连续: 连续和间断的概念(不讲一致收敛),闭区间连续函数的性质. 4. 导数与微分 导数与微分的概念,几何意义. 导数与微分计算: 基本导数、微分公式, 四则运算法则,复合函数链式法则, 参数方程求导数,隐函数求导数;高阶导数Leibniz 公式 5. 微分中值定理和导数应用 三个微分中值定理的证明及应用. L ’Hospital 法则, Taylor 公式, 函数()()α x x e x x x ++1,1ln ,,cos ,sin 在00=x 处的Taylor 公式, 用Taylor 公式求函数的极限. 函数性态的研究: 增减极值,凸性,拐点, 渐近线; 函数图象的讨论和略画。 一元函数的极值及最值问题。 6.积分 原函数和不定积分的概念及性质; 不定积分的计算: 凑微分,变量代换,分部积分, 了解有理函数的积分的思路与结论 7. 定积分的概念及基本性质, 变限积分与微积分基本定理,Newton-Leibniz 公式 定积分的计算:凑微分,变量代换,分部积分,了解不能积成初等函数的积分。

2014.10-2016.4自考高等数学(工本) 00023真题解析课

江西省南昌市2015-2016学年度第一学期期末试卷 (江西师大附中使用)高三理科数学分析 一、整体解读 试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。 1.回归教材,注重基础 试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。 2.适当设置题目难度与区分度 选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。 3.布局合理,考查全面,着重数学方法和数学思想的考察 在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。 二、亮点试题分析 1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC → → =,则A BA C →→ ?的最小值为( ) A .1 4- B .12- C .34- D .1-

微积分学习方法

《微积分》学习方法 来源:东财网院 很多同学都会认为,数学是一门比较难学的学科,有那么多的定义、公式、定理,还有图像以及各种曲线等等,总是让人头疼。所以同学们在接触微积分之前,可能就已经对它产生了心理恐惧,甚至是排斥心理。而事实并非如此,之所以会这样是因为你还没有掌握正确的学习方法。 首先,大家应该大致翻一下教科书,或者是看看目录和前言,了解学习这么课程所需具备的基础知识是什么。从第一章的内容中,大家可以了解到,微积分的起点是中学里的函数概念和解析几何。所以,如果以往的知识不牢固,或是没有接触过,那么最好找来中学的教科书复习一下。接下来,大家就接触到了极限,数列的极限以及函数的极限。大家可能会发现,极限的定义很难看懂。那是不是就能以此为借口,停顿在这里呢?当然不能,我们可以先把这个问题放一下,继续向下。实际上,极限的概念是很直观的,理解其思想即可,看不懂定义并不影响下面的学习。 接下来的部分就较为重要了,而且不能跳过。导数的概念其实也很简单,就是一个量关于另一个量的变化率。下面可能牵扯到很多导数的公式和运算技巧,很少有人会马上记住,这也不要紧,可以在平时的练习中慢慢掌握。可能有些同学喜欢解题,喜欢推导和运算,这固然是好事,但不要过度的沉浸在题海中。接触到微分,大家会发现,它和导数没有实质性的区别,只是在表达方式上有所不同,这是需要大家分清楚地。 下一个难点就是积分了。积分的数学定义可能较难理解,那么可以从图形下手,可以充分发挥想象力:为了求得曲线所围的面积,用无数小梯形去无限逼近,这也就是极限的思想。其实积分的本质就是极限。理解它的本质后,运算技巧可以暂放一下,在考试前可以集中解决运算技巧的问题。 对于多数同学来说,微积分的后半部分会更难些。对于无穷级数,同学们还是重在理解思想。多元函数微积分比前面的一元函数稍微复杂了些,但是基本的思路是一样的。最后一个难点,就是关于微分方程了。首先,要理解微分方程的有关概念以及微分方程的解,这样才能对微分方程有所识别。其次,对各种类型的微分方程,都要抓住其特征的本质,领会每一道例题中解题的方法和含义。 在学习数学的过程中,前后的连贯性较为重要,所以要注意知识点之间的衔接。但也不排除个别的情况,比如前文中说到的极限和级数。事实上很多人的亲身经历也证明了,微积分并不可怕,关键看你肯不肯下功夫。相信在大家的努力和老师的帮助下,微积分的难关是可以攻克的。 微 积 分》 的 学 习 方 法 读书好比走路。不知道去那里干什么,走起路来也没 劲儿。读书也是这样,没有目的,读起书来也没兴趣。 走路也得有方法,方法对走起路来才省劲儿。读书也 是这样,方法得当才能收到好效果。学生在校期间, 读书当然应以教科书为主,但是大学生与中小学生不

高等数学学习感想

高等数学学习感想一 高等数学在工科院校的教学计划中是一门重要的基础理论课程,是大一新生必修的课程,是大学许多种类工科课程的基础,特别是与以后的许多专业课都有着密切的联系,它对于各专业后续课程的学习,以及大学毕业后这类工程技术人员的工作,高等数学课程都起着奠基的作用。大学生在大学的学习中只有掌握高等数学的知识以后,才能比较顺利地学习其他专业基础课程,如物理、工程力学、电工电子学等,也才能学好自己的专业课程。当大学生毕业走向工作岗位后,要很好地解决工程技术上的问题,势必要经常应用到高等数学知识。因为在科学技术不断发展的今天,数学方法已广泛渗透到科学技术的各个领域之中。因此,工科类的大一新生在学习上一个很明确的任务就是要学好高等数学这门课程,为以后的学习和工作打下良好的基础。因此,学好高等数学对于一名工科学生来说,至关重要。 然而,高等数学这门课程本质上决定了它的枯燥无味,对于许多同学来说,高等数学是一门头疼的学科。如何学好高等数学呢?在学习高等数学过程中,需要不断探索方法、总结经验。下面是我个人在学习过程中的一些感想。 首先,我觉得高等数学与以前我们高中所学的数学有一点不同。高等数学注重的是一种数学的思想,比如说微积分思想,极限的思想。强调的数学的逻辑性与分析性。不像高中数学那样注重技巧性。因此,在学习的过程中,课本的知识至关重要。对于课本上面每一个概念、定理、公式、例题,都要理解清楚。特别是对于定理、公式的推导过

程,不仅要弄懂每一步的推导过程如何来,而且还要学会自己推导。因为学会自己推导,更有助于我们的记忆和应用。我的经验是,在理解的基础上去记忆公式,而不是一味的死记硬背。 第二,学习数学是不能缺少训练的。一定量的课后习题训练,不但可以让我们巩固我们学到的知识点,学会如何在实际中应用我们学到的公式定理,还有助于我们熟悉考试的各种题型。还有,题目并不是越多越好,题海战术不仅浪费大量的时间与精力,而且效果也不好。我的经验是,每做完一道题都要总结一下,特别是做错的题目,这道题的知识点是哪些?应用了哪些公式定理?错在哪里?为什么会做错?学会思考,学会总结,这样做题才能达到事半功倍的效果。 最后,学好数学是一个坚持的过程。高等数学的内容环环相扣,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一节一节,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。这样,对于后面的学习会造成很大的影响。

完整word版微积分课程教学大纲

《微积分》课程教学大纲 课程类型: 公共基础课课程代码: 0140026 课程学时: 75 学分: 5 适用专业: 经济学专业(金融方向) 开课时间:一年级一学期开课单位: 基础部数学教研室 大纲执笔人: 兰星大纲审定人: 王培颖 一、课程性质、任务 课程性质:微积分已经被广泛应用于各种经济活动之中,并且与其他经济学分支互相渗透或结合。微积分即是掌握现代化科学知识必不可少的基础知识和基本工具,也是后继课程《概率论与数理统计》《计量经济学》等的基础课程,所经,微积分已经成为经济学专业学生必修的一门专业基础课。 教学目的与任务:首先要使学生掌握经济学专业所必须的微积分知识和方法,迸一步培养学生正确、熟练的计算能力,同时还要通过微积分课程的教学,对学生进行数学思想和方法的教育训练,进一步培养学生正确、深刻的思维能力,及独立的分析解决实际问题的能力。 备注:本教学大纲以赵树嫄等主编的《微积分》为编写标准。 二、课程教学内容 (一)教学内容、目标与学时分配 教学内容教学目标学时分配 75 理论教学部分 6 1、函数(第一章) 1/2 了解 1.1集合1 理解 1.2实数集1/2 1.3 理解函数关系 1/2 了解 4 1.分段函数 1/2 5建立函数关系的例题掌握. 11 1.6函数的几种简单性质了解 1 了解反函数与复合函数.17 1 掌握 8 1.函数的几种简单性质17 、极限与连续(第二章)2 . 21理解数列极限 2 2.函数极限理解22 理解变量极限. 23 2 4.无穷大与无穷小理解 21 5. 2掌握极限的运算法则 3 6. 2 两个重要极限了解3 2.7利用等价无穷小量代换求极限掌握 2 了解.8函数的连续性 22 9 3、导数与微分(第三章)理解 3.1引出导数概念的例题 1

《高等数学》视频教程 蔡高厅教授主讲

《高等数学》视频教程蔡高厅教授主讲 中文名称:蔡高厅高等数学上下册RM压缩清晰版本 地区:大陆 语言:普通话 简介: 高等数学辅导讲座(蔡高厅) 分189讲上册95讲下册94讲!赠送与之配套的电子书课文! 本教程讲解之细致,容量之庞大令人叹为观止!适合任何程度的朋友学习。即使只有高中数学水平,凭此讲座可在一月内快速成为高数高手,也可作为复习后期查缺补漏之用。本教程是目前国内水平最高的高等数学长期教程,影音俱佳,强烈推荐!! 第一章函数第二章极限第三章导数与微分第四章导数的应用第五章不定积分 第六章定积分第七章空间解析几何与矢量代数第八章多元函数微积分第九章重积分 第十章曲线积分及曲面积分第十一章级数第十二章微分方程

适合人群: 1、在校大学生 2、自考人 3、考研人士(高数一,二) 4、其它想学习数学的人士 [点评][天津大学][高数](蔡高厅) 我来谈谈对天津大学蔡高厅高数的一些看法。这部高等数学教程应该是现在名气最大的,也是好评最高的。原因我认为有这么些,首先,整部教程体积很小(全部一起不到3G),而北航柳重堪高等数学加起来超过10G,对硬盘空间不是很大的用户是个不小的负担,这点使的很多人选择了它(包括我本人),在着,一共189讲的超大 容量,整个高等数学的全部知识,无论巨细,无一遗漏,是其他教程所不能及的(北航柳重堪高等数学),其次,本科学校的正规教程也是个很诱人的地方。以上说的是它的优点,下面说说我自己的体会。我是在看完北航柳重堪高等数学第一章时再看的,对比而言,蔡高厅高数给我感受就是蔡高厅本人一直在黑板上不停的版书,对知识本身的讲解很机械,这点我很不喜欢。既然是本科学校的教程,就应该讲究对知识本身和思维的沟通,重点应该是放上创造性上,而不只是知识的简单堆砌,蔡高厅的讲课完全是教科书的移植,加上一点做题的技巧,对基本概念的理解讲解很生硬,缺少沟通性。跟真正的数学教学相差很远“蔡高厅的讲课完全是教科书的移植”,这点我很同意。他的例题基本上都是他与别人合写的那本高数上的。[点评][天津大学][数学]【蔡教授讲】 提起蔡教授的数学,想想我干瘪的荷包真是感慨呀!那时想考试,看到网上无数的同志推荐这门课程,在购回后,白天在办公室偷偷看,晚上回家接着看,整整花了偶2月光阴才大功告成。因此,昨天看了网友对蔡教授的批评,本人对此是不同意的,数学是一门逻辑性很强的课程,讲究环环紧密相扣,因此,学习的风 格也以稳重为主,正是基于这一点,本人是十分推崇蔡教授的课的,别的不说,光是他老人家,诺高的身材弯腰板书,这种敬业精神与师德,就强过了许多年轻后辈。就以课程的本身而言,蔡教授讲得条理清晰,对每个定理都进行了详细的证明,辅以充足的示例,让你想不学好这门课都难。个人认为,蔡教授的这门课,无论下 载还是购买都值得!

微积分基本教程48502

微积分教程 微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。 微积分的基本介绍 微积分学基本定理指出,求不定积分与求导函数互为逆运算[把上下限代入不定积分即得到积分值,而微分则是导数值与自变量增量的乘积],这也是两种理论被统一成微积分学的原因。我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。 微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,但是理论基础是不牢固的。因为“无限”的概念是无法用已经拥有的代数公式进行演算,所以,直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。 学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。所以,必须要利用代数处理代表无限的量,这时就精心构造了“极限”的概念。在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,相反引入了一个过程任意小量。就是说,除的数不是零,所以有意义,同时,这个小量可以取任意小,只要满足在德尔塔区间,都小于该任意小量,我们就说他的极限为该数——你可以认为这是投机取巧,但是,他的实用性证明,这样的定义还算比较完善,给出了正确推论的可能性。这个概念是成功的。 微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。 客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。 由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。 微积分的本质 【参考文献】刘里鹏.《从割圆术走向无穷小——揭秘微积分》,长沙:湖南科学技术出版社,2009 1.用文字表述: 增量无限趋近于零,割线无限趋近于切线,曲线无限趋近于直线,从而以直代曲,以线性化的方法解决非线性问题,这就是微积分理论的精髓所在。 2.用式子表示:

翻转课堂十大精彩案例

[转载]翻转课堂十大精彩案例 阅读:62014-10-09 13:47 标签:转载 原文地址:翻转课堂十大精彩案例 原文作者:pplong 案例一:石桥小学的数学翻转课堂 2011年秋天,美国明尼苏达州斯蒂尔沃特市石桥小学开始了数学翻转课堂试点计划。五六年级的学生们回家看教师的教学影片,回到课堂上可以在教师和同伴帮助下完成作业。因此,他们不再有和父母一起做作业时因不会做题而出现的挣扎和挫折感。学生可以按自己学习进度在家里观看10 ~15分钟讲课视频;之后会接受三到五个问题的测验,看他们是否理解教学内容,测验结果会即时反馈给他们。在学校教师使用Moodle跟踪学生在家学习的过程,看到谁看了影片并完成测验,这样更容易锁定那些学习有困难的学生。学校的教师和管理人员决定实施翻转课堂尝试,因为他们相信不同水平学生都有个性化学习的需求,而翻转课堂能帮助他们有更好的学习体验。 案例二:“星巴克教室” 当谈到帮助青少年学习时,美国高地村小学正在尝试的东西会让很多人眼前一亮。在二年级,许多教师就在尝试翻转课堂;各年级都鼓励学生带技术入课堂,包括电子书、平板电脑和智能手机。如果你觉得这还不够,那么去看看他们的“星巴克教室”:传统教室中的一排排整齐课桌不见了,空间充满的是圆桌、舒适的沙发和软垫椅子,以及一排电脑终端。好一个非正式的舒适环境,“翻转”得够彻底!校长肖纳·米勒说,这样的想法来自学生,他们希望在教室中更加放松,有类似咖啡馆的氛围。这种新风格的课堂是德州路易斯维尔学区努力建立面向21世纪的学习环境的一部分。以科技为中心的战略似乎得到了回报,学生们更喜欢在这宽松的环境中学习,他们的表现也越来越好。这所学校给我们最大启示是:不要害怕尝试新的东西,你可能会得到一些意外的惊喜。 案例三:翻转课堂的发源地 林地公园高中是翻转课堂的起源地,大部分翻转课堂的“粉丝”们都感谢这所高中的开创性的实践。该校两名科学教师(乔纳森·伯格曼和亚伦·萨姆斯)想出的方法,为学生录制在线视频课程。起初,只是为那些耽误上课的学生而准备的讲解,但教师很快就意识到,用视频来复习和加强他们的课堂教学能让所有孩子受益。之后,两人意识到,也许他们已经“迷迷糊糊”做了一件伟大的事情,并创造了我们现在所说的翻转课堂的教学模式。实践中,师生双方都认为,是综合的翻转课堂的学习方法而非单独的视频在起作用。伯格曼和萨姆斯觉得这套方法让他们有更多的时间给予学生个别关注,建立更好、更紧密的师生关系,而这往往可以促进更大的学习动机。自他们率先开始翻转课堂后,这种方法不胫而走,现在全球数以千计的学校在使用。 案例四:全校实现翻转模式 如果有一所学校能展示翻转课堂真正的成功的话,柯林顿戴尔高中算一个。在用两个班经历了两年的翻转课堂试验后,校长格雷格·格林大胆地在全校实现了翻转模式。学生在家看教师录制的5~7分钟的讲解视频,做笔记并写下遇到的问题;在课堂上,教师会重讲多数学生有疑惑的概念,并用大部分时间来辅导学生练习,对学生的作业给予及时反馈。学校还解

高等数学在生活中的应用

对高等数学的认识及它在生活中的应用 当今世界,国际竞争日趋激烈,而竞争的焦点又是人才的。竞争21世纪哪个国家具有人才优势,哪个国家将占据竞争的制高点。而现在的社会需要的人才已经不是从前那种简单的一个文凭就可以了,而是需要全面的人才,全方位的人才,一种高素质高能力的人才! 与此同时,高等数学恰恰在这方面发挥着巨大的作用!数学培养的就是你的思维能力,是分析问题、解决问题的思维方式。许多实际问题都需要建立数学模型来解决,而你建立模型地基础就是你怎样把实际问题转化为数学问题。再把复杂的问题简单化!这样就更容易的去解决问题、处理问题! 在现代大学课程设置中,大部分学生要学习高等数学这门课程,只是很多学生不知道学这门课程有什么用途,缺乏学习的动力和兴趣,最后逐渐认为数学是一门非常枯燥的学科。这样不能够激发学生学习数学的兴趣。使学生们慢慢的不重视数学的重要性! 高等数学在当今社会有着广泛的应用。如:计算机方面、电子应用方面、航天技术方面、医学方面等等众多领域都起着巨大的作用! 在计算机领域,计算机中许多地方要用到数学模型,特别是算法复杂度,人工智能、业务领域的数学建模等等,都需要有一定的数学功底。 随着现代科学技术的发展和电子计算机的应用与普及,数学方法在医药学中的应用日益广泛和深入。医药学科逐步由传统的定性描述阶段向定

性、定量分析相结合的新阶段发展。数学方法为医药科学研究的深入发展提供了强有力的工具。高等数学是医学院校开设的重要基础课程,用高等数学基础知识解决医学中的一些实际问题的例子,旨在启发学生怎样正确理解和巩固加深所学的知识,并且强化应用数学解决实际问题的意识。使我国的医术在前有的基础上再创辉煌! “神舟”六号载人飞船成功升空,是我国航天事业科学求实精神的结晶,是坚定不移走自主创新之路的结果。载人航天是当今世界最复杂、最庞大、最具风险的工程,是技术密集度高、尖端科技聚集的高科技系统工程。而这些庞大的工程都离不开数学,复杂的数字计算、精确的时间等等这些都在数学范围内! 其次,数学建模是一种培养学生综合素质的有效手段,在教学实践中给学生树立建模的思想对学生的综合素质发展有很大的帮助,也有助于提高我们的学习积极性。把数学建模的思想方法融入数学分析课程教学是培养学生创新能力和实践能力的一条有效途径,是当前大学数学课程改革的一个重要方向. 我们大学生的思维处于由形式逻辑思维向辨证逻辑思维过渡的阶段,数学建模不仅要求学生在实验、观察和分析的基础上,对实际问题的主要方面做出合理的简化与假设,并且要求他们应用数学的语言和方法将实际问题形成一个明确的数学问题。因此,在高等数学中渗透建模思想,运用运动的、变化的、全面的、发展的观点去观察、分析和解决问题,不仅发展了我们大学生的一般思维能力,还发展了我们的辨证逻辑思维能力。数学建模

《微积分》教学大纲(上、下)

《微积分》教学大纲(上、下) 课程名称:《微积分》英文名称:《calculus》 学分: 6总学时:108 实验(上机)学时: 无 开课专业: 经济学专业、财务管理专业、资产管理专业、物业管理专业 一、课程性质、目的和培养目标: 《微积分》是一门数学基础课程,它的主要内容包括函数、极限、连续﹑导数与微分, 中值定理与导数的应用,不定积分,定积分,多元函数微分法及其应用,重积分,无穷级, 数,微分方程与差分方程等。本课程是经济学专业的一门专业必修课程。通过系统介绍微积 分的基本内容,使学生在掌握微积分的基本知识,基本理论和基本技能基础上,提高抽象思 维,逻辑推理与运算的能力和自学能力,还要特别注意培养学生具有综合运用所学知识去分 析问题和解决问题的能力。提高数学修养和思维品质,为学习相关的后续课程准备必要的数 学知识。 二、预修课程:高中数学 三、课程内容和建议学时分配:(120学时。含108课时,复习考试12课时) 章 节 内 容 学时 第一章 函数与极限 18课时 第一节函数 1. 理解函数的概念 2. 理解函数奇偶性、单调性、周期性、有界性。 3. 理解反函数的概念。 第二节初等函数 1. 熟悉基本初等函数的性质及其图形。 2. 理解复合函数 3. 会建立简单实际问题中的函数关系式。 第三节数列的极限 1. 理解数列极限的概念,掌握极限四则运算法。 2. 理解子数列的概念,掌握数列的极限与其子数列的极限之间的关系。 3. 理解极限的唯一性定理.

4. 收敛数列的有界性定理. 第四节函数的极限 1.自变量趋于有限值时函数的极限 2.自变量趋于无穷大时函数的极限 第五节无穷小与无穷大 1. 理解无穷小、无穷大 2. 有限个无穷小量的和为无穷小量. 3. 无穷小量与有界函数的积为无穷小量. 4. 有限个无穷小量的积为无穷小量 第六节极限运算法则 1.掌握极限四则运算法 2.掌握复合函数极限四则运算法则 第七节极限存在准则 两个重要极限 1. 理解极限存在的夹逼准则. 2. 了解单调有界数列必有极限的原理 3. 会用两个重要极限求极限 第八节无穷小的比较 1. 理解无穷小的阶的概念 2. 会用等价无穷小求极限 第九节函数的连续性与间断点 1. 理解函数在一点连续和在一个区间上连续的概念. 2. 了解间断点的概念. 3. 会判别间断点的类型 第十节连续函数的运算与初等函数的连续性 1. 了解连续函数的和﹑积﹑商的连续性. 2. 反函数与复合函数的连续性 3. 了解初等函数的连续性. 第十一节闭区间上连续函数的性质 1. 了解最大最小值定理. 2. 了解介值定理. 第二章 导数与微分12课时 第一节导数的概念 1.理解导数的概念。 2.理解导数的几何意义。 3.理解函数的可导性与连续性之间的关系。

史上最全中国石油大学视频教程下载链接

读者自行按规律补全下载链接,XX表示不知到视频有多少集,以下链接作者已经全部验证,将链接补全复制至迅雷下载即可。 14《化工热力学》 https://www.doczj.com/doc/c26155892.html,/csmedia/lite/014/01.csf https://www.doczj.com/doc/c26155892.html,/csmedia/lite/014/XX.csf 15《基本有机原料生产工艺学》 https://www.doczj.com/doc/c26155892.html,/csmedia/lite/015/01.csf https://www.doczj.com/doc/c26155892.html,/csmedia/lite/015/XX.csf 16《天然气加工与处理工艺》 https://www.doczj.com/doc/c26155892.html,/csmedia/lite/016/01.csf https://www.doczj.com/doc/c26155892.html,/csmedia/lite/016/XX.csf 18《大学英语(1)》 https://www.doczj.com/doc/c26155892.html,/csmedia/lite/018/01.csf https://www.doczj.com/doc/c26155892.html,/csmedia/lite/018/23.csf 19《大学英语(2)》 https://www.doczj.com/doc/c26155892.html,/csmedia/lite/019/01.csf https://www.doczj.com/doc/c26155892.html,/csmedia/lite/019/32.csf 20《大学英语(3)》 https://www.doczj.com/doc/c26155892.html,/csmedia/lite/020/01.csf https://www.doczj.com/doc/c26155892.html,/csmedia/lite/020/23.csf 21《大学英语(4)》

微积分教学大纲

《微积分》教学大纲 一、使用说明 (一)课程性质 《微积分》是高等学校财经、管理类专业核心课程经济数学基础之一,它有着深刻的实际背景,在自然科学、社会科学、工程技术、军事和工农业生产等领域中有广泛的应用。 微积分作为一学年的课程,是为财经类、管理类等非数学专业本科生开设的,制定大纲的原则是具有一定数学基础的学生对该领域的基础知识、背景有所了解,为进一步学习专业课打下坚实的基础。 (二)教学目的 通过本课程的学习,使学生较好地掌握微积分特有的分析思想,并在一定程度上掌握利用微积分认识问题、解决问题的方法;对微积分的基本概念、基本方法、基本结果有所了解,并能运用其手法解决实际问题中的简单课题。(三)教学时数 本课程共132学时,8学分。 (四)教学方法 采用课堂讲授、多媒体课件等方法和形式。 (五)面向专业 经济学、管理学所有本科专业。 二、教学内容 第一章函数 (一)教学目的与要求 [教学目的] 使学生正确理解函数的定义。理解函数的各种表示法,特别是分析表示法。了解函数的几何特性及图形特征,了解反函数、复合函数概念。熟练掌握基本初等函数的性质及图形,掌握初等函数的结构并能确定其定义域,能列出简单的实际问题中的函数关系。 [基本要求] 1、理解实数与实数的绝对值的概念。 2、理解函数、函数的定义域和值域,熟悉函数的表示法。 3、了解函数的几何特性并掌握各几何特性的图形特征。 4、了解反函数概念;知道函数与其反函数的几何关系;给定函数会求其反函数。 5、理解复合函数的概念;了解函数能构成复合函数的条件;掌握将一个复合函数分解为较简单函数的方法。 6、基本初等函数及定义域、值域等概念;掌握基本初等函数的基本性质。 7、了解分段函数的概念。 8、会建立简单应用问题的函数关系。 (二)教学内容 函数的定义,函数的几何特性,反函数,复合函数,初等函数,经济中的常用函数。 教学重点: 1、五个基本初等函数的分析表达式、定义域、值域及其图形。 2、初等函数的概念,复合函数的复合步骤的分解方法。 3、几个常用经济量的含义及几个常用的经济函数。 教学难点: 1、复合函数的复合步骤的分解方法。 2、利用图形把抽象的数学问题形象化、直观化研究问题的方法。 第一节预备知识 一、实数 二、绝对值 三、区间

Mathematic入门教程(整理版)

(1)简介 数学系给本科生开设一门课: "符号计算系统", 主要简单讲授mathematica(以下简称math)软件的使用及其编程,赶兴趣的同学可以找本math书以求更深入的了解. 我们平日用到编程语言时, 大家都知道编程中用到的整型, 实型, 甚至双精度数, 都只是一个近似的数, 其精度有限, 有效数字有限, 在很多时候达不到实际需要的要求. 符号计算与数值计算的区别就在于符号计算以准确值记录计算的每一步的结果, 如果需要时, 可以将精确表示按需要计算成任意位数的小数表示出来(只要机器内存足够大). 最常见的符号计算系统有maple, mathematica, redues等, 这些软件各有侧重, 比如,maple内存管理及速度比math好, 但是图形方面不如math; redues没找到, 没用过, 未明; 而用得较多的matlab编程环境特好, 和C语言接口极其简单, 遗憾的是它不是符号计算, 只是数值计算. 所以, 就实用而全面来说, math是一个很好用的软件. math软件不仅能够进行一般的+-*/及科学函数如Sin, Log 等计算, 而且能进行因式分解, 求导, 积分, 幂级数展开, 求特征值等符号计算, 并且, math有较强的图元作图, 函数作图, 三维作图及动画功能. (2)mathematica入门 mathematica自发布以来, 目前比较常见的有math 1.2 for DOS, math 2.2 for Windows, math 3.0 for win95, math 3.0 for UNIX. DOS下的math的好处就是系统小, 对机器要求低, 在386机器4M内存下就能运行得很好(机器再低点也是可以用的, 比如说286/2M). 在DOS下直接键入math<回车>即可进入math系统, 出现的提示符In[1]:=, 这时就可以进行计算了, 键入math函数, 回车即可进行运算. 如果输入的Quit, 则退出math. 这里要注意的是, math区分大小写的, 一般math 的函数均以大写字母开始的. windows下的math对机器要求就要高一些了, math3.0更是庞大, 安装完毕有100M之多(2.2大约十多兆). 同windows下的其他软件一样, math可以双击图标运行, 在File菜单下有退出这一项. windows下的math有其优越性, 就是可以在windows下随心所欲地拷贝粘贴图形. math3.0更是能输入和显示诸如希腊字母, 积分符号, 指数等数学符号. DOS的math与windows下的一个区别是DOS的以回车结束一句输入, 而windows的以+<回车>结束一句输入. DOS下的提示符显示为In[数字]:=, 而windows下在结束输入后才显

微积分与大学教学课程的联系

微积分与大学教学课程的联系 一、微积分与概率统计 1.概率统计课程中微积分的应用 概率统计是建立在微积分的基础之上的,两者相互联系,共同发展,特别是随着天文学、生物学、经济学、化学、力学、工程学的发展,两者关系越来越紧密,主要表现在概率统计中微积分的应用。比如,概率统计中一些随机事件的概率只依赖于一个变量,就可以把此概率作为一个未知函数,类比通过微分方程确定未知函数的途径,由微分的方法可求出所需的概率;在求随机变量的数学期望和方差的时候,根据随机变量数学期望与方差的定义,结合概率分布的特点,可以考虑利用逐项微分的方法去求解,比如,在求服从泊松分布的随机变量的数学期望和方差时就可以利用逐项微分的方法去求解;在概率统计课程中很多问题都涉及积分的计算,如已知概率密度函数求分布函数,根据联合概率密度函数求边缘概率密度函数,根据概率密度函数求数学期望等。 2.概率统计求解微积分中问题 微积分中的常数项级数求和时,可以转化为幂级数求和,但是对于某些级数来说,很难转化成与之对应的幂级数,如求证∑—=—时,就可以考虑利用概率的思想去求。 二、微积分与线性代数 在教学过程中,遇到用微积分去求解线性代数中的问题的很少,但是对于微积分中的某些难以解决的问题,如果结合线性代数的思想,就会很容易解出来。比如,微积分中求多元函数在附加条件下的最值问题,可以采用拉格朗日乘数法去求解,但是需要先求驻点,这就需要先求解一个多元线性方程组,方程组当中的每一个方程是多元函数对每一个自变量求偏导数等于零的等式。考虑到方程组的形式很复杂时,求解过程就很难的情况,我们可以利用线性代数中的二次型理论去求函数的最大值和最小值。 三、微积分与大学物理课程 在大学物理课程的学习中,利用微积分的方法解决有关问题是一种最基本和用得最广泛的方法。微分就是在理论分析时,把分割过程无限进行下去,局部范围便无限小下去。积分就是把无限小个微分元求和,这就是微积分的方法。物理学就是要把复杂的问题简单化,只考虑问题的主要方面,这正是微积分的思想,因此利用微积分求解物理学中的问题是非常有效的。比如,可以利用微积分中的导数求解变速直线运动的瞬时速度和加速度;根据微分方程的初值问题可以由加速度速度函数求速度函数,可以由速度函数求位移函数等。微积分对于大学物理来说,不仅是解题的数学工具,更是一种思维方式的渗透。通过微积分解决不同

相关主题
文本预览
相关文档 最新文档